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Abstract

Spatially representative estimates of surface energy exchange from field measurements are required for improving and vali-

dating Earth system models as well as satellite remote sensing algorithms. The scarcity of flux measurements can limit un-

derstanding of ecohydrological responses to climate warming, especially in remote regions with limited infrastructure. Direct

field measurements often apply the eddy covariance method on stationary towers, but recently drone-based measurements of5

temperature, humidity, and wind speed have been suggested as a viable alternative to quantify the turbulent fluxes of sensi-

ble (H) and latent heat (LE). A data assimilation framework to infer uncertainty-aware surface flux estimates from sparse and

noisy drone-based observations is developed and tested using a turbulence-resolving large eddy simulation (LES) as a forward

model to connect surface fluxes to drone observations. The proposed framework explicitly represents the sequential collec-

tion of drone data, accounts for sensor noise, includes uncertainty in boundary and initial conditions, and jointly estimates10

the posterior distribution of a multivariate parameter space. Assuming typical flight times and observational errors of light-

weight, multi-rotor drone systems, we first evaluate the information gain and performance of different ensemble-based data

assimilation schemes in experiments with synthetically generated observations. It is shown that an iterative ensemble smoother

outperforms both the non-iterative ensemble smoother and the particle batch smoother in the given problem, yielding low bias

and variance posterior distributions with continuous ranked probability scores of 12 W m−2 for both H and LE with standard15

deviations of 37 W m−2 (H) and 46 W m−2 (LE) for a 12 min vertical step profile by a single drone. Increasing flight times,

using observations from multiple drones, and further narrowing the prior distributions of the initial conditions, are viable to

reducing the posterior spread. Sampling strategies prioritizing space-time exploration instead of temporal averaging at fixed

locations enhance the non-linearities in the forward model and can lead to biased flux results with ensemble-based assimilation

schemes. In a set of 18 real-world field experiments at two wetland sites in Norway, drone data assimilation estimates agree20

with independent eddy covariance estimates, with root-mean-square error values of 37 W m−2 (H), 52 W m−2 (LE), and

58 W m−2 (H +LE), and correlation coefficients of 0.90 (H), 0.40 (LE), and 0.83 (H +LE). While this comparison uses

the simplifying assumptions of flux homogeneity, stationarity, and flat terrain, it is emphasized that the drone data assimilation
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framework is not confined to these assumptions and can thus readily be extended to more complex cases and other scalar fluxes,

such as for trace gases in future studies.25

1 Introduction

The significance of sensible (H) and latent (LE) heat fluxes between an underlying surface and the atmosphere aloft is not in

dispute, given the plethora of problems spanning atmospheric, oceanographic, cryospheric, soil, and vegetation dynamics, in

which these turbulent exchange processes arise. Direct measurements of these surface fluxes enable robust methods to evaluate

and tune parametrizations used in climate models, and to develop algorithms for indirect flux retrieval using satellite remote30

sensing. Traditionally, flux measurements are collected on meteorological towers using the so-called eddy covariance (EC)

technique (or other micro-meteorological approaches such as the Bowen ratio method). While these stationary tower mea-

surements are often considered the best available technique for surface flux estimation, they are known to have limited spatial

representativeness (Chu et al., 2021). Moreover, the link between measured turbulent heat flux at the tower and sources or sinks

at the surface becomes problematic when these sources and sinks are spatially variable (Bou-Zeid et al., 2020). An indirect35

manifestation of this problem is a failure to close the surface energy balance with underestimates in excess of 20% (on average)

being reported across the sites of the FluxNet network (Stoy et al., 2013). This problem is by no means confined to surface

heterogeneity. A number of studies (Steinfeld et al., 2007; De Roo et al., 2018) showed that organized eddies can bias flux

estimates even in homogeneous environments, which explains part of the typically observed lack of closure of the measured

surface energy balance. One approach to ameliorate these issues is to include spatially distributed measurements, which frames40

the scope of the work herein. Airborne measurements from aircrafts have a long tradition in atmospheric sciences and are

used to complement flux towers (Desjardins et al., 1989; Mahrt, 1998). Over the past decade, developments in miniaturized

sensors and small unoccupied aircraft systems (hereafter referred to as drones) have been opening possibilities for studies of

land-atmosphere interactions in ways not attempted before.

Drones measuring air temperature, humidity, and wind speed are a promising tool for spatially distributed measurements in45

meteorological studies (Lee et al., 2018; Barbieri et al., 2019). Fixed-wing drones are typically equipped with air speed sen-

sors that allow for wind speed estimation (Elston et al., 2015). Multi-rotor drones introduce some distortions to the turbulence

field around them but they can still estimate horizontal wind speed based on their altitude derived from inertial measurement

unit (IMU) data (Neumann and Bartholmai, 2015; Palomaki et al., 2017). Drones can also ’hover’ in place at a point of interest

or can sample along a pre-programmed flight path making them a sort of intermediate between tethered balloon soundings and50

helicopter platform. Drone data have already been used for flux estimation in several studies (Bonin et al., 2013; Hoffmann

et al., 2016; Kim and Kwon, 2019; Båserud et al., 2020), typically using Monin-Obukov similarity theory (MOST) (Monin

and Obukhov, 1954; Foken, 2006) with flux-profile (Högström, 1988) or flux-variance (Katul and Hsieh, 1999) relationships

as well as vertically-integrated heating/drying rates to infer surface fluxes. Due to the stochastic nature of turbulent trans-

port, measurements are usually aggregated over longer time periods or large spatial distances where the statistical variability55

becomes predictable by micrometerological theories (though ergodicity is a priori assumed in this case). Nonetheless, given
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the limited flight time of drones, new trade-offs in the spatio-temporal sampling strategy could be developed to optimize flux

estimates. Recently, multi-platform systems or drone swarms, carrying a mobile sensor network, have been shown to have

capabilities for estimating emissions from gas point sources (Hutchinson et al., 2017; Ristic et al., 2020). While the potential

for drone-based flux measurements as a relatively low-cost and mobile complement to EC is promising, there are many open60

questions regarding the uncertainties of the resulting flux estimates, the optimal flight strategy, the required turbulent transport

model, and the data-model fusion algorithms.

Returning to the issue of spatial variability and scales, the surface layer of the atmosphere constitutes a non-linear system

where variability exists across all scales (Wyngaard, 2010). To explicitly represent intermittent and inhomogeneous turbulent

transport as well as coherent structures requires high-resolution models that are computationally much more expensive than65

the flux-related expressions encoded in MOST. In particular, turbulence-resolving large eddy simulations (LES) are widely

accepted tools to simulate boundary layer dynamics, as they explicitly resolve the energy-containing range of large eddies

while they parametrize the effect of sub-grid scales on the resolved scales (see e.g., Stull, 1988). While MOST describes planar-

homogeneous and stationary turbulence statistics in the absence of subsidence, LES allows for the analysis of turbulence time

series at high temporal resolution, so as to realistically represent turbulence statistics collected at time scales of seconds to70

minutes. Some studies have already paved the way (Sühring et al., 2019) by performing idealized LES studies with known

initial and boundary conditions, and with virtual airborne measurements to show the feasibility of airborne flux estimation

techniques, even above heterogeneous surfaces (but disregarding sensor noise). This indicates that drone observations can

be combined with LES to estimate surface fluxes. That is, the LES may be viewed as a mathematical operator that takes

surface boundary conditions and key large-scale meteorological forcing and provides statistics such as turbulent fluxes and75

meteorological states at all points in the domain of interest over a period of time. These statistics can then be compared with

’noisy’ data obtained from drones. Surface fluxes that optimally match the noisy measurements can then be inferred.

This view implies that a mathematically optimal technique for consistent data-model fusion can be formulated as a kind

of Bayesian inference problem (MacKay, 2003; Särkkä, 2013), which is typically referred to as data assimilation (DA) in the

geosciences (Carrassi et al., 2018; Evensen et al., 2022). On regional scales, DA with mixed-layer models have been used to80

estimate surface energy fluxes from surface temperature measurements provided by satellite remote sensing (Caparrini et al.,

2004; Xu et al., 2018) or radiosonde profiles of potential temperature and specific humidity (Tajfar et al., 2020). On much

larger scales, Bayesian flux inversions are also a common tool in atmospheric inverse modeling to assess regional emissions of

CO2 (Tans et al., 1989) and methane (Thompson et al., 2018). Due to computational limitations, studies using DA with LES

models have only recently become possible (Lunderman et al., 2020), and an evaluation with drone observations together with85

independent flux measurements remains lagging (or lacking all together).

In many practical applications, one typically omits stochastic terms in the model and assumes it to be a perfect represen-

tation of reality (so-called strong-constraint data assimilation) (Evensen, 2019). Even so, different DA techniques will excel

depending on model complexity and the number of parameters in the problem. Variational DA combines the model and the data

through the optimization of a cost function, but requires taking derivatives of the forward model with respect to its parameters90

(Bannister, 2017), which is difficult or impossible for most LES codes. Particle-based methods (van Leeuwen et al., 2019),
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such as the particle batch smoother scheme (Margulis et al., 2015), are conceptually well suited for drone data assimilation

given their limited assumptions, but they are known to suffer from degeneracy for problems in higher dimensional parameter

spaces (Snyder et al., 2008). Ensemble Kalman-based methods, such as the ensemble smoother (van Leeuwen and Evensen,

1996) and its iterative variants (Emerick and Reynolds, 2013), on the other hand, have been shown to overcome some of these95

limitations for very large parameter spaces. However, these approaches invoke Gaussian linear assumptions at the analysis

phase when data and models are combined. These assumptions can be problematic given that Gaussian random variables do

not respect physical bounds and many forward models in the geosciences are non-linear. This issue motivated studies that

sought to describe how the iterative ensemble Kalman smoother can be used to improve urban air pollution estimation by

assimilating both mean wind and gas concentrations with a Reynolds-Averaged Navier-Stokes (RANS) model (Defforge et al.,100

2021). Considering the potential and limitations of the different DA schemes, one may hypothesize that a combination of

Ensemble Kalman-based and particle-based approaches could be ideal for drone data assimilation in LES.

The aim of the present study is to first perform observing system simulation experiments (Masutani et al., 2010) to evaluate

which DA scheme is most suited for the problem of flux estimation from drone observations, and to demonstrate what flux

results can be expected from typical light-weight drone systems. We then apply the drone data assimilation technique to real-105

world measurements from drones and compare its results to concurrent eddy covariance flux estimates to demonstrate the

feasibility of the method. To be clear, given the differences in footprint and underlying assumptions, we do not argue that this

comparison offers a validation per se – only a plausibility check.

2 Materials and methods

2.1 Data assimilation framework110

The aim here is to infer surface fluxes of sensible and latent heat using sparse and uncertain drone measurements of mete-

orological variables in the atmospheric boundary layer. Solving this inverse problem requires a forward (or data generating)

model that maps the parameters, namely the surface fluxes of interest and other uncertain boundary conditions, to the drone

observations through

y = G (x) + ε , (1)115

where y ∈ Rd is the observation vector, G (·) is the forward model (e.g. RANS or LES), x ∈ Rm is the target parameter vector,

and ε ∈ Rd is the observation error. For the forward model, we employ a turbulence-resolving LES that is able to generate

this mapping if run at an appropriate level of spatio-temporal detail. Note that, even in the absence of observation error, the

inversion of Equation (1) will typically be an ill-posed problem in the sense that a solution for the parameters x may not

exist or be unique (Stuart, 2010). As such, it is more instructive to abandon the quest for a single optimal solution, which120

does not necessarily exist in a well-defined way, and rather approach this problem in a probabilistic manner using Bayesian

inference (Jaynes, 2003; MacKay, 2003; Särkkä, 2013). We do this following a classical Bayesian approach in geosciences

known as data assimilation (DA) reviewed elsewhere (Wikle and Berliner, 2007; Evensen et al., 2022), where we use a prior
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distribution p(x) to represent our knowledge concerning possible values for the model parameters x before taking the observed

drone data y into account. We combine this with a second distribution, the likelihood p(y|x), which describes the probability125

of generating the data for a given set of parameters of the LES model. To help construct this likelihood, conventional DA

assumptions are followed (e.g. Carrassi et al., 2018) by using an additive Gaussian observation error ε∼ N(0,R) with zero

mean and observation error covariance matrix R. Bayes’ theorem then yields a posterior distribution of the parameters p(x|y)

by taking the product of prior and likelihood, i.e.

p(x|y) =
p(y|x)p(x)

p(y)
, (2)130

which represents our knowledge of the parameters and their uncertainties in view of our uncertain prior knowledge as well as the

data and their assumed error distribution. The so-called model evidence p(y) in the denominator of Equation (2) simply plays

the role of a normalizing constant in this context. To solve this probabilistic inverse problem in practice, various derivative-

free ensemble-based DA schemes can be used to estimate the posterior numerically by adopting particle and/or Gaussian

approximations.135

This problem formulation is implicitly conditioned on the strong constraint (see Evensen et al., 2022) that the forward

model G is a perfect representation of reality. As George Box humorously notes – even though all models are wrong, what

matters is the extent to which they are useful (Box, 1976). From this perspective, synthetic experiments (described below) are

useful because the models are perfect by construction and thus useful for testing and comparing the DA algorithms. In the real

experiments, where we compare with independent EC data, some of the mismatch between the EC estimates and drone-based140

inferences will undoubtedly be due to the strong assumptions made in the respective approaches. The Bayesian approach to

inference also offers a way to compare the relative usefulness of different models using the model evidence (MacKay, 2003),

although this will not be pursued here.

2.1.1 LES model and parameters

The turbulence-resolving Parallelized Large-Eddy Simulation Model (PALM) (Raasch and Schröter, 2001; Maronga et al.,145

2015) version 6.0, is used as the forward model. PALM solves the filtered Navier-Stokes equations and the first law of ther-

modynamics with the Boussinesq approximation to explicitly resolve turbulent motions in the atmospheric boundary layer.

The effect of sub-grid scale motions on the flow is parameterized using the kinetic energy scheme of Deardorff (1980) as the

sub-grid model. It is widely used in the boundary layer community to simulate neutral, stable, and unstable boundary layers

(Steinfeld et al., 2007; Couvreux et al., 2020) as well as scalar transport (Ardeshiri et al., 2020).150

The number of grid points in the simulations is set to 256 by 256 longitudinally (along x) and laterally (along y), and

128 vertically (along z). The planar grid spacing is 10 m. Vertically, the grid spacing is 5 m between the surface and the

height of 240 m, above which a grid stretching of 1.03 is applied. Thus, the modeling domain is 2560 m by 2560 m in the

x− y plane, and 1950 m vertically. The computational grid is chosen to be sufficiently fine to explicitly resolve small scale

unorganized turbulence so that the sub-grid fluxes are small compared to resolved-scale fluxes, even relatively close to the155

surface. The size of the model domain is large enough to include the evolution of large scale organized structures that can
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form in convective boundary layers and to minimize the formation of superstructures that are larger than the domain. Cyclic

lateral boundary conditions are applied. Between the surface and the first grid level, a constant flux layer with MOST (i.e. with

stability correction) is assumed to connect the surface to the atmosphere. Following Sühring et al. (2019) each simulation starts

with a constant potential temperature and specific humidity profile to a height of 800 m, above which a capping inversion with160

a vertical gradient of 1 K per 100 m for potential temperature and −0.5 g kg−1 per 100 m for specific humidity is used. To

facilitate comparison, we use the same simplifying assumptions as EC, namely homogeneity and stationarity of surface fluxes,

and flat terrain.

Boundary and initial conditions for H , LE, aerodynamic roughness length (z0), initial potential temperature (θinit), initial

specific humidity (qinit), and geostrophic wind speed at the surface (ug) are varied in the LES ensemble simulations according165

to prior distributions for each parameter (described below). Of these six parameters, the primary interest is in H and LE

while the remaining four parameters can be regarded as ’nuisance’ parameters (Jaynes, 2003). Due to the planar-homogeneous

surface, there is no need to use an extra parameter for the second lateral component of the geostrophic wind speed at the

surface.

Each simulation starts with a spin-up period during which turbulence generation is triggered by adding artificial random170

perturbations until turbulence starts to develop freely. The time series of the maximum vertical wind velocity and the resolved-

scale turbulence kinetic energy shown in Figure S1 (see Supplementary material) indicate that 4680 s typically suffices to

achieve stationary turbulence statistics in most simulations (corresponding to about 10 eddy turnover times). Some ensemble

members will represent parameter combinations that hardly allow for a turbulent flow regime, e.g. during strongly stable

conditions with very negative sensible heat fluxes and low geostrophic wind speeds, and will therefore not develop stationary175

turbulence. Some of the prior parameter combinations might in reality also be physically improbable and would therefore yield

extremely unlikely model predictions. Consequently, the inferred posterior probability will be low for such cases given that the

drone data was generated under different regimes.

Figure 1 shows examples of ensemble members from an ensemble of LES simulations as cross sections of potential temper-

ature after the spin-up period. Heating of the surface induces thermal convection in organized structures that works together180

with shear-driven (mechanical) turbulence to transport heat away from the surface and momentum towards the surface. On

average, this boundary layer gradually warms up and humidifies over time, in a manner that can be considered quasi-stationary

after spin-up. Spatial differences of about 1.0 K can be seen in the surface layer in this simulation. At the top of the boundary

layer, warm and dry air is mixed into the boundary layer (entrainment), while the capping inversion effectively limits turbulent

mixing further up. The x− y cross sections (Figure 1, right) show a few of the spatial structures that are typically included in185

the ensemble.

2.1.2 Prior distributions

The prior distributions for H and LE are set to be normal (i.e. Gaussian) distributions centered at 0 with standard deviations

of 150 W m−2 each. For ug and z0, log-normal prior distributions were specified (to ensure strictly positive support) with

means (of the underlying normal distribution) of 0.7 and −1.2, and standard deviations of 0.7 and 0.5, respectively. The priors190
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Figure 1. Left: Instantaneous potential temperature θ in the x− z cross section at the center of the domain for the truth run at 1 h simulation

time. The vertical axis is scaled with a power law function for better visibility of the boundary layer. Right: Instantaneous potential tempera-

ture x− y cross section at 100 m height for the truth run (lower left panel) and eight typical ensemble members at 1 h simulation time. The

color scale is independent for each ensemble member and omitted for clarity since we would like to emphasize relative differences in the

spatial structure of the turbulent fields. In all plots, the white box indicates the domain for possible drone measurements.

for θinit and qinit are set to be normal distributions with mean values that are determined separately for each experiment to

account for the large differences in mean temperature and humidity between our experiments. For these variables only, we

follow the empirical Bayesian approach to constructing priors (Murphy, 2022) and determine these mean values from the

drone observations themselves based on the observed temperature and humidity range. For the synthetic experiments, we

chose priors for θinit and qinit that include the true values, but are not centered on them (approximately 0.5 standard deviations195

offset). This bias of the priors for these nuisance parameters makes subsequent inference more challenging and realistic. The

standard deviation of the priors of θinit and qinit are 0.3 K and 0.1 g kg−1, respectively. These values relate to the observation

errors described below. To test the sensitivity to the uncertainty in initial conditions, we also conducted synthetic experiments

with narrower prior distributions for θinit and qinit (0.06 K and 0.03 g kg−1), labeled ’narrow init’ below.

Note that we effectively use a so-called weakly informative prior (Banner et al., 2020) to limit the need for strong background200

information about the parameters. Moreover, we have adopted priors that are (or can be readily be transformed to) Gaussian

distributions both for simplicity and because of the assumptions in the ensemble Kalman-based methods (see e.g., Carrassi

et al., 2018) that we use. In theory, these methods assume a Gaussian prior and are thus closer to optimal when this assumption

is satisfied. In practice, we can satisfy this assumption by using Gaussian anamorphosis techniques to transform bounded

physical variables to an unbounded Gaussian space (Bertino et al., 2003; Aalstad et al., 2018). We have also included the205

possibility to add further information to these priors through correlations between individual parameters, because we know
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that in reality some conditions can make others more probable. For example, based on experience from EC flux measurements

we see that a large sensible heat flux makes a large latent heat flux more likely (as necessitated by the energy balance) with

typical correlations of 0.5 to 0.8 in data from our sites. To accommodate such prior knowledge, our framework allows us to

draw correlated samples for the parameters from a joint prior distribution with a specified covariance matrix. For the analysis210

of the real-world drone measurements (later described), we prescribe a prior correlation between H and LE of 0.5. All other

prior correlations are left at 0. For ease of interpretation in the synthetic experiments, we kept the prior correlations between

H and LE at 0.

2.1.3 Drone measurements, observations and errors

Throughout this study, small multi-rotor drones equipped with light-weight sensors for air temperature and relative humidity215

are used along with a flight controller that estimates the drone’s tilt angle for an indirect measurement of the horizontal wind

speed U . This drone system is used for the real-world measurements and emulated for the synthetic experiments. A thin type-

K thermocouple connected to a high accuracy thermocouple amplifier (MCP9600, Microchip Technology, USA) is employed

to measure air temperature. A BME280 (Bosch, Germany) capacitive relative humidity sensor is used, which also measures

barometric pressure (and thus elevation). These sensors sample every 10 s, which is slower than the actual response times of220

these sensors as well as the time steps of our LES runs. In practice, these sensors have slightly different response functions

with time constants of a few seconds, but for simplicity we consider the samples to represent near-instantaneous values (at

least for computing the mean observations). The data is converted to potential temperature θ and specific humidity q (for which

the measurements of air pressure are used). Instead of mounting an anemometer on the drone to measure wind, we follow a

common force-balance method using the drone’s tilt angle during hovering to infer the wind speed (Neumann and Bartholmai,225

2015; Palomaki et al., 2017). The tilt angle is estimated by the drone’s state estimator (an Extended Kalman Filter implemented

in the PX4 flight stack) based on the flight controller’s (Pixhawk 4, Holybro, China) IMU sensors. Using the quadratic drag

law, the drag on the drone’s body can be estimated as

D =mg tan(α) =
1
2
CDρAv

2 , (3)

where m is the mass of the drone (1.9 kg), g the gravitational acceleration (9.81 m s−2), CD the drone’s drag coefficient230

(estimated as 2.8 using wind tunnel experiments (Neumann and Bartholmai, 2015)), α the tilt angle and ρ the air density (both

estimated by the flight controller), A the drone’s exposed area (estimated as 150 cm2 from all directions), and v the relative

horizontal wind speed. When the drone hovers at a fixed position, the horizontal wind speed U can be assumed to be equal to

v. This method does not explicitly account for drag forces from rotor movements, which introduces additional uncertainty in

the wind speed estimation. We used an X500 kit (Holybro) as drone platform, which typically provides a total flight time of235

15 min with the battery and payload that we employed (see photos in Figure 2).

The 10 s measurements of θ, q and U are aggregated to mean values of all measurements taken when the drone hovers at a

fixed position (denoted as θ̄, q̄ and Ū ). We additionally compute the differences between subsequent mean values to add local
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mean gradients to our observations (denoted as ∆θ̄,∆q̄ and ∆Ū ). This is done in a cyclic manner, so that the local gradient at

the first position is calculated as the difference to the last location.240

The assumed error statistics of these observations are based on noise in the measurements caused by sensor imperfections

and the mismatch between the scale of the observation and the scale of the model (representativeness error (van Leeuwen,

2015)), which is typical in meteorological data (Gandin, 1988). We first estimate the measurement error of the 10 s samples

and then calculate the corresponding observation error by scaling the standard deviation of the (near) instantaneous measure-

ment error with the inverse square root of the number of samples that are temporally aggregated to an observation. Based on245

the central limit theorem (e.g. Chopin and Papaspiliopoulos, 2020), the error model assumes this observation error to be Gaus-

sian, independent, and uncorrelated between different variables, which corresponds to a diagonal observation error covariance

matrix. Systematic errors that occur for error distributions that are asymmetrically distributed with respect to zero, are assumed

to be negligible.

For temperature measurements on drones, observational errors stem from radiative and adiabatic heating (due to air pressure250

fluctuations around the drone), and typical absolute root-mean-square errors are in the range 0.2 to 0.3 K (Wildmann et al.,

2013). Here, we assume a standard deviation of 0.3 K for the measurement error. The standard deviation of the measurement

error for q is estimated as 3% relative humidity (corresponding to about 0.1 g kg−1 specific humidity at typical air temperatures)

that is based on the stated accuracy of the capacitive humidity sensor (BME280). For the horizontal wind speed U , the standard

deviation for the measurement error is conservatively estimated to be 2.0 m s−1.255

2.1.4 Data assimilation schemes

We implemented four data assimilation schemes and assess their performance for the problem at hand (i.e. inference of H

and LE). We used 100 model realizations (referred to as ’ensemble members’ or ’particles’ in data assimilation) each with a

different set of parameter values, to represent the prior probability distribution.

For the first scheme, the particle batch smoother (PBS) introduced by Margulis et al. (2015) is used. The PBS is a batch-260

smoother version of the particle filter that is widely used in the snow data assimilation community (Fiddes et al., 2019; Alonso-

González et al., 2021). It is effectively a particle filter without resampling, tantamount to basic sequential importance sampling.

This scheme is obtained by using a particle representation, i.e. mixture of Dirac delta functions δ(·), of the prior which serves as

the proposal distribution to perform importance sampling-based Bayesian inference as outlined in Appendix A. The resulting

posterior is effectively a weighted sum of particles p(x|y) =
∑N
i=1wiδ(x−xi) where the weights are given by the likelihood265

ratio

wi =
exp
(
− 1

2ε
T
i R−1εi

)
∑N
k=1 exp

(
− 1

2ε
T
kR−1εk

) , (4)

in which (·)T denotes the transpose and εi = y− ŷi are the predicted observation errors where ŷi = G(xi) are the predicted

observations from the forward model based on parameters that have been drawn from the prior x(i) ∼ p(x). It has been shown

that the direct application of basic particle methods (i.e., importance sampling using the prior as the proposal) such as this270
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often does not work well in high-dimensional systems (Snyder et al., 2008), but several more sophisticated variants are shown

to have potential to overcome this limitation (van Leeuwen et al., 2019).

For the second scheme, the classic (stochastic) version of the ensemble smoother (ES) that involves perturbing the observa-

tions (van Leeuwen and Evensen, 1996; Burgers et al., 1998) is implemented. Although van Leeuwen (2020) recently showed

that to be consistent with Bayesian theory, this stochastic scheme should perturb the predicted (i.e. modeled) observations275

rather than the actual observations, this does not have any practical impact on the results due to the symmetric nature of the

Gaussian perturbations. The ES scheme is a fixed-interval batch smoother version of the widely used ensemble Kalman filter

(EnKF; Evensen, 1994) that assimilates all observations simultaneously in a batch rather than sequentially. Such batch assim-

ilation is more suitable for the inverse problem pursued herein (Evensen, 2018). Ensemble Kalman Filtering (EnKF) methods

are successfully used in data assimilation applications in meteorology and oceanography with tens of millions of dimensions280

(Carrassi et al., 2018). While the EnKF assumes that the forward model is linear and that all distributions are Gaussian, it turns

out that EnKF is robust to deviations from these assumptions in many applications (Katzfuss et al., 2016). These methods and

the underlying equations are described in Appendix B.

For the third scheme, we use the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) (Emerick and Reynolds,

2013). The ES-MDA is an iterative ensemble smoother that has been suggested as a more viable alternative to the non-iterative285

ES for highly non-linear forward models. In this iterative scheme, the same data is assimilated multiple times with an inflated

observation error covariance matrix to better handle the non-linear mapping between the parameters of interest and the obser-

vations. In particular, the gradual updating reduces the impact of the linear assumption in the ES update step. Despite using the

data more than once, this iterative scheme remains consistent in a Bayesian sense since inflation is performed in such a way

that the iterations are equivalent to assimilating the data once with a linear model. At the root of these iterative schemes we290

find the idea of tempered transitions, which is widely used in challenging Bayesian inference problems (Neal, 1996; Stordal

and Elsheikh, 2015). The equations and workflow for the ES-MDA scheme are presented in Appendix B.

As a fourth scheme, a combination of the schemes described above is developed and implemented in a Particle-adjusted

Iterative Ensemble Smoother (PIES). The PIES scheme is obtained by using the output of an iterative ensemble smoother, i.e.

a Gaussian distribution, as the proposal distribution in importance sampling as outlined in Appendix A. Herein, we use the295

estimated Gaussian distribution from the penultimate iteration of the ES-MDA scheme as the proposal distribution. This new

PIES scheme is an adaptation of the weighted EnKF described elsewhere (Papadakis et al., 2010) and the iterative ensemble

smoothers. As with the PBS, the resulting posterior is effectively a weighted sum of particles p(x|y) =
∑N
i=1wiδ(x−xi) with

weights given by

wi =
exp
(
− 1

2ε
T
i R−1εi− 1

2 x̃
T
i C−1x̃i + 1

2 x̂
T
i Ĉ−1

x̂i
)

∑N
k=1 exp

(
− 1

2ε
T
kR−1εk − 1

2 x̃
T
k C−1x̃k + 1

2 x̂
T
k Ĉ−1

x̂k
) , (5)300

where x̃i = xi−µ are the anomalies from the prior mean (µ), C is the prior covariance matrix, x̂i = xi− µ̂ are the anomalies

from the mean of the penultimate ES-MDA iteration (µ̂), Ĉ is the covariance matrix from the penultimate ES-MDA iteration,

and the particles have been sampled from the Gaussian distribution estimated from the penultimate ES-MDA iteration such
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that xi ∼ N(µ̂, Ĉ) with predicted observations εi = y− ŷi with ŷi = G(xi). In practice, it may be better to use the posterior

from the final (rather than penultimate) iteration of the ES-MDA, but this would come at a high computational cost of requiring305

an additional round of runs of the LES ensemble.

2.2 Synthetic experiments

To compare the performance of different DA schemes and observation strategies, a set of so-called synthetic (or twin) experi-

ments were conducted. The experiments were performed by extracting synthetic measurements from one forward model run,

labeled ’truth’, where the true values of each parameter are assumed to be known. These measurements were then intentionally310

corrupted with noise based on the assumed measurement error model, and converted to drone-based observations of mean

values and local mean gradients. The true values of the six parameters were chosen to represent typical summertime conditions

during daytime above high-latitude wetlands with a sparse tree cover (H = 160 W m−2, LE = 120 W m−2, z0 = 0.25 m,

θinit = 294.1 K, qinit = 5.55 g kg−1, ug = 1.5 m s−1). Experiments with higher wind speed using ug = 6.0 m s−1 were also

performed to test how increased mixing from mechanical turbulence (as opposed to buoyancy-driven turbulence) and the cor-315

respondingly reduced spatial gradients affect the drone data assimilation flux estimates.

To evaluate the performance of the DA schemes, we use standard point metrics such as the root-mean-square error (RMSE)

and bias (mean error) of the ensemble medians with respect to the true values. To also measure the quality of the entire

ensemble, we employ the continuous ranked probability score (CRPS; Hersbach, 2000), which is a widely used score for

ensemble verification in numerical weather prediction that generalizes the mean absolute error to an ensemble. It measures320

the distance between the entire ensemble and a deterministic reference value, in our case the truth, with 0 being the best

possible score that only occurs for a degenerate ensemble centered on the truth. To quantify the overall information gain in an

experiment, we also calculate a Kullback-Leibler divergence (KLD; see e.g. Murphy, 2022) that measures the distance between

the posterior and prior distribution (Perez-Cruz, 2008). We use nats as a unit for information content, where 1 nat corresponds

to the information content of an event when the probability of that event occurring is 1/e.325

Two different types of flight plans were used to generate the observations, both adhering to most countries’ legal constraints

that drones must not fly above altitudes of 120 m and that they must stay within visual range (a lateral domain estimated to be

500 m by 500 m). Based on MOST, we expect mean vertical gradients in measurements to increase towards the surface. For

the first type of flight plan, we thus used a step-wise vertical profile with step sizes that increased with altitude. In particular,

given the limited flight time of small multi-rotor drones, we used six vertical levels (at 10, 20, 30, 50, 70, and 100 m) with the330

drone hovering in place at each level for 2 minutes. We also performed synthetic experiments with flight times of 24 minutes,

flying this step profile twice. The second type of flight plan tested explores a larger spatial domain instead of hovering at a fixed

position for 2 min. We implemented this approach using a random walk with biased directionality that is based on movement

models used for biological systems (Codling et al., 2008). Here, every 10 s the drone can stay at its position or move 20 m

laterally (x or y dimension) and/or 10 m vertically (z dimension), i.e. moving two LES grid cells. These moves are random,335

but to explore a larger space, the probability to continue moving (or staying) in the same direction for each spatial dimension

is 0.8, compared to a probability of 0.1 for the other two options. Examples of these random exploration flights are shown in
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Figure S2 (see Supplementary material). For this random exploration, the instantaneous (10 s) measurements are assimilated

as observations.

We also include the possibility of using multi-drone observations to test the performance of a mobile sensor network on a340

drone swarm. For this purpose, we assume individual drones to be identical in sensor specifications and flight time correspond-

ing to a so-called homogeneous swarm (see e.g. Ferreira-Filho and Pimenta, 2019).

2.3 Field experiments

Field campaigns at two ecohydrological research sites with different climatic conditions were conducted: a boreal wetland in

south eastern Norway (Hisåsen, 61.11◦N, 12.26◦E, elevation 680 m a.s.l., mean annual air temperature 2.7◦C at the closest345

weather station) and a palsa mire in the discontinuous permafrost zone in northern Norway (Iškoras, 69.34◦N, 25.30◦E, 355

m a.s.l., mean annual air temperature −1.6◦C at the closest weather station). Figure 2 shows photos of the two sites to give an

impression of the settings.

These sites feature independent flux measurements from EC systems installed at 2.8 m a.g.l. at both sites. A CSAT3 sonic

anemometer (Campbell Scientific) was used at Iškoras and a HS50 (Gill) at Hisåsen. Both sites use an Li-7200 infra-red gas350

analyzer (Li-Cor) for H2O mixing ratios. Raw data from these instruments are sampled at 20 Hz and processed to 30-min

flux data following the FluxNet convention implemented in EddyPro version 6.2.0 (Li-Cor). We use block average Reynolds

decomposition to extract turbulent fluctuations, an anemometer tilt correction by double rotation, a constant time lag com-

pensation, and a high and low-pass filter correction (Moncrieff et al., 2005, 1997). For quality control, the flagging system

proposed in FluxNet (Foken and Wichura, 1996) was adopted and only flux data with the highest quality (flag 0) was used355

here. A drone flight is only considered successful if the EC fluxes of the 30-min interval that contains the drone takeoff time

meet this quality condition. Along with the EC fluxes, EddyPro also estimate their random error based on integral turbulence

statistics.

One field campaign was conducted at the Iškoras site in July 2020, resulting in two successful drone flights. At Hisåsen,

intensive campaigns were carried out in June 2020 with 12 successful flights, in October 2020 with one successful flight, and360

in September 2021 with three successful flights. An overview of the conditions and EC fluxes at Hisåsen, June 2020 (see

Figure S3 in Supplementary material) shows that EC fluxes have best quality flags during daytime with random flux error

estimates of around 10 W m−2.

We used the vertical step profile flight plan in all these flights. As these drone measurements are taken at altitudes up to

100 m a.g.l., the resulting flux estimates represent a larger surface footprint area (kilometer scale) compared to the EC method365

(tens to hundreds of meters). At both field sites, the footprint of the EC tower is dominated by wetlands, while the larger-scale

surroundings feature forested areas with potentially different turbulent heat flux characteristics.
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Figure 2. Examples of field sites and equipment. Left: Eddy covariance tower at the Iškoras palsa mire. Top right: Drone above the Hisåsen

site (photo by Pierre-Marie Lefeuvre). Bottom right: Drone with sensors.

3 Results

3.1 Synthetic experiments

Figure 3 shows the prior and estimated posterior distributions for a synthetic experiment with observations from one drone370

flying a step profile for 12 min. The PBS and PIES schemes tend to assign most weight to only a few ensemble members.

These almost degenerate posterior distributions are therefore visualized by their central 95th-percentile range instead of their

kernel density estimated probability density function in Figure 3. Both the ES and ES-MDA yield a posterior with a constrained

spread that is approximately centered at the truth. In this experiment, there is a marked information gain from prior and posterior

of both the ES and the ES-MDA scheme, with KLDs of 2.9 and 3.6 nat, respectively. The KLDs for PBS and PIES are 4.6375

and 6.5 nat, respectively, but the posterior distributions are practically degenerate with effective sample sizes of 1.0 and 1.2,
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respectively. The marginal distributions of both sensible heat flux H and latent heat flux LE show a considerable update

towards their true values when moving from the prior to the posterior distribution, especially for the ES-MDA as evidenced by

a low continuous ranked probability score of about 12 W m−2 in this synthetic experiment. In line with the KLD results, the

ES-MDA gives a smaller posterior spread compared to the ES, with a standard deviation of 37 W m−2 for H and 46 W m−2380

for LE. The slightly wider posterior spread for LE is expected due to the relatively large observational error for specific

humidity, which contains most information about LE. We see that the drone observations do not include much information

to constrain the roughness length z0, as this nuisance parameter appears to be hardly updated. This lack of adjustment of

z0 can be explained by the relatively large observational error associated with the wind speed estimates. Hence, our prior

belief strongly governs the distribution of this parameter. It is nonetheless important to account for uncertainty in this nuisance385

parameter so as to avoid over-confident and possibly wrong inferences about the fluxes of interest. External information, for

example from remotely sensed land cover data, may help constrain this parameter (see Discussion below). The two parameters

for the initial conditions update slightly towards the true values of this synthetic experiment. We see a noteworthy equifinality

issue (Beven, 2006) related to the initial conditions in the given problem: In the posterior parameter estimates, there is a

negative correlation between the parameters H and θinit (R=−0.89), as well as between LE and qinit (R=−0.80). This390

negative correlation suggests that an ensemble member with low initial temperature and large sensible heat flux gives similar

temperature predictions as an ensemble member with high initial temperature and small sensible heat flux. While this may not

be a surprising result, at least a-posteriori (or with hindsight), it emphasizes the importance of initial conditions for drone-based

surface flux estimations. Despite the relatively large observational error associated with the wind speed estimates, we see that

ug updates considerably towards the truth for all DA schemes.395

Figure 4 shows the comparison of the ES-MDA (with two iterations) posterior distributions for H and LE for a set of

synthetic experiments with different observation strategies. Attention is drawn to the posterior spread and whether the true flux

values are encompassed by the posterior distributions. For the case of one drone flying one step profile, we see comparable

results for high and low wind speeds. Recall that the experiment with ug = 1.5 m s−1 corresponds to the experiment shown

in Figure 3. As expected, increasing the flight time from 12 to 24 min, i.e. flying two consecutive step profiles, narrows the400

posterior distributions (but by less than a factor of two). Using observations from five drones flying step profiles, the posterior

distributions become even narrower while still encompassing the ’truth’. A similar reduction in flux uncertainty is achieved by

the narrower priors for the initial conditions θinit and qinit. Using the biologically inspired random exploration flight strategy,

we find that several of the posterior distributions can become narrower than their step-profile counterparts, but do not always

include the true flux value, which is a symptom of the ES-MDA assimilation results being overconfident. This effect can be405

related to random exploration containing more observations (but without aggregation of multiple measurements) compared to

step profiles.

Table 1 compares the four DA schemes with respect to their evaluation metrics across all synthetic experiments (i.e. averaged

over different sampling strategies, geostrophic wind speeds, and uncertainty in initial conditions). The error-based evaluation

metrics, i.e. the RMSE, bias, and CRPS, indicate that the ES-MDA scheme performs best. For example, the ES-MDA provides410

a mean fractional improvement in RMSE of 76% relative to the prior, which is considerably higher than the other schemes with
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Figure 3. Marginal parameter distributions for the prior (black) as well as the ES-MDA (withNa = 2 iterations, red), ES (blue), PBS (yellow

shading shows the central 95th-percentile range), and PIES (green shading shows the central 95th-percentile range) posterior estimates along

with the location of the truth (black dashed vertical line) in a synthetic experiment with one drone flying a step profile for 12 min.

values at 64% (PIES), 64% (ES), and 46% (PBS). The ES-MDA and PIES schemes give the largest information gain from the

prior to posterior, as indicated by their KLD.

3.2 Field experiments

Figure 5 shows an example of the observed field data and the posterior predicted LES data by the ES-MDA scheme from415

one flight at the Iškoras site. Both the drone observations and ensemble posterior predictions show an increase in potential

temperature and specific humidity towards the surface, indicating a positive H and LE. Due to the friction at the surface, wind
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Figure 4. Assessment of observation strategies from synthetic experiments with trueH = 160 W m−2 and LE = 120 W m−2. Violins show

the Kernel density estimated posterior distributions of surface sensible (left) and latent (right) heat fluxes obtained by the ES-MDA method

with two iterations. Colors denote two different wind speeds ug . The experiment with one drone flying a step profile corresponds to the case

shown in Figure 3. Flight plans for the different observation strategies are shown in Figure S2 in the Supplementary material.

Table 1. Average evaluation statistics across all 16 synthetic experiments for different DA schemes.

RMSE [W m−2] Bias [W m−2] CRPS [W m−2] KLD(post.||prior)

Scheme H LE H LE H LE [nat]

PBS 70.0 90.8 -49.8 -38.9 70.2 81.0 4.6

ES 36.4 73.7 13.7 -41.9 21.6 47.2 5.9

ES-MDA 29.2 43.0 4.3 -18.3 18.6 28.6 7.7

PIES 44.9 64.0 -7.7 -40.1 31.2 52.8 7.4

Prior 144.2 153.1 -144.2 -153.1 92.3 77.3 0.0

speeds tend to decrease at lower altitudes and roughly follow the characteristic logarithmic mean wind profile (modified by

the stability effects of the given temperature stratification) that MOST predicts for average values. The measured mean values

and mean local differences are generally well reproduced by the posterior LES ensemble. There is a small tendency that the420

measured profiles have stronger vertical gradients in the lowest 30 m than the LES ensemble, possibly indicating an effect at

the field site that is not included in LES runs such as surface heterogeneity in sources and sinks as well as roughness elements.

Figure 6 shows the surface flux comparisons with EC from all the field experiments. For the sensible heat flux, good agree-

ment between the two methods is noted at both sites with a high correlation coefficient (R= 0.90). The drone data assimilation
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Figure 5. Drone observations and posterior ensemble predictions for flight 1 of the Iškoras campaign, a step profile on 2020-07-27 with

takeoff at 15:20 local time. The upper panels show the successive 2-min mean values, whereas the lower panels show the local mean

gradients. The line color of the vertical profiles for the 100 ensemble members correspond to their log-likelihood with more likely values in

yellow and less likely values in blue. The prior predictions are not shown, because their range is so wide that one could not see any details in

the posterior profiles.

flux estimates tend to yield higher fluxes than the EC method, which might be a real effect given the different footprints of the425

two methods (i.e. wetlands dominating the EC footprint have lower H and higher LE than their surroundings). For the latent

heat flux estimates, the drone data assimilation typically yields larger flux uncertainty and the correlation with EC fluxes is only

0.40. There is a particularly large deviation between the methods in the three flights with the largest LE flux estimates from

EC. Again, this deviation could be due to real flux differences between the wetland-dominated vicinity of the EC tower and

the surrounding forest. We also emphasize that the EC fluxes do not necessarily represent the ’truth’ in this comparison, even430

though we only used EC estimates with the highest quality flags. For the sum H +LE, which is constrained by the available
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Figure 6. Comparison of flux estimates by EC towers and drone data assimilation as estimated by posterior distributions of the ES-MDA

method with two iterations, for in total 18 separate flights at two different sites. Error bars for drone data assimilation fluxes indicate the

interquartile range, and points indicate the median value. Error bars for EC fluxes indicate the random flux error estimated by EddyPro.

energy at the surface and may therefore be more homogeneous, the close agreement (RMSE=58 W m−2) and high correlation

coefficient is noteworthy (R= 0.83).

4 Discussion

4.1 Potential and limitations of drone data assimilation435

In this study we show how ensemble-based data assimilation of drone observations in an LES model can realistically estimate

homogeneous and stationary surface energy fluxes. Using the same assumptions as the EC technique, we find acceptable

agreement of these two independent methods under field conditions where the assumptions are only approximately fulfilled,

particularly for the sensible heat flux. The agreement of the methods is worse for the latent heat flux, especially at high EC

estimates of LE. Since wetland LE is known to increase more than forest LE with increasing vapor pressure deficit (Helbig440

et al., 2020), this deviation could be due to the larger footprint of the drone data assimilation method covering more of the

wetland-forest mosaic at our sites. This hypothesis could be tested in a future study with additional measurements using

scintillometers, which yield fluxes that are representative for larger areas than EC. The new method operates over a large range

of heat fluxes and wind speeds, but it remains to be tested how strongly stable conditions (e.g. during nighttime and/or winter)

affect the technique.445

The basis for these results is that drone measurements and LES capture variability at approximately the same spatial and

temporal scales. During hovering, the drone position is kept fixed to within about 1 m based on GPS and barometer mea-

surements. The drone’s rotor wash, however, creates local mixing of air so that the temperature and humidity measurements
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represent a volume average around the drone, with a scale similar to the LES grid resolution. Incidentally, the LES time steps

are at approximately the same temporal scale as sensors response times. Any remaining representativeness errors can in future450

studies also in theory be accounted for formally in the data assimilation framework by using an appropriate observation opera-

tor (van Leeuwen, 2015). However, a remaining limitation is that the LES output at grid levels close to the surface is affected

by the subgrid scheme and the coupling to the surface, which is typically conducted using MOST.

Using typical sensor configuration and flight times of small drones, we find a relatively large posterior spread of the surface

fluxes, compared to the less calibrated uncertainty estimates of the EC technique. While this may be expected given the non-455

linear and chaotic nature of the turbulent transport process, the uncertainty estimate here is based on explicitly stated error

distributions of the observations and epistemic uncertainties in the dynamical system related to initial and boundary conditions

as well as parameters. It is therefore feasible to study and reduce flux uncertainties in our framework. For example, further

observing system simulation experiments can be carried out to test the impact of sensor quality, observation strategies, and

large-scale meteorological forcing (see Section 4.2 below).460

Drone flux estimation provides a relatively low-cost and mobile complement to traditional methods like EC. Most applica-

tions of drones are currently still restricted to manual flights with a human pilot in charge of the system. For fully automated

and continuous drone flux measurements, a number of engineering and legal limitations need to be overcome. Nonetheless,

even under the current constraints, the resulting flux temporal snapshots cover a much larger area than the typical EC footprints

and can therefore be more suitable for large scale aggregate flux measurements. These snapshots may thus assist Earth sys-465

tem model improvement through targeted testing of different process formulations and parameter settings, e.g. for new plant

functional types (Dagon et al., 2020) or snow schemes (Aalstad et al., 2018).

Furthermore, it is worth highlighting that trace gas fluxes can also be estimated with this drone data assimilation technique,

which would be particularly relevant for CO2 and methane emissions from heterogeneous permafrost environments (Pirk et al.,

2017). Gas concentration measurements from drones are already emerging as a cost-efficient tool for the petroleum industry470

(Asadzadeh et al., 2022) and the agriculture sector (Daube et al., 2019), where greenhouse gas emissions can contribute to

climate warming. Drone data assimilation could thus be a valuable tool to help monitor such hidden – and sometimes avoidable

– emission sources.

4.2 Possible improvements

Narrowing the posterior spread can be achieved in a number of different ways, including technical improvements during data475

collection, such as using higher quality sensors, more drones, and better quantifying initial and boundary conditions as well

as modifying the data assimilation framework by using a larger ensemble size, more assimilation cycles, emulators (Cleary

et al., 2021), and a higher spatial resolution of the LES model. The present study shows a choice of settings that we intuitively

considered reasonable or practically possible, but more work should go into systematically exploring the many orthogonal

dimensions involved in the optimal experimental design of the drone data assimilation framework.480

More effort could also go into formulating the priors, especially because some parts of the covered parameter space might in

reality be physically improbable (e.g. inclusion of the energy balance). Other parts of the parameter space could be constrained
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based on independent information, for example, by using downscaled reanalysis datasets that combine other Earth observation

data (e.g. Fiddes et al., 2019; Alonso-González et al., 2021). The boundary layer height or the height of the prescribed capping

inversion has been assumed to be known herein and was thus not included as a nuisance parameter in the DA scheme. Future485

studies should further test the validity of this assumption and explore the sensitivity of drone flux measurements to entrainment

fluxes at the top of the boundary layer, which are known to affect turbulent quantities in the surface layer (van de Boer et al.,

2014).

An extension of the list of uncertain parameters should ideally also be accompanied with including more observational

constrains. In the current study, we assimilated observations of the mean values over short periods of times, and their local490

mean gradients. Higher order moments (such as variances and covariances), atmospheric structure functions (Arenas and

Chorin, 2006), or other features could also be used to capture more information from the drone measurements in future studies.

The flight strategy used for the collection of observations could also be optimized. The determination of the optimal sampling

strategy for mobile sensors networks (giving sparse and noisy data) can more generally be regarded as an example of the

exploration-exploitation dilemma (Box and Youle, 1955; Friston et al., 2015). In practice, the choice or trade-off between495

fewer, high quality observations and more, low quality observations becomes an active choice of the investigator. We have only

tested two simple strategies: (i) what we called an intuitive approach that involved flying a vertical step profile with averaging

times of two minutes, and (ii) a more exploratory approach based on directed random walks without averaging. The results

indicate that both methods can constrain the surface fluxes, but random exploration can give biased flux results. These biases are

likely due to shortcomings of the assimilation schemes used when dealing with strongly non-linear forward models rather than500

the sampling strategy itself, and so could be alleviated by improving the assimilation algorithms. Future studies could moreover

formalize and optimize the trade-off between exploration and exploitation more specifically using a calibrate-emulate-sample

framework (Cleary et al., 2021; Dunbar et al., 2022), to determine the optimal strategy for a given flux mapping task.

While we only applied drone data assimilation to cases with homogeneous and stationary surface fluxes, and flat terrain (as

a logical first step to facilitate comparability with EC), it is clear that the method can also explicitly account for more realistic505

representations of these effects. Complex terrain and flux heterogeneity can be explicitly included in the LES steering data

and some field sites might even require a more detailed LES setup to account for energy flux heterogeneity (Ramtvedt and

Pirk, 2022). Representing the mesoscale meteorological setting more realistically could also be achieved through a newly-

developed mesoscale nesting of PALM (Lin et al., 2021). Finally, even non-stationary fluxes could be included by going from

a smoothing to a filtering data assimilation framework. This might in future help to complement EC measurements and maybe510

even improve on them by identifying assumption-violations that are causing the energy balance closure problem of the EC

method (Stoy et al., 2013).

4.3 Data assimilation schemes for turbulent transport

Spatio-temporal data assimilation with LES is relatively complex mathematically and not commonly studied. In this case

the forward model for the data assimilation becomes highly non-linear, which violates the assumptions of commonly used515

methods for higher-dimensional problems, such as Ensemble Kalman filters and smoothers. To avoid biased results, the degree
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of violation must be reduced, which can be achieved by the iterative approach implemented in the ES-MDA scheme. Our

results, particularly Figure 3 and Table 1, show that the ES-MDA scheme can markedly outperform both the ES and the

particle-based methods tested herein. These findings are in close agreement with earlier snow data assimilation experiments

(Aalstad et al., 2018; Alonso-González et al., 2022) that compared these schemes with similarly (i.e. medium) sized parameter520

spaces, albeit with considerably less complex forward models. For relatively small numbers of iterations it was suggested that

non-uniform error inflation for the sequence of assimilation cycles (leading to non-uniform update steps) could be beneficial

for the results of the ES-MDA scheme (Evensen, 2018). We tested this idea in a small number of synthetic experiments (not

shown), but did not find a striking improvement of the results. Still, we are of the opinion that such ideas should be tested more

extensively in future studies.525

The PBS scheme is less affected by this problem, but a six-dimensional parameter space is already so large that the method

cannot effectively represent the posterior distribution due to the curse of dimensionality that plagues importance sampling-

based methods (Snyder et al., 2008). The PIES scheme presented here aims to overcome this issue by combining the ES-MDA

scheme with the PBS scheme to take advantage of their individual strengths. In particular, the PIES scheme is (unlike the PBS)

not confined to simply weighting the initial samples drawn from the prior. Instead a proposal distribution based on the ES-MDA530

is used to guide the attention of the importance sampling to areas of higher posterior probability mass. As such, we see that the

PIES scheme markedly outperforms the PBS in terms of RMSE (cf. Table 1), but nonetheless still suffers from degeneracy. To

further improve the PIES scheme, and potentially avoid degeneracy, future studies could explore the possibility of using more

iterations in the ES-MDA that is used for the proposal distribution. An alternative path would be to explore iterative particle

methods (Chopin and Papaspiliopoulos, 2020).535

We have not used the gold standard technique for Bayesian inference, namely Markov chain Monte Carlo methods (e.g.

MacKay, 2003), because our likelihood evaluations are so expensive that the sequential exploration of the parameter space

with tens or even hundreds of thousands of steps would not be possible in a realistic time frame. New data assimilation

schemes, some of which are specifically designed to handle problems with expensive likelihoods (Garbuno-Inigo et al., 2020),

could open new possibilities for drone flux measurements. Among these schemes, a particularly promising route could be to540

explore the adoption of machine learning-based emulators (Cleary et al., 2021) and active learning (e.g. Murphy, 2022) as steps

to further improve the posterior estimates without considerably increasing the computational cost.

5 Conclusion

To facilitate the development of drone flux measurements, a data assimilation framework for estimation of turbulent heat fluxes

at the surfaces from sparse and noisy drone-based observations is presented using LES as a forward model. This framework545

allows explicit representation of the sequential collection of drone data, accounts for sensor noise, and includes uncertainty in

boundary and initial conditions during the flux estimation. Different data assimilation schemes have been shown to markedly

constrain the surface fluxes by using drone observations, with the ES-MDA scheme outperforming the three other tested

schemes. Both synthetic and field experiments show promising results for homogeneous and stationary fluxes, which are in
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reasonable agreement with independent EC flux estimates. Increasing flight times, using observations from multiple drones,550

and narrowing the prior distributions of the initial conditions, are viable methods to further improve flux results. Sampling

strategies prioritizing spatial exploration instead of temporal averaging at fixed positions enhance the non-linearities in the

forward problem and can lead to biased flux results.

While the comparison here uses the simplifying assumptions of flux homogeneity, stationarity, and flat terrain, we emphasize

that the drone data assimilation framework is not confined to these assumptions (as long as they can be accommodated in the555

forward model) and can thus readily be extended to more complex cases in future studies. Future effort could aim to apply

this framework to estimate gas fluxes of e.g. CO2 and methane, which would be another valuable contribution to Earth system

science.

Appendix A: Particle methods

Importance sampling lies at the core of particle (or sequential Monte Carlo) methods such as PIES and PBS. Rather than560

directly sampling from a target distribution of interest, this sampling method estimates expectations with respect to a target

distribution through indirect Monte Carlo integration by drawing from a proposal (also known as importance) distribution that

is easier to sample from (MacKay, 2003). In DA, and Bayesian inference more generally, the posterior is the target distribution

of interest and the expectation of some function g(x) with respect to the posterior is defined as (Särkkä, 2013)

E [g(x)|y] =
∫
g(x)p(x|y)dx , (A1)565

where, for example, the expectation of g(x) = x yields the posterior mean. Given N independent samples from the poste-

rior, xi ∼ p(x|y), we could approximate the expectation in (A1) numerically using direct Monte Carlo integration through

E [g(x)|y]' 1
N

∑N
i=1 g

(
x(i)
)
. Due to the law of large numbers and the central limit theorem, this approximation will converge

almost surely to the true expectation asN →∞with a standard error inversely proportional to
√
N (Chopin and Papaspiliopou-

los, 2020). In practice, it is rarely possible to generate independent samples directly from the posterior.570

In importance sampling, we adopt a tractable proposal distribution q(x) with (at least) the same support as the posterior.

Multiplying the integrand with 1 = q(x)/q(x) , (A1) can be expressed as

E [g(x)|y] =
∫
g(x)

p(x|y)
q(x)

q(x)dx' 1
N

N∑

i=1

g(xi)ŵi , (A2)

where the scheme draws from xi ∼ q(x) so that the normalized weights can be defined as ŵi = p(xi|y)/q(xi). An obstacle

remains in that we can only directly evaluate the un-normalized posterior f(x) = p(y|x)p(x) and not the evidence p(y) in575

the denominator of (2) because it is the integral of f(x). Nonetheless, we can also approximate the evidence with importance
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sampling through p(y) =
∫
f(x)dx' 1

N

∑N
i=1 w̃i where w̃i = f(xi)/q(xi) are the unnormalized-weights. With this evidence

approximation, we can now approximate (A1) as

E [g(x)|y] =
∫
g(x)f(x)
q(x)p(y)

q(x)dx ' 1
N

N∑

i=1

g(xi)wi , (A3)

where the (auto-normalized) weights are given by wi = w̃i

[∑N
k=1 w̃k

]−1

with the property the
∑N
i=1wi = 1. To ensure nu-580

merical stability, we use the log-sum-exp transformation when computing these weights (Murphy, 2022). The PBS scheme is

obtained by using the prior as the proposal, i.e. q(x) = p(x), where (4) is for the particular case of a Gaussian prior and like-

lihood used herein. Similarly, the novel PIES scheme in Equation (5) is obtained by using the Gaussian distribution N(µ̂, Ĉ)

from the penultimate ES-MDA iteration as the proposal distribution.

As a final point, we emphasize that importance sampling results in a particle representation of the posterior through a585

sum of weighted Dirac delta functions centered on the sampled states xi ∼ q(x) of the form p(x|y)'∑N
i=1wiδ(x−xi)

(Särkkä, 2013). This point can be appreciated by recalling that the Dirac delta has the properties
∫
δ(x−xi)dx = 1 and

∫
g(x)δ(x−xi)dx = g (xi), so that if we insert the particle representation in (A1) then

E [g(x)|y]'
∫ N∑

i=1

g(x)wiδ (x−xi) dx =
N∑

i=1

g(xi)wi , (A4)

which is the same as the result in (A3). Under this particle representation we can conceptualize the posterior distribution as a590

set of particles (or points) in parameter space whose probability mass are given by their weights.

Appendix B: Ensemble Kalman methods

The ensemble Kalman filter (EnKF; Evensen, 1994) is a Monte Carlo version of the Kalman filter (Jazwinski, 1970; Särkkä,

2013). These schemes both make a Gaussian linear assumption, on top of the usual filtering assumptions of Markovian dy-

namics and conditionally independent observations. When these assumptions are satisfied, the exact filtering distribution is a595

Gaussian that is available analytically in closed form through the Kalman filtering equations. Unlike the original Kalman filter,

the EnKF can still be used when these assumptions are violated. In fact, it is remarkably robust to such violations which ex-

plains why it is a widely used method for the typically nonlinear and high dimensional problems that arise in geoscientific data

assimilation (Carrassi et al., 2018). These ensemble Kalman methods can also be applied to solving more general smoothing

problems in which asynchronous observations are assimilated (Cosme et al., 2012). The ensemble smoother (ES; van Leeuwen600

and Evensen, 1996), a batch smoother version of the EnKF, and its iterative variants such as the ES-MDA (Emerick and

Reynolds, 2013) have been shown to be particularly useful in the context of estimating static parameters in inverse problems

(e.g. Evensen, 2018; Aalstad et al., 2018; Evensen, 2019; Garbuno-Inigo et al., 2020; Cleary et al., 2021; Alonso-González

et al., 2022).

Here, the equations for both the stochastic ES and the ES-MDA are presented, while noting that a full derivation of the en-605

semble Kalman analysis equations can be found elsewhere (e.g. Evensen et al., 2022). LetNa denote the number of assimilation
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cycles, then for the ES we set Na = 1 while for the ES-MDA Na > 1, typically with Na = 4. The superscript ` indexes these

iterations. Let X(`) =
[
x(`)

1 , . . . ,x(`)
i , . . . ,x(`)

N

]
denote the m×N parameter matrix containing the ensemble (i= 1, . . . ,N ) of

parameter vectors x(`)
i for iteration `. The subset of these parameters that are physically bounded have undergone the rele-

vant analytic transformations for Gaussian anamorphosis (Bertino et al., 2003; Aalstad et al., 2018), and the corresponding610

inverse transforms are applied back to physical space when these are passed through the forward model G. Similarly, let

Ŷ(`) =
[
ŷ(`)

1 , . . . , ŷ(`)
i , . . . , ŷ(`)

N

]
denote the predicted observation matrix containing the ensemble of predicted observations

ŷ(`)
i = G

(
x(`)
i

)
. Then these stochastic ensemble Kalman methods proceed by initially drawing the initial parameters from the

prior x(`=0) ∼ p(x), then for `= 0 : (Na− 1) iterations:

X(`+1) = X(`) + K(`)
[
Y−

(
Ŷ(`) + E(`)

α

)]
, (B1)615

where Y is an d×N matrix withN copies of the observation vector y while the observation error term is E(`)
α =

√
α(`)R1/2ζ(`)

in which ζ(`) is an d×N matrix containing draws from a standard Gaussian N(0,1) and α(`) =Na is the observation error

inflation coefficient. The so-called (ensemble) Kalman gain K(`) is the m× d matrix

K(`) = C(`)

XŶ

(
C(`)

ŶŶ
+α(`)R

)−1

, (B2)

where C(`)

XŶ
= 1

NX(`)′Ŷ(`)′T and C(`)

ŶŶ
= 1

N Ŷ(`)′Ŷ(`)′T are the m× d parameter-predicted observation covariance matrix620

and the d× d predicted observation covariance matrix, respectively, in which primes (·)′ denote deviations from the ensemble

mean.

Code and data availability. The code of the PALM model is freely available at palm.muk.uni-hannover.de. Drone measurements for the

synthetic and real-world experiments together with the concurrent EC results, and the PALM steering file template are available under DOI
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