

Final response to referee comments on paper amt-2022-258

First of all, we would like to thank reviewer #2 for his/her constructive comments, which helped to improve the manuscript. In particular, there are 9 additional and several revised Figures, as well as a more detailed description and discussion of the third-order baseline fit and methane calibration. Below we give answers and clarifications to all comments made by the referee (repeated in italics).

Anonymous Referee #2

General comments

Reviewer: 1) *The title does not clearly reflect the contents of the paper. This work deals with algorithm updates to TROPOMI/WFMD. It does not introduce new retrieval concepts (the only change to the retrieval approach is an update in the handling of the spectral baseline during fitting). In addition, some algorithm updates proposed in this manuscript are discussed with a strong focus on XCH₄ retrievals, some even disregarding XCO. The title should therefore be changed to focus on the content of the paper. I propose "TROPOMI/WFMD XCH₄ v1.8: improvements in spectral fitting, auxiliary datasets and post-processing"*

Authors: From our point of view, the updates regarding quality filter, calibration, and destriping procedure are also part of the retrieval algorithm. Most updates affect XCO in the same way (with the exception of the machine learning calibration). The focus is on XCH₄ as the requirements are more stringent and the presented improvements are thus more relevant to meet them. Instead of exclusively covering XCH₄, we will discuss XCO in more detail. The title is changed to "Advances in retrieving XCH₄ and XCO from Sentinel-5 Precursor: Improvements in the scientific TROPOMI/WFMD algorithm" to better reflect the contents of the paper. Further details are provided in the abstract and do not need to be listed in the title.

Reviewer: 2) *I am concerned that the authors do not appropriately cite work that they have presented in previous articles. Two examples stand out to me.*

Firstly, section 3.2 does not provide significant new information on WFMD v1.8 retrievals, since the algorithm updates related to the digital elevation model have already been discussed in a recent AMT article by the same team (Hachmeister et al. 2022). In fact, Figure 4 of the present article is essentially identical to Figure 10 of Hachmeister et al.. The authors should not publish these results twice. In my opinion, section 3.2 should therefore be removed.

Secondly, in line 68, please remove reference Buchwitz et al. 2017. That article is neither about TROPOMI XCH₄ nor about WFMD retrieval configuration details and it is therefore an inappropriate self-reference in the context of that paragraph ("verifying or improving operational products...", sensitivity to "details of the algorithm setup").

Authors: Section 3.2 actually provides significant new information. In Hachmeister et al. 2022 issues of GMTED2010 over Greenland were identified using regional ICESat-2 data. The

update here is different in several aspects: it uses a different data set, namely the Copenicus GLO-90 DEM, and it is applied globally. In particular, the discussion of the spatially resolved impact by means of global maps is important and new. The example of Greenland (Figure 4) is shown because it is the region of the largest differences on the globe when updating the DEM. It has to be checked that the Greenland issue is also resolved when using GLO-90 (instead of ICESat-2 as in Hachmeister et al.). In fact, the methane distribution looks even more homogeneous with GLO-90 compared to ICESat-2. The uniqueness of this section is highlighted more clearly in the revised version.

Buchwitz et al. 2017 was intended to serve as a reference for the general desirability of an ensemble approach in terms of assessing the robustness of specific results regardless of the exact instrument or data set. Since this seems to be confusing and misunderstandable in this context, the citation will be removed.

Reviewer: 3) *The paper reaches substantial conclusions with respect to the performance enhancement due to the new destriping method and adapted cloud-filtering, but the work on the polynomial fit parameter update (section 3.1) does not go beyond a qualitative discussion of a case-study and that section requires more attention (see specific comments).*

Authors: Section 3.1 is completely revised also discussing the improvement in fit quality and the global impact of the increase of polynomial degree quantitatively and its relation to the calibration for methane. The impact is also compared to the operational product where this update seems to be more significant. This is highlighted by the example of the Taymyr region in Northern Siberia. For TROPOMI/WFMD the impact is typically small and is largest for the Etosha pan. Further notable differences in Northern Africa and on the Arabian peninsula can be largely resolved by the subsequent calibration instead when using a quadratic polynomial. After calibration, the Etosha pan is by far the region of most significant performance improvement. This is the reason why it was the region of choice that was explicitly analysed in the original version. In that sense, it was far more than just an arbitrary case study. All these aspects are made more clear and discussed in more detail in the revised version (see also answers to specific comments).

Reviewer: 4) *The article does not compare TROPOMI/WFMD results to the operational TROPOMI XCO and XCH₄ products. I think that such a comparison would be a necessary addition to this manuscript.*

Authors: Although we do not think that this is a necessary addition, as it was already done in the previous algorithm paper, we added comparisons and discussions with the operational product in appropriate sections of the manuscript, e.g. in terms of impact of polynomial degree increase, magnitude of calibration correction, or striping artefacts.

Reviewer: 5) *Please comment if TROPOMI/WFMD and its post-processor will be made available to fellow scientists, which would greatly profit traceability of this work.*

Authors: It is not planned to make the complete source code available, but we acknowledge key python packages relevant in the implementation of the random forest and destriping code in the revised version.

Reviewer: 6) *The authors occasionally go into detail on the performance of XCO with v1.8*

of their algorithm, but they do not systematically conduct their analyses for both CH₄ and CO. I think the article would be much clearer if CO was either dropped entirely from this work or if equal emphasis was placed on the two molecules.

Authors: The focus is on XCH₄ as the improvements are more relevant in terms of meeting the mission requirements. As XCO is more variable in the atmosphere the requirements are considerably relaxed. Most updates affect XCO in the same way (with the exception of the machine learning calibration). Since XCO is simultaneously retrieved with XCH₄, it is not dropped entirely but discussed in more detail in the revised version, where appropriate.

Reviewer: 7) The abstract should be edited to mention the TCCON analysis and the considerable improvement in filtering clouds above water surfaces.

Authors: This is included in the revised version.

Specific comments

Reviewer: Line 12: "machine learning calibration... has been optimised."; add a short statement describing the implemented updates.

Authors: Has been included.

Reviewer: Line 26/28: This sentence may be misunderstood in a way that the lifetime of methane is 9 years shorter than the lifetime of CO₂. Please rephrase.

Authors: Has been changed to "Since CH₄ (with a lifetime of about 9 years) is considerably shorter-lived in the atmosphere than CO₂, ...".

Reviewer: Line 33: This occurs both through natural processes and resulting from human activities. -> This occurs both through natural processes and human activities.

Authors: Has been changed.

Reviewer: Line 49: ...TANSO FTS aboard GOSAT ... retrieves CO₂ and CH₄, ... -> ... measures/observes CO₂ and CH₄ absorption lines, ...

Authors: Has been changed.

Reviewer: Line 63: add citations to ATBDs for both operational products:

<https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Carbon-Monoxide-Total-Column-Retrieval.pdf>

<https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Methane-retrieval.pdf>

Authors: Has been added.

Reviewer: Line 64: add citation to <https://amt.copernicus.org/preprints/amt-2022-255/>

Authors: Has been added.

Reviewer: Line 100-105: To make this sentence more readable I suggest breaking it into two sentences.

Authors: Has been done.

Reviewer: Line 114: Is the only update a change with respect to the gridding of the underlying data? Please explain in the text.

Authors: Yes, this is the only change and it is clarified in the text.

Reviewer: Line 115: Was there a noticeable impact of the update in the meteorological reanalysis data on XCH₄ results? Please elaborate.

Authors: The theoretical improvements due to the better temporal and spatial resolution of the meteorological data are actually difficult to demonstrate and typically small, because noticeable impact is only expected when conditions change significantly on a small scale and/or in the short term. This note is added in the revised version.

Reviewer: Line 115: v1.5 -> v1.2 (or if v1.5 is correct, what is v1.5?)

Authors: v1.5 was the previous officially released data set before v1.8. For a better insight we have added a table summarising all versions with the respective differences in the algorithm setup.

Reviewer: Section 3.1 makes the case that increasing the degree of the polynomial which approximates the spectral baseline (from 2 to 3) is a general improvement to the XCH₄ v1.8 product. I find that this section would be significantly more robust and less of a qualitative discussion if the following updates were made.

a) The motivation of this section is to highlight changes in the spectral fitting procedure, yet no actual spectral analysis is presented here. The proposed fit updates would be much more convincing if the effect on fit residuals was displayed, and if fit statistics (Chi²/RMS, convergence quality, etc.) for retrievals with and without the polynomial upgrade (in the Etosha pan and elsewhere) were included in the manuscript.

Authors: We have included a spectral analysis discussing fits and residuals with quadratic/cubic polynomial in- and outside of the pan, as well as maps of the root mean square of the fit residuals demonstrating that the fit quality over the pan improves significantly with a cubic polynomial and becomes comparable to the surroundings of the pan, while there is no significant change outside of the pan.

Reviewer: b) According to <https://earthobservatory.nasa.gov/images/147221/cycles-of-wet-and-dry-in-etosha-pan>, the wet season in the Etosha Pan occurs between October and March. The authors argue that wetland-related CH₄ enhancements are visible in the images of the second row in Figure 2. However, this appears to be a measurement taken during the dry-season. Additionally the true color images from VIIRS do not show any obvious inundation in the region as far as I can tell. I suspect that the residual XCH₄ enhancements in Figure 2c and 2f are therefore still retrieval artefacts. Spectral signal levels can probably be used to detect inundated TROPOMI pixels. Please explain what your arguments are based on and why you think the enhancements detected here are real.

Authors: It is true that both days shown in Figure 2 are in the dry season, but from two different years (2019 and 2020), which differ significantly in terms of flooding. Due to abundant rainfall in the second half of the wet season (December 2019 - March 2020) the eastern part of the pan stayed inundated until end of July in the year 2020, well into the dry season. In contrast, the pan was entirely drained during the dry season 2019. Consistent with this, there is a methane enhancement over the eastern pan in 2020 that is not observed in 2019 in the TROPOMI/WFMD v1.8 product, while you see the extent of the complete pan on both days in the v1.5 XCH₄ (based on a quadratic polynomial in the fit).

In summary, the interpretation that the distribution over the pan is more realistic when using a cubic polynomial (apart from the better fit quality) is based on the fact that the shape of the retrieved XCH₄ enhancement for single overpasses is more variable. While the enhancement reflects the extent of the pan virtually always in the case of a quadric polynomial, it changes with meteorological conditions in the cubic case. For instance, the link between inundation and methane enhancement appears more evident in the latest product version.

As shallow inundation is hard to see in the VIIRS true color images the images are replaced by a VIIRS false colour band combination (Red = M3, Green = I3, Blue = M11) distinguishing different water states and thus enabling flood mapping in the revised version where the partial flooding of the day in 2020 is more obvious. The flooding can be traced in time here: https://worldview.earthdata.nasa.gov/?v=13,-21,20,-17&l=VIIRS_SNPP_CorrectedReflectance_BandsM3-I3-M11&lg=true&t=2020-05-16-T07%3A49%3A51Z

Reviewer: *Line 132: How do you know what a realistic level of XCH₄ enhancement is over the Etosha pan? Has this been studied before? If not, please reword.*

Authors: The text is reworded in a more qualitative sense (along the lines of the previous answer) to make clearer what we mean by "more realistic": better fit quality similar to the surroundings and more variability of the XCH₄ enhancement instead of just reflecting the extent of the pan for every single overpass as before.

Reviewer: *c) What is the significance of this spectral fit update in view of the post-processing steps following the retrieval, especially the machine learning calibration? How does the machine learning calibration affect the Etosha pan enhancements? Are plots in 2c, 2f prior to or after application of the machine learning calibration? What would 2c, 2f look like without the update in the polynomial, but with the updates in the machine learning calibration?*

Authors: The plots in Figure 2 are after application of the machine learning calibration. We included an additional figure demonstrating the impact of the polynomial update globally before and after calibration including a zoom on the Etosha pan, which is the region of largest impact. Typically the impact is small and most of the significant changes can alternatively be achieved by the calibration. In contrast, however, the differences/improvements over the Etosha pan cannot be entirely achieved through calibration justifying the implementation of the increased polynomial degree. This finding is also confirmed by the extended Figure 1 also showing v1.2 for comparison. The differences between v1.2 and v1.5 are due to the improved calibration (only resolving part of the enhancement over the pan) and the differences between v1.5 and v1.8 are mainly due to the increase of polynomial degree. These discussions are included in the revised version.

Reviewer: Section 3.1 (Polynomial fit parameters) contains work that is conceptually similar to <https://amt.copernicus.org/preprints/amt-2022-255/>. Please include that paper as a reference and add a few remarks concerning that article's conclusions in view of your results.

Authors: When our manuscript was written and submitted the mentioned preprint was not available yet. Of course, we have included it now as a reference and discuss the different impacts of the change on the products. The changes due to the adjustment of the polynomial degree seem to be less significant for TROPOMI/WFMD than for RemoTeC due to the alternative algorithm setup, e.g. with differing fitting windows and bias correction schemes. An example of this is the artefact in the Northern Siberian Taymyr region that occurs in the operational product, which was also misinterpreted as genuine large methane emissions from carbonate rock formations. While amt-2022-255 demonstrates that the original strong enhancement in the operational and RemoTeC scientific product is not reproduced when using a cubic polynomial, a corresponding distinct enhancement in this magnitude is not observed in the TROPOMI/WFMD products, even in the previous setup with a quadratic polynomial. We included a corresponding figure and discussion in the revised version.

Reviewer: Line 119-120: "... it has been noted ..." - by whom?

Authors: The wording is changed in the revised version.

Reviewer: Figure 2: What is algorithm version v1.5? It has not been introduced earlier. How does it differ from v1.2 (which I believe corresponds to your work published in Schneising et al. AMT 2019)? For clarity, I think it would be good to use v1.2 (Schneising et al 2019) for 2b and 2e.

Authors: v1.5 was the previous officially released data set before v1.8. For a better insight we have added a table summarising all versions with the respective differences in the algorithm setup in the revised version. In the context of the discussion of the polynomial degree, v1.5 is more appropriate here, because the changes over the pan between v1.5 and v1.8 are mainly due to the increase of polynomial degree, while the changes relative to v1.2 also include significant improvements of the calibration. We have added v1.2 to Figure 1 and a corresponding discussion instead.

Reviewer: The reflectance spectra from Moreira et al. 2014 and Tayebi et al. 2017 are a good find. I think it would be very informative to show a plot of WFMD residuals in comparison to those spectra.

I also suggest fixing the spectral baseline polynomial to a shape similar to the spectra from Tayebi et al. and Moreira et al. and observing what effect that may have on the retrievals.

Authors: These spectra are only examples of possible interferences, which are roughly in this spectral range, and are not representative for the very specific soil types of the Etosha pan (calci sodic Solonchaks to sali calcic Solonetz derived from Andoni sandstone or siltstone). Since the spectral albedo is generally not known, one cannot use a spectral database of soil types in the fit but has to rely on the polynomial. The spectral analysis added in the revised version suggests that a cubic polynomial approximates the (unknown) spectral albedo of this particular soil type sufficiently well (but a quadratic does not).

Reviewer: Do surface reflectance induced biases, as observed for XCH₄ retrievals, exist for

XCO in your algorithm?

Authors: There is no identified obvious surface reflectance induced biases in the XCO product (see maps of yearly averages in the manuscript). A similar calibration of XCO is not necessary to achieve the mission requirements since a potential albedo-induced bias of the same percentage magnitude as for XCH₄ would not be significant due to the considerably higher variability of XCO. This is mentioned in section 2 of the revised version. As a consequence, the XCO requirements are an order of magnitude relaxed compared to XCH₄. The validation confirms that the mission requirements are actually achieved without calibration of XCO. Nevertheless, the potential for further improvement of the XCO product will be further investigated in the future.

Reviewer: *Line 184-186: Which dataset did you use for the surface roughness feature? Please add a reference in the manuscript.*

Authors: Surface roughness is determined from the respective DEM by using the standard deviation of the high resolution data within the considered gridboxes. This is clarified in the manuscript.

Reviewer: *With regard to the post-random-forest 3-step quality filter: What is the rationale of filtering for these three metrics separately instead of including RMS and spectral shift/squeeze as features in the random forest? Please clarify.*

Authors: The post-random-forest filter is an heuristic approach addressing outliers caused by residual issues not explicitly considered (yet) in the "truth" used in the training of the random forest classifier, such as specific scenes with intense aerosol exposure or other exceptional scenes with reduced fit quality relative to scenes with similar radiance for unknown reasons. RMS is already a feature in the random forest classifier but the basis of the training of the quality filter is VIIRS cloud information. Therefore, not all causes of relative poor fit quality can be learned and the residual outliers in terms of fit quality are probably not due to cloud contamination. Spectral shift/squeeze is rather considered relatively on a daily basis than through absolute thresholds in the random forest classifier to ensure that a potential future spectral drift due to degradation cannot cause unnecessary data loss. To integrate other issues in the random forest in the future one would need a reliable "truth" representing the respective issue. Since this post-random-forest filter is only about the remaining outliers it is impractical to identify and explicitly consider all conceivable issues in the training of the random forest classifier and the presented heuristic approach seems to be a satisfactory solution. This is better explained in the revised version.

Reviewer: *Generally, does the random forest still consider the 25 features listed in Schneising et al., AMT, 2019? Have you updated any other configurations of the machine learning code? Please explain in the text, and give some more introduction to your random forest set-up and updates you have made (e.g. near line 180).*

Authors: The random forest setup of the different versions is summarised in Table 1 of the revised version. For example, there are 26 features used in the random forest classifier since v1.5: the 25 features listed in Schneising et al., 2019 + surface roughness. The other update is the training data set: 30 (random) days instead of 16 and more ocean scenes in v1.8. At the beginning of Section 3.3.1, the updates are described in more detail and reference is made

to this table in the revised version (see also answer about the training data set below).

Reviewer: *Which features are most important for classifying clouds over water in your random forest classifier?*

Authors: The random forest is constructed for all training data together not explicitly distinguishing between land and water. As a consequence, there is also no distinction in the statistical analysis of the most important features by land and water. The top 5 overall features are as in Schneising et al., 2019 with slightly changed order of importance and coefficients of determination.

Reviewer: *Line 184: You almost doubled the training data-set: Are the new training data exclusively ocean scenes? How did you select the new data for training?*

Authors: This is made clearer in the revised version: In v1.5 the training data is extended to 30 randomly chosen days from end of April 2018 until end of 2019 since v1.5 (compared to the original 16 days in v1.2). A total of 5 million measurements are selected for each day including all land data, all inland water data, and all ocean data passing the quality filter; the remaining amount is randomly sampled with bad quality ocean scenes. In v1.8, the quality filter is further improved using 18 million additional (bad quality) ocean scenes equally distributed over the 30 randomly chosen days when training the random forest classifier.

Reviewer: *Please go into detail why the filter underperforms over water. Intuitively, shouldn't these scenes be advantageous for the cloud filter, because the underlying surface is more homogeneous? A Figure showing the performance of the filter (and its challenges) over water would be very helpful here.*

Authors: As described in the previous answer (and the revised version), the main focus of the quality filter has been on land scenes. The selection of the training dataset in v1.8 corresponds better to the actual partition between land and water scenes. Furthermore, the underperformance does not affect water scenes in general, but mainly scenes in the Arctic ocean in summer. Due to the low absolute number of good measurements in the Arctic ocean (no sun glint), a high percentage error rate can be obtained by relatively few misclassifications. We have added a Figure demonstrating the performance of the quality filter compared to VIIRS over the Arctic for an example day in July to the revised version.

Reviewer: *Paragraph from lines 216-230: How great is the loss of "good" measurements? If the numbers in Figure 5 are upper limits, how far from the upper limits is the actual loss (for the different cases you study in Fig. 5)?*

Authors: The numbers have been revised accordingly.

Reviewer: *Do you have any plans to include a cloud-shadow filter in your algorithm?*

Authors: This is not explicitly planned so far, but it is worth considering.

Reviewer: *What impact do shadowy scenes have on the ensemble of your retrievals?*

Authors: This has not been studied in detail. To a first approximation, it should behave similarly to a lower albedo. Therefore, potential shadow issues may also be resolved by the

quality filter and/or the calibration.

Reviewer: *Line 216: "increases" -> increase*

Authors: We think that "The ... tightening ... increases the precision ..." is correct.

Reviewer: *Line 233-234: I thought the introduction of the third-order baseline fit (section 3.1) was meant to resolve the albedo bias issue? If it remains, why bother making that adjustment if you are re-calibrating XCH₄ in the post-processor anyway?*

Authors: It is the other way round: The third-order baseline fit is meant to resolve the remaining issues that cannot be resolved by the calibration. That becomes clearer through the significantly improved and extended Section 3.1. Overall, one has to distinguish here between two fundamentally different issues: 1) Biases due to low signals (likely an instrumental issue as the quite different RemoTeC algorithm shows very similar behaviour) addressed by the calibration and 2) Issues due to the "shape" of spectral albedo within the fitting window (independent of the magnitude of the signal) addressed by the third-order baseline (or alternatively also by calibration in most cases). As the calibration is not always sufficient to resolve all issues of type 2), the third-order baseline fit is needed in addition. This has also been clarified in Section 3.3

Reviewer: *Why are you not conducting a machine learning calibration for XCO? Are the retrievals better? If yes, how are they better? Can the XCH₄ "calibration" inform corrections to XCO?*

Authors: A similar calibration of XCO is not necessary to achieve the mission requirements since a potential albedo-induced bias of the same percentage magnitude as for XCH₄ would not be significant due to the considerably higher variability of XCO (see also above discussion). As a consequence, the XCO requirements are an order of magnitude relaxed compared to XCH₄. The validation confirms that the mission requirements are actually achieved without calibration of XCO. Nevertheless, the potential for further improvement of the XCO product will be further investigated in the future and it may be possible to determine a XCO correction based on the XCH₄ calibration in terms of albedo-induced biases.

Reviewer: *I realise that it is standard practice in trace gas retrievals to carry out bias corrections. However, I have not seen a post-processing correction, or "calibration", that brings in information from an a priori/model dataset again. This seems to defy the purpose of running a retrieval. The way this section is currently written makes it very hard for the reader to understand what impact the calibration has on the WFMD results and it raises many questions.*

For example, how does the calibration affect XCH₄ values in retrieved methane plumes?

How does it impact CH₄ inversions on regional scales?

How far to the prior XCH₄ does this correction pull the retrieved values (how does the distribution of retrieved values change)?

How does the correction vary by latitude and season? Please elaborate in the manuscript.

Authors: The purpose of the calibration is not to bring in information from a model and it does not pull the retrieved values to a prior. The model is only used as a coarse approximation

of the background to determine statistical discrepancies depending on albedo (see Section 2 and revised Section 3.3). After learning of the respective statistical relationships on a temporally and spatially limited dataset in training, the climatology is not used anymore and the calibration is then performed only using the listed intrinsic parameters of the retrieval, in particular the retrieved apparent albedo. This process is called "calibration" because the corrected biases due to low signals are likely an instrumental issue (e.g. due to a radiance-dependent zero-level offset shift of the detector). The calibration does not defy the purpose of a retrieval, it is part of the retrieval. This is explained again in more detail in Section 3.3 of the revised version. In particular, there is no attenuation of methane plumes or gradients by mixing in a smooth prior what may be suspected here by the reviewer. On the contrary, the calibration has no effect at all on methane plumes since they typically do not cause any albedo change. Regional inversions are improved by the calibration because potential biases due to a varying background albedo are resolved. We have added seasonal global maps demonstrating the magnitude (which is broadly similar to the correction applied in the RemoTec/operational algorithm) of the calibration and mainly reflecting albedo features. Since the calibration is independent of TCCON data, the conclusive power of the subsequent validation, which does not indicate any problems, is not limited.

Reviewer: *Line 240: Are you retrieving XCH4 from spectra at SZA>70? Are you taking the non-planar nature of the atmosphere into account for those cases? Do you trust your retrievals at such SZA values and what do they look like?*

Authors: Yes, we use SCIATRAN in pseudo-spherical atmosphere mode to (pre-)calculate the forward model, i.e., the ray tracing for the direct solar beam is performed assuming a spherical atmosphere. This information has been added to the manuscript. This setting provides sufficient accuracy of the modelled radiation for solar zenith angles up to about 92°. Furthermore, the SZA is a feature in the quality filter and the calibration. In summary, we generally trust our quality filtered and calibrated retrievals with SZA< 75° and there are no obvious issues with high solar zenith angles when validating the products with TCCON (e.g. at Arctic TCCON sites). Nonetheless, these are of course challenging conditions and related issues cannot be completely ruled out under specific conditions.

Reviewer: *Line 253: Please explain why you subtract specifically 5 ppb (given that the SLIMCH4 bias at the three northernmost TCCON sites is greater than 5 ppb)? What is the mean Arctic bias and what do you consider "typical" bias levels?*

Authors: The wording has been changed. The biases at the Arctic sites are consistently positive ranging from about 10 ppb (East Trout Lake) to 20 ppb (Ny Alesund). Typical biases at other sites are about ± 5 ppb and occasionally reach 10 ppb. Therefore, a compromise of -5 ppb for the Arctic region was chosen to account for the systematic positive bias, while avoiding potential overcompensation.

Reviewer: *Line 237: is r_{cld} the cloud flag from your cloud filter? Or is it from VIIRS?*

Authors: This is the ratio of measured to reference radiance for selected strong H₂O absorption lines as described in Schneising et al., 2019. This has been clarified in the revised version. VIIRS information is only used in the training and afterwards the quality prediction is independent of VIIRS.

Reviewer: When you include the across-track index in the calibration, what impact does that have on the striping pattern in XCH4? What is the reason to include the across-track dimension index if it does not sufficiently destripe the images?

Do you see any possibility to get the destriping done within this calibration scheme so that you do not need to run the wavelet procedure?

Authors: The rationale of the inclusion in the calibration is to take into account recurring systematics, e.g. potential smooth biases induced by viewing zenith angle or temporally constant striping patterns. Actually, this improves the striping to some extent. The dedicated wavelet approach is applied orbitwise and therefore also takes temporally variable striping patterns into account. Thus, we do not think that destriping can be entirely achieved by calibration, especially in a shallow implementation. This discussion is added to the introduction of Section 3.4.

Reviewer: Figure 6: How did you chose the regions used in the training of the machine learning regressor? It looks like there is a latitude band missing (tropics) - why did you exclude that? At which point in the calibration procedure do TCCON measurements actually come into play (other than being a validation source for the climatology you are using)? If the correction does not explicitly use TCCON data, please remove the TCCON stations from the map, because it misleads the reader to think TCCON data go directly into the correction. Please explain in the manuscript.

Authors: The regions are selected to cover the whole range of albedo values and all possible viewing geometries, as these are important features used in the calibration. This is made more clear in the revised version. Furthermore, the regions are chosen close to TCCON sites, which are used in the validation of the climatology. As a consequence, the quality of the climatology within the regions is assumed to be good and that was also the reason to include the TCCON sites in the figure. As this seems to be misleading, we removed the stations from the map in the revised version as TCCON measurements only come into play as a validation source for the climatology, the correction is otherwise independent of TCCON. The South Atlantic region contains part of the tropics. There are no TCCON sites closer to the equator and the data density of quality filtered data near the equator is low due to frequent cloud coverage and low albedo.

Reviewer: Figure 8: "Coiflet wavelets" are introduced in the caption for the first time. Please also add a short explanation in the main text before referring to coiflets in this plot.

Authors: We added a short explanation and reference in the main text and a figure to the appendix.

Reviewer: Lines 351-353: An analysis of the temporal development of atmospheric CO concentrations in comparison to other measurements would be very valuable here as well. Perhaps <https://doi.org/10.1016/j.rse.2020.112275> or <https://www.epa.gov/air-trends/carbon-monoxide-trends> could be starting points for a comparison.

Authors: A comparison of the temporal development of CO with other data sets would be valuable but is less straightforward than for methane, because CO has a significantly shorter lifetime, is less mixed and more variable. This makes it much more difficult to find data sets

that are indeed suitable for comparison, e.g. in terms of spatial sampling, vertical sensitivity or covered time period. Different regions may have significant different CO growth rates. In the case of CO, a regional break-down would be more appropriate, but that would go beyond the scope of this (already very comprehensive) paper. That would easily fill a paper of its own. For example, Buchholz et al., 2021 does not fit from the period and the EPA trends refer to the United States only.

Reviewer: Line 455: Change citation *Dlugokencky: Lan, X., K.W. Thoning, and E.J. Dlugokencky (2022): Trends in globally-averaged CH₄, N₂O, and SF₆ determined from NOAA Global Monitoring Laboratory measurements. Version 2022-10, <https://doi.org/10.15138/P8XG-AA10>*

This is the recommended citation (see bottom of page https://gml.noaa.gov/ccgg/trends_ch4/)

Authors: Has been changed in the revised version.