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Abstract. The summertime air pollution events endangering public health in the Guangdong–Hong Kong–Macao Greater 

Bay Area are connected with typhoons. The wind of the typhoon periphery results in poor diffusion conditions and favorable 

conditions for transboundary air pollution. Random Forest models are established to predict typhoon-associated air quality in 10 

the area. The correlation coefficients and the root-mean-square errors of the air quality index (AQI) and PM2.5, PM10, SO2, 

NO2 and O3 concentrations are 0.84 (14.88), 0.86 (10.31 µg/m3), 0.84 (17.03 µg/m3), 0.51 (8.13 µg/m3), 0.80 (13.64 µg/m3) 

and 0.89 (22.43 µg/m3), respectively. Additionally, the prediction models for non-typhoon days are established. According to 

the feature importance output of the models, the differences in the meteorological drivers of typhoon days and non-typhoon 

days are revealed. On typhoon days, the air quality is dominated by local source emission and accumulation as the sink of 15 

pollutants reduces significantly under stagnant weather, while by the transportation and scavenging effect of sea breeze on 

non-typhoon days. Therefore, our findings suggest that different air pollution control strategies for typhoon days and non-

typhoon days should be proposed. 

1 Introduction 

The rapid and continuous economic and industrial development of China in recent decades has resulted in a mounting air 20 

pollution problem in the country. Major atmospheric pollutants, such as particulate matter (PM), O3, SO2 and NO2, not only 

have important impacts on ecosystems, traffic safety and weather/climate, but also seriously exacerbate human health issues 

and increase morbidity and mortality from cardiovascular and respiratory diseases (Che et al. 2005, 2014; Zhu et al. 2021). 

The Guangdong–Hong Kong–Macao Greater Bay Area (GBA), located in southern China, comprises nine municipalities of 

Guangdong Province, including Guangzhou and Shenzhen, and two Special Administrative Regions of Hong Kong and 25 

Macao. With a high population density of over 1100 people per square kilometer, the GBA is one of China’s most heavily 

populated and urbanized areas. As a result, the area sees a high intensity of air pollutant emissions and frequent air pollut ion 

events (Deng et al. 2008, 2011; Hou et al. 2019). As well as the intense emission of pollutants, the other main factor 

influencing the air quality is the weather circulation pattern (Yang et al. 2018; Zong et al. 2021). For instance, when light  
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breezes and a temperature inversion layer occurs in the surface layer of the GBA, the air quality deteriorates (Tong et al. 30 

2018a; Ding et al. 2004; Huang et al. 2005; Yang et al. 2012). Relatively, the air quality is good when the wind speed in the 

area is high—for example, the strong southerly winds in summer and northerly winds that cross the northern mountains in 

winter (Chen et al. 2016; Tong et al. 2018a, 2018b). 

The GBA is continually affected by typhoons in summer (Ying et al. 2014; Lu et al. 2021), and as they make landfall, the 

air quality and synoptic situation in the region changes significantly (Ding et al. 2004; Huang et al. 2005; Lam et al. 2005; 35 

Feng et al. 2007; Wei et al. 2007, 2016; Yang et al. 2012; Wang et al. 2022). The causes of typhoon-associated air pollution 

can be concluded as follows. On the one hand, the downdraft of the typhoon periphery leads to a large-scale temperature 

inversion layer, meaning light air and adverse pollutant diffusion conditions prevail in the area (Feng et al. 2007; Yang et al. 

2012; Deng et al. 2019). Additionally, pollutants in the upper level are transported down to the lower atmosphere, where 

they accumulate under the impact of the downdraft. Consequently, the accumulation of local-source emissions is aggravated, 40 

making the air quality bad or even severe (Huang et al. 2005; Wei et al. 2016). On the other hand, the various wind patterns 

of the typhoon periphery (mostly northerlies during pollution events) provide favorable conditions for transboundary air 

pollution from both outside the GBA and cities inside the GBA (Chow et al. 2018; Lam et al. 2018; Luo et al. 2018; Deng et 

al. 2019; Yim et al. 2019; Yang et al. 2019).However, there are still two issues with respect to typhoon-associated air quality 

in the GBA that have yet to be fully understood: 1) Which local meteorological factors play the dominant role in the change 45 

in different atmospheric pollutants during typhoon processes? 2) What are differences in the dominant local meteorological 

factors between typhoon and non-typhoon processes? These two issues are of great significance to the forecast of air quality 

and the adaptions of air pollution in the GBA. 

Quantitative analysis and the prediction of pollutant concentrations have become a focus in this field of study. Existing 

methods include numerical forecasting, statistical forecasting and machine learning. In terms of numerical forecasting, 50 

several models have been developed, such as CMAQ (developed by the U.S. EPA) and NAQPMS (developed by the 

Institute of Atmospheric Physics, Chinese Academy of Sciences) (Arnold et al. 2003; Li et al. 2011). These models have 

been applied by some researchers to study typhoon-associated air quality and results have revealed the impacts of 

meteorological conditions on the transportation and diffusion of air pollutants—for example, the downdraft, northerly winds 

and high near-surface air temperatures that boost the photochemical reaction that generates O3 (Wei et al. 2016). Numerical 55 

experiments also led to the discovery that the contribution of cross-regional transportation varies with the wind field, these 

studies reflect one of the advantages of the numerical modelling method: that they can analyze the formation mechanism of a 

specific pollution event (Huang et al. 2005; Lam et al. 2005). However, this approach also has its drawbacks , such as 

computational complexity and high data requirements. As for statistical methods, examples include clustering and multiple 

regression methods based on meteorological factors and weather types (Su et al. 2009; Singh et al. 2012). Although the 60 

calculations involved in these statistical methods are simple, their predicted results exhibit uncertainties with large errors and 

local dependence (Ross et al. 2007; Singh et al. 2012). In contrast, machine learning methods perform very well in terms of 

accuracy and are already leveraged in many fields such as meteorology and the environmental sciences (Li et al. 2021, 
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Zheng et al. 2021, Bochenek & Ustrnul 2022, Chen et al. 2022). The forecasting of air quality is no exception. The most 

widely used algorithms include Random Forest (RF), support vector machines, extreme gradient boosting (XGBoost), and 65 

neural networks. The input variables include meteorological data and traffic flow data. Among the machine learning models, 

RF is an ensemble machine learning algorithm based on decision trees, which has certain advantages in capturing the 

nonlinear relationship between variables. Attempts made to employ RF in predicting air quality have produced promising 

results (Kamińska 2018; Bai et al. 2019; Hu et al. 2021; Ding et al. 2022; Liu et al. 2022). 

It is clear from the literature, as reviewed above, that there is a definite link between typhoons and air quality in the GBA. 70 

Nevertheless, the meteorological determinants of different kinds of pollutants during a typhoon event are still unclear. There 

is also little research on applying machine learning in predicting air quality with typhoon location and intensity data, and the 

accuracy of such predictions remains unknown. Therefore, in order to improve the accuracy of air quality prediction for the 

GBA during typhoon processes, the present research establishes an RF prediction model of typhoon-associated air quality in 

the GBA with air quality data [air quality index (AQI), PM2.5, PM10, SO2, NO2, O3] from 396 air quality monitoring stations 75 

in 10 cities in the region, western North Pacific typhoon tracks and intensity data from 2014–2020 derived from the China 

Meteorological Administration (CMA) tropical cyclone best-track dataset, and meteorological data from the fifth major 

global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5). Also, for the non-

typhoon days (NTY days) in the typhoon season (June-September), RF prediction models based on meteorological elements 

are established to analyze the changes in local meteorological determinants. The aim of this study is to improve the 80 

prediction and assessment of typhoon-associated air quality in the GBA, which is not only important from a scientific 

viewpoint, but also has considerable practical application value for tackling the socioeconomic effects of typhoons and 

associated air quality. 

2 Data and methods 

2.1 Data 85 

The present study takes 396 air quality monitoring stations in 10 cities in the GBA (Guangzhou, Shenzhen, Zhuhai, Foshan, 

Zhaoqin, Jiangmen, Huizhou, Dongguan, Zhongshan, Hong Kong) as research objects. Three of these stations from 

Guangzhou, Shenzhen and Hong Kong are used for independent testing and are excluded from the training stage. The input 

variables of the model are: 

1. The latitude and longitude of the monitoring stations, hourly average AQI and concentrations of PM 2.5, PM10, SO2, NO2 90 

and O3. 

2. The typhoon center latitude (Tlat), longitude (Tlon), and minimum pressure (Tpres), as well as the typhoon near-center 

maximum wind speed (Tws), from the CMA tropical cyclone best-track dataset produced by the CMA Tropical Cyclone 

Data Center. 
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3. ERA5 reanalysis meteorological data, including the eastward component of the 10-m wind (U10m), northward 95 

component of the 10-m wind (V10m), 2-m dewpoint temperature (d2m) and air temperature (T2m), planetary boundary layer 

height (PBLH), surface pressure (SP), total precipitation (TP), vertical velocity at 850 hPa (W850) and 700 hPa (W700), and 

static stability (St) (defined as the potential temperature at 700 hPa minus that at 1000 hPa). 

Using the model constructed with the data above, the future air quality under the effect of the typhoon can be predicted. 

To be specific, the forecasted air quality can be acquired by replacing the ERA5 reanalysis meteorological data with the 100 

ECMWF’s forecast field and introducing the predicted typhoon location and intensity (for example, from the CMA). The 

distribution of all typhoon samples and air quality monitoring stations is shown in Fig. 1. The data preprocessing procedure 

can be referred to Text S1. 

2.2 RF model 

The RF algorithm, first proposed by Breiman (2001), is a kind of ensemble machine learning algorithm. The process for 105 

establishing the model is follows: 

Select a random sample with replacement of the training set and train a large number of decision trees. For each tree, 

calculate the error at the node and split with the minimum error as the criterion until the designated maximum tree depth is 

reached. The average of the output of all trees is calculated as the model output. 

One of the strengths of the RF model is that it can calculate the importance of features based on impurity, which means 110 

that it can calculate the feature’s importance by the degree of error reduction brought about by it. The higher the importance 

value, the more influential the feature. Because of these advantages, RF models have been applied to analyze causal 

relationships between variables and provide a powerful tool for determining the dominant factors among variables (Wang et 

al. 2019; Yang et al. 2020; Zeng et al. 2020; Li et al. 2021; Venter et al. 2021; Chen et al. 2022). 

Fig. 2 presents the technology roadmap for establishing the RF model, which is described as follows: 115 

Step 1. Data acquisition and matching. This paper uses the scikit-learn package in Python to construct the RF forecast 

model with the typhoon location and intensity data (on typhoon days), the location of monitoring stations and meteorological 

data as input variables, and the AQI and concentrations of PM2.5, PM10, SO2, NO2 and O3 as the predicted variables. 

Step 2. RF model establishment and cross validation. First, the dataset (data form 36 stations) is randomly divided into a 

70% training set and 30% testing set. The hyperparameter tuning and model training process is conducted on the training set. 120 

The hyperparameter tuning process refers to determining the best hyperparameters, which means the parameters must be set 

manually in advance. The testing set is used for evaluating the RF model’s ability to predict the unseen data. To avoid the 

bias caused by the splitting of the training and testing sets, 10-fold cross-validation (CV) is adopted in the training set. That 

is, the training set is divided into 10 parts, 9 of which are used as the training set of the tuning process, and then the 

performance of the remaining one, called the validation set, is tested. This therefore ensures that the optimal parameters of 125 

the model that are found are not affected by data partitioning. The hyperparameters adjusted in the present study are 
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described in Text S2. Afterward, the training set and the testing set were applied to the optimal model respectively, and the 

feature importance of the model output was analyzed to obtain the dominant meteorological factors of each model. 

Step 3. Model prediction and verification. Once the optimal model is established, the training set, and testing set and data 

from testing stations in Guangzhou, Shenzhen and Hong Kong are applied to the model separately, and a series of model 130 

evaluation metrics are calculated, including the mean absolute error (MAE), root-mean-square error (RMSE), bias, 

correlation coefficient between the observed and predicted value (R), standard deviation of the observation (SDO), standard 

deviation of the prediction (SDP), and index of agreement (IA). The definitions of these metrics are given in Table 1. Among 

these indicators, the smaller the bias, MAE and RMSE, the better the model performs; the closer R and IA are to 1, the more 

ideal the result; and the closer SDO and SDP are, the better. If RMSE is lower than SDO, IA is high, and SDO is close to SDP, 135 

the prediction is satisfactory (Lu et al. 1997). 

3 Results 

3.1 RF model evaluation 

3.1.1 TY-associated model 

The RF model is applied to the AQI and five pollutants to establish six distinct RF models (the hyperparameters of the six 140 

models can be seen in Table 2; 70% of the samples from 36 stations are used as the training set and 30% as the testing set). 

The training and testing results for the AQI, PM2.5 and PM10 are shown in Fig. 3a, b, d, e, g, h. The R between the 

observed and predicted value of the training set (testing set) are 0.986 (0.843), 0.986 (0.859) and 0.983 (0.837), respectively; 

the RMSE are 5.43 (14.88), 3.88 µg/m3 (10.31 µg/m3) and 6.33 µg/m3 (17.03 µg/m3); and the bias are 0.10 (-0.07), 0.06 

µg/m3 (0.20 µg/m3) and 0.19 µg/m3 (0.16 µg/m3). As for the MAE and IA, the RF model also performs well. The IA of the 145 

testing is as high as 0.894, 0.906 and 0.895. It can be seen that the red points in the training set are mostly close to the 

diagonal line, which means that the RF model makes an accurate prediction over the majority of the samples. Although the 

data points for the testing set are not as dense as those for the training set, the sample with the most frequency is still 

relatively close to the y=x line, indicating that the RF model has good predictive ability for unseen data. Concerning the 

feature importance (Fig. 3c, f, i), the dominant factor of the AQI is d2m which represents the atmospheric humidity, followed 150 

by the static stability. The first two factors have approximate importance values, reflecting that the meteorological 

determinants of the AQI in the GBA during typhoon events are humidity and static stability. Among all the typhoon 

information data, the importance of Tlon and Tlat is intermediate among all the variables, while the importance of Tpres and 

Tws is the lowest. It can be concluded that the typhoon center location rather than the typhoon intensity, is the key to 

modifying the synoptic situation in the GBA, thereby changing the AQI value. Similarly, Figs. S1–S3 show the R (RMSE) 155 

values of the testing set for SO2, NO2 and O3 are 0.510 (8.13 µg/m3), 0.799 (13.64 µg/m3) and 0.894 (22.43 µg/m3), 
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respectively. The IA of all pollutants except SO2 exceeds 0.85, reflecting that the RF model has strong predictive ability for 

these pollutants. 

The pollutants can be classified into two categories based on the feature importance output of the RF model with respect 

to the major meteorological controlling factors. The first category is the d2m-driven type, which includes PM2.5 and PM10, 160 

whose dominant meteorological driving factor is d2m, followed by the PBLH, which is consistent with the AQI. The reason 

for this could be that d2m not only reflects the humidity, but also the precipitation and temperature to some extent. When 

there is rainfall related to a typhoon in the GBA, wet deposition will reduce the concentration of PM. The reason why total 

precipitation is less important than d2m could be that the latter always has a value and is more variable. The similarity 

between the AQI, PM2.5 and PM10 results reveals that the major pollutant in the ambient air of the GBA during typhoon 165 

events is PM, since the AQI value is the highest of the Individual Air Quality Index. The other category is the PBLH-driven 

type, which includes SO2, NO2 and O3. Obviously, the major meteorological influence in this case during typhoon events is 

the PBLH. Nevertheless, the situation for SO2 is unlike that of the other two. The most important variables affecting the SO2 

concentration after the PBLH are U10m and V10m. Indeed, this is the highest U10m and V10m importance among the six models, 

indicating that the SO2 in the GBA may mainly derive from transboundary transportation. The variable importance for NO2 170 

and O3 exhibits very similar characteristics because they are both pollutants closely related to photochemical reactions. 

Under certain conditions, the free radical reaction of NO2 can generate O3 (Lam et al. 2005, 2018; Zhang et al. 2013; Deng et 

al. 2019). It is also worth noting for these two pollutants that the PBLH, which has the highest rank of importance among all 

variables, is more than twice as important as the second-highest variable, and this is distinct from the other four models. 

Additionally, this paper uses three testing stations in Guangzhou, Shenzhen and Hong Kong, which are excluded from the 175 

training and testing set mentioned above, to further investigate the generalization ability of the model. The results for the 

AQI, PM2.5 and PM10 of TY days are shown in Fig. 4a-c. The R (RMSE) values for AQI, PM2.5 and PM10 are 0.868(11.70), 

0.900 (7.16 µg/m3) and 0.841 (13.45 µg/m3), respectively. As for SO2, NO2 and O3, Fig. S4a-c show the R (RMSE) values of 

the testing set for SO2, NO2 and O3 are 0.496 (5.38 µg/m3), 0.538 (27.94 µg/m3) and 0.878 (22.45 µg/m3), respectively. 

These results are not significantly different from the results for the previous 36 stations, indicating that models trained with 180 

some station data also predict equally well in new locations. That is, the RF model successfully captures the correlation 

between the typhoon’s location and the monitoring stations’ location. Though the input stations changed, the model still 

produces accurate predictions based on the relative position of the station and the typhoon. 

Overall, the model has outstanding predictive ability for the AQI and five air pollutants, and makes correct prediction for 

the new stations that are unseen in the training stage. The present study also highlights that the typhoon location variables of 185 

Tlat and Tlon are more important than the typhoon intensity variables of Tpres and Tws, showing that the major driving 

factor in modifying the synoptic situation in the GBA, and thereby changing the AQI value, is typhoon location. The role of 

typhoon intensity requires further study. The dominant meteorological drivers of typhoon-associated air quality are also 

revealed by the RF model: for the AQI and concentrations of PM2.5 and PM10 it is d2m, while for SO2, NO2 and O3 it is the 

PBLH. 190 
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3.1.2 NTY-associated model 

Then, use the meteorological data, station location, and air quality data of the NTY days during the typhoon season (June-

September) to build RF models (the hyperparameters of the six models can be seen in Table 2). Similarly, the model 

prediction accuracy and output feature importance are calculated and compared with the results of TY days. The training and 

testing results for the AQI, PM2.5 and PM10 are shown in Fig. 54a, b, d, e, g, h. The R between the observed and predicted 195 

value of the training set (testing set) are 0.979 (0.745), 0.978 (0.744) and 0.978 (0.708), respectively; the RMSE are 5.52 

(15.11), 3.60 µg/m3 (9.68 µg/m3) and 5.65 µg/m3 (15.45 µg/m3); and the bias are 0.19 (0.57), 0.12 µg/m3 (0.27 µg/m3) and 

0.18 µg/m3 (0.48 µg/m3). Compared with the prediction results of the TY days, the prediction accuracy is significantly 

reduced, and the R are all reduced to below 0.8. Figures S54–S76 show the R (RMSE) values of the testing set for SO2, NO2 

and O3 are 0.452 (7.00 µg/m3), 0.744 (11.63 µg/m3), 0.867 (24.18 µg/m3), respectively. The prediction accuracy of the model 200 

is significantly poorer compared with the TY days model, and it can be seen that the maximum pollutant concentration on 

NTY days is significantly larger than that on TY days, indicating that the period of air quality deterioration in the GBA 

coincides with the period of typhoon activity. 

The feature importance of model predictions on NTY days is significantly different from that on TY days. For AQI and 

PM2.5, the meteorological driver is longitudinal wind V10m, while for PM10 is the latitude of the monitoring station lat. 205 

Considering that the southern part of the GBA is close to the sea, and the farther north is, the farther it is from the sea, so 

V10m can represent the strength of the sea-land breeze, and lat can be seen as the distance from the sea. By contrast, their 

meteorological determinants are all d2m on TY days, and this change indicates that the typhoon deters the pollutants from 

being blown away and replaced by clean air from the ocean, which is the major sink of pollutants on NTY days. Therefore, 

haze occurs. As for the pollutants classified as the PBLH-driven type, SO2, NO2 and O3. Their meteorological drivers on 210 

NTY days are V10m, St and PBLH, respectively.  

Consistent with the TY-associated model, three testing stations from Guangzhou, Shenzhen and Hong Kong are 

introduced into the NTY-associated model. The results for the AQI, PM2.5 and PM10 of NTY days are shown in Fig. 4d-f. 

The R (RMSE) values for AQI, PM2.5 and PM10 are 0.835(11.65), 0.825 (7.24 µg/m3) and 0.740 (12.76 µg/m3), respectively. 

As for SO2, NO2 and O3, Fig. S4d-f show the R (RMSE) values of the testing set for SO2, NO2 and O3 are 0.344 (6.45 µg/m3), 215 

0.413 (25.58 µg/m3) and 0.881 (20.71 µg/m3), respectively. Two comparations are made: 1. By comparing the results of 3 

testing stations with the results of 36 training stations on NTY days, the result shows that the result of testing stations is not 

worse than 36 training stations, i.e., the model has a robust ability to predict the stations in the new location. 2. By 

comparing the results of 3 testing stations on TY days and NTY days, the results show that the prediction accuracy of the 

model on NTY days is significantly poorer compared with the TY days model, which is in agreement with previous findings. 220 

In general, the prediction results indicate that the RF model can accurately and effectively capture the mechanism of the 

impact of typhoons on air quality. Additionally, differences in meteorological determinants between TY and NTY days also 

have important implications in air quality in the GBA: for PM, the prevailing sea breeze is the major scavenging mechanism 
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on NTY days, and is deterred by the various wind patterns of the typhoon periphery on TY days. While for SO2, NO2 and O3, 

on TY days, their concentrations are strongly affected by the PBLH, and the effects of local emission and accumulations are 225 

more dramatic than transboundary air pollution, causing polluted events. In contrast, on NTY days, transboundary air 

pollution is more obvious than the local pollutant emission. These findings shed new light on the control of regional air 

pollution in the GBA. That is, different strategies should be adopted on TY and NTY days. On NTY days, countermeasures 

should focus more on source emission control, and make full use of the diffusion and cleaning effect of the sea breeze to 

reduce air pollution. Coordinated emission reduction in the region should be strengthened to reduce the concentration of 230 

pollutants in the entire region at the same time; on TY days, more focus should be on increasing the sink of pollutants (which 

is decreased due to static and stable weather of the typhoon periphery). Countermeasures should be taken to increase the 

sedimentation and decomposition of pollutants in the area, such as more road watering. 

3.2 Model-predicted correlation between air quality and typhoon center location 

To further investigate the RF model’s ability to capture the correlation between typhoon location and air quality in the GBA,  235 

each position within the research area (at a spatial interval of 0.5°) is input into the RF model as the position of the typhoon 

to predict the AQI and concentrations of PM2.5, PM10, SO2, NO2 and O3 (the typhoon intensity and meteorological variable 

values are the averages of all typhoons within the specified spatial interval). Fig. 6 shows the average of the predictions 

across all stations. In all six models, the RF model predicts a low level of air pollution in the GBA when the typhoon is 

located in the southwest sea area of the GBA, close to Hainan Island. This is because of the relatively clean southerly winds 240 

from the sea brought by the cyclonic circulation, large wind speed and precipitation when typhoons are located here. All 

these meteorological conditions are highly favorable for the deposition and removal of pollutants, and the result is consistent 

with the findings of previous studies (Yang et al. 2012; Chow et al. 2018; Luo et al. 2018; Yang et al. 2019). By contrast, the 

air quality in the GBA deteriorates when a typhoon is located over the waters from the Philippines to Taiwan Island, and in 

the most northerly area over the waters near 30°N. The maximum average concentration of PM10 exceeds 80 µg/m3. It is 245 

worth noting that the spatial distribution characteristics of the AQI, PM2.5 and PM10 are very similar because the primary 

pollutant in the GBA during typhoon weather is likely to be PM, as mentioned above. The distribution of typhoons during 

SO2 pollution weather is mainly over the sea area to the east of Taiwan Island (16°–27°N), with the maximum SO2 

concentration predicted by the model reaching 20 µg/m3. However, the prediction results for NO2 and O3 are scattered, 

which may be because their associated photochemical reactions are greatly affected by solar radiation, so the concentrations 250 

of these two pollutants possess diurnal variation, which will cause uncertainty in the predictions of the RF model. 

Nevertheless, the model still accurately captures the overall spatial distribution characteristics; that is, when a typhoon is 

located over the waters on the southwest side of the GBA, near Hainan Island, the pollutant concentrations are low, but when 

a typhoon is over the waters near Taiwan Island (117°–125°E), they are high. 
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3.3 Case verification 255 

This paper takes typhoon Danas (2019) as an independent case to analyze the model’s ability to predict typhoon-associated 

air quality over the GBA. For better evaluation of the RF model, typhoon Danas’s data have been removed from the dataset 

in training and testing steps.This paper selects typhoon Danas (2019) as a case to analyze the model’s ability to predict 

typhoon-associated air quality.  The active time of Danas was 14–21 July 2019, with a minimum central pressure of 980 hPa. 

It did not make landfall in China, and its path travelled northwards along the eastern coast of Taiwan Island. During this 260 

typhoon event, a significant pollution episode occurred in the GBA (Fig. 76). The synoptic chart shows northerly winds from 

inland prevailed in the GBA during the event (July 17–19), which caused pollutants to be transported from inland to the 

GBA. Meanwhile, the GBA was under high pressure, which was also unfavorable for the diffusion of pollutants (Fig. S87). 

Fig. 7 presents the observed and predicted AQI value and concentrations of PM2.5, PM10, SO2, NO2 and O3. As Fig. 76a 

depicts, the track of Danas was L-shaped, which is coincides quite well with the typhoon locations that cause pollution as 265 

predicted by the RF model. Around July 16, the typhoon turned north over the sea near the Philippines and then moved along 

123°E longitude, gradually increasing in intensity. The observed data also show a pollution event in the GBA during this 

period. 

First, we examine the spatial distribution of the AQI (Fig. 87a-b). The AQI of the GBA is higher in the northern area than 

in the southern area during the pollution event. This may be because the southern part i s closer to the sea and is affected by a 270 

stronger sea breeze, and the RF model successfully predicts this distribution with high accuracy. The distributions of PM2.5 

(Fig. 8c-d) and PM10 (Fig. 8e-f) are similar, but the model slightly overestimates their concentrations. The spatial 

distributions of the SO2, NO2 and O3 (Fig. 8g-l) concentrations are relatively scattered and, except for the underestimated 

concentration of SO2, the predicted results are quite accurate. 

Regarding the numerical accuracy of the prediction, Table 3 lists the model evaluation metrics calculated by the average 275 

model output. In terms of MAE and RMSE, the largest values are for the predicted O3, which are 15.047 and 18.319 µg/m3, 

respectively. Meanwhile, the smallest MAE (RMSE) is found for PM2.5 (SO2), which is 4.117 (4.876) µg/m3. The R values 

between the observations and predictions of the AQI and five pollutants all exceed 0.7, with that of the AQI and O3 even 

exceeding 0.85. The bias values of the predicted AQI and five pollutants are all less than 0, indicating that the RF model 

tends to underestimate in this case. The RMSEs of the result of the AQI, PM2.5, PM10, NO2 and O3 are lower than the SDO 280 

values, and the SDO and SDP values of all the pollutants are quite close. Furthermore, the IA is high. Among all the models, 

the IA of the AQI, PM2.5 and O3 exceeds 0.9, indicating that these three air quality parameters perform the best in this case. 

The evaluation metrics of the results in 10 cities are listed in Tables S1–S10, revealing that 39 (66%) of all air quality 

parameter predictions in these cities have an RMSE less than the SDO, and 31 (53%) have an IA exceeding 0.8. Generally, 

the best-performing pollutants are PM2.5 and O3, as judged by the metrics, while the performance with respect to SO2 needs 285 

improvement. The MAE and RMSE values obtained by city are both larger than the values obtained by the average over the 

entire GBA, because the averaging process eliminates some random errors. 
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In summary, the evaluation metric results are extremely encouraging, and indicate a satisfactory prediction by the RF 

model of the Danas-associated air quality in the GBA. Moreover, the RF model obtains temporal information from the 

diurnal variation of the input features such as typhoon intensity to accurately predict the diurnal fluctuations of NO2 and O3, 290 

which reflects the model’s ability to capture the nonlinear relationship and its potential for tackling complex prediction 

problems. 

4 Conclusions and discussions 

Typhoons are highly active weather systems in summer that have substantial effects on the synoptic situation in the entire 

southern part of China, including the Guangdong–Hong Kong–Macao Greater Bay Area. In addition to causing violent 295 

winds, rainfall and storm surges in the area close to their location, typhoons also affect the background circulation situation 

in areas more distant from their immediate vicinity. For instance, the typhoon periphery downdraft brings about light winds, 

stagnant weather, high temperatures, and a low planetary boundary layer, and consequently have a detrimental impact on the 

generation, transportation and diffusion of air pollutants, causing hazy weather. The Guangdong–Hong Kong–Macao Greater 

Bay Area, located at the southernmost tip of the Chinese mainland, is often affected by typhoons. Therefore, air pollution 300 

events associated with typhoons in the GBA are prevalent in summer. 

The present study employs the RF model to predict the typhoon-associated air quality quantitatively. The R (RMSE) 

values of the testing set for the AQI, PM2.5, PM10, SO2, NO2 and O3 are 0.843 (14.88), 0.859 (10.31 µg/m3), 0.837 (17.03 

µg/m3), 0.510 (8.13 µg/m3), 0.799 (13.64 µg/m3) and 0.894 (22.43 µg/m3), respectively. To test the generalization ability of 

the model, three monitoring stations in Guangzhou, Shenzhen and Hong Kong are selected as testing stations, and are 305 

excluded from the training procedure. For these three stations, the R (RMSE) values for AQI, PM2.5, PM10, SO2, NO2 and O3 

on TY days are 0.868(11.70), 0.900 (7.16 µg/m3), 0.841 (13.45 µg/m3), 0.496 (5.38 µg/m3), 0.538 (27.94 µg/m3) and 0.878 

(22.45 µg/m3), respectively. The results are satisfactory overall. Then, the model is verified using the case of typhoon Danas 

(2019). The results are averaged over the GBA, and the R (RMSE) values of the AQI, PM2.5, PM10, SO2, NO2 and O3 are 

0.862 (7.458), 0.841 (5.136 µg/m3), 0.793 (8.135 µg/m3), 0.727 (4.876 µg/m3), 0.827 (5.633 µg/m3) and 0.952 (18.319 310 

µg/m3), respectively. The prediction is accurate for both the air quality of one city and the average air quality in the GBA. In 

contrast, using meteorological data to predict the air quality of NTY days, the accuracy is significantly lower than the resu lts 

of TY days, indicating that the impact mechanism of typhoons on air pollution is accurately captured by the model, and it is 

important for the improvement of model prediction accuracy. 

Another important finding of the present study is that the difference in feature importance output by the RF model on TY 315 

days and NTY days. On TY days, the meteorological driver of AQI, PM2.5 and PM10 is the d2m that represents the air 

humidity, while SO2, NO2 and O3 are dominated by the height of the boundary layer. Differently, on NTY days, their 

dominant meteorological factors were changed, and the importance of variables representing regional transportation and sea 

breeze diffusion was significantly higher than that in TY days. These findings suggest that the prevailing sea breeze is the 
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major scavenging mechanism of pollutants on NTY days, and is deterred by the various wind patterns of the typhoon 320 

periphery on TY days. This implies that different control strategies should be adopted on TY days and NTY days. On TY 

days, countermeasures should be taken to increase the sink of pollutants in order to compensate for the effect of the 

weakened sea breeze and the hindered diffusion of pollutants caused by the static and stable weather of the typhoon 

periphery. 

Besides, the present study also highlights the following: 325 

1. The feature importance output by the RF model indicates that the typhoon location is more important than the intensity, 

suggesting that the most significant factor in modifying the synoptic condition, and thereby changing the air quality, is the 

location of the typhoon center. 

2. By sampling at a spatial interval of 0.5° and inputting the data into the RF model as the typhoon center location, the 

prediction result is consistent with previous studies; that is, the air quality in the GBA deteriorates when the typhoon passes 330 

over the waters near Taiwan Island. 

3. The concentrations of NO2 and O3 possess diurnal variation as a result of their photochemical reactions in the 

atmosphere, and the RF model predicts this diurnal cycle with high accuracy because of the diurnal variation of the input 

variables such as air temperature, PBLH, typhoon intensity and wind speed. 

Overall, the RF model achieves good results in predicting typhoon-associated air quality. Compared with approaches 335 

adopted in previous research, such as numerical simulation and statistical modelling, the RF model has the advantages of 

high accuracy and convenient application, and produces a precise quantitative prediction of typhoon-associated air quality in 

the GBA. At the same time, the importance of features revealed by the model also shed new light on regional pollution 

control on typhoon days. Of course, the impact of typhoons on air quality is not limited to the GBA, but the model structure 

provided in the present study can be applied conveniently to various areas, which gives it significant application value for air 340 

pollution prevention and control. It is worth mentioning that not all typhoons affect the air quality in their area of impact , 

because of the substantial variability of typhoon tracks. The R and RMSE values in the case study are better than those of the 

whole dataset, reflecting that some typhoons in the dataset do not directly affect the air quality in the GBA. Meanwhile, as 

mentioned earlier, the air quality is also affected by factors such as source emissions. The RF model’s prediction of the air 

quality in the GBA under these scenarios merits further study. 345 

Code availability. The model in this paper is based on the scikit-learn package in Python, and the implementation and 

analysis code are available upon request to the corresponding author (yyj1985@nuist.edu.cn). 

Data availability. The datasets that are analyzed and used to support the findings of this study are available in the public 

domains: The air quality observation data are deposited at linkage: https://doi.org/10.5281/zenodo.7451539 (Chen 2022), 

which are provided by the China National Environmental Monitoring Center and the Environmental Protection Interactive 350 
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Table 1. The definition of evaluation metrics of the model. 

Metric Definition 

MAE 
1

𝑁
∑  

𝑁

𝑖=1

|𝜙𝑖| 

RMSE [
1

𝑁
∑  

𝑁

𝑖=1

(𝜙𝑖)
2]

1/2

 

Bias 
1

𝑁
∑  

𝑁

𝑖=1

𝜙𝑖 

R 

∑  𝑁
𝑖 (O𝑖 − O̅)(𝑝𝑖 − �̅�)

√∑  𝑁
𝑖=1 (O𝑖 − O̅)2√∑  𝑁

𝑖=1 (𝑝𝑖 − �̅�)2
 

SDO 
1

𝑁 − 1
[∑  

𝑁

𝑖=1

(O𝑖 − O̅)2]

1/2

 

SDP 
1

𝑁 − 1
[∑  

𝑁

𝑖=1

(𝑝𝑖 − �̅�)2]

1/2

 

IA 1 −
∑  𝑁
𝑖=1 (𝜙𝑖)

2

∑  𝑁
𝑖 (|𝑝𝑖 − O̅| + |O𝑖 − O̅|)2

 

Notation: 𝑝𝑖 is the predicted value; O𝑖 is the observed value; 𝑁 is 

sample size; O̅ is the mean of observed value; �̅� is the mean of 

predicted value; 𝜙𝑖 is the difference between the predicted and 

observed values. 495 
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Table 2. The best hyper-parameters of the model. 

Model 
n-estimator max-depth 

TY days NTY days TY days NTY days 

AQI 710 750 82 87 

PM2.5 170 630 70 88 

PM10 420 690 150 41 

SO2 250 385 72 61 

NO2 580 685 100 71 

O3 660 495 80 101 
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Table 3. Evaluation metrics of the model prediction of the case Danas in the GBA. 

 AQI PM2.5 PM10 SO2 NO2 O3 

MAE 5.470 4.117µg/m3 6.222µg/m3 4.529µg/m3 5.037µg/m3 15.047µg/m3 

RMSE 7.458 5.136µg/m3 8.135µg/m3 4.876µg/m3 5.633µg/m3 18.319µg/m3 

Bias -2.265 -1.453µg/m3 -1.509µg/m3 -4.529µg/m3 -0.769µg/m3 -3.870µg/m3 

R *0.862 *0.841 *0.793 *0.727 *0.827 *0.952 

SDO 10.705 7.900µg/m3 11.139µg/m3 1.451µg/m3 9.332µg/m3 47.514µg/m3 

SDP 10.650 7.323µg/m3 10.679µg/m3 1.921µg/m3 6.794µg/m3 41.153µg/m3 

IA 0.917 0.906 0.884 0.452 0.881 0.966 

Note: the correlation coefficient marked with "*" is significant with a significance level of 0.05. 500 
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Figure 1. Overview of the data used in this study: (a) tracks of the studied typhoons (only those typhoons within the dotted box 

area are introduced into the model); (b) locations of the 396 observation stations. 

  505 
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Figure 2. Flow chart of the study framework. 
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Figure 3. The result of TY days' AQI, PM2.5 and PM10 predicted by the RF model. (a) training set of AQI; (b) testing set of AQI; (c) 510 

feature importance of AQI; (d-i) training set of (d) PM2.5 and (g) PM10; testing set of (e) PM2.5 and (h) PM10; feature importance of 

(f) PM2.5 and (i) PM10. 
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Figure 4. The result of AQI, PM2.5 and PM10 of 3 testing monitoring stations predicted by the RF model. (a) AQI of TY days; (b) 

PM2.5 of TY days; (c) PM10 of TY days; (d) AQI of NTY days; (e) PM2.5 of NTY days; (f) PM10 of NTY days. 515 
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Figure 54. The result of NTY days' AQI, PM2.5 and PM10 predicted by the RF model. (a) training set of AQI; (b) testing set of AQI; 

(c) feature importance of AQI; (d-i) training set of (d) PM2.5 and (g) PM10; testing set of (e) PM2.5 and (h) PM10; feature importance 

of (f) PM2.5 and (i) PM10. 520 
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Figure 65. The correlation of air quality over the Greater Bay Area and typhoon center location predicted by the model. (a) the 

correlation of AQI and typhoon center location predicted by the model. The shadingscattering points indicates the average value 

of air quality when the typhoon locates in the corresponding location; (b) PM2.5; (c) PM10; (d) SO2; (e) NO2; (f) O3. 

  525 



26 

 

 

Figure 76. Track of typhoon Danas (2019) and the observed and model-predicted air quality (the value of a city is the mean value 

of all its stations): (a) track and minimum pressure of typhoon Danas from 2000 BJT 15 July 2019 to 1400 BJT 20 July 2019; (b) 

the observed AQI value; (c) the model-predicted AQI value; (d) the observed PM2.5 concentration; (e) the model-predicted PM2.5 

concentration; (f) the observed PM10 concentration; (g) the model-predicted PM10 concentration; (h) the observed SO2 530 

concentration; (i) the model-predicted SO2 concentration; (j) the observed NO2 concentration; (k) the model-predicted NO2 

concentration; (l) the observed O3 concentration; (m) the model-predicted O3 concentration. 
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Figure 87. The spatial distribution of AQI and five pollutants during typhoon Danas. (a) observed AQI value; (b) predicted AQI 535 

value; (c-d) PM2.5; (e-f) PM10; (g-h) SO2; (i-j) NO2; (k-l) O3. 


