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Abstract. Satellite retrievals of tropospheric column formaldehyde (HCHO) and nitrogen dioxide (NO2) are 

frequently used to investigate the sensitivity of ozone (O3) production to emissions of nitrogen oxides and volatile 20 

organic carbon compounds. This study inter-compared the systematic biases and uncertainties in retrievals of NO2 and 

HCHO, and resulting HCHO to NO2 ratios (FNRs), from two commonly-applied satellite sensors to investigate O3 

production sensitivities (Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument 

(TROPOMI)) using airborne remote-sensing data taken during the Long Island Sound Tropospheric Ozone Study 

2018 between June 25 to September 6, 2018. Compared to aircraft-based HCHO and NO2 observations, the accuracy 25 

of OMI and TROPOMI were magnitude-dependent with high biases in clean environments and a tendency towards 

more accurate comparisons to even low biases in moderate- to polluted-regions. OMI and TROPOMI NO2 systematic 

biases were similar in magnitude (normalized median bias (NMB) = 5-6%; linear regression slope = ~0.5-0.6) with 

OMI having a high median bias and TROPOMI resulting in small low biases. Campaign-averaged uncertainties in the 

three satellite retrievals (NASA OMI, QA4ECV OMI, and TROPOMI) of NO2 were generally similar with TROPOMI 30 

retrievals having slightly less spread in the data compared to OMI. The three satellite products differed more when 

evaluating HCHO retrievals. Campaign-averaged tropospheric HCHO retrievals all had linear regression slopes ~0.5 

and NMBs of 39%, 17%, 13%, and 23% for NASA OMI, QA4ECV OMI, and TROPOMI at finer (0.05° × 0.05°) and 

coarser (0.15° × 0.15°) spatial resolution, respectively. Campaign-averaged uncertainty values (root mean squared 

error (RMSE)) in NASA and QA4ECV OMI HCHO retrievals were ~9.0 × 1015 molecules cm-2 (~50-55% of mean 35 

column abundance) and the higher spatial resolution retrievals from TROPOMI resulted in RMSE values ~30% lower. 

Spatially-averaging TROPOMI tropospheric column HCHO, along with NO2 and FNRs, to resolutions similar to the 

OMI reduced the uncertainty of these retrievals. Systematic biases in OMI and TROPOMI NO2 and HCHO retrievals 

tended to cancel out resulting in all three satellite products comparing well to observed FNRs. However, while 

satellite-derived FNRs had minimal campaign-averaged median biases, unresolved errors in the indicator species did 40 

not cancel out in FNR calculations resulting in large RMSE values compared to observations. Uncertainties in HCHO 

retrievals were determined to drive the unresolved biases in FNR retrievals.  
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1 Introduction 

Tropospheric ozone (O3) is a harmful pollutant and near-surface concentrations of this species have detrimental 

impacts on human- and environmental-health (Kampa and Castanas, 2008; Van Dingenen et al., 2009). The production 45 

and destruction rates of tropospheric O3 are controlled by complex chemical reactions involving the primary precursor 

species of nitrogen oxides (NOx = nitric oxide and nitrogen dioxide (NO + NO2)) and volatile organic compounds 

(VOCs) (Sillman, 1999; Lelieveld and Dentener, 2000). It is critical to understand precursor species emissions and 

subsequent atmospheric chemistry controlling surface-level O3 production rates since the United States (US) 

Environmental Protection Agency (EPA) enforces concentration limits of criteria pollutants (e.g., O3, NO2, carbon 50 

monoxide, particulate matter, and sulfur dioxide) under the National Ambient Air Quality Standards (NAAQS) (US 

EPA, 2015). To reduce and maintain surface-level O3 concentrations below NAAQS thresholds, many regions have 

implemented emission control strategies for precursor species. To design effective emission reduction strategies, 

knowledge about the non-linear sensitivity of O3 formation to NOx and VOCs is critical (Crutzen, 1973; Sillman, 

1999). Based on the relative concentrations of NOx and VOCs, O3 formation is sensitive to perturbations of either NOx 55 

(NOx-limited regimes) or VOC emissions (NOx-saturated or VOC/radical-limited regimes). These O3 sensitivity 

regimes are separated by a transitional regime where O3 formation is sensitive to both NOx and VOC emissions. 

 To understand the non-linear relationship of O3 formation to NOx and VOC emissions in complex chemical 

environments (e.g., polluted regions and areas of heterogeneous emissions of NOx and VOCs), spatiotemporally dense 

in situ measurements or airborne remote-sensing observations of precursor species are desired (e.g., Souri et al., 2020). 60 

Since these measurements are often spatiotemporally sparse, satellite retrievals of chemical proxies for NOx (i.e., NO2) 

and VOCs (i.e., formaldehyde (HCHO)) have been demonstrated to provide insight into the O3-NOx-VOC relationship 

(Tonnesen and Dennis, 2000; Martin et al., 2004; Duncan et al., 2010; Souri et al., 2017; Jin et al., 2017, 2020). The 

ratio of HCHO to NO2 concentrations (hereinafter FNR) has been shown to provide information to monitor the local 

sensitivity of O3 production from the chemical loss of HO2+RO2 and chemical loss of NOx controlling O3-NOx-VOC 65 

chemistry (Tonnesen and Dennis, 2000; Kleinman et al., 2001). 

 Multiple past and current space-based spectrometers have the capability to retrieve simultaneous NO2 and 

HCHO tropospheric columns to calculate FNRs including Global Ozone Monitoring Experiment (GOME, Martin et 

al., 2004), GOME-2 (Choi et al., 2012), Ozone Monitoring Instrument (OMI, Duncan et al., 2010), SCanning Imaging 

Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, Jin et al., 2020), and TROPOspheric 70 

Monitoring Instrument (TROPOMI, Chan et al., 2020, Souri et al., 2021). In addition to these low earth orbiting (LEO) 

satellites, Tropospheric Emissions: Monitoring of Pollution (TEMPO) is an upcoming National Aeronautics and Space 

Administration (NASA) geostationary satellite mission which will retrieve hourly NO2 and HCHO tropospheric 

columns over North America (Zoogman et al., 2017; Chance et al., 2019). This geostationary sensor is part of a 

constellation of air quality spaceborne sensors including the Geostationary Environment Monitoring Spectrometer 75 

(GEMS) instrument onboard the Korean Aerospace Research Institute GEO-KOMPSAT-2B satellite (Kim et al., 

2020) and the European Space Agency (ESA) Sentinel-4 mission (ESA, 2017). Satellite retrievals of NO2 and HCHO 

have been applied to determine the sensitivity of O3 formation to NOx and VOC emissions at coarse spatial and 

temporal scales (e.g., Martin et al., 2004; Duncan et al., 2010) to finer spatiotemporal scales and focusing on long-
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term trends (e.g., Choi et al., 2012; Jin and Holloway, 2015; Choi and Souri, 2015; Schroeder et al., 2017; Souri et al., 80 

2017; Jin et al., 2017, 2020). However, uncertainties remain in how accurately satellites can retrieve information 

needed to study planetary boundary layer (PBL) O3-NOx-VOC relationships. These uncertainties stem from a) the 

exact thresholds of FNRs that separate NOx-limited, transition, and VOC-limited regimes, b) the ability of tropospheric 

column retrievals to represent PBL chemical composition due to variability in the vertical structure of NO2 and HCHO 

concentrations and satellite sensitivity throughout the entire troposphere, c) whether HCHO is an effective proxy for 85 

total VOC reactivity, d) satellite spatial representation errors, and e) the accuracy/uncertainty of satellite retrievals of 

tropospheric column HCHO and NO2. Of all these sources of uncertainty, systematic and random biases due to noise 

in satellite retrievals may be the largest source of error for retrieving FNRs (Souri et al., 2023).  

 This study is designed to demonstrate the effectiveness of two frequently applied satellites for evaluating O3-

NOx-VOC relationships (i.e., OMI and TROPOMI) to accurately retrieve tropospheric HCHO and NO2 columns and 90 

FNRs. OMI and TROPOMI retrievals have been evaluated in numerous studies (e.g., Judd et al., 2020; Vigouroux et 

al., 2020; Zhu et al., 2020; Lamsal et al., 2021), typically focusing on a specific sensor and species (e.g., evaluating 

OMI or TROPOMI and NO2 or HCHO separately); however, not for the accuracy to retrieve tropospheric column 

FNRs. Here we validate OMI and TROPOMI retrievals of HCHO and NO2, and subsequent FNRs, with airborne 

spectrometer data obtained during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field 95 

campaign conducted during the summer of 2018 in the northeast region of the US. Furthermore, this work investigates 

the capability of OMI and TROPOMI to capture the spatiotemporal variability of observed FNRs and discusses the 

possible causes of systematic error and uncertainties in these retrievals.  

2 Methods 

This study focuses on the spatial domain and time period (June 25 to September 6, 2018) of the LISTOS 2018 field 100 

campaign (https://www.nescaum.org/documents/listos). This campaign was chosen due to the overlap of the 

TROPOMI and OMI missions, the availability of airborne spectrometer retrievals (i.e., Geostationary Trace gas and 

Aerosol Sensor Optimization (GeoTASO) and GEO-CAPE Airborne Simulator (GCAS)) of tropospheric column 

HCHO and NO2 which are effective satellite validation data (e.g., Judd et al., 2020), and the large spatiotemporal 

coverage of the airborne spectrometer data. Studies have applied stationary sources of ground-based remote-sensing 105 

data to validate OMI and TROPOMI (e.g., MAX-DOAS, FTIR, Pandora); however, using the airborne data allows 

for the evaluation of satellite retrievals in variable environments (i.e., clean to heterogeneous/polluted regions). 

2.1 OMI remote-sensing products 

The nadir viewing OMI sensor, on the polar-orbiting NASA Aura satellite launched in 2004, is an ultraviolet–visible 

(UV/Vis) spectrometer (Levelt et al., 2006). Retrievals are made from three wavelength channels between 260 to 510 110 

nm (UV-1: 264 to 311 nm, UV-2: 307 to 383 nm, Vis: 349 to 504 nm). Aura-OMI has a local equatorial overpass time 

of ~13:45 with nearly-complete daily global surface coverage due to the large ~2,600 km swath width. Level-2 (L2) 

tropospheric vertical column density (VCD) OMI NO2 retrievals from the NASA version 4 standard product 

(OMNO2; Lamsal et al., 2021) and the NASA operational OMI HCHO version 3 product using the Smithsonian 
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Astrophysical Observatory (SAO) retrieval algorithm (OMHCHO; González Abad et al., 2015, 2016) were applied in 115 

this study. To investigate the impact of different retrieval algorithms, we also apply tropospheric column OMI NO2 

and HCHO data derived in the Quality Assurance for Essential Climate Variables (QA4ECV) project. 

 Starting in 2007, OMI experienced a field-of-view blockage known as the “row anomaly” which affects the 

data quality at all retrieval wavelengths for some rows (Dobber et al., 2008; Schenkeveld et al., 2017). The row 

anomaly in NO2 and HCHO retrievals was avoided using data quality flags to filter out pixels flagged by the row 120 

anomaly detection algorithm. OMI also has systematically biased retrievals in a striped pattern running in 60 cross-

track field-of-views. A “de-striping” correction is applied to NO2 data (Boersma et al., 2011) and the reference sector 

method corrects this artifact in HCHO data (De Smedt et al., 2015; González Abad et al., 2015; Zara et al., 2018). 

2.1.1 OMI – NASA OMNO2 and OMHCHO  

The primary OMI data used in this study are the L2 tropospheric VCD OMNO2 and OMHCHO retrievals provided 125 

at ~13 km × 24 km near nadir to ~24 km × 160 km towards the edge of the swath. Lamsal et al. (2021) describes the 

OMNO2 retrieval algorithm (referred to as NASA OMI NO2) in detail and is explained here briefly. The NASA OMI 

NO2 retrieval uses a differential optical absorption spectroscopy (DOAS) approach, with a fitting window between 

405 and 465 nm, to derive slant column densities (SCD). Tropospheric NO2 columns are separated from the entire 

atmospheric column using an observation-based stratosphere–troposphere separation scheme (Bucsela et al., 2013). 130 

Tropospheric SCDs are converted to tropospheric VCDs using an Air Mass Factor (AMF) calculated with a radiative 

transfer model and simulated atmospheres from a chemical transport model (CTM). Specifics for the data used in 

AMF calculations for NASA OMI NO2 are presented in Table S1. Tropospheric AMFs are calculated in NASA OMI 

NO2 retrievals using monthly-averaged a priori profiles from the NASA Global Modelling Initiative (GMI) model at 

1.0° × 1.25° spatial resolution, clouds from the OMI O2–O2 algorithm (Acarreta et al., 2004; Veefkind et al., 2016; 135 

Vasilkov et al., 2018), and surface albedo from geometry-dependent surface Lambertian equivalent reflectivity 

(GLER) data (Vasilkov et al., 2017; Qin et al., 2019; Fasnacht et al., 2019). The uncertainty of the NASA OMI NO2 

product has been shown to vary with cloudiness and pollution levels and is in the range of ~20% to ~60% (Bucsela et 

al., 2013), with contributions from errors in spectral fitting, stratospheric correction, and AMF calculations.  

 González Abad et al. (2015, 2016) describes the OMHCHO retrieval algorithm in detail (referred to here as 140 

NASA OMI HCHO). Retrievals of HCHO SCDs are obtained by spectrally fitting OMI radiances using the basic 

optical absorption spectroscopy (BOAS) method (Chance, 1998) with a fitting window between 328.5 and 356.5 nm. 

HCHO SCDs are converted to VCDs applying AMFs using GEOS-Chem a priori profiles at 2.0° × 2.5° spatial 

resolution, cloud information (Martin et al., 2002; Acarreta et al., 2004), and surface albedo data (Kleipool et al., 

2008). Information about the input data for NASA OMI HCHO AMF calculations is presented in Table S1. Finally, 145 

postprocessing across-track bias corrections are applied by comparing daily HCHO VCDs with VCDs simulated with 

the GEOS-Chem CTM over a clean region (known as the reference sector). NASA OMI HCHO uncertainties have 

been shown to vary with pollution levels ranging from ~45% to ~105% with largest contributions from the spectral 

fitting and AMF calculations (González Abad et al., 2015, 2016).  

2.1.2 OMI – QA4ECV NO2 and HCHO 150 
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We also evaluated OMI NO2 and HCHO retrievals from the QA4ECV project (www.qa4ecv.eu). Retrievals from the 

QA4ECV NO2 version 1.1 and QA4ECV HCHO version 1.2 data products are provided daily at the same spatial 

resolution as the NASA OMI products. Zara et al. (2018) describes the QA4ECV OMI NO2 and HCHO slant column 

retrievals and Boersma et al. (2018) and De Smedt et al. (2018) describe the entire QA4ECV OMI NO2 and HCHO 

retrieval algorithms, respectively, in detail. They are summarized here briefly.  155 

 QA4ECV retrievals of NO2 SCDs are obtained by linear fits of optical depths to the observed optical depth 

using the DOAS technique with a fitting window between 405 and 465 nm (Boersma et al., 2018). The QA4ECV NO2 

retrieval differs from the NASA OMI NO2 retrieval in some of the retrieval steps (Compernolle et al., 2020). To 

calculate tropospheric AMFs, the QA4ECV NO2 retrieval algorithm uses the surface albedo (Kleipool et al., 2008) 

and cloud products (Veefkind et al., 2016) from the previous NASA OMI NO2 version 3 product (see Lamsal et al., 160 

2021); however, uses a priori profiles from the TM5 CTM at 1.0° × 1.0°. Tropospheric VCDs are separated from the 

entire column using the global TM5 assimilation model. For detailed information on the differences in spectral fitting 

between the NASA OMI NO2 and QA4ECV NO2 retrieval algorithms we refer you to Zara et al. (2018). For details 

about differences between AMF calculations in the NASA and QA4ECV OMI algorithms see Lorente et al. (2017). 

QA4ECV NO2 data have been shown to perform relatively well in clean to moderately polluted regions and have a 165 

low bias in highly polluted regions (Compernolle et al., 2020). Retrievals of QA4ECV HCHO SCDs are conducted in 

a similar manner to QA4ECV NO2 using the DOAS technique and optical depths with a fitting window between 328.5 

and 359.0 nm (Zara et al., 2018; De Smedt et al., 2018). For information about the inputs used in AMF calculations 

for QA4ECV OMI NO2 and HCHO retrievals see Table S1. QA4ECV HCHO retrievals show minimal bias in clean 

to moderately polluted regions and low biases in polluted locations (e.g., De Smedt et al., 2021). 170 

2.2 TROPOMI remote-sensing products 

The TROPOMI hyperspectral spectrometer (including eight bands in the UV, VIS, near-infrared, and shortwave 

infrared wavelengths) is onboard the Sentinel-5 Precursor (S5P) satellite which was launched in October 2017. 

TROPOMI is in orbit with a similar local equatorial overpass time (local time ~13:30) as OMI. TROPOMI has a swath 

width of ~2,600 km and a ground pixel size of 3.5 km × 7.0 km at nadir during LISTOS 2018 (since August 6, 2019 175 

TROPOMI data is available at 3.5 km × 5.5 km) which is >12 times finer than OMI. TROPOMI retrievals have been 

used in numerous recent studies investigating processes controlling NO2 concentrations and trends (e.g., Goldberg et 

al., 2021) and FNRs (Wu et al., 2022), taking advantage of the high spatial resolution of the sensor, along with being 

validated thoroughly (e.g., Judd et al., 2020; De Smedt et al., 2021). The high spatial resolution information provided 

by TROPOMI, compared to past UV/VIS spaceborne sensors, reduces the representation error of each retrieved NO2 180 

and HCHO pixel (Souri et al., 2022). In this study, we apply daily TROPOMI tropospheric column NO2 v2.3.1 (van 

Geffen et al., 2022) and HCHO v1.1.5 retrievals (De Smedt et al., 2018). For TROPOMI NO2 data we used the product 

provided by the Product Algorithm Laboratory (PAL). The retrievals of both species use QA4ECV methods described 

above with spectral fitting windows between 405.0 and 465.0 nm for NO2 (Boersma et al., 2018) and 328.5 and 359.0 

nm for HCHO (De Smedt et al., 2018). TROPOMI retrievals are similar to those from the QA4ECV OMI product as 185 

it applies the same a priori profiles, albedo data, and cloud fraction information. TROPOMI NO2 v2.3.1 retrievals do 
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differ from QA4ECV OMI NO2 products as it uses cloud pressure input from the O2-A band following the FRESCO+ 

wide approach (van Geffen et al., 2022). TROPOMI HCHO v1.1.5 retrievals differ from the QA4ECV OMI HCHO 

data by applying the S5P ROCINN algorithm which uses the O2-A for cloud pressures (Loyola et al., 2018). For more 

information about the input data used in AMF calculations for TROPOMI NO2 and HCHO retrievals see Table S1. 190 

2.3 Airborne spectrometers 

The primary evaluation data set used in this study is from the UV/VIS airborne remote-sensing data product from 

GeoTASO and GCAS. Since no bias-corrected tropospheric column HCHO data is available during LISTOS 2018 

from the Pandora network, this ground-based remote-sensing network is not applied here. Both the GeoTASO and 

GCAS instruments and retrievals are very similar and together provide a consistent evaluation data set (see details on 195 

the instruments and NO2 and HCHO retrievals in Kowalewski and Janz (2014), Leitch et al. (2014), Nowlan et al. 

(2016, 2018), and Judd et al. (2020)). GeoTASO and GCAS data were obtained from a nominal flight altitude of 9 km 

above ground level (agl) covering the majority of the troposphere. Airborne data from 13 flight days during LISTOS 

2018 (see Table 1) are provided with a native spatial resolution of 250 m × 250 m. To reduce noise in the raw 

GeoTASO and GCAS retrievals, the data were averaged to a 1 km × 1 km spatial resolution. In total, measurements 200 

from 8 and 12 flight days were spatiotemporally co-located with OMI and TROPOMI overpasses, respectively.  

 The airborne GeoTASO and GCAS retrievals used as the reference data set for validating all satellite data 

are not without error. A nearly identical airborne NO2 data set used here was applied in Judd et al. (2020) and was 

evaluated with Pandora systems. Judd et al. (2020) demonstrated that the airborne NO2 retrievals had a median bias 

of ~1%, with no magnitude dependent biases, and uncertainty within ±25%. Due to limited availability of Pandora 205 

HCHO data, airborne GeoTASO and GCAS retrievals of this species have had minimal evaluation. Nowlan et al. 

(2018) did evaluate GCAS tropospheric HCHO retrievals using airborne in situ measurements and determined GCAS 

had generally good performance with a < 10% bias (minimal magnitude dependence in bias) and high correlation with 

observations. Overall, the satisfactory comparison of airborne GeoTASO and GCAS tropospheric column NO2 and 

HCHO with independent observations provides confidence that this data can be applied as a reference data set to 210 

validate OMI and TROPOMI. However, it should be kept in mind that there is some level of error/bias associated with 

the GeoTASO and GCAS data (e.g., Nowlan et al., 2016; 2018; Judd et al., 2020). 

 The GeoTASO and GCAS data taken during LISTOS 2018 provided a novel opportunity to use airborne 

observations to validate both OMI and TROPOMI coincidently. This airborne data differs from many of the recent 

satellite validation studies which use longer term information from networks of point-source measurements (e.g., 215 

Pandora, MAX-DOAS) (e.g., Compernolle et al., 2020; Vigouroux et al., 2020; Verhoelst et al., 2021; Lamsal et al., 

2021; Souri et al., 2023). The airborne sensors allowed for evaluation of OMI and TROPOMI over large areas which 

equates to having tens to hundreds of clustered ground-based systems on each flight day. Having long-term 

observations for robust temporal validation of satellite sensors is ideal; however, this case study is unique in that it 

provides information about the performance of coincident retrievals from OMI and TROPOMI over variable emission 220 

source regions (urban to rural areas) and scenes with differing geophysical characteristics (e.g., surface albedo, 

tropospheric compositions, clouds, aerosol amounts/elevation, etc.) during a single flight which is another novel 
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aspect. Even though there are limited observations available from the flights in LISTOS 2018 (Table 1), all correlation 

statistics presented in this study (Table 2 and 3) are significant to a 95% confidence interval (p-value < 0.05). 

Table 1. Airborne (GeoTASO and GCAS) flight information (date, flight times, number of co-located satellite 225 

and airborne FNR grids) used in this study.  

Flight Day 

Number 

Date Time (Hours in UTC) OMI FNR 

co-locations1 

TROPOMI FNR 

co-locations2 

1 June 25, 2018 
Morning: 12.5–15.7 

Afternoon: 16.8–20.3 
12 201 

2 June 30, 2018 
Morning: 12.2–15.6 

Afternoon: 16.7–20.4 
37 251 

3 July 2, 2018 
Morning: 11.4–16.6 

Afternoon: 17.9–21.5 
6 66 

4 July 19, 2018 
Morning: 11.4–15.3 

Afternoon: 16.9–20.9 
0 155 

5 July 20, 2018 
Morning: 11.4–15.3 

Afternoon: 17.1–21.1 
5 136 

6 August 5, 2018 
Morning: 12.5–16.5 

Afternoon: 17.8–22.3 
5 0 

7 August 6, 2018 
Morning: 11.7–16.0 

Afternoon: 17.2–21.5 
0 67 

8 August 15, 2018 
Morning: 11.2–15.5 

Afternoon: 17.0–21.6 
0 150 

9 August 16, 2018 
Morning: 11.3–15.3 

Afternoon: 17.3–21.5 
0 108 

10 August 24, 2018 
Morning: 10.9–15.3 

Afternoon: 16.6–21.0 
20 147 

11 August 28, 2018 
Morning: 11.3–15.3 

Afternoon: 16.6–20.3 
8 150 

12 August 29, 2018 
Morning: 11.2–15.1 

Afternoon: 16.6–20.8 
0 166 

13 September 6, 2018 
Morning: 11.9–15.8 

Afternoon: 17.2–21.4 
8 96 

1OMI FNR co-locations for the near-native 0.15° × 0.15° spatial resolution gridded data. 
2TROPOMI FNR co-locations for the near-native 0.05° × 0.05° spatial resolution gridded data. 

2.4 CMAQ model simulation 

Prior vertical profiles play a major role in satellite retrievals of tropospheric chemistry (e.g., Palmer et al., 2001; 230 

Boersma et al., 2007; Johnson et al., 2018). Past research has demonstrated that using a well-constrained, high spatial 

resolution, air quality model as the a priori profile source for satellite retrievals can improve VCD results (e.g., 

Laughner et al., 2019). To compare NASA OMI and TROPOMI tropospheric NO2, HCHO, and FNR retrievals using 

a common a priori profile data set, we conduct sensitivity tests using high spatial resolution (4 km × 4 km) model 

simulated vertical profiles of NO2 and HCHO from the Community Multiscale Air Quality Model (CMAQ) (version 235 

5.3) to reprocess these satellite retrievals.  
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 CMAQ simulations were driven offline using the meteorological fields simulated by the Weather Research 

and Forecasting (WRF) model (version 4.1). The WRF-CMAQ spatial domain set-up is shown in Fig. S1. The outer 

WRF domain covers the contiguous United States (CONUS) at a horizontal grid spacing of 12 km × 12 km and the 

inner domain, encompassing the entire LISTOS 2018 domain, at a horizontal grid spacing of 4 km × 4 km. Both the 240 

outer and inner model domains use 35 vertical levels between the surface and 50 hPa. The WRF configuration follows 

Appel et al. (2017), which includes improved representation of the land-surface processes and vertical mixing, and 

employs four-dimensional data assimilation every 6 hours to limit the growth of meteorological errors (WRF 

configuration details in Table S2). A 15-day spin up period was used for the WRF-CMAQ simulations. Anthropogenic 

emissions of trace gases and aerosols are based on the National Emissions Inventory (NEI) representative of 2014 as 245 

this was the latest available inventory at the time of emission preparation. NEI 2014 emissions were processed using 

the Sparse Matrix Operator Kernel Emissions (SMOKE) model. WRF simulations were used to drive SMOKE for 

generating meteorology-dependent anthropogenic emissions. Biogenic emissions of trace gases are calculated online 

using the Biogenic Emissions Inventory System (BEIS). Gas-phase chemistry is represented using Carbon bond 6 

(CB06) version r3. Chemical lateral boundary conditions for the outer domain used the idealized profiles available in 250 

CMAQ but are dynamically provided to the inner domain every hour based on the outer domain simulations.  

2.5 Evaluation techniques 

To perform a systematic, direct comparison of daily satellite products to airborne retrievals, OMI and 

GeoTASO/GCAS data were spatially-averaged to 0.15° × 0.15° (~15 km × 15 km, similar to OMI nadir spatial 

resolution) for evaluating OMI. TROPOMI and airborne observations were spatially-averaged at 0.05° × 0.05° (~5 255 

km × 5 km, similar to TROPOMI nadir spatial resolution) for evaluating TROPOMI. To investigate the impact of the 

higher spatial resolution of TROPOMI, NO2, HCHO, and FNR retrievals from this sensor were also averaged to 0.15° 

× 0.15° for inter-comparison with OMI. To smooth and reduce the noise of satellite data, and reduce spatial 

representation errors of satellite compared to GeoTASO/GCAS, we apply a point oversampling technique (e.g., 

McLinden et al., 2012) when spatially averaging the retrievals. This method uses a larger grid box radius, compared 260 

to the averaging resolution, to bin individual retrievals. When averaging satellite data to the 0.15° × 0.15° spatial 

resolution (standard radius of 0.075°), we employed a radius twice the standard size equal to 0.15°. Similarly, when 

averaging satellite data to the 0.05° × 0.05° spatial resolution (standard radius of 0.025°) we applied a radius of 0.05°.  

Given that the nominal flight altitude during LISTOS 2018 was 9 km agl, in order to directly compare to 

satellite tropospheric column retrievals, we scaled airborne tropospheric column NO2 values by multiplying the 265 

observed values by the ratio of the total tropospheric NO2 column abundance over the tropospheric column NO2 

abundance below 9 km agl (i.e., 
∫ 𝑇𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑁𝑂2 (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒)

∫ 𝑇𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑁𝑂2 (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 9 𝑘𝑚 𝑎𝑔𝑙)
). This scaling factor for NO2, which showed 

that typically 60% to 99% of tropospheric NO2 is below 9 km agl, was derived for each co-located GeoTASO and 

GCAS retrieval, using WRF-CMAQ simulations. Airborne tropospheric column HCHO data were not scaled since 

typically >95% of HCHO was determined to be below the nominal aircraft flight altitude. 270 

 GeoTASO and GCAS data were co-located to OMI and TROPOMI using a temporal threshold of ± 60 

minutes. GeoTASO and GCAS HCHO and NO2 data were first filtered to remove airborne retrievals where the 
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radiance flag was > 0.5 as they are considered to be influenced by clouds or glint. We initially applied a temporal 

threshold of ± 30 minutes; however, this resulted in < 50 total co-locations with OMI retrievals. Therefore, the longer 

temporal threshold criteria was necessary to achieve enough co-locations for statistical evaluation. The longer 275 

temporal threshold of ± 60 minutes resulted in only slightly larger median biases compared to when applying the ± 

30-minute threshold. Similar bias statistics using temporal offsets of 30 and 60 minutes agrees with other studies 

which show minimal dependence on temporal offsets between 0 and 60 minutes (e.g., Tack et al., 2021). It should be 

noted that the temporal threshold of ± 60 minutes, and spatial averaging methods applied in this study, resulted in 

slightly larger spread in TROPOMI NO2 data when evaluated with GeoTASO and GCAS data compared to the results 280 

in Judd et al. (2020) which used a 30-minute threshold.  

Satellite retrievals with high quality were isolated for use by using individual OMI retrievals that had quality 

flags (qa) = 0 for HCHO and NO2. This qa value is suggested in OMI data user’s manuals for the application of the 

highest quality data and for the removal of OMI pixels impacted by the row anomaly. For TROPOMI, individual NO2 

and HCHO retrievals that had qa > 0.75 and qa > 0.5 were used, respectively, as recommended by the TROPOMI data 285 

user manuals. To avoid anomalous OMI and TROPOMI retrieval values of HCHO, we remove VCDs with lower and 

upper bounds of -8.0 × 1015 and 7.6 × 1016 molecules cm-2, respectively. These bounds were determined from typical 

HCHO VCD values and a threshold of 3 times the fitting uncertainty of OMI retrievals presented by Zhu et al. (2020). 

Similarly, to avoid anomalous OMI and TROPOMI retrieval values of NO2, we remove VCDs with lower and upper 

bounds of -1.08 × 1015 and 8.07 × 1016 molecules cm-2, respectively (personal communication with OMI NO2 290 

algorithm team). Both OMI and TROPOMI retrievals with solar zenith angles > 70° and effective cloud fractions > 

30% and > 50%, respectively were also removed. These additional thresholds were chosen based on guidance from 

the OMI and TROPOMI data user’s guides. Finally, only co-located spatially-averaged grids that had 75% spatial 

coverage by GeoTASO/GCAS and airborne remote-sensing NO2 VCDs > 1.0 × 1015 molecules cm-2 were used.  

 The statistical evaluation of OMI and TROPOMI retrievals with co-located GeoTASO and GCAS data was 295 

primarily done using bias (median), oscillation/variability in bias represented by the standard deviation of bias 

(referred to as bias standard deviation), normalized median bias (NMB) which are normalized to the magnitude of 

observed data, root mean squared error (RMSE), and simple linear regression statistics (slope, y-intercept, coefficient 

of determination (R2)) based on ordinary least-squares. 

3 Results 300 

3.1 Campaign-averaged tropospheric FNRs 

Airborne observations during the summer of 2018 suggest that during the mid-day hours large areas of FNRs ≤ 1.0 

occurred over the urban regions surrounding New York City (NYC). The term “urban” here is used qualitatively as 

the region close in proximity to the center of NYC where elevated tropospheric column NO2 values were frequently 

observed. The opposite is true for the usage of “rural”. Figure 1 shows the campaign-averaged FNRs from OMI 305 

(NASA and QA4ECV) and TROPOMI, averaged to spatial resolutions of 0.15° × 0.15° and 0.05° × 0.05°, compared 

to co-located airborne remote-sensing products. These regions of FNRs ≤ 1.0 likely have O3 production which is 
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limited by VOC emissions. Outside of the VOC/radical-limited region, airborne observations show a clear transition 

zone of FNRs between 1.0 and 2.0 and NOx-limited regimes (FNR > 2.0) in the rural regions of the northeast US. It 

should be noted these FNR thresholds follow the assumptions of Duncan et al. (2010); however, there are uncertainties 310 

in the exact thresholds separating O3 sensitivity production regimes and they can be spatiotemporally variable (e.g., 

Lu and Chang, 1998; Schroeder et al., 2017; Souri et al., 2020; Jin et al., 2020; Ren and Xie, 2022). For simplicity, 

we use the constant FNR ratio thresholds defined by Duncan et al. (2010) for discussion. 

 Satellite retrievals also displayed the same general regional patterns of FNRs in the northeast US that were 

observed by airborne remote-sensing (see Fig. 1). However, all satellite products show higher FNRs (between 1.0 and 315 

3.0) in the areas where airborne observations observed NOx-saturated regimes. In general, TROPOMI FNRs at the 

0.05° × 0.05° spatial resolution have the lowest values over NYC in better agreement with airborne observations. 

TROPOMI retrieval data also better captures the spatial pattern and urban/rural interface of observed O3 sensitivity 

production regimes compared to OMI data. TROPOMI FNR retrievals and airborne observations display a clear 

urban/rural interface; however, OMI products result in noisier spatial patterns. When averaged to a resolution similar 320 

to the native resolution of OMI (0.15° × 0.15°), TROPOMI data suggests higher FNRs ≥ 2.0 in the vicinity of NYC, 

in line with OMI retrieval products. It should be noted that satellite- and airborne-retrieved FNRs are dependent on 

both tropospheric NO2 and HCHO data. Median/mean and unresolved biases in FNRs can then be driven by errors in 

either retrievals of NO2 and/or HCHO. Therefore, the following sections of this work investigate the statistical 

evaluation of NASA OMI, QA4ECV OMI, and TROPOMI tropospheric NO2, HCHO, and resulting FNRs. 325 

 

Figure 1: NASA OMI, QA4ECV OMI, TROPOMI, and airborne tropospheric column FNR retrievals averaged for all 

flights conducted during the LISTOS 2018 field campaign. All co-located OMI and airborne remote-sensing tropospheric 

column FNR values are averaged at 0.15° × 0.15° and TROPOMI co-locations are averaged at both 0.05° × 0.05° and 0.15° 

× 0.15° spatial resolutions. The black triangle indicates the location of the city of NYC. 330 
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3.2 Statistical evaluation of OMI and TROPOMI 

3.2.1 Tropospheric column NO2 systematic bias and uncertainty 

The spatial pattern of campaign-averaged tropospheric column NO2 retrieved by the satellites and airborne sensors 

highlight the large pollution region around the urban areas of NYC (see Fig. S2). Tropospheric NO2 columns over 

NYC from both satellite and airborne observations frequently exceed 1.0 × 1016 molecules cm-2. However, while 335 

airborne NO2 values in the rural regions surrounding NYC were frequently < 2.0 × 1015 molecules cm-2, satellite 

retrievals had larger NO2 columns between 2.0 × 1015 and > 4.0 × 1015 molecules cm-2. This suggests OMI and 

TROPOMI retrievals have a high bias in clean-region tropospheric NO2 columns (spatial distribution of satellite NO2 

bias shown in Fig. S4). This high bias in satellite tropospheric column NO2 values in clean regions can possibly be 

linked to underestimated abundance of free tropospheric NO2 in CTMs used as a priori profile data sets for OMI and 340 

TROPOMI retrievals resulting in AMFs which are too low (e.g., Silvern et al., 2019). Studies have shown that the 

coarse spatial resolution of the CTMs used to derive a priori NO2 profiles for OMI and TROPOMI cannot resolve the 

sharp gradients of NO2 at the urban/rural interface and lead to the overestimate of satellite retrievals in low pollution 

regions (Lamsal et al., 2014; Tack et al., 2021). Finally, other aspects of the satellite retrievals such as biases in 

stratospheric NO2 concentrations and separation from the troposphere, aerosol interference, and surface albedo could 345 

contribute to these overestimations in clean regions (e.g., Lamsal et al., 2021). 

 Figure 2 shows the comparison of co-located NASA OMI, QA4ECV OMI, and TROPOMI retrievals of 

tropospheric NO2 columns with observed data from all flights (statistical evaluation in Table 2). The high bias of 

tropospheric NO2 columns in clean regions retrieved by the satellite sensors outside the urban regions of NYC resulted 

in linear regression slopes < 0.65 and positive y-intercepts. Some of this high bias in clean regions is offset in the 350 

campaign-averaged median biases by the fact that the satellite retrievals have a low bias compared to NO2 values 

observed over polluted regions (> 1.0 × 1016 molecules cm-2). The magnitude dependence of satellite retrieved NO2 

agrees with past validation studies (e.g., Zhao et al., 2020; Lamsal et al., 2021; Verhoelst et al., 2021). This magnitude 

dependence has been shown to be driven by uncertainties in AMF values used in the retrievals (Martin et al., 2002; 

Boersma et al., 2004). TROPOMI at its near native spatial resolution has the least high bias of clean-region 355 

tropospheric NO2 demonstrated by the lower y-axis intercept compared to all OMI and TROPOMI data products at 

the coarser spatial resolution. Overall, NASA OMI and QA4ECV displayed small campaign-averaged median biases 

(NMB %) of ~0.4 × 1015 molecules cm-2 (~6.5%). TROPOMI retrievals had a campaign-averaged median bias of -0.3 

molecules cm-2 (-4.8%) and 0.3 × 1015 molecules cm-2 (5.8%) when averaged at 0.05° × 0.05° and 0.15° × 0.15° spatial 

resolution, respectively. It should be noted that the TROPOMI low bias in tropospheric column NO2 is improved with 360 

the newer retrieval algorithm used in this study compared to early versions of the data product (e.g., v1.2.2 had a 

campaign-averaged median low bias of -1.3 × 1015 molecules cm-2) primarily due to better cloud pressure input data 

(FRESCO+ wide) now used in TROPOMI retrievals (Riess et al., 2022).  
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Figure 2: Comparison of satellite- (NASA OMI, QA4ECV OMI, and TROPOMI) and airborne-retrieved tropospheric NO2 365 
(molecule cm-2) for each co-located measurement taken during the field campaign. All co-located OMI and airborne remote-

sensing tropospheric column NO2 values are averaged at the 0.15° × 0.15° resolution and TROPOMI co-located data are 

averaged at 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. The solid black line shows the 1:1 comparison and the dashed 

line shows the linear regression fit. The figure inset shows the main statistics (coefficient of determination (R2), slope (M), 

y-intercept (B), and median bias and bias standard deviation) of the comparison. 370 

Noise in the satellite retrievals resulting in unresolved errors (RMSE), is important for accurate retrievals of 

the spatial-resolved daily tropospheric column NO2, HCHO, and FNRs. At the near-native spatial resolution of the 

three satellite NO2 retrievals, RMSE values were similar (~3.5-4.5 × 1015 molecules cm-2) with QA4ECV OMI data 

having the largest bias standard deviation and RMSE values and TROPOMI having the least noise in the data (see 

Table 2). To determine if the higher spatial resolution and lesser noise of TROPOMI retrievals resulted in more 375 

favorable comparisons to observations, we further compared TROPOMI tropospheric column NO2 values to OMI 

results. TROPOMI data averaged to match OMI spatial resolution displayed the lowest RMSE values. At both spatial 

resolutions, TROPOMI tropospheric NO2 data has less spread in the data compared to OMI products. The larger noise 

in OMI tropospheric NO2 SCDs compared to TROPOMI NO2 SCDs has been shown in recent studies (van Geffen et 

al., 2020, 2022) and has been attributed to reduced noise in TROPOMI due to its higher spatial resolution (factor of 380 

>12 better) and similar, to even better, signal-to-noise ratios. Furthermore, TROPOMI NO2 at 0.05° × 0.05° better 

reproduces the spatial patterns of observed tropospheric column NO2. This is emphasized by the higher correlation 

and lower RMSE values when evaluating TROPOMI tropospheric NO2 columns with observations in comparison to 

the other satellite products and visually more clearly separating the urban/rural interface seen in tropospheric NO2 (see 

Fig. S2). Finally, TROPOMI NO2 data averaged to the coarser spatial resolution of OMI has similar high median bias 385 

as both OMI retrieval algorithms; however, displayed RMSE values nearly twice as small as NASA and QA4ECV 

OMI, further emphasizing the importance of spatial resolution for retrieving tropospheric NO2 columns. 
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Table 2. Statistical evaluation of NASA OMI, QA4ECV OMI, and TROPOMI retrievals of tropospheric 

column NO2 and HCHO and resulting FNRs. Statistics presented are the number of co-located grids (N), mean 

concentration ± standard deviation from satellite (Sat Conc.) and airborne (Air. Conc.) retrievals, median bias 390 

± bias standard deviation, NMB (%), RMSE, coefficient of determination (R2 €), and linear regression slope. 

NASA OMI (0.15° × 0.15°) QA4ECV OMI (0.15° × 0.15°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 101 101 116 N 82 85 106 

Sat. Conc. 4.4±4.3 17.5±7.5 6.3±5.3 Sat. Conc. 3.7±3.5 16.5±9.1 5.9±3.9 

Air. Conc. 3.6±2.1 13.2±7.1 6.1±6.6 Air. Conc. 3.4±2.2 13.3±7.4 6.1±6.9 

Bias  0.4±3.8 5.1±7.8 0.4±4.1 Bias  -0.2±3.3 2.3±8.9 0.4±4.5 

NMB  11.0 38.7 6.3 NMB  -5.4 17.3 6.8 

RMSE 3.8 8.9 4.1 RMSE 3.3 9.4 4.5 

R2 0.23 0.19 0.62 R2 0.17 0.19 0.62 

Slope 1.0 0.46 0.63 Slope 0.67 0.54 0.44 

TROPOMI (0.15° × 0.15°) TROPOMI (0.05° × 0.05°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 261 261 261 N 1693 1741 1802 

Sat. Conc. 3.6±1.8 15.9±4.7 5.9±4.2 Sat. Conc. 4.0±2.6 16.2±7.0 5.7±4.6 

Air. Conc. 3.2±1.7 12.8±6.3 6.0±6.1 Air. Conc. 3.4±2.0 14.6±6.7 6.6±6.9 

Bias  0.3±1.4 2.9±4.9 0.3±3.3 Bias  0.4±2.3 1.9±6.7 -0.3±3.7 

NMB  9.3 23.1 5.8 NMB  13.0 12.9 -4.8 

RMSE 1.4 5.6 3.3 RMSE 2.3 6.7 3.9 

R2 0.48 0.40 0.74 R2 0.29 0.28 0.75 

Slope 0.75 0.47 0.59 Slope 0.70 0.55 0.58 

*concentration, bias, and RMSE units are ×1015 molecules cm-2. 
€correlation values which are presented in italics are statistically significant to a 95% confidence interval. 

3.2.2 Tropospheric column HCHO systematic bias and uncertainty 

The spatial pattern of campaign-averaged tropospheric column HCHO retrieved by the satellites and airborne sensors 395 

demonstrate the large HCHO concentrations in both urban and rural regions during the summer of 2018 (see Fig. S3). 

Airborne observations of tropospheric column HCHO concentrations show that over NYC the concentrations are on 

average ~1.5 × 1016 molecules cm-2, and can exceed 2.5 × 1016 molecules cm-2 during the afternoon hours (see Fig. 

S3). Both OMI and TROPOMI retrieval products have smaller gradients between HCHO concentrations in the urban 

and rural regions in comparison to airborne observations.  400 

 Figure 3 shows the scatter plot comparison of co-located NASA OMI, QA4ECV OMI, and TROPOMI 

retrievals of tropospheric HCHO columns compared to observed data (statistical evaluation in Table 2). This figure 

and Table 2 illustrate the high bias of clean-region tropospheric HCHO columns retrieved by satellites (spatial 

distribution of HCHO bias in OMI and TROPOMI shown in Fig. S5). All satellite products have a high bias when 

tropospheric columns HCHO are ≤ 1.5 × 1016 molecules cm-2, linear regression slopes < 0.60, and positive y-intercepts. 405 
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Both OMI retrieval products and TROPOMI data better replicate the larger HCHO concentrations (between 1.5 × 1016 

and 3.0 × 1016 molecules cm-2) with some small low bias in more polluted regions (> 3.0 × 1016 molecules cm-2). On 

average, NASA OMI had the largest campaign-averaged median high bias of 5.1 × 1015 molecules cm-2 (38.7%). 

QA4ECV OMI data results in a lower campaign-averaged median high bias of 2.3 × 1015 molecules cm-2 (17.3%). 

Finally, TROPOMI retrievals had the lowest campaign-averaged median high bias of 1.9 × 1015 molecules cm-2 410 

(12.9%) at 0.05° × 0.05° spatial resolution and 2.9 × 1015 molecules cm-2 (23.1%) when averaged at 0.15° × 0.15°.  

The results of the validation shown in Fig. 3 and Table 2 are consistent with recent validation studies such as 

the work of Vigouroux et al. (2020) and De Smedt et al. (2021) which also show OMI and TROPOMI retrievals are 

biased high in clean conditions and in regions of high tropospheric HCHO columns are generally consistent with some 

moderate low bias. In order to provide more of a quantitative comparison with recent validation studies of OMI and 415 

TROPOMI HCHO (Vigouroux et al., 2020; De Smedt et al., 2021), we separated our collocated satellite/airborne data 

points into clean (<5.0×1015 molecules cm-2) and polluted (≥8.0×1015 molecules cm-2) scenes. We chose a slightly 

higher threshold for separating clean HCHO columns to optimize the number of colocations for statistics. We also 

added a highly polluted threshold (>16.0×1015 molecules cm-2) to further emphasize our results (see Table S3). While 

the positive tropospheric HCHO column biases derived in our study are higher compared to Vigouroux et al. (2020) 420 

and De Smedt et al. (2021), the magnitude dependence is similar. We show that clean-region satellite HCHO columns 

are larger than observations for all satellite products and transition to a low bias in highly polluted regions. 

The NASA and QA4ECV OMI HCHO retrievals had RMSE values ~9.0 × 1015 molecules cm-2 with 

QA4ECV data having slightly larger data spread. The higher spatial resolution and sufficient signal-to-noise of 

TROPOMI resulted in HCHO RMSE values ~25-30% lower compared to OMI. Spatially averaging TROPOMI 425 

tropospheric column HCHO to coarser grids to increase signal-to-noise aided in further reducing RMSE values (see 

Table 2). While both TROPOMI and OMI tropospheric HCHO retrievals display large noise, TROPOMI has 

correlation values better compared to OMI with R2 values being a factor of 2 higher at the same spatial resolution. 

Vigouroux et al. (2020) and De Smedt et al. (2021) agree with our analysis that TROPOMI HCHO has lower RMSE 

values, and higher correlations with observations, compared to OMI products. The larger spread in tropospheric 430 

HCHO from OMI compared to TROPOMI is likely due to the weaker signal-to-noise in OMI and potentially the fewer 

co-located data points for statistical analysis.  

All three satellite HCHO products have larger RMSE values and low correlations, when compared to the 

statistical evaluation of satellite NO2 retrievals. TROPOMI SCD retrievals of HCHO have been shown in recent work 

(e.g., De Smedt et al., 2021) to have less noise compared to OMI due to the higher spatial resolution and at least the 435 

same signal-to-noise. Furthermore, UV/VIS retrievals at shorter wavelengths (~340 nm) have much smaller sensitivity 

to HCHO compared to longer wavelengths (~440 nm) employed for NO2 retrievals (Lorente et al., 2017). The 

sensitivity of UV/VIS retrievals to HCHO is lower throughout the middle and lower troposphere compared to NO2, 

due to stronger Rayleigh scattering at shorter wavelengths, approaching twice as low near the surface (Lorente et al., 

2017). The higher sensitivity of NO2 retrievals in the lower troposphere, compared to HCHO, is important as the 440 

largest spatiotemporal variability of both NO2 and HCHO concentrations occur lower in the troposphere leading to 

the higher correlation and lower RMSE values in the tropospheric column NO2 statistical evaluation.  
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Figure 3: Comparison of satellite- (NASA OMI, QA4ECV OMI, and TROPOMI) and airborne-retrieved tropospheric 

HCHO (molecule cm-2) for each co-located measurement taken during the field campaign. All co-located OMI and airborne 445 
remote-sensing tropospheric column HCHO values are averaged at the 0.15° × 0.15° resolution and TROPOMI co-located 

data are averaged at 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. The solid black line shows the 1:1 comparison and 

the dashed line shows the linear regression fit. The figure inset shows the main statistics (coefficient of determination (R2), 

slope (M), y-intercept (B), and median bias and bias standard deviation) of the comparison. 

3.2.3 Tropospheric column FNR systematic bias and uncertainty 450 

The comparison of satellite- and airborne-retrieved FNRs is shown in Fig. 4 and Table 2. NASA OMI and TROPOMI 

(at 0.05° × 0.05° and 0.15° × 0.15°) displays campaign-averaged median biases of 0.3-0.4 and QA4ECV OMI data 

resulted in a campaign-averaged median bias of -0.2. Regardless of how tropospheric column NO2 and HCHO 

compared to observations, all satellite products evaluated here resulted in campaign-averaged median biases ≤ 0.4 

suggesting that the systematic/median biases in the individual proxy species for OMI and TROPOMI offset to result 455 

in accurate median campaign-averaged FNR values. Visual inspection of TROPOMI and QA4ECV OMI retrievals 

suggests that these two products have the best ability to replicate the lowest observed FNRs over NYC during the field 

campaign (see Fig. 1). However, besides NASA OMI retrievals, the satellite products have linear regression slopes < 

1.0 indicating a high bias for lower FNR values and some small low bias for higher observed FNRs.  
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 460 

Figure 4: Comparison of satellite- (NASA OMI, QA4ECV OMI, and TROPOMI) and airborne-retrieved tropospheric FNR 

(unitless) for each co-located measurement taken during the field campaign. All co-located OMI and airborne remote-

sensing tropospheric column FNR values are averaged at the 0.15° × 0.15° resolution and TROPOMI co-located data are 

averaged at 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. The solid black line shows the 1:1 comparison and the dashed 

line shows the linear regression slope. The figure inset shows the main statistics (coefficient of determination (R2), slope 465 
(M), y-intercept (B), and median bias and bias standard deviation) of the comparison. 

All three satellite products displayed high correlation with tropospheric column NO2 observations, suggesting 

these spaceborne sensors can accurately assess the spatial and temporal patterns of this species. However, all the 

satellite products had very low correlation and high RMSE values when compared with observations of HCHO. In 

fact, the rank in correlation levels of all four FNR satellite products evaluated here directly matches the rank in 470 

correlation levels of tropospheric HCHO. This leads to the conclusion that given bias variability and RMSE in satellite 

tropospheric HCHO are large, and they directly drive the uncertainty in FNR retrievals, satellite HCHO observations 

are the limiting factor of using spaceborne retrievals to accurately assess daily FNRs.  

 An interesting finding of this study is that the systematic/median bias of OMI and TROPOMI HCHO and 

NO2 tropospheric columns tend to cancel out resulting in low median biases for FNRs; however, the unresolved biases 475 

in HCHO and NO2 retrievals do not cancel out. This is clear as the RMSE values for FNRs are still large. Furthermore, 

biases for HCHO and NO2 retrievals from OMI and TROPOMI are not correlated with R2 values <0.05 for all three 

satellite products. The uncertainty in HCHO and NO2 retrievals resulted in FNR RMSE values for NASA OMI, 

QA4ECV OMI, and TROPOMI (at near native spatial resolutions) of 3.8, 3.3, and 2.3, respectively. Spatially-

averaging TROPOMI tropospheric column HCHO data was shown to reduce the noise in the data, resulting in FNR 480 

RMSE values for TROPOMI at the coarser spatial resolution nearly a factor of two lower compared to OMI. Overall, 

the large noise and unresolved error in tropospheric HCHO retrievals directly result in the uncertainty in FNR 

retrievals. It should be noted that the HCHO validation data from GeoTASO and GCAS are also hindered by weak 
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absorption signatures in the shorter UV/VIS wavelengths and could add to the bias variability and RMSE values 

derived in this study. However, the level of uncertainty of tropospheric column HCHO data from OMI and TROPOMI 485 

derived in this study are generally consistent with other recent studies (e.g., Vigouroux et al., 2020; De Smedt et al., 

2021); therefore, we feel the conclusions drawn here are robust. 

 There are two main reasons HCHO retrievals are nosier compared to NO2: a) optical depths for HCHO peak 

in the UV range (<380 nm) at the same wavelengths coinciding with large Rayleigh scattering and optical depths of 

O3 leading to a weak/noisy signal, and b) the stronger NO2 optical depths in the visible wavelength range (400-500 490 

nm), where there are higher signal-to-noise ratios, permits retrievals with less noise. To further evaluate the 

comparison of uncertainty in remote-sensing of NO2 and HCHO, we compared GCAS/GeoTASO precision levels for 

the two species. Nowlan et al. (2018) derived the precision of the airborne remote-sensing systems used for NO2 and 

HCHO retrievals in this study. Nowlan et al. (2018) quantified precisions of 1.0 × 1015 molecules cm-2 and 1.9 × 1016 

molecules cm-2 at a fine spatial resolution of 250 m × 500 m for NO2 and HCHO, respectively. Averaging the data to 495 

the spatial resolution of 0.05° × 0.05° improves these precision levels to 6.4 × 1013 molecules cm-2 and 1.2 × 1015 

molecules cm-2 for NO2 and HCHO, respectively. The campaign-averaged column NO2 and HCHO abundances from 

GCAS/GeoTASO at 0.05° × 0.05° were 6.6 × 1015 molecules cm-2 and 1.5 × 1016 molecules cm-2, respectively. 

Comparing the precision values of Nowlan et al. (2018) to the mean abundances during LISTOS at the same spatial 

resolution results in mean precision levels of 1% and 8% for NO2 and HCHO, respectively. Overall, from this analysis 500 

it is expected that the HCHO retrievals should have a factor of 5-10 more noise compared to NO2. 

3.3 Common a priori sensitivity test 

This section analyzes the impact of using common, high spatial resolution (4 km × 4 km), WRF-CMAQ-predicted 

NO2 and HCHO vertical profiles as a priori information in NASA OMI and TROPOMI retrievals. GeoTASO and 

GCAS retrievals were not reprocessed in order to have a consistent reference data set for the evaluation of the standard 505 

and reprocessed satellite retrievals. While reprocessing the airborne data with the higher spatial resolution model 

output would in itself be interesting (as done in Judd et al., 2020), the direct evaluation of the improvements in the 

reprocessed satellite data compared to the standard retrieval would not be possible. Figure 5 shows the campaign-

averaged FNRs from NASA OMI and TROPOMI retrievals, when reprocessed with WRF-CMAQ NO2 and HCHO a 

priori vertical profiles, compared to co-located airborne remote-sensing products (scatter plot comparison displayed 510 

in Fig. S6; statistical evaluation shown in Table 3). Comparing NASA OMI FNRs from this figure to Fig. 1, it is 

evident that using high spatial resolution WRF-CMAQ-predicted vertical profiles as a priori information resulted in 

FNR retrievals that are better able to capture the low FNR values (FNR ≤ 1.0). Reprocessed TROPOMI FNRs also 

have lower values around NYC; however, were reduced less compared to OMI retrievals.  
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 515 

Figure 5: NASA OMI and TROPOMI reprocessed tropospheric column FNR retrievals compared to airborne FNR 

observations averaged for all flights. All co-located OMI and airborne remote-sensing tropospheric column FNR values are 

averaged at 0.15° × 0.15° and TROPOMI co-locations are averaged at both 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. 

The OMI FNR retrievals calculated with the scaled WRF-CMAQ profiles are identified as “scaled” in the figure panel 

titles. The black triangle indicates the location of the city of NYC. 520 

 Comparing standard retrieval products from NASA OMI (see Fig. S2 for NO2 and Fig. S3 for HCHO) to 

reprocessed retrievals (see Fig. S7 for NO2 and Fig. S8 for HCHO), it is clear that in general the higher spatial 

resolution model data resulted in larger tropospheric column NO2 and slightly larger tropospheric column HCHO 

values. For TROPOMI, reprocessing the retrievals with WRF-CMAQ a priori information caused increases in 

tropospheric column NO2 over polluted regions, but small decreases over rural areas. Tropospheric column HCHO 525 

data for the reprocessed TROPOMI data were slightly lower in more polluted urban regions near NYC and much 

lower in the rural areas dominated by low concentrations compared to standard retrievals.  

The increases in NASA OMI tropospheric NO2 columns resulted in a small negative bias in FNR retrievals 

(-0.3), compared to a small positive bias in the standard products (0.4). When compared to airborne observations the 

reprocessed NASA OMI NO2 data displays a large positive median bias which was not evident in the standard retrieval 530 

products. Similarly, reprocessed NASA OMI tropospheric column HCHO data had higher positive bias compared to 

standard retrievals. It should be noted, as previously discussed, that systematic/median biases in both reprocessed 

NASA OMI NO2 and HCHO retrievals offset resulting in median FNR values that compared relatively well to 

observations. However, the uncertainty in reprocessed satellite HCHO and NO2 retrievals did not cancel out resulting 

in FNR RMSE values which were still large for NASA OMI (3.9) and TROPOMI (3.5). 535 

Table 3. Statistical evaluation of NASA OMI and TROPOMI retrievals of tropospheric column NO2 and 

HCHO, and resulting FNRs, when reprocessed with high spatial resolution WRF-CMAQ a prior information. 

Statistics presented are the number of co-located grids (N), mean concentration ± standard deviation from 

satellite (Sat Conc.), median bias ± bias standard deviation, NMB (%), RMSE, coefficient of determination 

(R2), and linear regression slope. 540 
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NASA OMI (0.15° × 0.15°) Scaled NASA OMI (0.15° × 0.15°)1 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 101 101 116 N 101 101 116 

Sat. Conc. 3.5±4.3 20.4±8.9 10.5±8.5 Sat. Conc. 3.1±3.6 15.8±7.1 6.3±6.2 

Bias  -0.3±3.9 8.6±7.8 3.1±5.1 Bias  0.5±3.2 4.4±7.1 -0.3±3.9 

NMB  -9.4 65.7 50.0 NMB  16.7 35.6 -4.2 

RMSE 3.9 10.6 6.7 RMSE 3.5 7.8 3.9 

R2 0.17 0.30 0.65 R2 0.21 0.25 0.67 

Slope 0.85 0.70 1.03 Slope 1.05 0.50 0.76 

TROPOMI (0.15° × 0.15°) TROPOMI (0.05° × 0.05°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 261 261 261 N 1693 1741 1802 

Sat. Conc. 3.2±1.7 12.8±4.4 6.0±4.3 Sat. Conc. 3.4±2.6 14.6±6.8 6.6±5.2 

Bias  -0.3±1.4 -1.2±5.1 0.1±3.8 Bias  0.2±2.2 -0.1±6.3 -0.4±4.1 

NMB  -9.1 -9.4 2.0 NMB  4.7 -0.3 -6.4 

RMSE 1.4 5.2 3.8 RMSE 2.2 6.3 4.1 

R2 0.43 0.35 0.61 R2 0.32 0.32 0.67 

Slope 0.67 0.41 0.55 Slope 0.74 0.58 0.61 

*concentration, bias, and RMSE units are ×1015 molecules cm-2. 
1reprocessed with “scaled” CMAQ a priori profiles. 

 The larger tropospheric NO2 columns in reprocessed NASA OMI data using high spatial resolution model 

data as a priori information was also shown in past studies (e.g., Souri et al., 2016; Goldberg et al., 2017). Both our 

study and the work by Goldberg et al. (2017) show that high spatial resolution CMAQ-predicted NO2 a priori profiles 545 

results in OMI tropospheric NO2 columns that are as high as a factor of 2 larger than the standard retrievals. This high 

bias is caused by smaller AMFs calculated due to the shape factor of high spatial resolution CMAQ-predicted NO2 

concentrations having a too steep NO2 gradient. The change in HCHO shape factors when using WRF-CMAQ a priori 

profiles resulted in slightly higher tropospheric HCHO columns when compared to standard products for the same 

reason as tropospheric column NO2. Similar to Goldberg et al. (2017), we used airborne in situ observations of NO2 550 

and HCHO from LISTOS 2018 and the Ozone Water-Land Environmental Transition Study 2 (OWLETS-2, 

https://www-air.larc.nasa.gov/missions/owlets/) field campaigns, OWLETS-2 took place just prior to LISTOS-2018 

during the summer of 2018 in the Baltimore, MD region, to correct the model-predicted a priori profiles for use in 

NASA OMI retrievals and is discussed later in this section. 

Tropospheric NO2 columns in reprocessed TROPOMI retrievals resulted in a slightly lower median biases (-555 

0.4 × 1015 molecules cm-2) compared to the standard products (-0.3 × 1015 molecules cm-2) with slightly larger RMSE 

values in the reprocessed NO2 retrievals. Reprocessing TROPOMI retrievals of tropospheric column HCHO resulted 

in smaller concentrations and improved median biases (-0.1 × 1015 molecules cm-2) and RMSE values (6.3 × 1015 

molecules cm-2) compared to the median bias (1.9 × 1015 molecules cm-2) and RMSE (6.7 × 1015 molecules cm-2) in 
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the standard products. The good performance of both reprocessed TROPOMI NO2 and HCHO resulted in FNR values 560 

with a smaller median bias (0.2) compared to standard products (0.4) and slightly lower RMSE values. 

 Following methods similar to Goldberg et al. (2017) we used the University of Maryland Cessna 402B 

airborne observations to apply in situ data observational constraints on the NO2 and HCHO a priori profiles applied 

in NASA OMI retrievals. The evaluation of WRF-CMAQ-predicted NO2 (14 flights during LISTOS 2018 and 

OWLETS-2) and HCHO (7 flights during LISTOS 2018) vertical profiles using airborne data is displayed in Fig. S9. 565 

Compared to measured NO2 values, the model displays a high bias below 1 km agl of ~0.4 ppb which was often > 

50% larger than observations. This is in stark contrast to the model performance above 2 km agl where the model has 

a low bias of -0.2 to -0.4 ppb often approaching 100% lower than observations. For the WRF-CMAQ comparison to 

airborne in situ HCHO data, the model has a low bias throughout the lower troposphere, with larger low biases near 

the surface (-3.0 ppb between 0-1 km agl) and smaller low biases in the free troposphere (~-1.3 ppb above 2 km agl). 570 

These low biases range between -50 to -100% lower compared to measured values. In addition to physiochemical 

parameterizations applied in CTMs, meteorological predictions by WRF, such as wind speed and direction, must have 

limited errors in order to accurately predict the horizontal and vertical distribution of NO2 and HCHO concentration 

(e.g., Laughner et al., 2016; Liu et al., 2021). Compared to the airborne in situ observations taken during LISTOS 

2018 and OWLETS-2, WRF wind speed and direction predictions during this study performed relatively well with 575 

median correlation (R) and bias values of 0.70 and 0.63 and ≤1.0 m s-1 in the u- and v-wind components, respectively.  

We applied approximated scaling factors to the a priori profiles to reprocess NASA OMI data (hereinafter 

referred to as “scaled”). Separate scaling factors were applied above and below the PBL, approximated to be at 1.5 

km agl, where noticeable differences in model performance were evident. For NO2, we apply a scaling factor of 0.5 

to WRF-CMAQ a priori NO2 profiles in the PBL and 5.0 above the PBL. For HCHO, we applied a scaling factor of 580 

2.0 to WRF-CMAQ a priori profiles in the PBL and 5.0 above the PBL. These scaling factors are approximations of 

the model performance and are simply applied to determine the impact of “raw” and “scaled” WRF-CMAQ-simulated 

a priori profiles in NASA OMI NO2 and HCHO retrievals.  

 The spatial distribution of FNRs derived from the scaled NASA OMI reprocessed NO2 and HCHO retrievals 

is shown in Fig. 5 (scatter plot comparison displayed in Fig. S6; statistical evaluation in Table 3). From Table 3 and 585 

Fig. 5 it can be seen that the scaled WRF-CMAQ a priori profiles result in higher FNR values and improved 

tropospheric column NASA OMI NO2 and HCHO retrievals compared to reprocessed products using the raw model 

output (see Fig. S7 and S8). Scaled NASA OMI tropospheric column NO2 and HCHO retrievals had smaller median 

biases of -0.3 × 1015 and 4.4 × 1015 molecules cm-2 and much lower RMSE values of 3.9 × 1015 and 7.8 × 1015 

molecules cm-2, respectively, compared to the retrievals with raw WRF-CMAQ predictions. Finally, the improved 590 

accuracy of tropospheric column NO2 and HCHO retrievals using scaled WRF-CMAQ predictions resulted in a 

slightly higher magnitude of FNR median bias (0.5); however, with lower RMSE values, compared to reprocessed 

data using raw CMAQ predictions. Compared to standard NASA OMI products, the reprocessed satellite data using 

scaled WRF-CMAQ data had similar median biases in FNR values and lower median biases for HCHO (4.4 × 1015 

molecules cm-2) and NO2 (-0.3 × 1015 molecules cm-2). All reprocessed data variables using scaled model simulated 595 
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shape factors, due to the reduction in uncertainty in retrieve HCHO and NO2 data, had lower RMSE values, higher 

correlation (except for FNR), and similar to better linear regression slopes compared to standard satellite retrievals. 

3.4 Discussion of satellite sensor errors and capabilities 

3.4.1 Relative error of FNR retrievals 

A recent study by Souri et al. (2023) showed that satellite retrievals errors, in particular the unresolved error in HCHO 600 

products, are the largest source of uncertainty in using satellite FNRs to investigate O3 sensitivity. Here we propagate 

the uncertainty (RMSE) calculated from NASA OMI, QA4ECV OMI, and TROPOMI to FNR calculations using Eq. 

(15) from Souri et al. (2023) and created maps of the relative error (see Fig. 6). From this figure it can be seen that 

satellite retrieval errors in HCHO and NO2 contribute significantly to satellite-derived FNR relative errors. In the 

largest NOx emission source regions of NYC, where combined column abundances of HCHO and NO2 are largest, is 605 

where the lowest relative errors of FNRs occur. For TROPOMI, which has the smallest values of uncertainty, relative 

errors are as low as ~40%. Away from the emission region of NYC these relative error values reach as high as ~80%. 

Similar patterns of relative error in FNRs from NASA and QA4ECV OMI retrievals are derived; however, the lowest 

relative error values over NYC are ~50% and reach values up to 100%. The largest relative errors are seen outside the 

source region of NYC in QA4ECV OMI retrievals due to having the largest uncertainty in HCHO and lower column 610 

abundances of this species in the rural regions of the domain. In addition to the fact that the less noisy retrievals from 

TROPOMI result in lower relative errors in FNR data, Fig. 6 further demonstrates the larger uncertainty in OMI as 

the relative error patterns are more heterogeneous. The spatial averaging of TROPOMI data results in the lowest 

relative errors of all four satellite products as TROPOMI at the coarser (0.15° × 0.15°) spatial resolution had relative 

errors as low as 35% and only increase to ~60% outside of the source location of NYC. 615 
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Figure 6: Campaign-averaged relative error in FNR products from standard NASA OMI, QA4ECV OMI, and TROPOMI 

retrievals due to uncertainty in HCHO and NO2 retrievals. All co-located OMI and airborne remote-sensing tropospheric 

column FNR values are averaged at 0.15° × 0.15° and TROPOMI co-locations are averaged at both 0.05° × 0.05° and 0.15° 

× 0.15° spatial resolutions. The black triangle indicates the location of the city of NYC. 620 

3.4.2 Spatial and temporal capabilities of satellite FNR retrievals 

Given the limited spatiotemporal data coverage provided by the LISTOS campaign, a robust understanding of the 

temporal capabilities of OMI and TROPOMI to retrieve FNRs is not possible. LEO satellites obtain, at best, a single 

snapshot of both HCHO and NO2 each day, so one could only hope to obtain daily variability of FNRs from these 

spaceborne systems. To determine whether OMI and TROPOMI capture the variability of the daily mean tropospheric 625 

column quantities of NO2, HCHO, and FNRs over the entire LISTOS domain from airborne data, we compared these 

daily mean values from the satellite products to the airborne observations. For NASA OMI, daily correlation (R2) 

values were 0.85 (p = 0.001), 0.58 (p = 0.03), and 0.26 (p = 0.20) for NO2, HCHO, and FNRs, respectively. For 

QA4ECV OMI, daily correlation values were 0.85 (p = 0.001), 0.80 (p = 0.002), and 0.47 (p = 0.06) for NO2, HCHO, 

and FNRs, respectively. For TROPOMI, daily correlation values were 0.92 (p = <0.001), 0.85 (p = <0.001), and 0.41 630 

(p = 0.03) for NO2, HCHO, and FNRs, respectively. All daily correlation statistics for HCHO and NO2 were significant 

to a 95% confidence interval and suggest that both OMI and TROPOMI can capture the overall inter-daily magnitudes 

of FNR indicator species. However, only TROPOMI could observe the daily variability of domain-wide FNRs within 

a 95% confidence interval. This suggests that unresolved errors in either HCHO or NO2 retrievals from OMI, using 

both the NASA and QA4ECV algorithms, are too large to confidently capture the inter-daily variability in FNRs.   635 

The same analysis was conducted for NASA and QA4ECV OMI except just for retrievals near the large 

anthropogenic source regions in NYC (within 0.35 degrees of the city center) where relative errors due to satellite 

retrievals for FNR calculations were the lowest (see Fig. 6). Daily correlation values for FNR retrievals near the source 

region of NYC for NASA OMI (0.13; p-value = 0.39) were reduced compared to domain-wide means and QA4ECV 

OMI (0.66; p-value = 0.01) correlations were improved near the source region of NYC. Indicator species correlation 640 

values from NASA OMI were degraded compared to the domain-wide analysis suggesting that this satellite product 

may not be able to capture inter-daily variability of FNRs even in large source regions. However, this analysis suggests 

that QA4ECV OMI data has the capability to retrieve daily variability of FNRs in large emission regions such as NYC 

to a statistically significant level. Overall, TROPOMI retrievals at both fine and coarse spatial resolutions evaluated 

in this study are able to capture daily variability of tropospheric FNRs over the entire domain and emission source 645 

regions better compared to OMI products. 

Recent studies have shown that averaging OMI data (especially HCHO retrievals) for longer temporal periods 

can reduce the noise and uncertainty in this data product. For example, in the recent paper by Souri et al. (2023), it 

was shown that unresolved errors in OMI HCHO can be reduced in monthly-averages compared to daily retrievals by 

~33% while there was little improvement in uncertainty statistics of NO2 retrievals from OMI. However, recent studies 650 

(e.g., Schroeder et al., 2017) have also shown that for trend studies, monthly-averaging column FNR data can mask 

FNR temporal gradients that exist within that period. This could hinder the results of trend studies of pollution on O3 

exceedance days and days of lower pollution. 
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 To understand the extent to which OMI and TROPOMI retrievals lose spatial information (variance) 

compared to airborne data, we applied the algorithm named SpaTial Representation Error EstimaTor (STREET) 655 

(Souri, 2022). This method creates semivariograms determining the changes in spatial variability with distance for a 

defined variable (we used HCHO and NO2). The maximum variance at which the modeled semivariogram levels off 

is defined as a sill and data sets with larger sill values possess richer spatial information. Figure S10 shows 

semivariograms, and the fitted stable Gaussian function, applied to TROPOMI and NASA OMI compared to airborne 

NO2 columns. Concerning the comparison of TROPOMI and airborne data at 0.05° × 0.05° resolution, we observe 660 

airborne semivariogram as high as 20 × 1015 molecules cm-2, a factor of two larger than what OMI achieves. At a ~20 

km length scale, TROPOMI can only observe ~40% of the airborne spatial variance, indicating that the spatial 

representation error in TROPOMI is ~60% at this scale. NASA OMI fails to recreate >50% of the maximum variance 

observed in airborne data at 0.15° × 0.15° resolution. At ~20 km length scale, the spatial loss of OMI is >70%.  

Figure S10 depicts the semivariograms and fitted exponential curves applied to TROPOMI and airborne 665 

HCHO. Immediately evident is that both semivariograms level off at longer distances compared to the analysis of 

NO2. This stems from the fact that HCHO columns tend to be spatially more homogeneous in the region of the LISTOS 

domain. For most length scales, TROPOMI can replicate the spatial variance observed in airborne data (~70%). We 

do not present the semivariogram for NASA OMI HCHO columns as the underlying unresolved biases in OMI are 

very large, introducing artifacts that cannot be solely attributable to unresolved spatial scales. Since TROPOMI is able 670 

to capture the observed HCHO variability to a sufficient degree, and can sufficiently retrieve NO2 spatial variability, 

this suggests that TROPOMI has better capability to retrieve FNR spatial variability compared to OMI. 

3.4.3 Reasons for systematic bias and uncertainty in FNRs 

As demonstrated in this study, median biases of OMI and TROPOMI HCHO and NO2 retrievals tend to cancel out 

when calculating tropospheric column FNRs. Figures S4 and S5 show that the median bias spatial distribution of all 675 

satellite HCHO and NO2 retrievals are similar with a small low median bias in column abundances near the source 

region of NYC and high biases in clean regions. Table S1 shows that AMF calculations from NASA OMI, QA4ECV 

OMI, and TROPOMI use many of the same input data sets for geophysical variables (e.g., surface albedo, cloud 

fraction, cloud radiance, etc.) resulting in campaign-averaged AMFs of HCHO, NO2, and the ratios of these products 

(AMF FNRs) which are relatively similar across the LISTOS domain (see Fig. S11). For all satellite products, HCHO 680 

and NO2 AMFs have much less variability compared to AMFs derived for airborne data which along with SCD biases 

may contribute to the median high biases in clean HCHO and NO2 retrievals. A primary reason for the inability of 

satellites to capture AMF variability over the LISTOS domain is likely the shape factors being used for these 

calculations having spatial resolutions of 1.0° × 1.0° to even coarser grids. Furthermore, while TROPOMI and 

QA4ECV OMI retrievals used daily model data, NASA OMI uses monthly products which will be challenged to 685 

capture the large spatiotemporal variability of tropospheric HCHO and NO2 vertical profiles. Finally, coarse 

geophysical input data sets used in satellite AMF calculations will not capture the spatial distribution of these variables 

as well as the high spatial resolution geophysical data sets used in airborne AMF calculations (see Judd et al. (2020)).  
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 The more interesting aspect found in this study is that unresolved errors in HCHO and NO2 retrievals don’t 

cancel out in FNR calculations as do the systematic/median biases. While there are some reasons why uncertainty in 690 

HCHO and NO2 retrievals could stem from opposite impacts of geophysical parameters in AMF calculations, such as 

AMF uncertainties in HCHO and NO2 having opposite trends with increasing surface reflectance (comparing Fig. 10 

from De Smedt et al. (2018) and Fig. 20 from Liu et al. (2021)), these differences are minor and AMF calculations for 

both species in NASA OMI, and QA4ECV OMI, and TROPOMI have similar input data sets. A portion of the 

uncertainty of HCHO and NO2 retrievals not canceling out stems from the AMF calculations shown in Fig. S11. In 695 

order for HCHO and NO2 AMFs to have no impact on VCD uncertainty cancelations, AMF FNRs would be a constant 

or similar value at all locations. However, from Fig. S11 it is shown that AMF FNRs, while having smooth spatial 

variability, are not a constant value. Therefore, some of the unresolved error residual in the FNR calculations will be 

due to differences in HCHO and NO2 AMF calculations. This is emphasized in NASA OMI AMF FNR plots in Fig. 

S11 where different CTMs, at different spatial resolutions (see Table S1), are used to derive HCHO and NO2 shape 700 

factors leading to noticeable differences in the respective AMF calculations. This likely is one of the reasons that 

NASA OMI FNRs have the largest uncertainty (highest bias standard deviation and RMSE values) compared to 

airborne data (see Table 2)  

The rest of the remaining unresolved error in FNR calculations is likely due to the SCD retrievals from OMI 

and TROPOMI sensors. SCD retrievals of HCHO from TROPOMI have been shown to have less noise compared to 705 

OMI (De Smedt et al., 2021). The larger uncertainty in OMI retrievals of HCHO compared to TROPOMI directly 

leads to the higher bias standard deviation and RMSE values for derived FNRs in OMI compared to TROPOMI (see 

Table 2). This is further emphasized in the spatially-averaged TROPOMI data (at 0.15° × 0.15° to match OMI data) 

where HCHO and FNR retrievals have a factor of 2-3 lower RMSE compared to OMI products. TROPOMI NO2 SCDs 

have also been shown to have less noise compared to OMI retrievals (van Geffen et al., 2020, 2022). This is also 710 

shown in Table 2 when averaging TROPOMI data to match the OMI spatial resolution. Overall, HCHO and NO2 SCD 

noise contributes to uncertainty in OMI and TROPOMI VCDs and are not cancelled out in FNR calculations; however, 

the reduced noise in TROPOMI SCD retrievals leads to improved VCDs of HCHO and NO2 abundances. 

4 Conclusions 

This study presents a statistical evaluation and inter-comparison of tropospheric FNR retrievals from two commonly 715 

applied LEO sensors for investigating O3 production sensitivity regimes (i.e., OMI and TROPOMI). The evaluation 

of NASA OMI, QA4ECV OMI, and TROPOMI retrievals of tropospheric NO2 and HCHO, and resulting FNRs, was 

conducted with airborne remote-sensing observations (GeoTASO and GCAS) during LISTOS 2018. Past studies have 

focused on the evaluation of satellite retrievals of tropospheric column NO2 and HCHO, individually; however, this 

is the first study to validate multiple satellite platform’s and retrieval algorithm’s ability to retrieve tropospheric FNRs. 720 

The quantification of satellite-retrieved tropospheric FNRs biases/errors is currently an important, but relatively 

unknown, uncertainty when applying spaceborne remote-sensing products to investigate O3 production regimes. 

The statistical evaluation of NASA OMI, QA4ECV OMI, and TROPOMI illustrated that all three retrievals 

have a high bias of clean-region tropospheric column NO2 and HCHO concentrations. The satellite retrievals compare 
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more accurately to larger tropospheric column NO2 and HCHO values observed in more polluted areas. The 725 

magnitude-dependent biases for OMI and TROPOMI NO2 and HCHO derived in this study agrees with other recent 

validation projects (e.g., Judd et al., 2020; Vigouroux et al., 2020; Zhao et al., 2020; Compernolle et al., 2020; Lamsal 

et al., 2021; De Smedt et al., 2021; Verhoelst et al., 2021). Both OMI and TROPOMI retrievals compared well to 

observed NO2 throughout the campaign; however, the statistical comparison with observed HCHO data resulted in 

larger and more variable biases. Overall, daily- and campaign-averaged comparisons of the satellite HCHO data to 730 

observations displayed large RMSE values emphasizing the large noise in these retrieval products which hinders the 

accuracy of FNRs from spaceborne sensors. While all three satellite products at the near native spatial resolutions had 

low systematic campaign-averaged FNR median biases, suggesting median/systematic biases in HCHO and NO2 data 

cancel out, the RMSE values for FNRs remained large, primarily due to uncertainty in HCHO and NO2 retrievals not 

offsetting. Given the limited measurement sensitivity of shorter UV/VIS wavelengths to HCHO in the middle to lower 735 

troposphere, improved information (in situ, remote-sensing, or models) of the vertical profiles of HCHO to be used as 

a priori information would benefit satellite remote-sensing capabilities for observing HCHO and FNRs. 

 The higher spatial resolution of TROPOMI, along with a good signal-to-noise ratio, allows this sensor to 

better capture the spatiotemporal variability and urban/rural interface of tropospheric column NO2 and HCHO values 

and resulting FNRs. This satellite data had the highest correlations with observed NO2, HCHO, and FNRs throughout 740 

the campaign, along with lowest RMSEs of all three satellite products. The added benefit of TROPOMI spatial 

resolution is important as this sensor has now been operational for 5+ years and can be applied in trend analysis along 

with case studies. Future studies of FNR trends should include both OMI and TROPOMI retrievals and determine best 

practices to fuse/link the two data sets. 

 Applying multiple retrieval algorithms to the radiances of a single satellite sensor is of interest in order to 745 

determine how input variables (e.g., information on a priori vertical profiles, clouds, surface albedo, etc.) impact the 

retrieval performance. This study evaluated results of OMI retrievals applying two well-known retrieval algorithms 

(i.e., NASA version 4 product and output from the QA4ECV project). Results from the two retrievals were similar for 

NO2 but differed primarily in tropospheric column HCHO, where NASA OMI data had a median bias a factor of two 

larger than QA4ECV. Both retrieval algorithms resulted in large RMSE values indicative of the noise in tropospheric 750 

HCHO retrievals. While NASA OMI data displayed less accurate retrievals in HCHO, and similar performance for 

NO2, NASA OMI data resulted in FNR values with similar biases and uncertainties. Given that both the NASA and 

QA4ECV retrievals of tropospheric HCHO resulted in noisy data products, this emphasizes the need for improved 

signal-to-noise and calibration and improved a priori vertical profile information of HCHO to negate the low 

measurement sensitivity of HCHO in the middle to lower troposphere for future satellite sensors.  755 

Our study investigated the impact of high spatial resolution WRF-CMAQ-predicted NO2 and HCHO a priori 

profiles on OMI and TROPOMI retrievals of FNRs. TROPOMI reprocessed data had improved performance when 

using the higher spatial resolution WRF-CMAQ data as the a priori product compared to standard retrievals which 

apply coarser resolution TM5 output. In comparison to standard OMI products the reprocessed satellite data using 

optimized WRF-CMAQ a priori information had similar median biases in FNR values and lower median biases in 760 

both indicator species. All reprocessed OMI data variables using optimized simulated shape factors, due to the 
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reduction in unresolved error in retrieved HCHO and NO2 data, had lower RMSE, higher correlation (except for FNR), 

and similar to better linear regression slopes compared to observations. These results emphasize the importance of 

accurate a priori information. Future studies should investigate the impact of various spatial resolution a priori profile 

data sets, ranging from the ~1° × 1° GMI and TM5 model data used for OMI and TROPOMI, respectively, to much 765 

higher resolution air quality model simulations, on the results of reprocessed satellite NO2 and HCHO retrievals. 

 Overall, the systematic biases and uncertainties presented in this study can be used in future studies when 

interpreting the accuracy of OMI and TROPOMI retrievals of FNRs, and the two indicator species, used for 

investigating O3 sensitivity regimes. A main take away from this study is that it is necessary to statistically evaluate 

both the tropospheric FNRs, and the NO2 and HCHO products, individually, as large median biases in both NO2 and 770 

HCHO satellite products can offset resulting in accurate median/mean FNR values. However, this study emphasizes 

that uncertainty in NO2 and HCHO satellite retrievals do not offset in OMI or TROPOMI products greatly hindering 

the accuracy of daily scenes of FNRs from these sensors. The large unresolved biases in tropospheric column HCHO 

retrievals appear to be the controlling and limiting factor of daily FNR accuracy. While both TROPOMI and OMI 

captured some of the spatiotemporal variability of observed NO2 within the LISTOS domain, only TROPOMI is able 775 

to capture spatiotemporal HCHO variability with uncertainty low enough for potentially capturing daily FNR 

variability. The unresolved error in HCHO retrievals from OMI is too large and likely limits the application of this 

data on a daily basis near the native spatial resolution of the sensor. Overall, the individual satellite products display 

varying degrees of capability to retrieve tropospheric FNRs and it is necessary to further validate OMI and TROPOMI 

retrievals using other field campaign or stationary network data in different regions of the world to identify the primary 780 

controlling factors of systematic biases and uncertainty. 
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