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Abstract. In the next few years, numerous satellites with high-resolution instruments dedicated to the imaging of atmospheric

gaseous compounds will be launched, to finely monitor emissions of greenhouse gases and pollutants. Processing the resulting

images of plumes from cities and industrial plants to infer the emissions of these sources can be challenging. In particular

traditional atmospheric inversion techniques, relying on objective comparisons to simulations with atmospheric chemistry

transport models may poorly fit the observed plume due to modelling errors rather than due to uncertainties in the emissions.5

The present article discusses how these images can be properly compared to simulated concentrations to limit the weight of

modelling errors due to the meteorology used to analyse the images. For such comparisons, the usual pixel-wise L2 norm may

not be suitable, since it does not linearly penalise a displacement between two identical plumes. By definition, such a metric

considers any displacement as an accumulation of significant local amplitude discrepancies. It is the so-called double penalty

issue. To circumvent this issue, we propose to either compensate for the displacement before the local comparison, or to use10

non-local metrics of density distribution comparison, which better handle position error due to a displacement, or to employ

both.

All the metrics are evaluated using first a catalogue of analytical plumes and then more realistic plumes simulated with a

mesoscale Eulerian atmospheric transport model, with an emphasis on the sensitivity of the metrics to position error and the

concentration values within the plumes. As expected, the metrics with the upstream correction are found to be less sensitive15

to position error in both analytical and realistic conditions. Furthermore, in realistic cases, we evaluate the weight of changes

in the norm and the direction of the four-dimensional wind fields in our metric values. This comparison highlights the link

between differences in the synoptic-scale winds direction and position error. It is found that discrepancies between two plume

images due to wind direction errors in the meteorological conditions are less penalised by our new metrics with the upstream

correction than without, thus avoiding the double penalty issue.20

1 Introduction

Near real-time monitoring of atmospheric gaseous compounds at the scale of power plants, cities, regions and countries would

allow decision-makers to track the effectiveness of emission reduction policies in the context of climate change mitigation
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(Horowitz, 2016) or other voluntary emission reduction efforts. Inventories of the emitted atmospheric gaseous compounds are

diverse in scale (Janssens-Maenhout et al., 2019; Kuenen et al., 2014) and methodology. The elaboration of comprehensive25

inventories generally combines various approaches based on a complex mixture of measurement techniques, database elabora-

tion and numerical modelling. Despite the use of quality assurance and control verifications (Calvo Buendia et al., 2019a, b) the

emissions fluxes can bear large uncertainties, depending on the species, on the countries or on the spatial scale (Cai et al., 2019;

Hergoualc’h et al., 2021; Meinshausen et al., 2009; Pison et al., 2018; Solazzo et al., 2021). Furthermore, the delay between

the emissions and the release of the corresponding inventory could be important due to the large amount of data to gather and30

aggregate. Even when the inventories are known to be accurate, they currently do not fulfil the need for real-time monitoring of

emissions at a regional scale. By observing from space the plumes of gases downwind of large cities and industrial plants, and

atmospheric signals at a few to several hundred km scales, the new generation of high-resolution spectro-imagery may help

address this need (Veefkind et al., 2012; Broquet et al., 2018). For instance, the future CO2M mission will provide images of

CO2 concentrations at a resolution of almost two kilometres square, which will enable the observation of urban scale pollutant35

plumes (Brunner et al., 2019; Kuhlmann et al., 2019, 2020). These new images can be directly used through fast methods to

quantify the mean emissions of sources (Varon et al., 2018, 2020; Hakkarainen et al., 2021). These fast methods require only

the images to provide an estimation of the emissions, but, they do so, by assuming either simplified chemistry, transport or

temporal variations of the emissions.

Here we focus on the use of such images to update the emissions sources on a smaller time scale. This can be done using an40

inverse method relying on comparisons between the images and the predictions of a chemical transport model (CTM). A better

match between the observed concentration fields and the simulated one will be the result of a more accurate source. However,

the CTM prediction is bounded by the meteorological conditions used. It takes as inputs temperature, pressure, winds, cloud

cover fields, etc. Usually, these atmospheric fields are provided by predictions previously obtained with mesoscale numerical

weather prediction models (Lian et al., 2018). The estimated atmospheric fields come with uncertainties, which in turn yield45

uncertainties in the simulated concentration fields, for instance, the location or the main direction of the plume. Within the

retrieval algorithm, the concentration fields derived from satellites and CTM models are usually compared pixel-wise. However,

the relative weight of the meteorological uncertainties within the comparison between observation and simulation cannot be

easily removed through pixel-wise comparison. This results in estimated increments applied to the emissions inventories that

are biased by the approximated meteorology used in the simulations. This issue is also present in other simulations with50

observation comparisons (Dumont Le Brazidec et al., 2021; Farchi et al., 2016; Keil and Craig, 2007). Assuming that the

temporal variability (annual cycle, seasonal cycle, diurnal cycle, . . . ) of the emissions is well-known, the CTM is perfect,

then the displacement between the observed and CTM-simulated plumes should be driven by the meteorology, which yields a

position error in the inversion. Thus our main goal is then to define a metric for the comparison that levels down the position

error to reduce the weight of meteorology uncertainties within the inversion.55

A better account of position error for observation versus simulation comparison of coherent features is a subject of active

research (e.g., Ebert and McBride, 2000; Ebert, 2008; Gilleland et al., 2009; Gilleland, 2021). These authors developed sev-

eral metrics, and skill scores that are more sensitive to pathological situations where usual metrics provide less information,
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especially when there is a position error between the feature they observed and the one forecasted. To do so, they build indica-

tors by splitting the sources of discrepancies and by doing comparisons on deformed meshes (Hoffman et al., 1995; Hoffman60

and Grassotti, 1996; Amodei et al., 2009; Marzban and Sandgathe, 2010; Gilleland et al., 2010). We will follow the same

methodology, by splitting the different sources of discrepancies, but the position errors will include errors due to a translation

and a rotation. To free the comparison from position errors, we will consider a specific class of deformations. We will either

consider isometry or a transport plan given by optimal transport, that keeps the metrics differentiable with respect to the plumes

compared. Optimal transport metrics were already used for radionuclide plumes (Farchi et al., 2016), but there were computa-65

tion limitations. To allow a more systematic comparison between the metrics, we use the Kantorovich standpoint on optimal

transport.

The objective of this paper is to develop a simple and efficient metric for urban-scale plume images which can level down

the difference due to the meteorology while fitting into an inverse framework (following Feyeux et al., 2018; Tamang et al.,

2022). Even though the methods could be used for other gaseous compounds, reactive atmospheric gaseous have a more70

complex transport due to chemistry. For the sake of simplicity, we will consider the CO2 since it is a passive tracer. Several

metric candidates are introduced and compared. From the baseline local L2 norm, a new metric with an upstream non-local

correction of position errors is described in section 2. In section 3, going further away from the local comparison, we use the

optimal transport theory to define the Wasserstein distance between two plumes and then to build a new metric freed from

position errors. The different metrics are then evaluated and compared on a database of analytical two-dimensional Gaussian75

puff cases in section 4. The metrics are then compared on a realistic database of CO2 plumes from a German power plant in

section 5. For both databases, the images and the simulations are computed using the same model, which allows us to monitor

the discrepancies seen by the metrics. In section 6 we describe the dependence of the four metrics on meteorology, before

concluding in section 7.

2 Local metrics and illustration of double penalty issue using analytical plumes80

In this section, we start by introducing the notation in section 2.1 and then the Gaussian puff model used to simulate the plumes

in the analytical experiments in section 2.2. Furthermore, we assume that the plumes are already detected and separated from

the background noise and instrumental noise. These steps bring challenges that are outside the scope of this article. The L2

norm is then defined in section 2.3, with an emphasis on the double penalty issue. To deal with the double penalty issue

associated with the family of pixel-wise metrics such as the L2 norm, a second metric is proposed in section 2.4.85

2.1 Discrete and continuous representation of an image

In the present article, we focus on two-dimensional images – typically of the total column of CO2 concentration, or of ground-

level concentration field –, full (no mask due to filtered data or clouds), with a discretisation of N pixels. An image can hence

be represented by a vector x= (x1, . . . ,xN )
⊤ ∈ RN .
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It is also possible to obtain a continuous representation of the image using interpolation (e.g. bilinear). In this case, the image90

is represented by a two-dimensional field X : E→ R defined on a finite domain E⊂ R2. Without loss of generality, we can

assume that E= [0,1]2. Furthermore, the two-dimensional field X can be extended to R2 by using zero padding outside the

original domain E. If needed, a smooth transition from X to 0 can be included to avoid a sharp gradient at the boundaries of

the original domain E.

For each metric definition, we will use either the discrete or the continuous representation of the images, but this will be95

explicitly mentioned.

2.2 Analytical plumes

Our Gaussian puff model is a simplified model of a concentration field (e.g. concentration at a given altitude or total column

concentration in specific conditions). It has the advantage to yield analytical expressions for the Wasserstein metrics (see

section 3). It is also a relevant case in transport modelling: the transport of a three-dimensional Gaussian puff is a simplified100

model to estimate the transport of non-reactive pollutants (Korsakissok and Mallet, 2009; Seigneur, 2019). A set of Gaussian

puffs is used extensively in the following sections to illustrate and evaluate the metric candidates.

In the Gaussian puff model, we assume that X is proportional to the probability density function (pdf) of the normal distri-

bution N (µ,Σ):

X (x)∝ 1√
(2π)2|Σ|

exp

[
−1

2
(x−µ)⊤Σ−1(x−µ)

]
, (1)105

where µ and Σ are the mean and the covariance matrix , respectively. The operator |.| is the determinant for square matrices.

Also, note that since the covariance matrix Σ is positive definite, it can be factored as follows:

Σ=R(θ)∆R(θ)⊤, (2)

where R(θ) is the rotation matrix of angle θ, the angle between the principal axis of the Gaussian and the x-axis, and where

∆ is a diagonal matrix with the variance along the two principal axes of the Gaussian. Two examples of puffs based on the110

Gaussian puff model are provided in Figure 1, panels (b) and (c).

2.3 The L2 norm and the double penalty issue

To compare two concentration fields, one can see to what extent the fields overlap. This provides a pixel-wise (i.e. local)

assessment of the discrepancies. The L2 norm is then defined as the sum of the squared discrepancies. More specifically, the

L2 norm d between two concentration fields XA and XB is defined as115

d(XA,XB)≜

√∫
R2 [XA(x)−XB(x)]

2
dx∫

R2 1Edx
, (3)

or

d(xA,xB)≜

√√√√ 1

N

N∑
n=1

(xA,n −xB,n)
2
, (4)

4



Figure 1. Example of pixel-wise comparison. (a) Uniform concentration. (b) First Gaussian puff. (c) Second Gaussian puff, similar to (b)

but shifted along the x axis by ϵ= 0.054. (d) Discrepancies between the concentration fields (b) and (a). (e) Discrepancies between the

concentration fields (b) and (c).

in the discrete case, where xA and xB are the two concentration vectors corresponding to the concentration fields XA and XB .

In the limit of a higher and higher resolution, the discrete formulation should converge towards the continuous formulation.120

To identify the origin of the discrepancies, Feyeux et al. (2018) propose to split the difference between two fields into two

categories: the position error and the amplitude error. A position error occurs when the two compared plumes are not located in

the same place in the images. An amplitude error occurs when the two compared plumes are in the same place in the images but

locally their pixels do not have the same values. With the L2 pixel-wise norm, all the discrepancies are seen as local amplitude

errors. This property is illustrated in Figure 1, where a uniform concentration field UE is compared to two Gaussian puffs125

shifted by ϵ= 0.054 along the x axis with respect to each other 1. The values of the distance are reported in Table 1. In this

case, a small position error is penalised by d as much as an absence of plume: this is the so-called double penalty issue. The

idea is that, instead of considering the cost of the translation, the metric adds the cost to set to zero all pixels from the first

Gaussian puff to the cost to enhance the pixels at the translated location.

1For this specific value of ϵ, the d distance between UE and the first plume is similar to the d distance between the two plumes.
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Table 1. Comparison between the distances for the example in Figure 1. d is the L2 norm, dF the L2 norm with upstream position correction

as defined in section 2.4, w the Wasserstein distance (section 3.1) and wF the Wasserstein distance with upstream position correction (section

3.4). The results are not provided with units since it depends on the metric used. The metrics d and dF share the same units while w and wF

share an another one.

Distance (a) versus (b) (b) versus (c)

d 48.80× 10−5 48.80× 10−5

dF 48.82× 10−5 11.59× 10−8

w 32.68× 10−2 52.90× 10−3

wF 31.75× 10−2 93.13× 10−11

Plume A vs Plume B

position error amplitude error

translation orientation shape scale

Figure 2. Flow-chart of error splitting.

In the following sections, we further extend the classification of Feyeux et al. (2018) by splitting the amplitude error into130

two sub-categories: the scale error and the shape error. The scale error corresponds to the difference in total amplitude between

two shape-matching fields. More practically, the difference between the sum of the compared image pixels. The shape error

corresponds to the difference between the isocontours after removal of the scale error (i.e. normalisation) and position error (i.e.

when both centres of mass and principal axes are superimposed) fields. This splitting of errors is illustrated in the flow chart

fig. 2.135
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2.4 Local metric with non-local upstream position correction

We propose to address the double penalty issue while still relying on the L2 norm by applying an upstream correction of the

position error to d. The position error can be seen as a combination of an orientation and a translation error. The orientation

error corresponds to the differences that could be reduced by a rotation applied to two concentration fields sharing the same

centre of mass location that maximises their overlapping. The translation error corresponds to the difference that could be140

reduced by a translation applied to two concentration fields.

The new distance is defined in a way that involves finding the rotation and translation that minimise d. The idea is that the

rotation should cancel the orientation error and the translation should cancel the translation error. Let us consider the plane

transformation F defined as follows:

F(x) = x0 +xt +R(θ)[x−x0], (5)145

which corresponds to a translation of vector xt = (xt,yt)
⊤, followed by a rotation of angle θ and of centre x0 +xt, where

x0 = (x0,y0)
⊤ is the position of the centre of mass of the plume before the transformation. The transformation F depends on

three parameters: (xt,yt,θ). Note that this is an isometry of the plane. The optimal transformation should minimise

J (xt,yt,θ)≜ d2 (XA,XB ◦F) , (6a)

=

∫
R2

[XA(x)−XB (F(x))]
2
dx/

∫
R2

1Edx. (6b)150

However, this cost function is constant for any transformation that moves all the mass of the B-plume outside the domain E=

[0,1]2, where by construction XB is null. This would make the minimisation very difficult with gradient-based optimisation

methods. For this reason, we add the following regularisation term to the cost function

ρ(xt,yt)≜

(x2
t + y2t − 1

2 )
3 if (x2

t + y2t )> 1/2,

0 else,
(7)

to penalise any transformation that moves the B-plume outside the domain E. This regularisation does not affect the location155

of the minima of dF . The final cost function is

J (θ,xt,yt)≜ αd2 (XA,XB ◦F)+β ρ(xt,yt) (8)

where α is set to the average mass of the A- and B-plumes, and β is set by trial and error to 104. In practice, the cost function

J can be minimised with the L-BFGS algorithm (Nocedal and Wright, 2006) that is based on the gradient of J with respect to

all three parameters θ, xt, yt, whose expression is given in appendix B. To compute the gradient, the spatial partial derivatives160

of the concentration field XB are needed. Hence, to ensure the continuity of the partial derivatives, we use a second-order

bivariate spline interpolation to define the continuous concentration field XB from its original image xb. In order to avoid any

issue due to the local non-convexity of the problem, we also provide a specific initialisation to the minimisation algorithm. The
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initial translation is then computed using the two centres of mass. Then we do orthogonal regressions to compute the principal

axes of both XA and XB . The initial θ is the angle between these axes.165

Finally, with the optimal transformation F∗, i.e. the one that minimises J defined by (8), the new distance, called dF , is

defined by

dF (XA,XB)≜ d(XA,XB ◦F∗) . (9)

For the example of Figure 1, the values of dF are reported in Table 1 and can be compared to the values of d. In the second

case (distance between the two Gaussian puffs), dF is close to zero. The residual value is due to the finite resolution of the170

images. In the first case (distance between the Gaussian puff and the uniform concentration), dF stays similar to d because any

transformation F that keeps the plume in the domain is optimal.

3 Metrics based on optimal transport theory

In this section, we introduce the Wasserstein distance, the distance of the optimal transport, as a non-local alternative to the

pixel-wise L2 norm.175

3.1 Optimal transport and the Wasserstein distance

The optimal transport theory was first introduced in the XVIIth century by Monge in his famous memoir (Monge, 1781). It is

based on the idea that there exists a transport plan to move masses that minimises a given cost of transport. A wider view of

the problem was proposed by Kantorovich (Kantorovich, 1942) using a probabilistic approach. The field has finally regained

popularity in the last few decades, in particular with the generalisation by Villani (2009).180

In this section, we follow the Kantorovich approach, which means that we will use the discrete representation (see sec-

tion 2.1). Moreover, the theory is defined only for vectors whose coefficients are non-negative and sum up to one. While the

first condition is satisfied in our case (because we work with images of pollutant concentration), the second is not. Therefore, in

the following instead of working with the concentration vectors xA and xB , we will work with their normalised counterparts

x̂A and x̂B :185

x̂≜
x

x⊤1
, (10)

where 1 ∈ RN is the vector full of ones and x ∈ RN is either xA or xB .

The set of couplings P between x̂A and x̂B is defined by

U(x̂A, x̂B)≜
{
P ∈ RN×N

+ : P1= x̂A and P⊤1= x̂B

}
. (11)

Note that U(x̂A, x̂B) is not empty because P= x̂Ax̂
⊤
B is a coupling between x̂A and x̂B . The cost of a coupling P ∈190

U(x̂A, x̂B) is defined by

J (P) =

N∑
i,j=1

Ci,jPi,j , (12)
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where Ci,j ≥ 0 is the (i, j)-element of the cost matrix C penalising the transport between x̂A and x̂B . Here, it is chosen to be

the square of the Euclidean distance between the i-th and j-th pixels of the original image. For this specific choice, the cost

function J defined by eq. (12) has a minimum, which is obtained for a unique coupling P∗. The Wasserstein distance, the195

distance of the optimal transport, is then defined by

w(x̂A, x̂B) =

√√√√ N∑
i,j=1

Ci,jP ∗
i,j (13)

and it is actually a distance according to the mathematical definition. The proofs of these statements can be found in optimal

transport textbooks (e.g., Villani, 2009).

Two interesting properties of the Wasserstein distance can be highlighted. First, this metric is defined for normalised vectors200

only. This means in our case that the difference in total mass between two images is entirely ignored. Alternative solutions

have been proposed to take into account this difference, e.g. the one proposed by Farchi et al. (2016) or the use of unbalanced

optimal transport (Chizat et al., 2018), but this is beyond the scope of the present study.

Second, following Benamou and Brenier (2000), it is possible to define an optimal transport interpolation between x̂A and

x̂B . This optimal transport interpolation can help us visualise the idea of vicinity according to w. An example is shown in205

Figure 3 for two Gaussian puffs. In the case of the optimal transport interpolation, the w distance between the first puff and

the interpolated puff is linearly growing (by the construction of the interpolation), while the increase of the d distance is at first

very steep. In some sense, this behaviour was expected since the first puff and the interpolated puff are quickly separated from

each other. In the case of the linear interpolation, the same phenomenon happens: the d distance is linearly growing (by the

construction of the interpolation), while the increase of the w is steeper, but not as steep as the increase of d in the first case.210

This shows that the Wasserstein distance w is a metric smoother than the distance d and which essentially accounts linearly for

the mismatch in the plume positions.

3.2 Sinkhorn’s algorithm

To compute the Wasserstein distance, we have to determine the optimal coupling matrix P∗ by minimising J defined by

eq. (12). The convexity of the cost function J is not guaranteed, thus it is usual (see, e.g., Peyré and Cuturi, 2019, and215

references therein) to add the following entropic regularisation:

H(P)≜−
N∑

i,j=1

Pi,j (lnPi,j − 1). (14)

The objective function to minimise becomes:

J ϵ(P) =

N∑
i,j=1

Pi,jCi,j + ϵ

N∑
i,j=1

Pi,j (lnPi,j − 1), (15)

under the same constraint P ∈ U (x̂A, x̂B). The solution of the regularised problem is an approximation of the Wasserstein220

distance. When ϵ→ 0 it converges toward the exact value of the Wasserstein distance w (x̂A, x̂B) and when ϵ→∞ the optimal

coupling matrix converges toward P= x̂Ax̂
⊤
B .
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Figure 3. Comparison between the optimal transport interpolation (top panels) and the liner interpolation (bottom panels). In both cases, we

interpolate between two puffs using a pseudo time ranging from t= 0 (interpolated puff equal to the first puff) to t= 1 (interpolated puff

equal to the second puff). In each panel, the legend indicates both the w and d distances between the first puff and the interpolated puff,

normalised by the distance between the first and second puff. By construction, for the optimal transport interpolation w linearly grows with

t, and for the linear interpolation d linearly grows with t.

It is possible to show that minimising eq. (15) is equivalent to minimising the Kullback–Leibler divergence between P ∈
U (x̂A, x̂B) and the Gibbs kernel K= exp(−C/ϵ), where the exponential is applied entry-wise, which is given by

KL(P|K) =

N∑
i,j=1

Pi,j ln

(
Pi,j

Ki,j

)
−Pi,j +Ki,j . (16)225

The advantage of this formulation it that this problem is known to admit a unique solution which is the projection of the Gibbs

kernel K onto U(x̂A, x̂B). This unique solution can be written

P= u⊤Kv, (17)

where u and v are vectors with positive or null entries satisfying

u ◦ (Kv) = x̂A, (18a)230

v ◦ (K⊤u) = x̂B . (18b)

In these equations, ◦ is the Schur/Hadamard (i.e. entry-wise) product in RN .
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The (u,v) factorisation is unique and can be easily found using the iterative update scheme proposed by Sinkhorn, where

the l-th update is given by

u(l+1) =
x̂A

Kv(l)
, (19a)235

v(l+1) =
x̂B

K⊤u(l+1)
, (19b)

where ÷ is the entry-wise division in RN .

3.3 Log-formulation of Sinkhorn’s algorithm

Sinkhorn’s algorithm provides a simple and quick solution to the optimal transport problem. However, this formulation raises

technical issues. The first is that for small values of ϵ – which is what we are aiming for to be as close as possible to the true240

optimal transport solution – the algorithm converges slowly2. To accelerate the convergence, we use a high value of ϵ and

progressively decrease it whenever (u,v) has converged. We will use this technique in our experiments.

Another numerical issue appears when ϵ is small compared to the entries of C. In this case, u, v, and K explode and cannot

be computed with finite numerical precision. To address this issue, we adopt the log-Sinkhorn algorithm proposed by Peyré

and Cuturi (2019), which is presented in the following lines.245

Let us introduce f and g which are related to u and v by

ui = exp(fi/ϵ), (20a)

vj = exp(gj/ϵ). (20b)

Instead of updating (u,v) with Sinkhorn iteration eq. (19), we update (f ,g) using

f
(l+1)
i =−ϵ ln

 N∑
j=1

exp

{
f
(l)
i + g

(l)
j −Ci,j

ϵ

}+ f
(l)
i + ϵ ln x̂A,i, (21a)250

g
(l+1)
j =−ϵ ln

[
N∑
i=1

exp

{
f
(l+1)
i + g

(l)
j −Ci,j

ϵ

}]
+ g

(l)
j + ϵ ln x̂B,j . (21b)

Combining the log-Sinkhorn algorithm while decreasing ϵ is not straightforward, because there are a lot of numerical deci-

sions to make: intermediate and final values of ϵ, convergence criteria, etc. After several tests, we ended up with Algorithm 1,

which we found to be a good trade-off between speed and accuracy. The value of ϵ is progressively decreased from 1 to 10−5:

each time the convergence criterion is met, ϵ is reduced by a factor of 10. In our case, the convergence criterion is met when the255

relative difference between the former and the current value of the Wasserstein distance falls below ζ = 5× 10−4. In addition,

we set a maximum number of Sinkhorn iterations of 200 per value of ϵ to keep the computational cost under control. Finally,

note that, for a given ϵ, one can try to accelerate the convergence by using the averaging step proposed in Chizat et al. (2018)

but this is beyond the scope of the present study.

2The convergence speed is measured here by the number of iterations.

11



Algorithm 1 Log-Sinkhorn algorithm with decreasing ϵ to compute the Wasserstein distance.

Parameters: ϵ0 = 1, ϵ∗ = 10−5, δϵ= 10, convergence criterion ζ = 5× 10−4, maximum number of iterations kmax = 200

Input: Cost matrix C, Normalised concentration vectors x̂A and x̂B

1: f ← 0

2: g← 0

3: ϵ← ϵ0 ▷ Initialise ϵ

4: while ϵ≥ ϵ∗ do

5: k← 0 ▷ Number of iterations

6: w← 105 ▷ Initialise w

7: repeat

8: w−← w ▷ Previous value of w

9: for i= 1 to N do

10: fi←−ϵ ln

[
N∑

j=1

exp

{
f
(l)
i +g

(l)
j −Ci,j

ϵ

}]
+ f

(l)
i + ϵ ln x̂A,i

11: end for

12: for j = 1 to N do

13: gj ←−ϵ ln
[

N∑
i=1

exp

{
f
(l+1)
i +g

(l)
j −Ci,j

ϵ

}]
+ g

(l)
j + ϵ ln x̂B,j

14: end for

15: P← exp
{

f1⊤+1g⊤−C
ϵ

}
16: w←

√
N∑

i,j=1

Ci,jPi,j ▷ Current value of w

17: k← k+1

18: until |w−−w|/w < ζ or k ≥ kmax ▷ Convergence criterion

19: ϵ← ϵ/δϵ ▷ Progressively decrease ϵ

20: end while

21: return Wasserstein distance w

3.4 Gaussian approximation and upstream correction260

Following the derivation of section 2.4, we want to apply the same upstream correction of the position error to the Wasserstein

distance w. However, this would require the gradient of the Wasserstein distance w with respect to each one of its inputs. The

computation is not straightforward, even taking into account the log-Sinkhorn formulation developed in section 3.3. For this

reason, we will use the Gaussian approximation, for which the Wasserstein distance has an analytical formula.
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More specifically, we assume that we have two continuous concentration fields XA and XB that follow the Gaussian puff265

model:

XA(x) =
1√

(2π)2|ΣA|
exp

[
−1

2
(x−µA)

⊤
Σ−1

A (x−µA)

]
, (22a)

XB(x) =
1√

(2π)2|ΣB |
exp

[
−1

2
(x−µB)

⊤
Σ−1

B (x−µB)

]
, (22b)

with ΣA and ΣB given by

ΣA =R(θA)∆AR(θA)
⊤, (23a)270

ΣB =R(θB)∆BR(θB)
⊤. (23b)

In this case, the squared Wasserstein distance between XA and XB is given by3

w2(XA,XB) = ∥µA −µB∥2 +Tr(ΣA +ΣB)− 2Tr

([
Σ

1/2
A ΣBΣ

1/2
A

] 1
2

)
. (24)

Following the approach of section 2.4, let us now apply the plane transformation F given by eq. (5) to XB . The squared

Wasserstein distance becomes275

w2(XA,XB ◦F) = ∥µA −µB +xt∥2 +Tr(∆A +∆B)− 2Tr
[
∆

1/2
A R(θ+ θB − θA)∆BR

⊤(θ+ θB − θA)∆
1/2
A

] 1
2

, (25)

which depends on xt, yt, and θ, the three parameters of F. It can be shown (see appendix C) that w2(XA,XB ◦F) reaches its

minimum when xt = µA −µB and θ = θA − θB (modulo π), in which case the distance is given by

w(XA,XB ◦F) =
√
Tr(∆A +∆B)− 2Tr

[
(∆A∆B)

1
2

]
, (26a)

=

√
Tr

[(
∆

1
2

A −∆
1
2

B

)2
]
, (26b)280

which is known as the Hellinger distance between XA and XB (Peyré and Cuturi, 2019). By construction, this distance

estimates the shape error between XA and XB since the translation, the rotation and the scale differences have been removed.

In the following, it will be written wF to point out the similarity between the relationship d/dF on the one hand and w/wF

on the other hand. In the case where XA and XB are not exactly Gaussian, we can still use the Gaussian puff model as an

approximation. In this case, wF provides an approximation of the shape error.285

Finally, an issue with both w and wF is that they are normalised fields and thus they ignore the scale error, i.e. the difference

of total mass between the images. As a consequence, these metrics cannot be used as such in an inversion framework. One way

to address this issue is to add to w and wF a term to represent the scale error. Using discrete formalism, this term could be

d2mass(xA,xB)∝

1− 2

N∑
n=1

xA,n

N∑
n=1

xB,n(
N∑

n=1
xA,n

)2

+

(
N∑

n=1
xB,n

)2


2

, (27)

3By construction, XA and XB are normalised, in such a way that we do not need to renormalise them to be able to compute the Wasserstein distance.
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which is convex. The remaining question would then be the relative contribution of w (or wF ) and dmass in the final distance,290

which is related to the following question: which kind of error (position, mass, etc.) should be penalised more? This kind of

question is beyond the scope of the present article, which is why we only use w and wF as is in our numerical experiments.

4 Comparison of the metric on analytical test cases

In this section, we evaluate and compare the metrics with a database of images built using a set of Gaussian puffs. The database

is introduced in section 4.1, the computation of the non-local metrics is validated in section 4.2, and the behaviour of the295

metrics on this Gaussian puffs database are compared in section 4.3.

4.1 Gaussian puffs database and experimental setup

The database consists of 104 pairs of images constructed using Gaussian puffs and then discretised on the domain E= [0,1]2

using a finite resolution of 32× 32 pixels. Each puff is parametrised by its mean µ (two scalars) and its covariance matrix

Σ=R(θ)∆R(θ)⊤ (three scalars: θ and both diagonal entries of ∆), which are randomly drawn as follows:300

1. both components of µ are uniformly drawn in [0.15,0.85];

2. θ is uniformly drawn in [−π,π];

3. σ1 and then σ2, the two non-zero components of ∆ are drawn from a half-normal distribution with a standard deviation

of 0.33. If needed, σ1 and σ2 are then swapped to ensure σ1 ≥ σ2.

Ideally, the domain E should cover a large majority of the mass of each puff. In practice, more than 99% of the mass of a305

Gaussian puff is covered by the 6σ1 × 6σ2 rectangle centred on µ and oriented along the principal axes. For this reason, we

repeat step 3 of the random draw until this 6σ1 × 6σ2 rectangle is included in the domain E. In addition, the puffs should not

be too small, which is why in our case when 6σ1 and 6σ2 are both smaller than 9 pixels, it is rejected and entirely re-drawn.

The characteristics of the database are shown in Figure 4 and cover the analytical pathological situations described in (Davis

et al., 2009). As expected, the distribution of ∥µ∥ is close to Gaussian, the distribution of θ is close to uniform, and the310

distribution of σ1 and then σ2 are close to log-normal.

4.2 Validation of the implemented Sinkhorn algorithm

For our Gaussian puffs database, there are four different ways to compute the Wasserstein distance:

1. use the analytical formula eq. (24) with the exact values of µA,B and ΣA,B ; this approach will be called wth;

2. use the analytical formula eq. (24) but with µA,B and ΣA,B being the sample mean and covariance of the 32× 32-pixel315

images; this approach is closer to what will be practically done for real image plume, extracting information only from

the image, and it will be called wnum;
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Figure 4. Characteristics of the Gaussian puffs database. (a, b) Images A (left) and B (right) number 10. (c-j) Histograms of ∥µA∥ (c),

∥µB∥ (d), θA (e), θB (f), σA,1 (g), σB,1 (h), σA,2 (i), and σB,2 (j).
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Figure 5. Comparison of the different ways to compute the Wasserstein distance over the Gaussian puffs database. Relative errors between

wemd, wth, wnum, and wϵ (c).

3. use the Network Simplex algorithm (Bonneel et al., 2011) to find the exact solution of the optimal transport problem

using the images like wnum; this approach will be called wemd;

4. apply the log-Sinkhorn iterations using algorithm 1 using the images like wnum; this approach will be called wϵ.320

We have applied all four methods and the differences are shown in Figure 5. Note that wemd has been computed using the POT

library (Flamary et al., 2021).

The fractional bias over all pairs is no more than 5% when we compare wth to the other three methods of computing the

Wasserstein distance. By contrast, wemd and wnum are very close to each other. We have checked that the latter phenomenon is

reduced when the resolution is increased. Therefore, we conclude that the gap between wth on the one hand, and wnum, wemd,325

and wϵ, on the other hand, is not due to the estimation of the Wasserstein distance but results from the discretisation of the

problem with the 32× 32 resolution (sampling errors). Figure 5 also shows that wϵ matches well wemd, which validates our

log-Sinkhorn implementation.

4.3 Correlation to the different error categories

In this subsection, we compare the behaviour of the metrics with respect to three error categories: the translation error, the330

orientation error, and the shape error. Note that the behaviour with respect to the scale error cannot be compared since the w

and wF distances use normalised images. We used the Pearson correlation as our main indicator of the strength of the link

between the behaviour of the metrics and the error category. The closer the norm of the Pearson correlation is to one, the more
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Table 2. Correlations between the distances d, w, dF , and wF on the one hand, and the quantities T , θ, and H on the other hand for the 104

cases in the Gaussian puffs database.

Pearson correlation

T θ H

d 0.33 0.00 −0.11

w 0.97 0.00 −0.03

dF 0.04 −0.01 0.58

wF −0.04 −0.01 0.65

linearly the relation between the quantities is. If the Pearson correlation is positive, then the increase in an error category leads

to an increase in the metric value, if negative it leads to a decrease, and if nearly null it means that the two quantities seem335

independent.

For each pair of images in the database, we define T (for translation) as ∥µB−µA∥2. This quantity represents the translation

error between both images. The correlation between T and the four distances is reported in the first column of Table 2.

As expected, the Wasserstein distance w is strongly correlated to T . The L2 norm d is also showing a significant correlation

of 0.33 to T , highlighting a likely dependency. Both dF and wF are designed to be released from the position error and, in340

particular, the translation error. This property is confirmed by the very low correlation between T on the one hand and dF and

wF on the other hand. Additionally, the fact that T is much more correlated to d than to dF confirms that d indeed depends on

the T quantity.

For each pair of images in the database, we define θ as ∥θB − θA∥. This quantity represents the orientation error between

both images. The correlation between θ and the four distances is reported in the second column of Table 2. The results show345

also that there is no correlation between θ and any of the distances. In a sense, this shows that all the distances are, for our

database, not sensitive to the orientation error.

For each pair of images in the database, we define H as the Hellinger distance between A and B, as given by eq. (26). This is

actually very similar to wF , but with one exception: H uses the theoretical values of ∆A and ∆B (i.e. the ones that have been

drawn) while wF uses the sample covariance of the 32× 32-pixel images. This quantity represents the shape error between350

both images. The correlation between H and the four distances is reported in the third column of Table 2.

Both d and w show a low correlation to H , which is not the case of dF and wF . On the one hand, the correlation between wF

and H was highly expected from the definition of H . The remaining difference is due to the finite resolution of the images. On

the other hand, the proportionality of dF with the H was wanted but not assessed. By superimposing optimally the plumes, we

removed the position error but dF remains sensitive to H , meaning we did not remove all errors. Thus such behaviour reflects355

our way of splitting the error. More generally, this comparison on the Gaussian puffs database confirms that both dF and wF

are freed from the position error and seem to be driven by the shape error.
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5 Comparison of the metric on realistic test cases

To go deeper in our analysis, we now compare the metrics using realistic plumes. This section follows the same organisation as

section 4: we present the experimental setup in section 5.1, we validate the computation of the non-local metrics in section 5.2,360

and we compare the behaviour of the metrics on this specific database in section 5.3.

5.1 Simulation database and experimental setup

We use a simulation database of hourly 3D fields of CO2 concentrations due to anthropogenic CO2 emissions from the Neurath

lignite-fired power plant (Germany, 51.04°N, 6.60°E). This database is composed of 14 days of 1h-emission pulses, from July

1 to 14, 2015, i.e. 336 plume transports. Plume transport occurs over fixed 24-hour windows. (from 00:00 to 24:00). Conse-365

quently, the later in the day the plumes are emitted the shorter they are tracked. The database is extracted from a larger one,

over Western Europe, as described in Potier et al. (2022). Simulations were performed with the CHIMERE Eulerian transport

model (Menut et al., 2013) driven by the Community Inversion Framework (CIF, Berchet et al., 2021). The horizontal grid

resolution of the simulation domain (longitude: 6.82°W to 19.18°N; latitude: 42.0°N to 56.39°N, Fig. 6, Santaren et al., 2021)

varies between 50km and km. The Neurath power plant is located in the 2km×2km-resolution zoom (longitude: 1.25°W370

to 10.64°E; latitude: 47.45°N to 53.15°N). The vertical grid is composed of 29 pressure layers extending from the surface

to 300hPa (approximately 9km above the ground level). CHIMERE is forced by meteorological variables at 9km resolution

(Agusti-Panareda, 2018), provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the CO2 Hu-

man Emissions project (CHE, https://www.che-project.eu/). The CO2 emissions from the Neurath power plant are extracted

from the ∼1 km (1/60°× 1/120°) resolution inventory (TNO_GHGco_1x1km_v1_1) of the annual emissions produced by the375

Netherlands Organisation for Applied Scientific Research (TNO) over Europe for the year 2015 (Denier van der Gon et al.,

2017; Super et al., 2020). The temporal disaggregation at the hourly scale is based on coefficients provided with the TNO

inventories for the sector A-Public Power, in the Gridded Nomenclature For Reporting (GNFR) of the United Nations Frame-

work Convention on Climate Change (UNFCCC). Emissions are projected on the CHIMERE vertical grid with coefficients

corresponding to this A GNFR sector (Bieser et al., 2011), also provided with the TNO inventories.380

We ensure that the same daily profile is applied to the source emission, then for a given hour of the day, the difference

between two simulated plumes is the meteorological state. We build a database that regroups per pair two simulated plumes

at a given hour but from different days (example: day 1 hour 10 versus day 3 hour 10). To get a realistic two-dimensional

concentration field, we compute the vertical mean of the concentration weighted by the width of the vertical levels. We ignore

the first two hours of the simulation, to ensure that a plume appears in the image. This leaves 2,093 pairs of distinct plumes.385

The images are cropped to 100x100 pixels (here 1 pixel is equal to 2 km square cell of the simulation) images to reduce the

computer resource requirements.
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Figure 6. Experimental setup. Simulation domain in blue. Example of an CO2 image used in red.

5.2 Comparison of the different estimations of the Wasserstein distance

We have applied all three methods and the differences are shown in Figure 7. The results show, as for the Gaussian puffs

database, that wϵ and wemd are close to each other, which once again validates our algorithm. Moreover, the results show390

that wnum is a reasonably good approximation of w as well. The distance wnum makes the approximation that the images

are Gaussian puffs, which is a strong approximation but allows for very quick computation. The values of wnum seem to be

usually lower than those of wϵ. This previous remark is in agreement with Theorem 2.1 from Gelbrich (1990). It is shown

that, for elliptic contour distributions with given mean and covariance matrices, the distance between the two Gaussians with

these respective parameters (i.e. wnum) is a lower bound of the Wasserstein distance between the two distributions. We are not395

assured to work with plumes that are elliptic distributions. However, it seems to be a good direction to look at to explain and

quantify, if possible, this negative bias. The understanding of the discrepancies between wnum and wϵ is needed to be able to

substitute wnum to wϵ, which is why we do not consider thereafter wnum in our comparisons.

5.3 Correlation to the different error categories

In this subsection, we compare the behaviour of the metrics with respect to the same three error categories than in section 4.3:400

the translation, orientation, and shape error. To do so, we keep the same quantities T , θ, and H , with the notable exception that

H is now equal to wF because there is no theoretical covariance. The results are reported in Table 3.
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Figure 7. Comparison of the different ways to compute the Wasserstein distance over the realistic database. Relative errors between wemd,

wnum, and wϵ (c).

Table 3. Correlations between the distances d, w, dF , and wF on the one hand, and the quantities T , θ, and H on the other hand for the

2,093 cases in the realistic database.

Pearson correlation

T θ H

d 0.19 −0.04 0.32

w 0.99 0.20 0.37

dF 0.12 −0.11 0.41

wF 0.31 0.03 1.00

While the correlation between w and T remains very strong, d shows less correlation to T than for the Gaussian puffs

database. Both dF and wF are less correlated to T than d and w, respectively, but their correlation to T is here higher than with

the Gaussian puffs database. Hence for this realistic database, both dF and wF are only partially freed from the translation405

error.

In this case, the correlations between the metrics and θ are higher than for the Gaussian puffs database but again do not

prompt a clear conclusion.

By construction, wF is equal to H , which yields a correlation of 1. Both d and w show a small correlation to H , which

was not the case in the Gaussian puffs database. The correlation to H is still higher for dF , which was expected since dF is410

designed to be partially freed from the position error. This result, however, should be taken with caution because here, contrary

to the Gaussian puffs database, H now only partially accounts for the shape error between two plumes.
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This second study with realistic cases shows that the behaviour of each metric slightly differs from what has been seen in

the Gaussian case. Nevertheless, the results confirm that both dF and wF are partially freed from the position error while being

still sensitive to the shape error, which is what we hoped for.415

6 Sensitivity to the meteorological conditions

As stated in the introduction, the goal of this article is to develop and test metrics that can discriminate errors stemming from

imperfect meteorology from other sources of discrepancies. Therefore, following the approach used in the previous sections,

we define here four indicators that we consider representative of the difference in meteorological conditions between the two

images. We then examine the correlation between these indicators, the previous indicators (T , θ, and H), and the metrics in the420

case of the realistic database.

6.1 Definition of meteorological indicators

To simplify the analysis, we define four scalar indicators that characterise the meteorological conditions. These indicators focus

on the direction and the norm of the wind as experienced by the pollutant during its transportation. For each image, we proceed

as follows.425

1. We first average the wind components (three-dimensional fields) in the vertical direction between the surface and the

planetary boundary layer (PBL) height. Indeed, the realistic database has been simulated with summer conditions and

hence the plumes are assumed to be dispersed within the PBL. This results in two-dimensional fields for each time

snapshot.

2. We compute the norm and the direction of the averaged winds. This results in two two-dimensional fields for each time430

snapshot.

3. We average the norm and the direction over the 100× 100-pixel grid. This results in two scalars for each time snapshot.

4. We finally compute the time average and time standard deviation of the averaged norm and direction between midnight

(the time at which the emissions started) and the time of the image. This results in four scalars: EN (averaged wind

norm), ED (averaged wind direction), SN (deviation of wind norm) and SD (deviation of wind direction).435

The meteorological indicators are then defined as the absolute differences in EN , ED, SN , and SD between the two images

that are compared, simply written ∆EN , ∆ED, ∆SN , and ∆SD.

6.2 Correlation between the meteorological indicators and the error categories

Using the realistic database, we compute the correlation between ∆EN , ∆ED, ∆SN , and ∆SD on the one hand and T , θ, and

H on the other hand. The idea is to see how differences in the meteorological conditions impact the position and amplitude440

errors. The results are reported in Table 4.
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Table 4. Correlations between ∆EN , ∆ED , ∆SN , and ∆SD on the one hand and T , θ, and H on the other hand for the 2,093 cases in the

realistic database.

Pearson correlation

T θ H

∆EN 0.39 0.23 0.15

∆ED 0.52 −0.02 0.30

∆SN 0.09 0.04 0.09

∆SD 0.06 0.03 0.48

Table 5. Correlations between ∆EN , ∆ED , ∆SN , and ∆SD on the one hand and the distances d, w, dF , wF , d∗ and d∗F on the other hand

for the 2,093 cases in the realistic database.

Pearson correlation

d w dF wF d∗ d∗F

∆EN −0.09 0.41 −0.11 0.15 0.07 0.02

∆ED 0.14 0.53 0.14 0.30 0.24 0.20

∆SN −0.03 0.11 0.00 0.09 −0.21 −0.17

∆SD 0.21 0.09 0.26 0.48 −0.03 0.19

One can notice that T is mainly correlated to ∆ED and a little less to ∆EN , while ∆SD and ∆ED are correlated to H .

This means that differences in meteorology like ∆ED will likely induce both position error and shape error. Therefore, by

removing the position error, we only partially remove the meteorological impact on the differences. Explaining why ∆SD

induces differences in shape is straightforward, but explaining how ∆ED induces differences in terms of translation instead of445

orientation is not as so. A difference in the main direction of the plume (which translates into ∆ED) will move further away

the centres of mass from each other, and hence induce a larger T (which is the distance between the two centres of mass). It

should be noted that a wind direction change that will keep superimposed the centre of mass will drive orientation error.

6.3 Correlation between the meteorological indicators and the metrics

To conclude our study, we now compare the different metrics to the meteorological indicators. The results are reported in450

Table 5.

According to the correlations shown in Table 5, the metric w is correlated to ∆ED and ∆EN indicators. It is expected since

these meteorological changes tend to move the centre of mass and thus increase the translation error. The results show also that

wF sees a drop in correlation to ∆ED compared to w while getting a correlation with respect to ∆SD. For optimal transport

metrics, we can see that removing the position error does not always remove the sensitivity to a change in meteorology. It455

should be noticed that increasing in either d or dF does not seem to be more correlated to our different meteorology indicators.
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Such a lack of correlation compared to the optimal transport theory metrics could result from the weight of the scale error

in the distance definition. We normalised the plume the same way as we do for w before computing the distance d and dF

leading us to the normalised image distances d∗ and d∗F . First, d∗ and d∗F are more correlated than d and dF to ∆ED and

∆SN , showing that the scale error is masking the sensitivity of pixel-wise metrics with respect to meteorology. Second, d∗F460

gains significantly in correlation to ∆SD compare to d∗ but remains as correlated to ∆ED as d∗. Then the plane transformation

applied in d∗F allows a better alignment of the compared plumes, giving more weight to shape error induced by ∆SD, but does

not compensate for all the changes resulting from ∆ED or ∆EN .

The lack of correlation to our meteorological indicators for d and dF seems appealing, but it is due to amplitude error held

by a small number of highly concentrated pixels above the source for our cases (i.e. a hot spot). For similar cases, d remains a465

good metric for updating the inventories. If the "hot spots" of the two images have amplitudes close to each other or there is no

"hot spot" but a large plume, d and dF become more correlated to several meteorological changes making them less suitable.

Pixel-wise metrics seem to be better adapted to compare "hot-spot" and not highly extended plumes. A more versatile metric

will be a weighted distance using the wF , or at least a normalised d∗F , which is not sensitive to all changes in meteorology, and

a term that represents the scale error between the two images.470

7 Conclusions

In this article, we discussed the use of new metrics for comparing passive gas plumes, practically CO2 plumes, within an

inverse framework aiming at the monitoring of pollutant emissions.

At first, we emphasised how critical the double penalty issue related to pixel-wise comparison is. The traditional L2 norm

tends to overweight position errors mixing up with other sources of errors. In the context of source inversion, this results in an475

over-penalised comparison of concentration fields that are slightly shifted from each other, and the mixing makes it difficult to

evaluate the relative weight of different types of error afterwards. Yet, for us, the identification of the relative weight of the errors

is critical since we want to level down the one due to meteorology and level up the one related to emissions. Assuming that

most of the position error is driven by meteorology, we proposed to design metrics that are freed from position error. Following

this goal, a pixel-wise metric with an upstream position correction was designed. This new metric has the advantage to keep480

the formalism of the L2 norm while being released from position errors. In addition, it is proposed to use a metric based on

the optimal transport theory: the Wasserstein distance. Focusing on the algorithmic aspects related to two-dimensional satellite

images, we derived and validated a method to compute this metric. The Wasserstein metric is more sensitive to position errors

but it is not hampered by the double penalty issue. To complete our catalogue of metrics, an optimal transport metric freed from

position errors is proposed. It can be easily computed with a Gaussian approximation. This metric coincides with the Hellinger485

distance. Nevertheless, both optimal transport metrics rely on normalised images and thus are unaware of the difference in

total mass present in the plumes. The scale factor between the images is linearly related to emission fluxes which we want

to estimate. This means that, within the inversion framework, the scale factor between the two images should be added and

weighted independently.
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These four metrics were compared on a specifically designed Gaussian puffs database and evaluated according to their490

correlations with respect to translation error, orientation error and shape error. The numerical experiments showed that the

resolution of the images tends to impact the optimal transport problem. As expected, the two metrics designed to be freed from

position errors are not correlated to translation and orientation errors. The L2 norm and Wasserstein metrics are both correlated

to the translation error. From this, we extended our tests to a realistic plume database. This second test series shows that, for

a more complex plume geometry, the metrics are still correlated to the translation error. This implies that the new metrics are495

only partially freed from position errors.

Then we discussed the link between a position error and a variation within the mesoscale meteorology using the same

realistic database. Designing relevant scalar indicators related to meteorological variance, we evaluated how specific changes

in meteorological conditions lead to an increase in the distance between the plumes. We have seen that the meteorological

changes can be correlated to position errors as well as amplitude errors between plumes. This means that removing the position500

error from the metrics will not make the comparison insensitive to a meteorological change. However, some metrics were

found to be more sensitive to specific changes in meteorological conditions. For instance, while the Wasserstein metric is

sensitive to changes in the main direction or intensity of the winds, the Hellinger metric is more sensitive to changes in the

spread of the wind direction both in time and space. This provides guidelines to enlighten the choice of a metric for a given

meteorological situation. By composing with these new metrics freed from position error and additional scaling terms, we get505

more manageable metrics that will level down in the weight of modelling error due to the meteorology used in the comparison.

These metrics are used to quantify the proximity of a couple of plumes and could hence be used in an inverse framework,

in particular for processing XCO2 images. The question of the impact of the meteorological changes on the metrics discussed

here can be translated into another question: what importance do we give to each error category? We know that meteorological

changes can result in position errors, and we strongly suspect that changes in the emission’s temporal profile or vertical510

distribution can also yield position errors. In such a case, it would be interesting to evaluate the impact of the removal of the

position errors and if the amplitude errors carry enough information to compensate. We have seen that amplitude errors can

also emerge from changes in meteorology. Thus further studies have to be undergone to evaluate the sensitivity of the metrics to

either the emissions or the meteorology, to determine which error has to be more weighted from the perspective of monitoring

the emissions. We have to make sure that by removing some sensitivity with respect to meteorology, we are not levelling down515

by the same factor the sensitivity with respect to the emissions.

For an operational purpose, optimising on non-local metrics is much more difficult than on pixel-wise metrics because

it requires the computation of non-trivial gradients. The three non-local metrics that we proposed are parameterised. These

parameters usually balance a trade-off between computational efficiency and accuracy. For the case of the pixel-wise distance

with an upstream correction, this can have an impact on the optimum. Even though this study could be done with a personal520

computer, further computation optimisation developments are needed for operational use. Here we are only considering passive

tracers, but an extension of the study should be using these metrics for reactive pollutants. However, it requires quantifying the

relative impact of chemistry on the shape, scale and position of the plume.
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The key idea here is that meteorology is fixed and bounds our model predictions. We choose to develop metrics that aim

to remove the weight of such bound within the comparison to the observation. We could instead consider that meteorology is525

not fixed and can be seen as additional degrees of freedom to estimate. Thus the Wasserstein metric is interesting due to its

behaviour smoother than pixel-wise metrics but remains numerically costly. Yet, we have seen that approximating the plume

by Gaussian puffs yields a cheap estimate of the true Wasserstein distance. To ease the computation, we suggest using an

approximation of the Wasserstein distance, assuming Gaussian puff-like plumes or separable into a Gaussian mixture as in

Chen et al. (2019); Delon and Desolneux (2020). But the relevance of these approximations has to be discussed when it comes530

to real, noisy, cloudy, plume images. This paper was a first step towards the use of smarter metrics to compare plume images

to monitor atmospheric gaseous compound emissions through an inverse method.

Data availability. All the data required to get the presented results are available on the zenodo deposit (Vanderbecken, 2022)
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Appendix A: Notation

Notations

x Position vector in the image

XA,B Continuous interpolation of the concentration field

xA,B Discrete representation of the concentration field

x̂A,B Normalised discrete concentration field

N (µ,Σ) Normal distribution of mean µ and error covariance matrix Σ

UE Uniform distribution over the domain E

µ Always refers to a mean vector

Σ Always refers to an error covariance matrix

∆ Diagonal matrix with the eigenvalues of Σ

R(θ) Rotation matrix of angle θ

xt Translation vector

x0 Centre of mass coordinate vector

F Transformation in the plane

d Usual pixel-wise Euclidean distance

dF Pixel-wise distance with an upstream position correction

w Wasserstein distance

wF Wasserstein distance with an upstream position correction

wemd Earth mover distance

wϵ Log-Sinkhorn approximation of the Wasserstein distance

wnum Wasserstein distance between two Gaussian puffs

wth Analytical Wasserstein distance between two Gaussian puffs

ϵ Weight of the entropic regularisation of the log-Sinkhorn algorithm

ζ Convergence criterion for the log-Sinkhorn algorithm

T Translation length between the centre of mass of two plumes

θ Rotation angle between the principal axes of two plumes

H Hellinger distance between the error covariance matrices of two plumes

EN Mean wind speed seen by the plume averaged over the image domain and time

ED Mean wind direction seen by the plume averaged over the image domain and time

SN Standard deviation of the wind speed seen by the plume across the image domain and time

SD Standard deviation of the wind direction seen by the plume across the image domain and time
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Appendix B: Gradient of the cost function for dF535

To minimise eq. (8) we use the L-BFGS algorithm provided by the SciPy library. The algorithm explicitly uses the gradient of

the cost function J with respect to θ, xt, and yt. The first term of this gradient – corresponding to d2 (XA,XB ◦F) – is given

by

∂J
∂α

=−2

∫
R2

[XA (x)−XA (F(x))]

[
∂XB

∂x
(F(x)) · ∂Fx

∂α
+

∂XB

∂y
(F(x)) · ∂Fy

∂α

]
dx, (B1)

where α is either θ, xt, or yt, x= (x,y)
⊤, and F= (Fx,Fy)

⊤. The partial derivatives of XB are given by the second image540

(using the interpolation method), and the partial derivative of Fx and Fy are

∂Fx

∂θ
=−(x−x0)sinθ− (y− y0)cosθ,

∂Fy

∂θ
= (x−x0)cosθ− (y− y0)sinθ, (B2a)

∂Fx

∂xt
= 1,

∂Fy

∂xt
= 0, (B2b)

∂Fx

∂yt
= 0,

∂Fy

∂yt
= 1. (B2c)

Appendix C: From the Wasserstein distance w to the Hellinger distance wF545

Let us define the cost function

J (xt,yt,θ)≜ w2 (XA,XB ◦F) , (C1)

where w2 (XA,XB ◦F) is given by eq. (25). The goal is to minimise J . From eq. (25), we remark that J has three terms

J = J1 +J2 +J3, with

J1 ≜ Tr(∆A +∆B), (C2)550

J2 (xt,yt)≜ ∥µA −µB +xt∥2, (C3)

J3 (θ)≜−2Tr
[
∆

1/2
A R(θ+ θB − θA)∆BR(θ+ θB − θA)

⊤∆
1/2
A

] 1
2

. (C4)

Minimising J with respect to (xt,yt,θ) is equivalent to minimising J2 with respect to (xt,yt) and minimising J3 with respect

to θ. The minimum of J2 is 0 and is reached for xt = µB −µA. Let us now focus on the minimum of J3. For convenience,

we define555

M(θ)≜∆
1/2
A R(θ+ θB − θA)∆BR(θ+ θB − θA)

⊤∆
1/2
A , (C5)
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in such a way that J3 (θ) =−2TrM(θ)
1
2 . With our notation, we have

∆A =

 σ1,A 0

0 σ2,A

 , (C6a)

∆B =

 σ1,B 0

0 σ2,B

 , (C6b)

R(θ+ θB − θA) =

 cos θ̃ −sin θ̃

sin θ̃ cos θ̃

 , (C6c)560

where θ̃ ≜ θ+ θB − θA, and hence

M(θ) =

 σ1,Aσ1,B cos2 θ̃+σ1,Aσ2,B sin2 θ̃
√
σ1,Aσ2,A (σ1,B −σ2,B)cos θ̃ sin θ̃

√
σ1,Aσ2,A (σ1,B −σ2,B)cos θ̃ sin θ̃ σ2,Aσ2,B cos2 θ̃+σ2,Aσ1,B sin2 θ̃

 . (C7)

By construction, M(θ) is symmetric and positive definite, therefore it is diagonalisable with strictly positive eigenvalues

λ± (θ). As a consequence, we have

TrM(θ)
1
2 =

√
λ+ (θ)+

√
λ− (θ). (C8)565

Let us now introduce the following ancillary quantities:

α≜ σ1,Aσ1,B +σ2,Aσ2,B , (C9a)

β ≜ σ1,Aσ2,B +σ2,Aσ1,B , (C9b)

κ(θ)≜ TrM(θ) = αcos2 θ̃+β sin2 θ̃, (C9c)

γ (θ)≜ κ2 (θ)− 4detM(θ) = κ2 (θ)− 4σ1,Aσ1,Bσ2,Aσ2,B . (C9d)570

Note that γ (θ) is the discriminant of the characteristic polynomial of M(θ), which means that γ (θ)≥ 0 because M(θ) is

symmetric and positive definite. With these quantities, we have

λ± (θ) =
1

2

(
κ(θ)±

√
γ (θ)

)
. (C10)

Let us first consider the case γ (θ) = 0. In this case, λ+ (θ) = λ− (θ)≜ λ(θ), in other words M(θ) = λ(θ)I. From the

definition of M(θ), eq. (C5), we deduce that575

R
(
θ̃
)
∆BR

(
θ̃
)⊤

= λ(θ)∆A, (C11)

which enforces θ̃ = 0 (modulo π). This means that eq. (C7) simplifies into

M(θ) =

 σ1,Aσ1,B 0

0 σ2,Aσ2,B

 , (C12)
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and hence λ(θ) = σ1,Aσ1,B = σ2,Aσ2,B . Without loss of generality, we can assume in the definition of ∆A and θA that

0< σ1,A ≤ σ2,A and the same for B4. This means that σ1,Aσ1,B = σ2,Aσ2,B actually implies σ1,A = σ2,A and σ1,B = σ2,B .580

In this case, the covariance matrices for A and B are isotropic and J3 does not actually depend on θ.

Let us now consider the non-isotropic case: 0< σ1,A < σ2,A and 0< σ1,B < σ2,B , which is the only case where J3 depends

on θ. In this case, we necessarily have γ (θ)> 0. We can then take the derivative of J3 with respect to θ:

−1

2
J ′
3 (θ) =

λ′
+ (θ)

2
√
λ+ (θ)

+
λ′
− (θ)

2
√
λ− (θ)

, (C13)

=

√
λ+ (θ)λ′

+ (θ)

2λ+ (θ)
+

√
λ− (θ)λ′

− (θ)

2λ− (θ)
, (C14)585

=

√
λ+ (θ)

(
κ′ (θ)+ γ′(θ)

2
√

γ(θ)

)
4λ+ (θ)

+

√
λ− (θ)

(
κ′ (θ)− γ′(θ)

2
√

γ(θ)

)
4λ− (θ)

, (C15)

=

√
λ+(θ)√
γ(θ)

(
κ′ (θ)

√
γ (θ)+ 1

2γ
′ (θ)

)
4λ+ (θ)

+

√
λ−(θ)√
γ(θ)

(
κ′ (θ)

√
γ (θ)− 1

2γ
′ (θ)

)
4λ− (θ)

, (C16)

=

√
λ+(θ)√
γ(θ)

(
κ′ (θ)

√
γ (θ)+κ′ (θ)κ(θ)

)
4λ+ (θ)

+

√
λ−(θ)√
γ(θ)

(
κ′ (θ)

√
γ (θ)−κ′ (θ)κ(θ)

)
4λ− (θ)

, (C17)

=
2

√
λ+(θ)√
γ(θ)

κ′ (θ)λ+ (θ)

4λ+ (θ)
−

2

√
λ−(θ)√
γ(θ)

κ′ (θ)λ− (θ)

4λ− (θ)
, (C18)

= κ′ (θ) ·
√
λ+ (θ)−

√
λ− (θ)

2
√
γ (θ)

, (C19)590

= (β−α)cos θ̃ sin θ̃ ·
√
λ+ (θ)−

√
λ− (θ)√

γ (θ)
, (C20)

which is the product of three terms: β−α, cos θ̃ sin θ̃, and
(√

λ+ (θ)−
√
λ− (θ)

)
/
√

γ (θ). The third term is always strictly

positive because γ (θ)> 0. The first term is always strictly negative because we have assumed that σ1,A < σ2,A and σ1,B <

σ2,B . Hence we only need to consider the second term cos θ̃ sin θ̃ to conclude that the minima of J3 are met for θ̃ = 0 (modulo

π) or equivalently θ = θA − θB (modulo π). In this case, M(θ) =∆A∆B and J3 (θ) =−2Tr(∆A∆B), which yields the595

correct formula for wF , eq. (26). Finally note that this formula is also valid in the case where at least one of A or B is isotropic.
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Hakkarainen, J., Szeląg, M. E., Ialongo, I., Retscher, C., Oda, T., and Crisp, D.: Analyzing nitrogen oxides to carbon dioxide emis-

sion ratios from space: A case study of Matimba Power Station in South Africa, Atmospheric Environment: X, 10, 100 110,

https://doi.org/10.1016/j.aeaoa.2021.100110, 2021.

Hergoualc’h, K., Mueller, N., Bernoux, M., Kasimir, A., van der Weerden, T. J., and Ogle, S. M.: Improved accuracy and reduced uncertainty685

in greenhouse gas inventories by refining the IPCC emission factor for direct N2O emissions from nitrogen inputs to managed soils, Global

Change Biology, 27, 6536–6550, https://doi.org/10.1111/gcb.15884, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.15884,

2021.

Hoffman, R. N. and Grassotti, C.: A Technique for Assimilating SSM/I Observations of Marine Atmospheric Storms: Tests

with ECMWF Analyses, Journal of Applied Meteorology and Climatology, 35, 1177–1188, https://doi.org/10.1175/1520-690

0450(1996)035<1177:ATFASO>2.0.CO;2, publisher: American Meteorological Society Section: Journal of Applied Meteorology and

Climatology, 1996.

Hoffman, R. N., Liu, Z., Louis, J.-F., and Grassoti, C.: Distortion Representation of Forecast Errors, Monthly Weather Review, 123,

2758–2770, https://doi.org/10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2, publisher: American Meteorological Society Section:

Monthly Weather Review, 1995.695

Horowitz, C. A.: Paris Agreement, International Legal Materials, 55, 740–755, https://doi.org/10.1017/S0020782900004253, publisher:

Cambridge University Press, 2016.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J.,

Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.: EDGAR

v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012, Earth System Science Data, 11, 959–1002,700

https://doi.org/10.5194/essd-11-959-2019, publisher: Copernicus GmbH, 2019.

Kantorovich, L. V.: On mass transportation, C. R. (Doklady) Acad. Sci. URSS (N. S.), 37, 199–201, https://ci.nii.ac.jp/naid/10018386680/,

1942.

Keil, C. and Craig, G. C.: A Displacement-Based Error Measure Applied in a Regional Ensemble Forecasting System, Monthly Weather

Review, 135, 3248–3259, https://doi.org/10.1175/MWR3457.1, publisher: American Meteorological Society Section: Monthly Weather705

Review, 2007.

Korsakissok, I. and Mallet, V.: Comparative Study of Gaussian Dispersion Formulas within the Polyphemus Platform: Eval-

uation with Prairie Grass and Kincaid Experiments, Journal of Applied Meteorology and Climatology, 48, 2459–2473,

https://doi.org/10.1175/2009JAMC2160.1, publisher: American Meteorological Society Section: Journal of Applied Meteorology and

Climatology, 2009.710

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier van der Gon, H. a. C.: TNO-MACC_II emission inventory; a multi-year

(2003-;2009) consistent high-resolution European emission inventory for air quality modelling, Atmospheric Chemistry and Physics, 14,

10 963–10 976, https://doi.org/10.5194/acp-14-10963-2014, publisher: Copernicus GmbH, 2014.

Kuhlmann, G., Broquet, G., Marshall, J., Clément, V., Löscher, A., Meijer, Y., and Brunner, D.: Detectability of CO2 emission plumes of

cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission, Atmospheric Measurement Techniques,715

12, 6695–6719, https://doi.org/10.5194/amt-12-6695-2019, publisher: Copernicus GmbH, 2019.

33

https://doi.org/10.1175/2010WAF2222365.1
https://doi.org/10.1016/j.aeaoa.2021.100110
https://doi.org/10.1111/gcb.15884
https://doi.org/10.1175/1520-0450(1996)035%3C1177:ATFASO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1996)035%3C1177:ATFASO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1996)035%3C1177:ATFASO%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123%3C2758:DROFE%3E2.0.CO;2
https://doi.org/10.1017/S0020782900004253
https://doi.org/10.5194/essd-11-959-2019
https://ci.nii.ac.jp/naid/10018386680/
https://doi.org/10.1175/MWR3457.1
https://doi.org/10.1175/2009JAMC2160.1
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.5194/amt-12-6695-2019


Kuhlmann, G., Brunner, D., Broquet, G., and Meijer, Y.: Quantifying CO2 emissions of a city with the Copernicus Anthropogenic CO2 Mon-

itoring satellite mission, Atmospheric Measurement Techniques, 13, 6733–6754, https://doi.org/10.5194/amt-13-6733-2020, publisher:

Copernicus GmbH, 2020.

Lian, J., Wu, L., Bréon, F.-M., Broquet, G., Vautard, R., Zaccheo, T. S., Dobler, J., and Ciais, P.: Evaluation of the WRF-UCM mesoscale720

model and ECMWF global operational forecasts over the Paris region in the prospect of tracer atmospheric transport modeling, Elementa:

Science of the Anthropocene, 6, 64, https://doi.org/10.1525/elementa.319, 2018.

Marzban, C. and Sandgathe, S.: Optical Flow for Verification, Weather and Forecasting, 25, 1479–1494,

https://doi.org/10.1175/2010WAF2222351.1, publisher: American Meteorological Society Section: Weather and Forecasting, 2010.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., and Allen, M. R.: Greenhouse-gas emission725

targets for limiting global warming to 2 °C, Nature, 458, 1158–1162, https://doi.org/10.1038/nature08017, number: 7242 Publisher: Nature

Publishing Group, 2009.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S.,

Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for

regional atmospheric composition modelling, Geoscientific Model Development, 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013,730

2013.

Monge, G.: Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie royale des sciences avec les mémoires de mathéma-

tique et de physique tirés des registres de cette Académie, pp. 666–705, 1781.

Nocedal, J. and Wright, S. J.: Large-scale unconstrained optimization, Numerical Optimization, pp. 164–192, publisher: Springer, 2006.

Peyré, G. and Cuturi, M.: Computational Optimal Transport: With Applications to Data Science, Foundations and Trends® in Machine735

Learning, 11, 355–607, https://doi.org/10.1561/2200000073, publisher: Now Publishers, Inc., 2019.

Pison, I., Berchet, A., Saunois, M., Bousquet, P., Broquet, G., Conil, S., Delmotte, M., Ganesan, A., Laurent, O., Martin, D., O’Doherty, S.,

Ramonet, M., Spain, T. G., Vermeulen, A., and Yver Kwok, C.: How a European network may help with estimating methane emissions

on the French national scale, Atmospheric Chemistry and Physics, 18, 3779–3798, https://doi.org/10.5194/acp-18-3779-2018, publisher:

Copernicus GmbH, 2018.740

Potier, E., Broquet, G., Wang, Y., Santaren, D., Berchet, A., Pison, I., Marshall, J., Ciais, P., Bréon, F.-M., and Chevallier, F.: Complementing

XCO2 imagery with ground-based CO2 and 14CO2 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale,

Atmospheric Measurement Techniques Discussions, 2022, 1–44, https://doi.org/10.5194/amt-2022-48, 2022.

Santaren, D., Broquet, G., Bréon, F.-M., Chevallier, F., Siméoni, D., Zheng, B., and Ciais, P.: A local- to national-scale inverse modeling sys-

tem to assess the potential of spaceborne CO2 measurements for the monitoring of anthropogenic emissions, Atmospheric Measurement745

Techniques, 14, 403–433, https://doi.org/10.5194/amt-14-403-2021, 2021.

Seigneur, C.: Air Pollution: Concepts, Theory, and Applications, Cambridge University Press, 2019.

Solazzo, E., Crippa, M., Guizzardi, D., Muntean, M., Choulga, M., and Janssens-Maenhout, G.: Uncertainties in the Emissions Database for

Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, Atmospheric Chemistry and Physics, 21, 5655–5683,

https://doi.org/10.5194/acp-21-5655-2021, publisher: Copernicus GmbH, 2021.750

Super, I., Dellaert, S. N. C., Visschedijk, A. J. H., and Denier van der Gon, H. A. C.: Uncertainty analysis of a European high-resolution

emission inventory of CO2 and CO to support inverse modelling and network design, Atmospheric Chemistry and Physics, 20, 1795–1816,

https://doi.org/10.5194/acp-20-1795-2020, publisher: Copernicus GmbH, 2020.

34

https://doi.org/10.5194/amt-13-6733-2020
https://doi.org/10.1525/elementa.319
https://doi.org/10.1175/2010WAF2222351.1
https://doi.org/10.1038/nature08017
https://doi.org/10.5194/gmd-6-981-2013
https://doi.org/10.1561/2200000073
https://doi.org/10.5194/acp-18-3779-2018
https://doi.org/10.5194/amt-2022-48
https://doi.org/10.5194/amt-14-403-2021
https://doi.org/10.5194/acp-21-5655-2021
https://doi.org/10.5194/acp-20-1795-2020


Tamang, S. K., Ebtehaj, A., van Leeuwen, P. J., Lerman, G., and Foufoula-Georgiou, E.: Ensemble Riemannian data assimilation: towards

large-scale dynamical systems, Nonlinear Processes in Geophysics, 29, 77–92, https://doi.org/10.5194/npg-29-77-2022, publisher: Coper-755

nicus GmbH, 2022.

Vanderbecken, P. J.: Passive gas plume database for metrics comparison, https://doi.org/10.5281/zenodo.6958047, 2022.

Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., and Huang, Y.: Quantifying methane point sources

from fine-scale satellite observations of atmospheric methane plumes, Atmospheric Measurement Techniques, 11, 5673–5686,

https://doi.org/10.5194/amt-11-5673-2018, publisher: Copernicus GmbH, 2018.760

Varon, D. J., Jacob, D. J., Jervis, D., and McKeever, J.: Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with

GHGSat-D Satellite Observations, Environmental Science & Technology, 54, 10 246–10 253, https://doi.org/10.1021/acs.est.0c01213,

publisher: American Chemical Society, 2020.

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,

M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt,765

P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate,

air quality and ozone layer applications, Remote Sensing of Environment, 120, 70–83, https://doi.org/10.1016/j.rse.2011.09.027, 2012.

Villani, C.: Optimal Transport, vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer, Berlin, Heidelberg,

https://doi.org/10.1007/978-3-540-71050-9, 2009.

35

https://doi.org/10.5194/npg-29-77-2022
https://doi.org/10.5281/zenodo.6958047
https://doi.org/10.5194/amt-11-5673-2018
https://doi.org/10.1021/acs.est.0c01213
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1007/978-3-540-71050-9

