
REVIEWER # 1

We are grateful to the reviewer for the thoughtful comments and suggestions to our
manuscript. We have compiled a revised version and in the following provide a
point-by-point reply to all issues raised.

COMMENT # 1.1

This review comes from a referee with a more mathematical/statistical background with very
little practical experience from drone or tower measurements of the atmosphere.

The overall quality of this manuscript was very high. I believe it is well written and well
structured. The mathematical framework is strong, and I appreciate the detail in describ-
ing the priors over the parameter distributions. I believe the use of data assimilation meth-
ods integrating drone data into LES is interesting and appropriate for the task at hand, and
such approaches have a strong grounding of success in many other disciplines. The authors
have compiled a comprehensive evaluation of several algorithms on a good synthetic baseline,
and they have extended this work into a real-world setting for some qualitative conclusions.
The algorithms were well documented and reasonably well explained, though a novel algo-
rithm proposed in this paper feels quite unmotivated and underperforming. The outlook was
well-considered and conclusions not over-stated, and the study opens doors into further ex-
perimental design questions for data collection, validation of eddy correction vs drone data
assimilation, and algorithm selection for ensemble smoothing/inversion.

Reply:

We would like to thank the reviewer for their positive and constructive comments.
The specific comments related to the PIES scheme are addressed below in response
to Comment #1.5.

COMMENT # 1.2

Specific comments

The language and methods are that of operational forecasting for the formulation of the data
assimilation problem. Yet the problem (1) is one distinctly of an inverse, “smoothing”, prob-
lem. The authors are I believe aware of the new field arising using the language from Bayesian
Inverse Problems and optimization, producing methods such as Ensemble Kalman Inversion
(EKI); a method which encompasses both (ES) or (ES-MDA) by choice of different time-
stepping schemes (e.g. ES-MDA is based on Bayesian tempering). Given the success of



this family of methods in the paper, I suggest the authors move their references from this field
into the main body of the text from the appendix. I would also add a reference such as (Igle-
sias,Yang, 2021: https://doi.org/10.1088/1361-6420/abd29b) for tempering-based timesteps
with EKI which may offer a new perspective on the methods.

Reply:

We are indeed aware of this emerging field of ensemble Kalman inversion and are
excited to see a broader unification of data assimilation and inverse modeling tech-
niques under the common umbrella of Bayesian inference. In particular, we are
adopting a broad definition of the term data assimilation from the Bayesian perspec-
tive outlined in (1). Under this definition, data assimilation is also concerned with
parameter estimation in batch smoothing problems that arise in areas as diverse as
reservoir history matching (2), snow reanalysis (3), and the present study. As the
reviewer points out, this problem turns out to be identical to the Bayesian inverse
problem formulation outlined by (4) that we cite in our manuscript. To make this
connection clearer we have now also included more of the related studies (such as
(5; 6)), as well as the study by Iglesias and Yang (2021) (7), to the reference list and
moved these to earlier portions of the text. In particular, our broad definition of
DA and the overlap with Bayesian inverse problems is now explicitly discussed to-
wards the end of the Introduction and the link to ensemble Kalman inversion has
been added to the section introducing the ES-MDA in Section 2.4:

Changes:

2.1.4 Introduction
. . .
This view implies that a mathematically optimal technique for consistent data-model
fusion can be formulated as a kind of Bayesian inference problem (8; 9)

:::::::::::::
(8; 10; 9; 11)

, which is typically referred to as data assimilation (DA)
::
or

::::::::
inverse

:::::::::::
modeling

:
in the

geosciences (12; 1).
::::::::
Herein,

::::
we

:::::::
adopt

:
a
:::::::
broad

::::::::::
Bayesian

:::::::::::
definition

:::
of

::::
the

::::::
field

::
of

:::::
DA

::
in

:::::
line

::::::
with

::::
(13)

:
.
::::

In
::::::::::
addition

::
to

:::::
the

::::::::::::::
conventional

:::::
DA

::::::::::
problem

::
of

::::::
state

:::::::::::::
estimation,

::::
this

:::::::::::
definition

:::::
also

:::::::::::::::
encompasses

::::
the

::::::::::
problem

:::
of

::::::::::::
parameter

:::::::::::::
estimation.

:::::
The

:::::::
latter

::
is

::::::
often

:::::::::
referred

:::
to

:::
as

:::
an

:::::::::
inverse

::::::::::
problem

::::
(4)

::::::
rather

::::::
than

::
a

::::
DA

:::::::::::
problem.

:::::::
Since

::::
the

::::
flux

::::::::::::
estimation

::::::::::
problem

::
at

::::::
hand

:::
is

::::::::::
precisely

:::::
such

::
a
::::::::::::
parameter

::::::::::::
estimation

::
or

:::::::::
inverse

:::::::::
problem

::::
we

:::
are

:::::
also

:::::::::
leaning

:::
on

::::::::::::::::
developments

::
in

:::::
this

:::::
field

::::::
(5; 6).

:::
In

:::::
this

:::::::
study,

:::
we

::::
do

:::
not

:::::::
make

:::::
any

::::::::::::
distinction

:::::::::
between

:::::
DA

:::::
and

::::::::::
inversion

:::::
and

:::::
take

::
a
::::::::::
unifying

:::::::::::
approach

:::::::::
through

:::
the

:::::
lens

:::
of

::::::::::
Bayesian

::::::::::
inference

:::::::::::
following

:::
(9).

::::::
Such

::
a

::::::::
unified

::::::
view

::
is

:::::::::::
especially

::::::::
helpful

:::
as

::::
the

:::::::::
methods

::::::
used

::::::::
herein

::::
can

:::
be

:::::::::
applied

:::
in

:
a
::::::::::::::
hierarchical

::::::::::::
framework

:::::
that

:::::::
jointly

::::::
solve

:::::
both

::::::
state

:::::
and

:::::::::::
parameter

::::::::::::
estimation

::::::::::
problems

:::::
(14)

:
.

. . .



2.1.4 Data assimilation schemes
. . .
At the root of these iterative schemes we find the idea of tempered transitions, which
is

:
a
:::::::::::
technique

:::::
that

::
is

:
widely used in challenging Bayesian inference problems (15; 16)

:::::
tasks

:::::::::::
(15; 16; 7).

::::::
This

::::::::::::
tempering,

::
in

::::::::::::::
combination

:::::
with

::::::
their

::::::::::::::::
derivative-free

::::::::::::::::::
implementation,

::::
has

:::::::
placed

::::::::::
iterative

::::::::::
ensemble

:::::::::
Kalman

::::::::::
methods

::
at

::::
the

:::::::::
frontier

::
of

::::::::::
ongoing

:::::::::
research

:::
in

:::::::::
Bayesian

:::::::::
inverse

::::::::::
problems

:::::::::
(4; 5; 6)

:::::::
which

::
is

:::::::::
helping

::
to

::::::
both

:::::::::::
formalize,

::::::::::
improve,

:::::
and

:::::::::::
generalize

::::
this

::::::::
family

::
of

::::::::::
methods

::::::::::::::
(17; 7; 18; 19). The equations and workflow for the

ES-MDA scheme
:::::
used

:::::::
herein

:
are presented in Appendix B.

COMMENT # 1.3

It would be illustrative to unwrap the classic equation (1). For example the authors state
L116 “G(·) is the forward model (e.g. RANS or LES)” but this is not generally true, it only
contains RANS or LES.
In particular (1) hides the important presence of:

(i) observational map (here related to the experimental design of drone movements) and

(ii) the transformation map from “computational” Gaussian to “transformed parameters”
to physical e.g. positive parameter distributions.

The inclusion of (i) could be used later to explicitly describe the the drone observations, such
as the aggregation times vs timesteps and for the different experiments.
The inclusion of (ii) could be used in relation to the comment in L200-205 where it is men-
tioned that Kalman methods theory is based on Gaussian assumptions to explain why the
parameters are defined to be transforms of Gaussians. It should not be forgotten that the the-
ory of Kalman methods also relies on linearity, and such transformation introduces additional
nonlinearity into the forward model. A comment here, along with an expansion of the forward
map as "H � F � T= Observation_operator�LES�Transform" in (1) would illuminate this.

Reply:

We have followed the reviewer’s suggestion of unwrapping Equation (1) to make the
various operations more explicit as outlined below.

Changes:

2.1 Data assimilation framework
. . .
The aim here is to infer surface fluxes of sensible and latent heat using sparse and un-
certain drone measurements of meteorological variables in the atmospheric bound-



ary layer. Solving this inverse problem requires a forward (or data generating) model
that maps the parameters, namely the surface fluxes of interest and other uncertain
boundary conditions, to the drone observations through

y = G (x) + ✏ , (1)

where y 2 Rd is the observation vector, G (·) is the forward model(e.g. RANS or LES),
x 2 Rm is the target parameter vector, and ✏ 2 Rd is the observation error. For

::
In

:::::::::
practice,

::::
G(·)

:::
is

:
a
::::::::::::::
composition

:::
of

::::::::::
multiple

:::::::::::
operations

::::::::
(c.f. 1)

G(x) = H (M (T(x))) .
:::::::::::::::::::::

(2)

::::
The

::::::
inner

::::::::::::
operation,

:::::
T(·),

::
is

::
a

::::::::::::::::
transformation

:::::
step

:::::
that

::::::
maps

::::
the

:::::::::::::
parameters

::::::
from

:::
an

::::::::::::
unbounded

:::::::
space

:::
to

:
a
:::::::::::
bounded

:::::::::
physical

:::::::
space.

::::::
This

:::::
step

::::::
helps

:::::::
satisfy

::::
the

:::::::::::
Gaussian

::::::::::::
assumption

::::
of

::::
the

:::::::::::
ensemble

:::::::::
Kalman

:::::::::::
methods

:::::::
while

::::::::::
avoiding

:::::::::::::
unphysical

::::::::
values

::::::::
(Section

:::::::
2.1.2),

::::::::::
although

::
it
::::::
adds

:::
an

::::::
extra

::::::
layer

:::
of

::::::::::::::
non-linearity

:::
to the forward model,

we employ .
:::::

The
:::::::::::::
subsequent

:::::::::
middle

:::::::::::
operation,

::::::
M(·),

:::
is

::::
the

::::::::::::
dynamical

:::::::
model

::::::
used

::
to

::::::::::
simulate

::::
the

:::::
state

:::
of

::::
the

:::::::::::
boundary

::::::
layer

:::::::
given

::::
the

:::::::::::
boundary

::::::::::::
conditions

::::::::::
specified

:::
by

::::
the

:::::::::::::
parameters.

:::::
The

::::::
outer

::::::::::::
operation,

:::::
H(·),

:::
is

::::
the

:::::::::::::
observation

::::::::::
operator

::::
that

:::::::
maps

:::
the

:::::::
states

:::
of

::::
the

::::::::
model

:::
to

::::
the

::::::::::::::::
corresponding

:::::::::::
predicted

:::::::::::::::
observations

:::
by

::::::::::::
extracting

:::
the

:::::::
flight

::::::
paths

:::
of

:::::::::
drones

::::
and

::::::::
(when

::::::::::::
necessary)

:::::::::::::
performing

::::::::::
temporal

::::::::::::::
aggregation

::::
(see

::::::::
Section

:::::::
2.1.3).

::::
By

::::::::::::
employing

:
a turbulence-resolving LES that is

::
as

::::::::::
opposed

:::
to

::
a

:::::::
RANS

:::::::
model

::::
for

::::
the

:::::::::::
dynamics

:::::
M(·)

:::
in

:::::
our

:::::::::
forward

:::::::
model

::::::
G(·),

::::
we

:::
are

:
able to gen-

erate this mapping if
:::
the

::::::::
surface

:::::
flux

:::
to

::::::
drone

::::::::::::::
observation

::::::::::
mapping

::::::
since

::::
the

::::
LES

:::
is

run at an appropriate level of spatio-temporal detail. Note that, even

:::::
Even in the absence of observation error,. . .

COMMENT # 1.4

The authors should present clear equations for the observational covariance matrices that arise
from the different artificial experiments should be added. I am particularly interested in the
apparent overfitting that occurs during the random sweeps in the synthetic experiment. For
example, were matrices scaled by sqrt(T) (where T is the aggregation time difference) when
moving to the shorter measurements in the random trajectories? More generally, was the
shortest timescales for CLT approximation to provide a good estimate investigated (e.g. is
aggregation of 10s enough to assume the effects of the nuisance is random)?

Reply:



We have followed the reviewer’s suggestion and presented clear equations for the
observational error covariance matrices, including how we scaled these to account
for the number of samples S (what the reviewer calls T ) in the averaging operations
(factor 1/

p
S for error standard deviations, 1/S for error variances) and local mean

gradients (introducing a factor
p
2 for error standard deviations, so 2 for error vari-

ances). The use of Gaussian observation errors in this study is an assumption and,
given CLT, it is more likely to hold for longer averaging periods (i.e. larger S). We
did not test the appropriateness of the CLT approximation for shorter timescales per
se, instead our experimental design was based on our prior expectations of the tur-
bulence spectra and practical constraints related to the drones (battery time etc. . . ).
This could be an important topic to explore further in future work. We nonetheless
added changes to Section 2.1.3 to clarify some of these concerns as outlined below

Changes:

2.1.3 Drone measurements, observations and errors
. . .
Systematic errors that occur for error distributions that are asymmetrically distributed
with respect to zero, are assumed to be negligible.

:::::
This

::::::
leads

::
to

::::
the

:::::::::::
following

:::::::::::
definition

:::
for

::::
the

:::::::::::
diagonal

:::::::::::::
observation

:::::::
error

::::::::::::
covariance

::::::::
matrix

:::::::::::
R 2 Rd⇥d

::::::::::::
employed

:::
in

:::::
this

::::::
study

:

R = diag
⇣
⌧��2

⌘
,

::::::::::::::::::::

(5)

:::::::
where

::::::::
diag(·)

::
is

::::
the

::::::::::
diagonal

::::::::::
operator

:::::
that

::::::::::
converts

::
a

:::::::
vector

:::
to

::
a
::::::::::
diagonal

:::::::::
matrix,

:::::::
⌧ 2 Rd

:::
is

:
a
:::::::::
scaling

:::::::
vector,

:::
�

:::::::::
denotes

::::
the

::::::::::::::
element-wise

::::::::::
product,

::::::::
� 2 Rd

::::::::::
contains

::::
the

::::::::::::::
measurement

:::::::
error

::::::::::
standard

:::::::::::
deviation

::::
for

::::::
each

::::::::::::::
observation.

:::::
The

:::::::::::
elements

:::
of

::::
the

:::::::
scaling

::::::::
vector

:::
are

:::::::::
defined

:::
as

::::::::
follows

:

⌧i =

8
<

:
1/S if mean,
2/S if local mean gradient,

::::::::::::::::::::::::::::::::::::

(6)

:::::::
where

:
S
:::
is

:::
the

:::::::::
number

:::
of

:::::::::::::::
measurement

:::::::::
samples

::::
that

::::
are

::::::::::
averaged

:::
to

:::::
form

::::
an

:::::::::::::
observation.

:::
As

::::::::::::
elaborated

::
in

:::::::::
Section

::::
2.2,

:::
we

:::::
test

::::
two

:::::::
types

::
of

:::::::
flight

::::::
plans.

:::::
The

:::::
first

:::::
type

::::::::::
involves

::::::::::
step-wise

:::::::::
vertical

::::::::
profiles

:::::::
while

::::
the

::::::::
drones

:::::::
hover

:::
in

::::::
place

::::
for

:
a
::
2
:::::::::
minute

:::::::::::
averaging

:::::::
period

::::::
with

::
a

:::
10

::
s
:::::::::::
sampling

:::::::::
interval

::::::
such

:::::
that

::::::::
S = 12.

::::::
The

::::::::
second

::::::
type

::::::::::
involves

::::::::
random

:::::::::::::
exploration

::::::::
where

:::
no

:::::::::::
averaging

:::
is

:::::::::::
performed

::::::
such

:::::
that

:::::::
S = 1.

:::
In

:::::::::::
summary,

::::::::::
following

::::::::::::::
independent

::::::::::
Gaussian

::::::
error

::::::::::::::
propagation,

:::::
this

:::::::::::::
observation

:::::
error

::::::::::::
covariance

:::::::
matrix

:::::::::
implies

:::::
that

:::::::::::::
observation

:::::::
errors

:::::
are

:::::::::::::::
uncorrelated,

::::::::::
decrease

:::::
with

::::::::::
number

:::
of

:::::::::
samples

::
S

:::
in

:::
an

:::::::::::
averaging

:::::::::
period,

:::::
and

::::
are

:::::::
larger

:::
for

::::::
local

:::::::
mean

::::::::::
gradients

::::::
than

::::
for



:::::::
means.

:

::::
The

::::::::::
elements

::
of

:::
�

::::
are

:::::::::::::
determined

:::
by

::::
the

:::::::::::::::
measurement

::::::
error

::::::::::
standard

:::::::::::
deviation

::
of

::::
the

:::::::::::
respective

:::::::::
sensors.

:
For temperature measurements on drones,. . .

COMMENT # 1.5

The novel PIES algorithm unfortunately does not seem to be effective, given that PIES has
suffered similar collapse to the PBS in synthetic experiments. Therefore the discussion of
its performance with KLD (e.g. in L413) or RMSE should probably be cautious at best as
clearly it is stuck in a suboptimal local minimum. Discussion of actual performance indicators
should be limited to the Kalman methods, ES and ES-MDA, that appear to have at least
retained posterior spread around the truth. I feel that there is not enough motivation as to
why the PIES algorithm was developed, what theory or heuristics lead the authors to believe
that it should work, and whether it performed as expected in practice. I think it’s relevant
considering the other works are available for overcoming this degeneracy e.g. L271: “several
more sophisticated variants are shown to have potential to overcome this (van Leeuwen et al.
2019)”.

Reply:

The PIES scheme did not turn out to be particularly effective in this study and suf-
fered from the same degeneracy as the simpler PBS scheme. We suspect that this
could be improved by running more iterations of the ES-MDA and using the final
(rather than pen-ultimate) iteration as the posterior, but that would come at a con-
siderable increase in computational cost. Following the reviewer’s suggestion, we
have thus removed the discussion about the KLD of the PIES scheme on L413. We
have nonetheless retained the discussion of the RMSE of the particle methods since
this is a point metric based on the ensemble mean (rather than the entire ensemble)
and we have in the same section (Section 3.2) made it clear that these schemes were
degenerate with effective sample sizes of 1. A discussion of the motivation for testing
the PIES method in this paper has also been added. It is worth emphasizing that all
the non-iterative schemes (ES, PBS, PIES) can essentially be run for free (other than
the cost of the assimilation step) while running the ES-MDA iterations. In particular,
they do not require any additional LES runs. As such, including these schemes as
tests or benchmarks for the performance of the ES-MDA does not add any noticeable
computational burden to our experiments.

Changes:



2.1.4 Data assimilation schemes
. . .

::::
The

::::::::::::
motivation

::::
for

::::::::::
pursuing

::::
the

::::::
PIES

::::::::
scheme

::
is

:::::
that

::::
the

::::::::::
ES-MDA

:::::::::::
produces

:
a
::::::::
biased

::::::::::::::::
approximation

:::
of

::::
the

::::::::::
posterior

::::
for

::::::::::::
non-linear

:::::::::
forward

:::::::::
models

:::::
(16).

::::::::::::
Although

:::::
this

::::
bias

:::
is

:::::::::
typically

:::::
less

:::::::
severe

::::::
than

::::
that

:::
of

::::::::::::::
non-iterative

:::::::::::
ensemble

:::::::::
Kalman

::::::::::
methods

:::
(2)

:
,

:
it
::::::::
would

:::::::::::::
nonetheless

:::
be

::::::::::::::::
advantageous

::
to

:::::
find

::::::::::
efficient

:::::::::
methods

:::
to

::::::::
reduce

:::
it.

:::::
PIES

:::
is

:
a
::::::::::::::::::
straightforward

::::::::::::
translation

:::
of

::::
the

::::::::
scheme

:::
of

::::::
(20)

::
to

:::::::::
iterative

:::::::::::
ensemble

::::::::::::
smoothers

:::::
such

:::
as

::::
the

::::::::::::
ES-MDA.

:::
As

:::::::
such,

::::::
PIES

:::::
can

:::
be

:::::::::
viewed

:::
as

::
a
::::::::
simple

:::::::::::
extension

::::
of

::::
the

::::::::::
ES-MDA

::::
that

::::::
does

::::
not

::::::::::::
necessarily

::::::::
impose

:::::
any

:::::::::::
noticeable

::::::::::::::::
computational

::::::::
burden

:::::
and

::::::
might

::::::::::
improve

:::::::::::::::
performance.

:::
As

::::::
with

:::
all

:::::::::
particle

::::::::::
methods,

::::
the

::::::::::
effective

::::::::
sample

:::::
size

::::
can

:::
be

::::::
used

::
to

::::::::::
diagnose

:::::::::::::
degeneracy

:::
in

::::
the

:::::::::::
ensemble

::
of

::::::::::
particles

:::::
(21).

:::
A

:::::
low

::::::::
(⌧ Ne)

:::::::::
effective

::::::::
sample

:::::
size

::::::::::
indicates

:::::::::::::
degeneracy

::::
due

:::
to

::::
the

::::
fact

:::::
that

::::
the

::::::::::
proposal

::
is

::::
too

::::
far

:::::
from

::::
the

:::::::
target

::::::::::
posterior.

:
. . .

3.1 Synthetic experiments
. . .
The ES-MDA and PIES schemes give

::::::::
scheme

::::::
gives

:
the largest information gain from

the prior to posterior, as indicated by their
:::
its KLD.

COMMENT # 1.6

I think more should be discussed in moving the algorithm application from synthetic data
to field data, (alongside the comparison of data to EC). Is it possible to obtain a plot of the
parameter prior and marginal posteriors for the ES-MDA for (e.g. repeating Figure 3 for the
field data). Is there anything to suggest that significant structural model errors appear (as
compared with the synthetic data) or are they captured well by the pairing of the LES model
and choice of observational covariances in the inverse problem.

Reply:

We agree that structural model errors should be clarified when moving the algo-
rithm from synthetic to field data, so we suggest to add the text below to Section
2.1. Overall, we believe that the main structural errors for field experiments are due
to topography and spatio-temporal flux variability. Assuming flat terrain, as well
as homogeneous and stationary surface fluxes are simplifications of reality, which
should be improved in future studies.

As requested by the reviewer, Figure R1 below shows an example of the marginal
distributions for a field data experiment (the same flight as used in Figure 5 of the
main article). Note the important difference to the synthetic experiments that true



parameter values are not known (vertical dashed lines for H and LE only show in-
dependent EC estimates). We do not see indications of significant structural model
errors from these distributions, indicating that the choice of LES model and observa-
tion operator give an appropriate representation of reality.

Changes:

2.1 Data assimilation framework
. . .
In the real experiments, where we compare with independent EC data, some of the
mismatch between the EC estimates and drone-based inferences will undoubtedly be
due to the strong assumptions made in the respective approaches.

:::::::
Given

::::
the

:::::
level

:::
of

::::::::
realism

::
in

::::::
LES,

::::::
these

:::::::::::
structural

:::::::
model

:::::::
errors

::::::::::::
introduced

::::::
when

:::::::::
moving

::::
the

:::::::::::
algorithm

::::::::::::
application

::::::
from

::::::::::
synthetic

:::
to

::::::
field

::::::
data

::::
are

::::::
likely

:::::::::::::
dominated

:::
by

:::::::::::::::::
simplifications

:::
of

:::::::::::::
topography

::::
and

:::::::::::::::::
spatio-temporal

:::::
flux

::::::::::::
variability.

:
The Bayesian approach to inference

. . .

COMMENT # 1.7

Technical corrections

L109 “we do not argue that this comparison offers validation per se - only a plausibility
check”. Can the authors instead write what they wished to see/gain from the experiment?

Reply:

As the two methods estimate the surface fluxes over slightly different footprint areas,
we wish to see that they agree in the estimated order of magnitude of fluxes and
the relative flux variability. We agree with the reviewer that this understanding of
"plausibility check" should be clarified.

Changes:

Introduction
. . .
To be clear, given the differences in footprint and underlying assumptions, we do
not argue that this comparison offers a validation per se – only a plausibility check

::
of

::::
the

:::::::::::
estimated

::::::
order

:::
of

::::::::::::
magnitude

:::
of

:::::::
fluxes

:::::
and

:::::
their

:::::::::
relative

:::::::::::
variability.

COMMENT # 1.8



Figure R1: Marginal parameter distributions for the prior (black) as well as the ES-
MDA (with Na = 2 iterations, red), ES (blue), PBS (yellow shading shows the cen-
tral 95th-percentile range), and PIES (green shading shows the central 95th-percentile
range) posterior estimates along with the location of the EC flux estimates (black
dashed vertical line) for flight 1 of the Iškoras campaign, a step profile on 2020-07-27
with takeoff at 15:20 local time.

Throughout, single or double quotes appear backward before quotations, typically from using
character ’ and not ‘ in latex

Reply:

Fixed, thanks for spotting this.

COMMENT # 1.9



The authors describe all parameters that are not “H” or “LE” as nuisance parameters, but then
still proceed to learn them. Perhaps I am mistaken, but I thought that nuisance parameters
are not learnt in DA - rather they are parameters whose effect is considered to add additional
noise in the observation functional in place of trying to learn them in the scheme, I would say
their description is underplaying the work that they subsequently undertake

Reply:

Indeed, our interest is in H and LE, but the other parameters are learned from the
data and then ‘integrated out’ by focusing on the marginal distribution of of H and
LE. We were of the impression that our use of the word nuisance was in line with
the norm in Bayesian statistics following (10) and (22) as well as (11) which is a stan-
dard reference in the field. This procedure may not be the norm in conventional state
estimation-based DA, but we have now made it clear (see response to Comment #
1.2) that we are adopting a broader Bayesian definition of the term that includes pa-
rameter estimation (and marginalization). We have clarified this understanding of
‘nuisance’ parameters in the following change of the manuscript.

Changes:

2.1.1 LES model and parameters
. . .
Of these six parameters, the primary interest is in H and LE while the remaining four
parameters can be regarded as ’

:
‘nuisance’ parameters (10)

:::::::::::
(22; 10; 11)

:
.
:::::
The

::::::::::
nuisance

::::::::::::
parameters

::::
are

::::
still

:::::::::
inferred

::::::
from

::::
the

::::::
data,

::::
but

::::
are

:::::
then

:::::::::::
implicitly

::::::::::::
‘integrated

:::::
out’

:::
as

:::
we

:::::::::::
primarily

::::::
focus

:::
on

::::
the

::::::::::
marginal

:::::::::::
posterior

::::::::::::::
distributions

:::
of

::
H

:::::
and

:::
LE.. . .

COMMENT # 1.10

Presentation of Table 1 naturally should be alongside that of Figure 3 as they are both inter-
algorithm performance comparison. Figure 4 should come after this as it has already selected
the “best” algorithm and addresses a different scientific question

Reply:

We agree that this change of order can clarify the manuscript and are happy to fol-
low the reviewer’s suggestion. To emphasize that the table presents average statistics
over a number of synthetic experiments, we also suggest to add the following sen-
tence to the paragraph describing the table.

Changes:



3.1 Synthetic experiments
. . .

::::::::
Varying

::::
the

:::::::::::
sampling

:::::::::::
strategies

:::::
(step

::::::::
profile

:::
vs

:::::::::
random

::::::::::::::
exploration),

:::::::
flight

:::::
time

::
(12

to
::
vs

:
24

::::::::::
minutes),

:::::::::
number

:::
of

::::::::
drones

::
(1

:::
vs

:::
5),

:::::::::::::
uncertainty

::
in

:::::::
initial

::::::::::::
conditions

:::::::::
(narrow

::
vs

:::::::::
broad),

:::::
and

::::
the

::::::::::::::
geostrophic

::::::
wind

:::::::
speed

:::::
(1.5

:::
vs

::::
6.0

:::
m

:::::
s-1)

:::::
led

:::
to

::
a

::::::
total

:::
of

:::
16

::::::::::
synthetic

::::::::::::::
experiments.

:

COMMENT # 1.11

Figure 4 mention the spread of the violin plots (95%) in the caption

Reply:

The violins are plotted with Matplotlib Violinplot, where the caps mark the extrema
of the ensemble. We propose to add the following sentence to the caption of Figure 4
to clarify this.

Changes:

Figure 4 caption:
::::
The

::::::
caps

:::
of

::::
the

::::::::
violins

::::::
mark

:::::
the

:::::::::
extrema

:::
of

::::
the

:::::::::::
ensemble

:::::
and

::::
the

::::::
dots

::::
the

:::::::
mean

:::::::
values.

COMMENT # 1.12

L490 typo “constrains”

Reply:

Fixed, thanks for spotting this typo.

COMMENT # 1.13

L388 - either should say “see discussion below” or “see Section 4” depending on what it refers
to. (likewise L460 could just read “see Section 4.2”).

Reply:

We have now referred to the appropriate part of the manuscript, namely Section 4.2.
Moreover, we have added a sentence to provide an example of what kind of external
information we are referring to.



Changes:
4.2 Possible improvements
. . .

::
A

:::::::::::::::::
complementary

::::::::::
approach

:::::::
could

:::::
also

:::
be

::
to

:::::::::
directly

::::::::::::
incorporate

::::::
land

::::::
cover

::::::::::::::
information,

::::
e.g.

:::::::
from

:::::::::
satellite

:::::::::::
retrievals

:::::
(23),

::::::
into

::::
the

::::::::
design

:::
of

:::::
flux

:::::::
maps

:::
in

::::
the

:::::::::::::
turbulence

:::::::::::
simulation

:::
as

:::::
was

::::::
done

:::
in

::::
(24)

:
.
:

COMMENT # 1.14

Were more than two inflation steps tried with ES-MDA?

Reply:

In the pilot phase of this study, we did try a few experiment with more iterations, but
quickly realized, that given our allocation of computational resources we could not
afford to test this systematically across many different experiments in our study. We
chose to prioritize more experiments (including field data) with fewer iterations. So
we can only hypothesize that more iteration in the ES-MDA scheme would give an
improved performance (which should be addressed in future studies). In this con-
text, we should also explore reducing the ensemble size and increasing the number
iterations (while keeping the number of simulations fixed), to identify the optimal ra-
tio of this computational trade-off. The paragraph we added to Section 4.3 (in relation
to Comment #2.2 by Reviewer 2) summarizes these considerations.

COMMENT # 1.15

Figure 5 - mention these are posterior draws of ES-MDA on the caption.

Reply:

We have followed the reviewer’s suggestion as shown below.

Changes:
Figure 5 caption:
Drone observations and posterior ensemble predictions

:::::
from

::::
the

::::::::::
ES-MDA for flight

1 of the Iškoras campaign, a step profile on 2020-07-27 with takeoff at 15:20 local
time. The upper panels show the successive 2-min mean values, whereas the lower
panels show the local mean gradients. The line colors of the vertical profiles for the
100

:::::::::
Ne = 100

::::::::::
posterior

:
ensemble members

:::::
from

::::
the

::::::::::
ES-MDA correspond to their log-

likelihood with more likely values in yellow and less likely values in blue. The prior



predictions are not shown, because their range is so wide that one could not see any
details in the posterior profiles.

COMMENT # 1.16

L455 “...compared to the less calibrated uncertainty estimates of the EC technique” - I’m not
sure what this means here. Please rephrase

Reply:

We agree that this can be clarified and suggest the following changes.

Changes:

2.3 Field experiments
. . .
Along with the EC fluxes, EddyPro also estimate

::::::::::
estimates their random error based

on integral turbulence statistics
::::
(the

::::::::::
variance

:::
of

:::
the

:::::
flux

:::::::::::::
covariance)

:::::
due

::
to

:::::::::::
sampling

::::::
errors

:::::
that

::::::
arise

:::::
from

::::
the

::::::
small

:::::::::
number

:::
of

::::::
large

:::::::
eddies

:::::
that

::::::::::
dominate

::::
the

:::::
flux

::::::::
during

:::::::
typical

:::::::::::
sampling

::::::::
periods

:::::::::::
following

:::::
(25).

4.1 Potential and limitations of drone data assimilation
Using typical sensor configuration and flight times of small drones, we find a rel-
atively large posterior spread of the surface fluxes, compared to the less calibrated
uncertainty estimates of the EC technique

::::
that

:::::
are

:::::::
solely

::::::::::::
accounting

::::
for

:::::::::::
sampling

::::::
errors

::::::::
arising

:::::::
from

::::
the

::::::
small

::::::::::
number

:::
of

::::::
large

::::::::
eddies

::::::::::
captured

:::
in

::::
the

:::::::::
30-min

:::::
flux

::::::::
interval. . .

COMMENT # 1.17

Figure 6 - the uncertainties for EC are very small in Figure 6 (in relation to drone measure-
ments), and grow with the value of the flux. Is this explainable? If so, is it unusual that the
drone measurement uncertainty does not appear to depend on this?

Reply:

We thank the reviewer for this interesting observation. Drone-DA uncertainty esti-
mates are largely a result of our experimental design (flight time, sensor noise, etc.)
and the prior distributions we used. These settings were kept constant in our field
experiments shown in Figure 6, which would explain why the uncertainty estimates
are largely constant. For EC, the used method by (25) to estimate the relative error of



the flux through the variance of the flux covariance, i.e. the sampling uncertainty. As
shown in the original paper of the method (25), the relative error is largely constant
(around 10-30%) over a range of flux magnitudes, wind speeds, and even ecosystem
types (i.e. forested vs agricultural surfaces). It is therefore indeed expected that the
absolute random error increases linearly with flux magnitude, as also seen in Fig-
ure 6 of our study. In sum, the error bars shown in Figure 6 measure fundamentally
different uncertainties (epistemic for the drone DA, vs aleatoric for EC). We propose
to add the following sentence describing this observation in the discussion.

Changes:

3.2 Field experiments
:::
As

::::
the

:::::::::::
drone-DA

:::::::::::::
uncertainty

::::::::::
estimates

::::
are

:::::::
largely

::
a
:::::::
result

::
of

::::
our

:::::::::::::::
experimental

:::::::
design

::::::
(flight

:::::::
time,

:::::::
sensor

:::::::
noise,

:::::
etc.)

::::::
and

::::
the

:::::
used

:::::::
prior

::::::::::::::
distributions,

::::
all

:::
18

:::::::
flights

:::::::
show

:::::::
largely

::::
the

:::::::
same

::::::::::
epistemic

::::::::::::::
uncertainty.

::::
For

::::
the

::::
EC

:::::::::::
estimates,

::::::
error

::::::
bars

::
in

::::::::
Figure

::
6

:::::
only

:::::::::
indicate

::::
the

::::::::::
absolute

:::::::::
aleatoric

:::::::::::::
uncertainty

:::::
due

:::
to

:::::::::::
sampling

::::::::::::
limitations,

::::::::
which

::
is

::::::::::
expected

::
to

::::::::::
increase

:::::
with

:::::
flux

::::::::::::
magnitude

:::::
(25).

:

COMMENT # 1.18

L304 “penultimate iteration of ES-MDA. . . in practice it may be better to use the poste-
rior from the final iteration”. Perhaps state precisely what the algorithm should use, then
afterward mention what approximation is made for computational considerations.

Reply:

Done.

Changes:

2.1.4 Data assimilation scheme
. . .
In practice, it may

::::::::::::
Importance

:::::::::::
sampling

::
is

:::::::
more

:::::::::
effective

::::
the

:::::::
closer

::::
the

::::::::::
proposal

:::
is

::
to

::::
the

:::::::
target

::::::::::
posterior

:::::::::::::
distribution

:::
(8)

:
.
:::
So

:::
in

::::::::
theory

::
it

:::::::
would

:
be better to use the pos-

terior
::::::::
estimate

:
from the final (rather than penultimate) iteration of the ES-MDA

:::
for

:::
the

::::::::::
proposal

:::
in

::::::
PIES, but this would come at a high computational cost of requiring

an additional round of runs of the LES ensemble.

COMMENT # 1.19



L477 - more detail in the list of improvements. E.g more assimilation cycles should improve
nonlinearity, more ensembles will improve the monte-carlo approximation, Gaussian pro-
cesses could be used for increasing the smoothness of the cost landscape.

Reply:

These are nice suggestions. We propose to incorporate them with the following
changes in the sentence.

Changes:

4.2 Possible improvements
Narrowing the posterior spread

:::::::::::
Improved

::::::::
surface

:::::
flux

::::::::::::
inferences

:
can be achieved

in a number of different ways, including technical improvements during data collec-
tion, such as using higher quality sensors, more drones, and better quantifying initial
and boundary conditions

:
, as well as modifying the data assimilation framework by

using a larger ensemble size
::
to

::::::::::
improve

::::
the

::::::::
Monte

:::::::
Carlo

::::::::::::::::
approximation, more as-

similation cycles , emulators
::
to

::::::
better

:::::::::
account

::::
for

::::::::::::::
nonlinearity,

:::::::::::
emulators

:::
to

:::::::::
increase

:::
the

:::::::::::::
smoothness

:::
of

::::
the

:::::::::::
likelihood

::::::::::
function

:
(18), and a higher spatial resolution of the

LES model
::
to

::::::::
reduce

:::::::::::
structural

:::::::
model

:::::::
errors.

COMMENT # 1.20

L462 - This is outside of my domain knowledge. But are there any high-level references that
could be provided towards the present state and future progression to address the “engineering
and legal challenges” of using drones to collect data?

Reply:

The legal framework for drone applications is very country-specific and cannot be
readily forecast. Typically, the legislation allows for the common use cases for drones
(below 120 m above ground level and within visual line of sight) and describes pos-
sibilities to acquire permits for more advanced use cases. We understand that a refer-
ence to some legal guidelines is needed to clarify this aspect, so we propose to add a
reference to an article focusing on a discussion of the European airspace regulations.

Changes:

4.1 Potential and limitations of drone data assimilation
. . .
Most applications of drones are currently still restricted to manual flights with a hu-



man pilot in charge of the system
:::::
(see,

:::::
e.g.,

:::::
(26)

:::
for

::
a

:::::::::::
discussion

:::
of

:::::::::::
European

:::::::::
airspace

:::::::::::::
regulations).
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