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Abstract. Climatology of extreme rainfalls for a certain location is commonly taken into account designing stormwater man-

agement systems. Rain gauge data have often been used to estimate rainfall intensity for a given return period. However, the

poor spatial and temporal resolution of operational gauges is the main limiting factor. Several studies have used rainfall es-

timates based on weather radar horizontal reflectivity (Zh), but they come with a great caveat: while proven reliable on low

or moderate rainfall rates, they are subject to major errors in extreme rainfall and convective cases. It is widely known that5

C-band weather radar can both underestimate precipitation intensity due to signal attenuation or overestimate it due to hail and

clutter contamination. This study circumvents these shortcomings by using specific differential phase (Kdp) data from dual-

polarization C-band weather radars. The rain intensity estimates based on specific differential phase are immune to attenuation

and affected less by hail contamination.

This study aims to estimate depth-duration-frequency (DDF) curves computed using polarimetric weather radar data using10

quantitative precipitation estimations (QPEs) based on Kdp data and to compare the results with the DDF curves derived using

rain-gauge data. Only the warm period of the year is here considered, as most of the extreme precipitation events take place at

this time. Limiting the dataset to warm period also allows us to use the radar-based rainfall quantitative precipitation estimates,

which are more reliable than the snowfall ones. Single C-band polarimetric weather radar site data are used both from Italy and

Estonia. This study demonstrates that polarimetric weather radar observations can provide a reliable QPEs compared to rain15

gauges and, that even relatively short time series can provide a reliable estimation of the rainfall return periods in climatological

homogeneous areas.

1 Introduction

The increase in impervious surfaces due to urbanization leads to increase in flooding frequency due to poor infiltration and

faster concentration time. The hydrological changes, driven by heavy urbanization, and resulting impacts on extreme rainfall,20
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are also being established: a significant amount of research over the last twenty years has shown a strong relationship between

urban areas and local microclimate.

Moreover, as stated by IPCC Fifth Assessment Report (IPCC, 2014), in the near future several Earth regions are likely to be

affected by an increase in heavy precipitation events due to climate change (IPCC, 2014). In Europe Besselaar et al. (2012)

demonstrated that higher latitudes are yet experiencing an increment in intensity and frequency of extreme events, and corre-25

spondingly in heavy precipitations. For all these reasons, studies on extreme annual rainfall maximum depths for short durations

are extremely relevant for hydrological studies, water management, and urban areas development (Marra et al., 2017).

However, the reliability of traditional rainfall depths estimations is often limited by the low spatial density of rain gauge net-

works, particularly for short durations (Overeem et al., 2010). Nevertheless, single-polarization weather radars can provide

quantitative precipitation estimates (QPEs), based on Zh−R relationships, with proper spatial and temporal resolution. Sev-30

eral studies investigated statistics of extreme areal rainfall depths obtained from single-polarization weather radar (Frederick

et al., 1977; Allen et al., 2005b; Overeem et al., 2008, 2009a, b, 2010; Peleg et al., 2016; Marra and Morin , 2015; Panziera et

al., 2018). Keupp et al. (2017) and Fabry et al. (2017) offer a complete review of monthly or annual rainfall climatology based

on weather radar observations respectively in Europe and the the contiguous United States (CONUS) area.

However, due to signal attenuation at C-band (Delrieu et al., 2000) and due to hail contamination (Ryzhkov et al., 2013), the35

horizontal radar reflectivity (Zh) is subjected to major errors, especially during intense rainfalls and convective precipitations.

As stated by Fairman et al. (2015), relevant underestimations typically can be found in areas of high elevation, far away from

the radar, or both; beam blocking and overshooting also cause large differences between QPEs and reference gauges. To over-

come these limitations, several adjustment techniques have been developed, correcting QPEs, derived from single-polarization

weather radar, with raingauges measurements (Einfalt and Michaelides , 2008; Goudenhoofdt and Delobbe, 2009). Studies like40

Overeem et al. (2009b) and Peleg et al. (2016) derived short-duration extreme rainfall depths from gauges-adjusted weather

radar QPEs. Barndes et al. (2001) and Ryzhkov et al. (2005) demonstrated that polarimetric rainfall estimation algorithms

based on specific differential phase (Kdp) outperform the conventional QPEs based on horizontal radar reflectivity, being im-

mune from partial beam-blocking, attenuation, hail contamination, and weather radar miscalibration. Several studies focused

on the evaluation of R(Kdp) relationships performances with respect to traditional R(Z) for precipitation events (Paulitsch et45

al., 2009; Moisseev et al., 2010; Cremonini and Bechini, 2010).Voormansik et al. (2021a) deeply analyzed five years QPEs

derived from operational polarimetric weather radar in Estonia and Italy, demonstrating that R(Zh,Kdp) relationships provide

good quality QPEs.

For the first time, this study investigates the statistical properties of annual rainfall maximum for short-durations analyzing

QPEs derived from R(Zh,Kdp) observations by operational dual-polarization C-band weather radars in two different climate50

regions. The results derived from short period weather radar observations are compared with statistics obtained from gauges

measurements and QPEs based on traditional horizontal radar reflectivity. Section 2 provides a description of study areas,

weather radar systems, and algorithms used to derive QPEs. In Section 3 extreme value statistic is applied to derive depth-

duration-frequency (DDF) curves, which describe the rainfall depth as a function of duration for given return periods. Finally,

discussion and conclusions follow.55
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2 Materials and methods

This study focuses on QPEs based on polarimetric weather radar, operating in Northern Italy and Estonia. The studied period

is limited to the warm period of the year as most of the extreme precipitation events take place at this time. Limiting the dataset

to warm period also helps to exclude that weather radar observations come from snow or ice crystals, a requirement for reliable

rainfall intensity estimations based on R(Zh,Kdp).60

2.1 The study areas

This study focuses on areas in Piemonte, Italy, and Estonia, covered by operational dual-polarization Doppler C-band weather

radars.

Piemonte is located in northwestern Italy, in the upper areas of the Po valley; the central part of the region is relatively flat

(300-200 m a.s.l.) with the Torino hill that reaches 770 meters a.s.l.. The Alps surround plains with altitudes ranging from65

1,000 m to more than 4,500 m a.s.l.. The two areas considered in this study are centered on Torino hill and they extend for

about 40 km far from the weather radar, corresponding to about 7,300 km2 altogether (Figure 1). To ensure QPEs data quality,

the choice to restrict the study areas close to the radar site is driven by these main reasons:

1. to reduce weather radar beam-broadening and beam propagation effects;

2. to avoid the Alps complex orography in western and northern directions;70

3. to limit the weather radar beam height above ground.

The Piemonte rainfall regime is sub-continental with a dry season during winter, the main maximum precipitation occurs

during fall and a secondary maximum during spring-summer (Devoli et al., 2018); convective precipitations are very frequent

from late spring to early fall. Pavan et al. (2018) reconstructed rainfall climatology over Po valley from gauges observations

from 1961 to 2015, showing that, although the relatively small extent of the study areas, there are different precipitation regimes75

between areas located close to the Alps (wetter) and the flats south of Torino hill (dryer).

The Bric della Croce weather radar, operated by the regional agency for environment protection (Arpa Piemonte) is located

on the top of Torino hill. The operational radar completes fully polarimetric volume scans, made of eleven elevations up to

170 km range with 340 m range bin resolution. Quantitative precipitation estimates (QPEs), based on horizontal reflectivity,

are extensively described by Cremonini and Tiranti (2018), meanwhile, Kdp precipitation estimations are derived according to80

Wang and Chandrasekar (2009). The closest observations to the weather radar (up to eight kilometers) have been left out due

to heavy ground clutter contamination and unreliable estimations of Kdp. Being focused on convective precipitation, this study

limits the analysis to the warm season ranging in Italy from April to October.

Bric della Croce data range from 2014 to 2020 with five minutes interval time resolution.

The data inspection for quality purposes has shown that the annual maxima for the years 2015 and 2016 are unreliable, due85

to frequent weather radar failures during the warm season: for this reason, these years have been excluded from the following

analysis.
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Figure 1. The two Italian study areas: dots tipping-bucket raingauges of the regional hydrological network, orange

dots tipping-bucket raingauges used in the study, the red star is the Bric della Croce radar site; basemap: ESRI,

https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer accessed on 5 August 2022

Arpa Piemonte also operates an automated ground weather network made by more than 350 raingauges with 0.2 mm resolution

and 300 mm/h maximum detectable rainfall intensity: one-minute rainfall observations are available since 1988. Annual hourly

rainfall maxima are derived from gauges observations corrected for underestimations at high rainfall intensities according to90

Lanza et al. (2010); Vuerich (2009). Annual hourly rainfall maxima are manually quality controlled to identify possible me-

chanical failures and incomplete time-series. In this work, one-minute resolution tipping-bucket raingauges located within the

two study areas and running for at least 15 years have been used. Area 1 (A1) north and west of the weather radar site contains

27 gauges, while Area 2 (A2) contains 25 gauges; the annual hourly precipitation maxima range from 1988 to 2020. Annual

precipitation maxima derived from raingauges confirm different precipitation regimes in A1 and A2.95

The study area in Estonia is centered on the continental part of the country and it extends for about 70 km around the

radar corresponding to 16,911 km2. Estonia is a flat country with a mean elevation of about 50 m a.s.l. and the highest point

being 318 m a.s.l in the more hilly southeast (Figure 2). Estonia has a temperate climate with the heaviest rainfall in late100

summer. Convective precipitation is common in the area from May to September (Voormansik et al., 2021b). There are distinct

differences in precipitation climate between continental Estonia and the coastal areas and islands as the latter is much drier
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(Tammets and Jaagus, 2013). This variance is caused by different thermal regimes of sea and land surfaces. In the study area,

we can thus expect a uniform precipitation regime.

Figure 2. The Estonian study area (shaded): the dots are weighted raingauges of the regional hydrological network, the

orange dots are weighted raingauges used in the study, and the pink star Sűrgavere radar location; basemap: ESRI,

https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer accessed on 5 August 2022

Sűrgavere radar is situated in the northern part of Sakala upland on top of Sűrgavere hill (128 m a.s.l.). Sűrgavere radar has105

been operational since 2008 and a continuous archive is available since 2010. Until May 2020, the radar performed a volume

scan with eight elevations up to 250 km range with 300 m range bin resolution every 15 minutes. In May 2020 the scan strategy

received a major update. Since then the radar scans seven elevations with a 250 km range every five minutes and the lowest

elevation with a 250 km range every 2.5 minutes. After careful inspection of reflectivity and polarimetric data quality, five

years of radar data (2012-2013 and 2018-2020) were included in the study. Data from 2014, 2015, and 2017 were not included110

because of insufficient polarimetric data quality to obtain reliable QPEs. 2014 and 2015 were excluded because of a broken

waveguide limiter which caused gradually decreasing polarimetric data quality. Data from 2017 was left out because a broken

stable local oscillator (STALO) reduced the data quality to levels not usable for QPE purposes. The year 2016 was omitted

because of the low availability of radar data due to frequent and long-lasting radar failures (availability of 30% for August and

85% for the whole summer period of that year) that would result in unreliable annual maxima. Mean radar data availability for115

the investigated five year period was 98%. Only 15-minutes interval data is used in this study to maintain homogeneity.

Kdp precipitation estimates of Estonia are derived using PyART function phase_proc_lp (Giangrande et al., 2013). Compared

to the work by Voormansik et al. (2021a) done in the same study area some parameters of this function have been changed. The
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necessity of updating the parameters became inevitable because using the parameters of the earlier work led to unrealistically

high 1-hour rainfall maxima and over smoothed precipitation fields. The parameters of the function that were changed were120

window_len, high_z, and coeff. The first of these, window_len, allows changing the length of the Sobel window applied to Φdp

field before calculating Kdp. When using the default window length of 35, the function produces less accurate results in Kdp

fields with steep gradients and large Kdp magnitudes as it oversmooths the Φdp field (Reimel and Kumjian, 2021). We tested

with various window lengths and found length 8 to be the optimal compromise between spatial resolution and smoothness.

After the window length change, we obtained realisticlooking precipitation fields but the overestimation compared to gauge125

values increased. This is because Φdp gradients became steeper as a result of the smaller window length. To mitigate this issue

we first decreased the high_z (high limit for reflectivity to remove hail contamination) value from 60 dBZ used in Voormansik

et al. (2021a) to 50 dBZ which is the lowest recommended value by Giangrande et al. (2013). Because overestimation was still

evident we also reduced the Zh-Kdp self-consistency coefficient. As stated by Kumjian et al. (2019) the Zh-Kdp consistency

relationships probably do not exist in hail and it is therefore recommended to reduce the weight of the self-consistency con-130

straint in the case of hail (Reimel and Kumjian, 2021). We tested with various values and found the coefficient value of 0.9 to

produce the optimal results.

The following equations have been used to derive rain rate from weather radar variables:

R(Zh) = 300Z1.5 (1)135

and

R(Kdp) = 21.0K0.720
dp (2)

Horizontal reflectivity data is re-calibrated using a method that makes use of the knowledge that Zh, Zdr (differential

reflectivity), and Kdp are self-consistent with one another and one can be computed from two of the others. The calibration

was carried out using the theory set down in Gorgucci et al. (1992) and Gourley et al. (2009) where the process is described in140

detail. As a result, Zh bias of 2.0 to 5.0 dB depending on the data period is obtained and added to the corresponding original

reflectivity data. Data up to 10 km from the radar were excluded because of the ground clutter and unreliable Kdp estimation.

Weighted rain gauges operated by the Estonian Environment Agency (EstEA) located in the study area are used as ground

truth to compare with radar estimates. The rain gauges provide data with a resolution of 0.1 mm and maximum detectable

rainfall intensity of 2000 mm/h. Rainfall observations from 2003-2010 are available with 1-hour resolution and starting from145

2011 with 10-minutes interval. The data are manually quality controlled by EstEA staff to identify possible technical issues

or incomplete time series. In this study ten years of gauge data from 10 stations located in the study area from 2011 to 2020

are used. As demonstrated by Voormansik et al. (2021a), the combined product R(Zh,Kdp) outperforms with respect to QPEs

based on R(Zh) and R(Kdp). The weather radar-based QPE here used is defined as:
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R(Zh,Kdp) =





R(Zh), if Zh ≤ 25 dBZ

R(Kdp), otherwise
(3)150

The evaluation of reflectivity threshold has been derived optimizing results on 1-hour accumulation rainfall in both locations,

Italy and Estonia.

2.1.1 GEV Statistics

Extreme value theory (EVT) deals with the stochasticity of natural variability by describing extreme events concerning a

probability of occurrence. The frequency of occurrence for events with varying magnitudes can be described as a series of155

identically distributed random variables

F = X1,X2,X3, ...XN (4)

where F is some function that approximates the relationship between the magnitude of the event (variable XN ) and the

probability of its occurrence. EVT is one of the most recurrent methodologies used for the statistical description of rare events.

Extensive literature, dating back to the 1940s, deals with EVT in its formalization and its hydrological applications. Looking160

at the distribution of block maxima (a block is defined as a set period such as a year), the Generalized Extreme Value (GEV)

distribution is one of the most popular fundamental approaches: the introduction theory and a historical review on this topic

can be found in Papalexiou et al. (2013), Wilks (2011), de Haan and Ferreira (2006). According to Katz et al. (2002), the GEV

distribution, which combines three different statistical families (Gumbel, Fréchet, and Weibull), can fit the extreme data set

with high accuracy.165

Defining R1h as the random variable of annual maximum rainfall intensity for the hourly duration, it is expected that random

samples of annual maxima are distributed as the GEV cumulative distribution function F (x) (Jenkinson, 1955):

F (R1h ≤ x;µ,σ,ξ) =





e−[1+ξ x−µ
σ ]

−1
ξ

ξ ̸= 0

e−e
−(x−µ

σ ξ = 0
(5)

where three parameters, µ, σ and ξ represent respectively the location, scale, and shape of the distribution function. Note

that σ and 1 + ξ(x−µ)/σ must be greater than zero, while the shape and location parameters can take on any real value. The170

shape parameter ξ governs the three limiting distributions of extreme values:

– ξ > 0 Fréchet distribution (EV2);

– ξ = 0 Gumbel distribution (EV1);
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– ξ < 0 Weibull distribution (EV3).

Several methods have been developed for the estimation of GEV distribution parameters, including the method of moments175

(MME), the method of L-moments (LME), the method of probability-weighted moments (PWME), and the method of max-

imum likelihood (MLE) (Katz et al., 2002; de Haan and Ferreira , 2006). Hereafter, the only MLE method has been used to

estimate GEV distribution parameters from sample data.

Quantiles associated with the T-year return period T = 1/1-F (r1h ≤ x) are determined by inverting the GEV cumulative dis-

tribution function given by Eq. (5).180

As stated by Lazoglou et al. (2018), the Weibull (negative shape parameter) is not appropriate for precipitation datasets. More-

over, Ragulina and Reitan (2017) demonstrated that small countries or administrative regions within larger countries can be

assigned roughly the same shape parameter, but larger areas such as continents can be expected to be heterogeneous. As a

result of their work, which considered 1,495 stations worldwide, the global average for the shape parameter is equal to 0.139,

with a 99% credibility interval ranging from 0.127 to 0.150. The weather radar-based rainfall annual maxima statistics over the185

Netherlands calculated by Overeem et al. (2009a) have shown that regional differences in the GEV location parameter exist for

the most duration. Nevertheless, due to the small number of rainfall annual maxima, when depth-duration-frequency (DDF)

curves are derived for small areas, the uncertainties in the DDF curves generally become larger compared to the uncertainties of

the average DDF curve for the Netherlands. Moreover, as discussed by Overeem et al. (2009a), the spatial correlation of mea-

surements affects extreme values statistics, carrying to underestimation. The correlation between two raingauges is typically190

low for convective precipitation, due to the small spatial scales involved in convection (≈ 10− 100km2) and the low density

of the ground meteorological network (typically order of one gauge every 100km2). In the case of weather radar observations,

given the higher spatial resolution (≈ 1km2), the correlation between close cell grids must be estimated and taken into ac-

count. In this study, the statistical analysis has been conducted using the R (https://cran.r-project.org/) package ExtRemes 2.1

(Gilleland et al., 2016).195

3 Results

Assuming GEV distribution parameters are constant in each of area considered in this study, their estimation from all data

in the regions justifies the derivation of return periods longer than the rainfall record (Overeem et al., 2010). This statement

assumes that both sample data are independent and the precipitation regime in the studied area is uniform. Semi-variograms are

widely used in geostatistic sciences for evaluating rainfall spatial structure. Semi-variograms summarize the spatial relations200

in the data, and they can be used to understand within what range data are spatially correlated (Naimi et al., 2011). The

experimental isotropic semi-variogram can be derived by taking half the average of the squared difference between data pairs

at equal distances and by assuming stationarity and isotropy of the rainfall field (Cressie, 1993):

γ(h) =
1

2n(|h|)

n(|h|)∑

k=1

(z(xk + h)− z(xk))2 (6)
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where xk is the location of cell barycentre k and xk + h is the location at distance h from location xk.205

Figure ?? shows semi-variograms, obtained from Z−Kdp annual hourly rainfall maxima, from April to September in Italy for

Area 1 (left) and Estonia (right).

Figure 3. Empirical variograms for hourly rainfall annual maxima based on Z −Kdp hourly rainfall estimations in Italy Area 1 (left) and

Estonia (right).

The empirical semi-variogram analysis for weather radar observations indicates that hourly rainfall maxima decorrelate at

about 10 km both in Estonia and Italy (Figure 3). These results are consistent with past studies (Schroeer et al., 2018; Dzotsi210

et al., 2012): convective precipitation is prevalent during the warm season and, consequently, the spatial correlation quickly

decreases with the distance between two rain gauges. Moreover, ten kilometers is the typical spatial scale of convective precip-

itation systems (meso− γ). Different values of semi-variances in Estonia and Italy can be explained by the different climatic

regimes, with generally weaker convective precipitations in the Baltic country. Hence, to avoid statistical oversampling and

to ensure statistical independence of data samples, one-hour precipitations annual maxima estimated by weather radar are215

re-sampled according to the found spatial scale of convective precipitation. The hourly annual rainfall maxima estimated by

weather radar observations are up-scaled from the original data resolution (340 meters for Italy and 300 meters for Estonia) to

10 km resolution, using a uniform random sampling algorithm.

The GEV distribution unites the Gumbel, Fréchet, and Weibull distributions into a single family to allow a continuous range

of possible shapes (Frűh et al., 2010; Coles, 2001). These three distributions are known as type I, II, and III extreme value dis-220

tributions. The GEV distribution is parameterized with a location parameter (µ), scale parameter (σ > 0), and shape parameter

(ξ). The GEV is equivalent to type I, II, and III, respectively, when a shape parameter is equal to zero, greater than zero, and

lower than zero. Based on the extreme value theorem, the GEV distribution is the limit distribution of properly normalized
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maxima of a sequence of independent and identically distributed random variables. Thus, the GEV distribution is used as an

approximation to model the maxima of long (finite) sequences of random variables.225

Figure 4. Diagnostic plots for 1-hour annual rainfall maxima fits derived by weather radar in Italy Area 1 (upper) and Estonia (lower): from

left to right, density plot of the data along with the model fitted density, Q-Q plot of the data quantiles against the fitted model quantiles with

95% confidence bands, a Q-Q plot of quantiles from model-simulated data against the data.

Figure 4 shows the diagnostics from the GEV distribution fitted to 1-hour rainfall annual maxima in Italy for Area 1 (upper)

and Estonia (lower); from left to right, the Figure shows the density plot of the data along with the model fitted density, the Q-Q

plot of the data quantiles against the fitted model quantiles with 95% confidence bands, a Q-Q plot of quantiles from model-

simulated data against the data. Quantile-quantile scatterplots compare empirical data and fitted CDFs in terms of quantiles:

in an ideal perfect fitting, all points should lay on the 1:1 diagonal line (Wilks, 2011). The Q-Q plots present some departures230

from linearity in correspondence of the tails, especially for Estonia data, which are due to the increasing level of uncertainty

that characterizes model extrapolation at high levels. The empirical estimates in the return level plot reflect results in Q-Q plots

laying very close to the model-based line, which results be almost linear, for low values. However, even if the return level

estimates seem convincing, the increasing confidence bands for large return periods indicate the uncertainty that affects the

model at high levels.235
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Area Source µ (mm) σ ξ n-values

Italy - A1
WR 34.5± 1.0 14.5± 0.8 0.08± 0.04 226

RG 29.9± 0.5 11.1± 0.4 −0.009± 0.006 609

Italy - A2
WR 27.6± 0.9 11.4± 0.6 −0.08± 0.06 235

RG 24.9± 0.4 9.6± 0.3 0.005± 0.03 595

Estonia
WR 17.0± 0.2 5.6± 0.2 0.12± 0.02 809

RG 15.2± 0.7 5.9± 0.5 −0.02± 0.07 93

Table 1. Estimated GEV parameters, location, scale, and shape (µ,σ,ξ) for weather radar and gauges annual hourly maxima rainfall intensi-

ties for Italy Area 1 and Area 2 and Estonia for weather radar (WR) and raingauges (RG) time-series observations

Table 1 summarizes the results of fitting data samples with GEV distribution by applying the Maximum Likelihood Estima-

tion method (MLE) for each studied area. Values for location, scale, and shape parameters with their standard deviations are

shown. Most of the shape parameters are close to zero, indicating a theoretical Gumbel distribution as expected. Significant

exceptions are the negative value for study area 1 in Italy for GEV fit derived by rain gauges, and the positive value for Estonia

fit derived from the weather radar.240

The record length strongly affects the estimate of the GEV shape parameter and long historical time series are needed

for reliable estimates. Papalexiou et al. (2013), Ragulina and Reitan (2017), Lazoglou et al. (2018), Deidda et al. (2021)

demonstrated that the shape parameter tends to have positive values, between 0 and 0.23 with a probability of 99%, as sample

size increases. For Estonia, the shape parameter ξ positive (+0.12± 0.02) derived from weather radar agrees with findings in

the extreme value rainfall analysis of these studies (Ragulina and Reitan, 2017). On the other side, close to zero values for245

shape parameters estimated by Italian weather radar observations can be explained by the limited sample size.

4 Discussion

Several studies developed adjustment techniques to correct QPEs based on weather radar observations with rain gauges mea-

surements (Einfalt and Michaelides , 2008; Goudenhoofdt and Delobbe, 2009). For the first time, this study investigates extreme

precipitation estimation using dual-pol weather radar rainfall estimations without any adjustment with raingauges. It is worth250

recalling that the study has been limited to relatively flat areas with highquality weather radar observations close to the ground.

Data quality and reliability have been carefully checked in Voormansik et al. (2021a).

The two studied regions, Estonia and Italy, are characterized by different precipitation regimes, colder the first one and warmer

the latter. The different climate regimes of studied areas consequently reflect on GEV distribution estimations, determining

lower return periods in Italy, given hourly precipitations. Estonia is characterized by few rain guages and by a limited historical255

series, but also by a larger homogeneous flat region covered by the operational polarimetric weather radar. In this area, it can

be appreciated the benefit of estimating GEV distribution using weather radar observations: the sample size derived from five

years observations is made by 809 values, about nine times the sample size obtained by raingauges. These different sample
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sizes determine larger standard deviations in GEV distribution parameters estimation by raingauges with respect to weather

radar-based estimation.260

In Italy, an opposite condition is evident: a dense automatic gauges network is operating since 1988, providing about 30 gauges

per area and more than 600 values in sample size. But, the Alps and the spatial variability of the climate regime, influenced

by complex orography, limit the available weather radar observations to about 250 values. Despite the limited availability of

weather radar observations (only five years for both Italian and Estonian weather radars), the comparison of GEV distribution

fits in these two different regions has shown encouraging results.265

Figure 5. Return levels for 1-hour rainfall accumulation in Estonia (left) and Italy Area 1 (center) and Area 2 (right).

Figure 5 shows return levels for 1hour rainfall at a given return time, estimated from GEV distributions with location, shape,

and scale parameters from Table 1. In Italy, the different return periods between the two areas are in agreement with findings

reported by Pavan et al. (2018), with Area 1 more favorable to intense precipitation than Area 2. This condition, confirmed

also by climatological lightning density (not shown), is caused by local orography. In fact, during the warm season, cold air

overcomes the Alps flowing towards the Po valley from west-northwest: the Monferrato hills east of Torino enhance lowlevel270

convergences and strong uplifts, causing deep convection in Area 1. QPEs based on Zh−Kdp generally provided shorter return

periods with respect to gauges estimations, probably due to a slight overestimation of annual rainfall maxima by weather radars,

as highlighted by Voormansik et al. (2021a).

5 Conclusions

Several studies investigated rainfall annual maxima derived from weather radarbased QPEs obtained by the traditional Zh−R275

relationship with some adjustments with raingauges. Nevertheless, as stated by Bringi and Chandrasekhar (2001) and Voor-

mansik et al. (2021a), the benefits of using Kdp in rainfall estimates are evident: these QPEs are immune from weather radar

miscalibration, anomalous propagation, and partial beam blockings.
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For the first time, this study investigates QPEs based on polarimetric observations by operational C-band weather radar located

in Italy and Estonia. As shown by Voormansik et al. (2021a), rainfall estimations based on Zh−Kdp are robust and reli-280

able, overcoming most of the sources’ uncertainties: hence, no corrections nor adjustments with raingauges have been applied.

The annual maximum of one hour rainfall accumulation is typically assumed to have extreme value (GEV) distribution. Hence,

GEV distribution parameters and depth-duration-frequency curves have been derived from the one-hour dual-pol weather radar-

based annual rainfall maxima. The comparison of weather radar return period estimations with ones derived from longterm

gauges observations showed a good agreement. Moreover, this study demonstrates that thanks to weather radar’s high spatial285

resolution, even a limitedtime series of weather radar observations can provide reliable estimations of extreme values distri-

bution parameters for annual hourly rainfall maxima in climatological homogeneous regions. It is worth recalling that QPEs

based on Zh−Kdp observations can be obtained only in cases of warmseason precipitations (anyway, when most intense pre-

cipitations occur). The shown results demonstrate good agreement between weather radar and raingauges data and consistent

estimations of GEV distribution parameters. Moreover, this study shows that even limited time-series weather radar observa-290

tions can discriminate between different precipitation regimes. These results are promising especially if we recall that the two

areas in Italy are characterized by slightly different precipitation regimes and the applied statistical analysis can describe them

properly. The main requirements applying this approach consist of a proper weather radar calibration, radar visibility, and a

limited beam-broadening united to weather observations close to the ground.

Sub-hourly precipitation extremes can determine a wide range of impacts on infrastructure, economy, and even health caus-295

ing urban flooding, triggering landslides, flash floods, and heavy soil erosion. Hence, future works will investigate sub-hourly

rainfall accumulation intervals, estimating GEV parameter distributions and deriving significant return periods.
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