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Response to Reviewer #1 

We thank Reviewer #1 for reviewing the manuscript and for their helpful comments. We agree 

with the majority of the reviewer’s feedback and feel that these comments have led to an 

improvement in the quality of the manuscript. All reviewer comments are in italics and the author’s 

responses are in standard font. 

This study evaluates OMI and TROPOMI retrievals of NO2, HCHO and FNR using aircraft 

measurements during the LISTOS campaign. The manuscript is well-written, and it is a good for 

for AMT. See my comments below.  

• The authors focus on statistical results of the comparison, especially the mean biases. But 

I don’t think that mean biases could tell much about the uncertainties of TROPOMI and 

OMI. The standard deviation of the mean biases is large, which made me wonder if the 

overestimates of underestimates are broadly consistent. If not, presenting the mean biases 

here may not help understand the performance of satellite retrievals. For example, how 

well do these retrievals capture the spatial and temporal variability of NO2, HCHO, and 

FNR? And how the errors in satellite retrievals affect the interpretations of the ozone 

sensitivity? 

In the updated manuscript we now include root mean squared error (RMSE) statistics to help 

demonstrate the uncertainty (this term is used throughout the updated manuscript to describe all 

unresolved errors beyond systematic biases such as random errors and relative biases) in both OMI 

and TROPOMI. We have also deemphasized the discussion about median bias in the updated 

manuscript in order to allow for more equal focus on systematic biases and uncertainty/unresolved 

errors in the retrievals. 

In response to a comment by Reviewer #2 below, we address the capability of OMI and TROPOMI 

to capture the spatial variability of NO2, HCHO, and FNRs observed. As for the temporal 

variability, low earth orbit (LEO) satellites obtain, at best, a single snapshot per day, so we don’t 

get much temporal information from these spaceborne systems. What we can demonstrate is the 

capability of the satellites to capture the inter-daily magnitude variability of NO2, HCHO, and FNRs 

observed by airborne spectrometers. To demonstrate this, we calculated daily mean tropospheric 

column quantities of NO2, HCHO, and FNRs from both satellites and airborne data for the entire 

LISTOS domain, and within 0.35 degrees of the NYC city center (identified as the emission source 

region), to calculate daily correlation statistics. The following text was added to Sect. 3.4.2 of the 

updated manuscript to summarize this evaluation and results “Given the limited spatiotemporal data 

coverage provided by the LISTOS campaign, a robust understanding of the temporal capabilities 

of OMI and TROPOMI to retrieve FNRs is not possible. LEO satellites obtain, at best, a single 

snapshot of both HCHO and NO2 each day, so one could only hope to obtain daily variability of 

FNRs from these spaceborne systems. To determine whether OMI and TROPOMI could capture 

the variability of the daily mean tropospheric column quantities of NO2, HCHO, and FNRs over 

the entire LISTOS domain from airborne data, we compared these daily mean values from NASA 

OMI, QA4ECV OMI, and TROPOMI to the airborne observations. For NASA OMI, daily 
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correlation (R2) values were 0.85 (p = 0.001), 0.58 (p = 0.03), and 0.26 (p = 0.20) for NO2, HCHO, 

and FNRs, respectively. For QA4ECV OMI, daily correlation values were 0.85 (p = 0.001), 0.80 

(p = 0.002), and 0.47 (p = 0.06) for NO2, HCHO, and FNRs, respectively. For TROPOMI, daily 

correlation values were 0.92 (p = <0.001), 0.85 (p = <0.001), and 0.41 (p = 0.03) for NO2, HCHO, 

and FNRs, respectively. All daily correlation statistics for HCHO and NO2 were significant to a 

95% confidence interval and suggest that both OMI and TROPOMI can capture the overall inter-

daily magnitudes of FNR indicator species. However, only TROPOMI could observe the daily 

variability of domain-wide FNRs within a 95% confidence interval. This suggests that unresolved 

errors in either HCHO or NO2 retrievals (the analysis from this study suggests uncertainty in HCHO 

are driving FNR bias variability) from OMI, using both the NASA and QA4ECV algorithms, are 

too large to confidently capture the inter-daily variability in FNRs.   

The same analysis was conducted for NASA and QA4ECV OMI except just for retrievals 

near the large anthropogenic source regions in NYC (within 0.35 degrees of the city center) where 

relative errors due to satellite retrievals for FNR calculations were the lowest (see Fig. 6). Daily 

correlation (R2) values for FNR retrievals near the source region of NYC for NASA OMI (0.13; p-

value = 0.39) were reduced compared to domain-wide means and QA4ECV OMI (0.66; p-value = 

0.01) correlations were improved near the source region of NYC. Indicator species correlation 

values from NASA OMI were degraded compared to the domain-wide analysis suggesting that this 

satellite product may not be able to capture inter-daily variability of FNRs even in large source 

regions. However, this analysis suggests that QA4ECV OMI data has the capability to retrieve daily 

variability of FNRs in large emission regions such as NYC to a statistically significant level. 

Overall, TROPOMI retrievals at both fine and coarse spatial resolutions evaluated in this study are 

able to capture daily variability of tropospheric FNRs over the entire domain and emission source 

regions better compared to OMI products.”. 

To gather a more complete picture of the extent to which each satellite retrieval product lose spatial 

information (variance) compared to airborne data, we follow a recent algorithm named SpaTial 

Representation Error EstimaTor (STREET) (Souri, 2022) using NASA OMI and TROPOMI 

retrieval data. This method creates semivariograms determining the changes in spatial variability 

with distance for a defined variable (for this case HCHO and NO2 trace gas columns). The following 

description and results were added to Sect. 3.4.2 of the updated manuscript “To understand the 

extent to which OMI and TROPOMI retrieval products lose spatial information (variance) 

compared to airborne data during the LISTOS campaign, we applied the algorithm named SpaTial 

Representation Error EstimaTor (STREET) (Souri, 2022) using NASA OMI and TROPOMI 

retrieval data. This method creates semivariograms determining the changes in spatial variability 

with distance for a defined variable (for this case we used tropospheric column HCHO and NO2). 

The maximum variance at which the modeled semivariogram levels off is defined as a sill and data 

sets with larger sill values possesses richer spatial information. Figure S10 shows semivariograms, 

and the fitted stable Gaussian function described in Souri et al. (2022a), applied to TROPOMI and 

NASA OMI compared to airborne NO2 columns. Concerning the comparison of TROPOMI and 

airborne data at 0.05° × 0.05° resolution, we observe airborne semivariogram as high as 20 × 1015 
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molecules cm-2, a factor of two larger than what TROPOMI achieves. At a ~20 km length scale, 

TROPOMI can only observe ~40% of the airborne spatial variance, indicating that the spatial 

representation error in TROPOMI is ~60% at this scale. Similarly, NASA OMI fails to recreate 

>50% of the maximum variance observed in airborne data at 0.15° × 0.15° resolution. At ~20 km 

length scale, the spatial loss of OMI is >70%.  

Figure S10 depicts the semivariograms and fitted exponential curves applied to TROPOMI 

and airborne HCHO columns. Immediately evident is that both semivariograms level off at longer 

distances compared to the analysis of NO2. This stems from the fact that HCHO columns tend to 

be spatially more homogeneous in the region of the LISTOS domain. For most length scales, 

TROPOMI can relatively well replicate the spatial variance observed in airborne data (~70%), 

which is explainable by the fact that HCHO concentrations are not highly heterogeneous in this 

region. We do not present the semivariogram for NASA OMI HCHO columns as the underlying 

unresolved biases in OMI are very large, introducing artifacts that cannot be solely attributable to 

unresolved spatial scales. Overall, TROPOMI and OMI capture spatial variance of NO2 similarly, 

TROPOMI performs slightly better; however, OMI is unable to capture the spatial variability of 

observed HCHO due to unresolved biases in this retrieval product. Since TROPOMI is able to 

capture the observed HCHO variability to a sufficient degree, combing these two facts suggest that 

TROPOMI has better capability to retrieve FNR spatial variability compared to OMI products.”. 

As for the impact of satellite retrieval errors on the interpretation of O3 sensitivity, the recent study 

by Souri et al. (2022a) shows that satellite retrievals errors, in particular the unresolved bias in 

HCHO products, is the largest source of uncertainty in using satellite FNRs to investigate O3 

sensitivity. Here we propagate the errors calculated from NASA OMI, QA4ECV OMI, and 

TROPOMI to FNR calculations during LISTOS using Eq. (15) from Souri et al. (2022a) and created 

maps of relative error shown in a new Fig. 6. The following text has been added as Sect. 3.4.1 of 

the updated manuscript “There are numerous sources of error when using satellite retrievals of 

tropospheric column HCHO and NO2 for investigating surface-level or PBL O3 production 

sensitivity regimes. The primary uncertainty sources are using indicator species to infer the complex 

chemistry driving O3 production and destruction, horizontal spatial representation error, uncertainty 

in converting tropospheric columns to PBL and surface-level values, and satellite retrieval 

unresolved biases (Souri et al., 2022a). As for the impact of satellite retrieval errors on the 

interpretation of O3 sensitivity, the recent study by Souri et al. (2022a) shows that satellite retrievals 

errors, in particular the unresolved error in HCHO products, are the largest source of uncertainty in 

using satellite FNRs to investigate O3 sensitivity. Here we propagate the uncertainty (RMSE) 

calculated from NASA OMI, QA4ECV OMI, and TROPOMI to FNR calculations during LISTOS 

2018 using Eq. (15) from Souri et al. (2022a) and created maps of the relative error (see Fig. 6). 

From this figure it can be seen that satellite retrieval errors in HCHO and NO2 contribute 

significantly to satellite-derived FNR relative errors. In the largest NOx emission source regions of 

NYC, where combined column abundances of HCHO and NO2 are largest, is where the lowest 

relative errors of FNRs occur. For TROPOMI, which has the smallest values of uncertainty/RMSE 

compared to both NASA and QA4ECV OMI algorithms for HCHO and NO2, relative errors are as 
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low as ~40%. Away from the emission region of NYC these relative error values reach as high as 

~80%. Similar patterns of relative error in FNRs from NASA and QA4ECV OMI retrievals are 

derived; however, the lowest relative error values over NYC are ~50% and reach values up to 100%. 

The largest relative errors are seen outside the source region of NYC in QA4ECV OMI retrievals 

due to having the largest uncertainty in HCHO and lower column abundances of this species in the 

rural regions of the domain. In addition to the fact that the less noisy retrievals from TROPOMI 

result in lower relative errors in FNR data, Fig. 6 further demonstrates the larger uncertainty in OMI 

as the relative error patterns are more heterogeneous. The spatial averaging of TROPOMI data 

results in the lowest relative errors of all four satellite products discussed in this study. TROPOMI 

at the coarser (0.15° × 0.15°) spatial resolution had relative errors as low as 35% and only increase 

to ~60% outside of the source location of NYC.”. 

• It’s also not clear to me how the statistical results drawn from a single field campaign can 

be generalized to other regions or other time periods. I’d strongly recommend the authors 

go beyond the statistical comparison, and have a more thorough discussions about the 

sources of uncertainties, and the associated errors, and whether their conclusions can be 

generalized.  

We agree with the review that more flight days during the campaign would be ideal. But this 

campaign provided a unique opportunity to use airborne remote-sensing observations of 

tropospheric column NO2 and HCHO to validate both OMI and TROPOMI coincidently (the 

overlap of both spaceborne sensors is novel). Also, the airborne sensors allowed for evaluation of 

OMI and TROPOMI over large areas which equates to having hundreds of ground-based systems 

for validation. While having long-term observations for robust validation of satellite sensors is 

ideal, this case study is unique in that it provides information about the performance of both OMI 

and TROPOMI over variable emission source regions (urban to rural) and scenes with differing 

physical characteristics (e.g., surface albedo, tropospheric compositions, clouds, etc.). This is now 

emphasized in Sect. 2.3 of the updated manuscript. Furthermore, to provide the reader information 

about the statistical significance of the satellite/airborne data comparison correlation values in 

Table 2 which are statistically significant to the 95% confidence level are identified in the updated 

manuscript.  

Finally, in response to Reviewer #2, in addition to this comment, Sect. 3.4.3 of the updated 

manuscripts now discusses potential sources of systematic bias and uncertainty in OMI and 

TROPOMI HCHO and NO2 retrievals and how they impact satellite-derived FNR products. The 

text for Sect. 3.4.3 is as follows: “As demonstrated in this study, median biases of OMI and 

TROPOMI HCHO and NO2 retrievals tend to cancel out when calculating tropospheric column 

FNRs. Figures S4 and S5 show that the median bias spatial distribution of all satellite HCHO and 

NO2 retrievals are similar with a small low median bias in column abundances near the source 

region of NYC and high biases in the background regions. Table S1 shows that AMF calculations 

from NASA OMI, QA4ECV OMI, and TROPOMI use many of the same input data sets for 

geophysical variables (e.g., surface albedo, cloud fraction, cloud radiance, etc.) resulting in 
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campaign-averaged AMFs of HCHO, NO2, and the ratios of these products (AMF FNRs) which 

are relatively similar across the LISTOS domain (see Fig. S11). For all satellite products, HCHO 

and NO2 AMFs have much less variability compared to AMFs derived for airborne data which 

along with SCD biases may contribute to the median high biases in background HCHO and NO2 

retrievals. A primary reason for the inability of satellites to capture AMF variability over the 

LISTOS domain is likely the shape factors being used for these calculations having spatial 

resolutions of 1.0° × 1.0° to even coarser grids (Table S1). Furthermore, while TROPOMI and 

QA4ECV OMI retrievals used daily model data for shape factor calculations, NASA OMI uses 

monthly products which will be challenged to capture the large spatiotemporal variability of 

tropospheric HCHO and NO2 vertical profiles in urban and rural regions occurring in reality. 

Finally, coarse geophysical input data sets used in AMF calculations (see Table S1) will not 

capture the spatial distribution of these variables in reality. Airborne AMF calculations use much 

higher spatial resolution input data sets (e.g., 500 m surface albedo data (Judd et al., 2020) 

compared to 0.5° × 0.5° or coarser surface reflectivity products used in OM and TROPOMI) and 

shape factors are calculated with 12 km × 12 km CMAQ model simulations which both aid in the 

much larger spatial variability of AMFs not captured in satellite retrievals. 

 The more interesting aspect found in this study is that unresolved errors in HCHO and NO2 

retrievals don’t cancel out in FNR calculations as do the systematic/median biases. While there are 

some reasons why uncertainty in HCHO and NO2 retrievals could stem from opposite impacts of 

geophysical parameters in AMF calculations, such as AMF uncertainties in HCHO and NO2 

having opposite trends with increasing surface reflectance (comparing Fig. 10 from De Smedt et 

al. (2018) and Fig. 20 from Liu et al. (2021)), these differences are minor and overall AMF 

calculations for both species in NASA OMI, and QA4ECV OMI, and TROPOMI have similar 

input data sets. A portion of the uncertainty of HCHO and NO2 retrievals not canceling out stems 

from the AMF calculations shown in Fig. S11. In order for HCHO and NO2 AMFs to have no 

impact on VCD uncertainty cancelations, AMF FNRs would be a constant or similar value at all 

locations. However, from Fig. S11 it is shown that AMF FNRs, while having smooth spatial 

variability, are not a constant value. Therefore, some of the unresolved error residual in the FNR 

calculations will be due to differences in HCHO and NO2 AMF calculations. This is emphasized 

in NASA OMI AMF FNR plots in Fig. S11 where different CTMs, at different spatial resolutions 

(see Table S1), are used to derive HCHO and NO2 shape factors leading to noticeable differences 

in the respective AMF calculations. This likely is one of the reasons that NASA OMI FNRs have 

the largest uncertainty (highest bias standard deviation and RMSE values) compared to airborne 

data (see Table 2) of all OMI and TROPOMI satellite products. Finally, the airborne AMFs are 

more variable compared to satellite products due to the finer-scale shape factors and geophysical 

parameter input data used in AMF calculations which satellites inherently are not able to capture, 

contributing to the satellite uncertainty.  

The rest of the remaining unresolved error in FNR calculations is likely due to the SCD retrievals 

from OMI and TROPOMI sensors. As demonstrated in this study the uncertainty in both OMI and 

TROPOMI retrievals of HCHO is large. The SCD retrievals of HCHO from TROPOMI have been 
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shown in the past to have less noise compared to OMI due to the higher spatial resolution and at 

least the same signal-to-noise (De Smedt et al., 2021). The larger uncertainty in OMI retrievals of 

HCHO compared to TROPOMI directly leads to the higher bias standard deviation and RMSE 

values for derived FNRs in OMI compared to TROPOMI (see Table 2). This is further emphasized 

in the spatially-averaged TROPOMI data (at 0.15° × 0.15° to match OMI data) where HCHO and 

FNR retrievals have a factor of 2-3 lower RMSE compared to NASA OMI and QA4ECV OMI. 

TROPOMI NO2 SCDs have also been shown to have less noise compared to OMI retrievals due 

to the higher spatial resolution and similar signal-to-noise (van Geffen et al., 2020, 2022). This is 

also shown in Table 2 when averaging TROPOMI data to match the OMI spatial resolution. 

Overall, HCHO and NO2 SCD noise contributes to uncertainty in OMI and TROPOMI VCDs and 

are not cancelled out in FNR calculations; however, the reduced noise in TROPOMI SCD 

retrievals leads to improved VCDs of HCHO and NO2 abundances and the ratios of these 

products.”. 

Specific Comments: 

Abstract: The abstract is lengthy. I’d suggest the authors shorten the abstract to include only the 

core findings of this work. For example, the first paragraph may belong to introduction.  

The abstract has been shortened as much as possible. 

Line 370: What are the quality flags for? Is this the same quality flag as for TROPOMI? If so, why 

do you choose different thresholds? Better to include references here.  

OMI data user’s manuals for NO2 and HCHO state the in order to use the highest quality data that 

only pixels with qa_values = 0. For TROPOMI, the individual species data user’s manuals for NO2 

and HCHO make recommendations for the qa_values used in this study (0.75 for NO2 and 0.5 for 

HCHO) in order to use high quality data. The HCHO data user’s manuals for TROPOMI 

recommends removing data with qa_values < 0.5 which we followed in the original manuscript. 

We tested whether using the higher qa_value of 0.75 to filter TROPOMI HCHO retrievals would 

impact the results of this study. When removing TROPOMI HCHO pixels with qa_values < 0.75 

the statistics had a very minor change and the results of the study remained consistent. In the 

updated manuscript we have added the following clarifications in Sect. 2.5: “Satellite retrievals 

with high quality were filtered for use by removing individual retrievals that did not have quality 

flags (qa) = 0 for HCHO and NO2 when applying OMI data. This qa value is suggested in the OMI 

data user’s manuals for the application of the highest quality science data and for the removal of 

OMI pixels impacted by the row anomaly. For TROPOMI, individual retrievals of NO2 and HCHO 

that had qa < 0.75 and qa < 0.5 were removed prior to spatial averaging, respectively, as 

recommended by the TROPOMI data user manuals for each species.”. 

Table 2: I’d suggest include an estimate of the error, such as normalized mean standard errors. 

NMB doesn’t tell much about the precision of the retrievals.  

We have added root mean squared error statistics throughout the updated manuscript. 
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Line 530: Maybe you could have a figure of the mean biases of HCHO to show where OMI or 

TROPOMI HCHO is biased high? 

Supplemental Fig. S4 and S5 in the updated manuscript now show the spatial distribution of 

campaign-averaged OMI and TROPOMI NO2 and HCHO biases during LISTOS. 

Line 600: I’m not sure if we could call this as a ‘high pollution’ day because ozone was actually 

low on this day. This could very well be a cold day when the lifetime of NO2 is long, and the the 

photolysis is low. I’m not sure how much value there is to evaluate FNR on this day. It’d be more 

interesting to add another day with both high ozone and high NO2.   

In response to a comment by Reviewer #2, and to reduce the length and complexity/density of the 

manuscript, we have removed this section from the updated paper version as it did not add much 

value to the overall study. 

Line 700: It is interesting to see that improved the a priori from CMAQ does not improve the 

retrieval performance of OMI. The authors attribute this to coarse resolution of OMI. Could this 

be due to the coarse resolution of cloud and surface albedo data used in the retrieval?  

We attribute the degradation in OMI retrieval performance when using high spatial resolution 

CMAQ data for a priori data primarily due to the too steep shape profile in the model data. This 

was explained in detail in the original manuscript. Overall, for tropospheric NO2 retrievals from 

OMI, the shape factor from CMAQ has higher NO2 concentrations in the PBL and lower values in 

the free troposphere compared to the a priori profiles used in standard NASA OMI retrievals 

resulting in lower air mass factors (AMF). As discussed in this manuscript, and in other papers 

referenced in the manuscript (e.g., Goldberg et al., 2017), the differences in shape factors produced 

by CMAQ in comparison to the coarser global model output use as a priori information in OMI is 

the primary reason for the poorer performance in NO2 retrievals. We compared the “raw” WRF-

CMAQ output to airborne observations and confirmed the model biases and “scaled” the higher 

spatial resolution model data to better replicate observations. While median biases of OMI NO2 

and HCHO retrievals reprocessed with the scaled WRF-CMAQ a priori information was only 

moderately improved compared to the standard retrievals, the spatial variability of the species was 

better retrieved compared to observations. The following text updates were added to Sect. 3.3 of 

the updated manuscript to reflect this point: “Scaled NASA OMI tropospheric column NO2 and 

HCHO retrievals had smaller median biases of -0.3±3.9 × 1015 molecules cm-2 and 4.4±7.1 × 1015 

molecules cm-2 and much lower RMSE values of 3.9 × 1015 molecules cm-2 and 7.8 × 1015 

molecules cm-2, respectively, compared to the retrievals with raw WRF-CMAQ predictions. This 

result demonstrates the need for accurate shape factors (i.e., vertical distribution of trace gases) to 

be used as a priori information in NASA OMI retrievals. Finally, the improved accuracy of 

tropospheric column NO2 and HCHO retrievals using scaled WRF-CMAQ model predictions 

resulted in a slightly higher magnitude of FNR median bias (0.5±3.2); however, with lower RMSE 

values, compared to reprocessed data using raw CMAQ predictions. In comparison to standard 

NASA OMI products, the reprocessed satellite data using scaled WRF-CMAQ a priori information 

had similar median biases in FNR values and lower median biases for HCHO (4.4±7.1 × 1015 
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molecules cm-2) and NO2 (-0.3±3.9 × 1015 molecules cm-2). All reprocessed data variables using 

scaled model simulated shape factors, due to the reduction in uncertainty in retrieve HCHO and 

NO2 data, had lower RMSE values, higher correlation (except for FNR), and similar to better linear 

regression slopes compared standard satellite retrievals.”. 

A detailed discussion of how the coarse spatial resolution input geophysical data sets (e.g., cloud 

fraction/radiation, surface reflectance, etc.) used in OMI and TROPOMI, can contribute to 

systematic bias and uncertainty in the FNR retrievals is now provided in Sect. 3.4 of the updated 

manuscript. 

Line 835: While the low mean biases of FNR is low, the standard deviation is very large. The R 

sure is also low for FNR. Thus I don’t think the errors of HCHO and NO2 could cancel out. The 

errors in HCHO and NO2 can offset only if the errors are correlated. I’d suggest the authors make 

a scatter plot for errors of HCHO versus NO2, and see if they are correlated. 

The manuscript has been re-written in a way that it is clear that the systematic/median biases cancel 

out in FNR calculations. However, as identified by the reviewer, the uncertainty in HCHO and 

NO2 retrievals do not cancel out in FNR calculations. Biases for HCHO and NO2 retrievals from 

NASA OMI and TROPOMI are not correlated with R2 values <0.05. This is described in detail in 

the updated manuscript in Sect. 3.4. 
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