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Abstract   15 

PurpleAir Sensors (PASs) are low-cost tools to measure fine particulate matter (PM) concentrations and are now 

widely used, especially in regions with few regulatory monitors.  However, the raw PAS data have significant 

biases, so the sensors must be calibrated to generate accurate data.  The U.S. EPA recently developed a national 

correction equation and has integrated corrected PAS data onto its AirNow website.  This integration results in much 

better spatial coverage for PM2.5  (particulate matter with diameters less than 2.5 µm) across the U.S. The goal of our 20 

study is to evaluate the EPA correction equation for three different types of aerosols: typical urban wintertime 

aerosol, smoke from biomass burning, and mineral dust.  

We identified 50 individual pollution events, each having a peak hourly PM2.5 concentration of at least 47 µg m-3 

and a minimum of 3 hours over 40 µg m-3, and characterized the primary aerosol type as either typical urban, smoke, 

or long-range transported dust.  For each event, we paired a PAS sampling outside air with a nearby regulatory 25 

PM2.5 monitor to evaluate the agreement. All 50 events show statistically significant correlations (R values between 

0.71–1.00) between the hourly PAS and regulatory data, but with varying slopes.  We then corrected the PAS data 

using either the correction equation from Barkjohn et al. (2021) or a new equation that is now being used by the U.S. 

EPA for the AirNow Fire and Smoke Map (EPA, 2022b).  Both equations do a good job at correcting the data for 

smoke and typical pollution events, but with some differences.  Using the Barkjohn et al. (2021) equation, we find 30 

mean slopes of 1.00 and 0.99 for urban and smoke aerosol events, respectively, for the corrected data versus the 
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regulatory data.  For heavy smoke events, we find a small change in the slope at very high PM2.5
 concentrations 

(>600 µg m-3), suggesting a ~20 % underestimate in the corrected PAS data at these extremely high concentrations.  

Using the new EPA equation, we find slopes of 0.95 and 0.88 for urban and smoke events, respectively, indicating a 

slight underestimate in PM2.5 using this equation, especially for smoke events.  For dust events, while the PAS and 35 

regulatory data still show significant correlations, the PAS data using either correction equation underestimates the 

true PM2.5 by a factor of 5–6.  

We also examined several years of co-located regulatory and PAS data from a site near Owens Lake, CA, which 

experiences high concentrations of PM2.5 due to both smoke and locally emitted dust.  For this site, we find similar 

results as above; the PAS-corrected data are accurate in smoke but are too low by a factor of 5–6 in dust.  Using 40 

these data, we also find that the ratios of PAS-measured PM10 to PM1 mass and 0.3 µm to 5 µm particle counts are 

significantly different for dust compared to smoke.  Using this difference, we propose a modified correction 

equation that improves the PAS data for some dust events, but further work is needed to improve this algorithm.   

Introduction 

Low-cost air sensors are becoming a ubiquitous way for the general public to measure local air quality.  There are 45 

now thousands of these sensors publicly reporting data in real time to the PurpleAir map ((map.purpleair.com).  As 

one example, there are more than 700 active PurpleAir sensors (PASs) in the Puget Sound region of Washington 

State (from Tacoma to Everett), compared to ~15 regulatory monitors in the same area.  This provides an enormous 

increase in spatial information on PM2.5 (particulate matter with diameters less than 2.5 µm).  However, there are no 

clear performance standards for accuracy or precision of low-cost sensors. Several studies have examined the 50 

performance of low-cost sensors, including the PAS (Singer and Delp, 2018; Li et al., 2020; Ardon-Dryer et al., 

2020; Manibusan and Mainelis, 2020; Tryner et al., 2020).  The PAS uses the Plantower PMS5003 laser sensor to 

count particles that scatter light in the optical range (particles greater than about 0.2 µm in diameter).  Most outdoor 

PASs include two identical PMS5003 sensors that can be compared to enhance quality control.  The PAS data can 

be downloaded with two “conversion factors”, CF=1 or CF=Atm.  The two PM2.5 values are nearly identical until 25 55 

µg m-3, but above this value the CF=1 will be greater.  The exact algorithm used by the PAS to convert the 

Plantower data to mass concentration using either the CF=1 or CF=Atm factors has not been published (Ouimette et 

al., 2022).   

Tryner et al. (2020) evaluated three low-cost PM sensors, including the PMS5003, by exposing them to five 

different types of aerosols in the laboratory.  They found that the ratios of PMS5003-reported to filter-derived PM2.5 60 

mass concentrations were inversely proportional to mass median diameter (MMD). Wood smoke had the smallest 

MMD, 0.42 μm; its PMS5003 PM2.5 mass had a mean that was 2.5 times the filter-derived mass.  Conversely, oil 

mist had the largest MMD at 2.9 μm; its PMS5003 PM2.5 averaged only 0.23 times the filter-derived PM2.5. These 

lab results are consistent with the physical-optical model developed for the PMS5003 by Ouimette et al. (2022).  

The model predicted that the PMS5003 response decreases relative to an ideal nephelometer by about 70–90 % for 65 

particle diameters ≥1.0 μm. This is a result of using a laser that is polarized, the angular truncation of the scattered 

light, and particle losses (e.g., due to aspiration) before reaching the laser.  Their model predicted that the PMS5003 
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would underestimate PM2.5 for dust particles by approximately 70–90 %, depending on the coarse particle size 

distribution. 

The Plantower sensor reports PM mass concentrations in three bins (PM1, PM2.5, and PM10) and particle counts in 6 70 

size bins (>0.3, >0.5, >1, >2.5, >5, and >10 µm), presumably based on the pulse height of the scattered radiation, 

although the exact procedure is not documented by PurpleAir.   The PAS also reports temperature, relative humidity 

(RH) and pressure.  A number of field and laboratory studies have found that the PMS5003 size distributions are not 

correct. Several studies have reported that the PMS5003 tends to create an invariant normalized size distribution, 

independent of the actual size distribution and concentration (Tryner et al., 2020; He et al., 2020; Kuula et al., 2020; 75 

Ouimette et al., 2022). However, the PMS5003 normalized size fractions above 1 μm increased by a factor of 2–5 in 

one high-PM2.5 windblown dust episode observed at Keeler, California (Ouimette et al., 2022).  So, at present, there 

remains some ambiguity over how the PAS reported PM2.5 mass concentrations and particle counts respond to 

different aerosol types.   

Aerosol size distributions can vary considerably depending on the source type.  Previous studies have shown that the 80 

aerosol size distributions for smoke events are similar to the distributions in typical urban pollution events, with 

geometric mean diameter of around 0.2–0.3 µm (Kleeman et al., 1999; Laing et al., 2016). The mass ratio of 

PM2.5/PM10 for smoke, 0.55–0.75, is also similar to that for urban pollution (Xu et al., 2017). Dust events are known 

to have size distributions that are shifted towards larger particles, compared to typical urban and smoke aerosols. 

Jiang et al. (2018) report an average PM2.5/PM10 ratio of 0.1 for dust events in China. Sugimoto et al. (2016), suggest 85 

a value of 0.35 for the PM2.5/PM10 ratio in dust, similar to the values reported by Tong et al. (2012).  In addition, 

aerosol particles from some cooking methods, such as barbeque, may also have a size distribution that is shifted to 

larger sizes (Kleeman et al., 1999; Song et al., 2018). If this is correct, then this may have implications for using 

PAS data to examine indoor air quality.   

The South Coast Air Quality Management District (South Coast AQMD) has completed a rigorous evaluation of a 90 

variety of sensors, including the PAS (South Coast AQMD, 2015). This evaluation has shown that the PAS gave 

precise results, showed little response to temperature or humidity, and had relatively small variations between 

units. The U.S. Environmental Protection Agency (EPA) also provides information about these sensors via its Air 

Sensor Toolbox for citizen scientists, researchers, and developers portal (EPA, 2022a). All of these evaluations have 

demonstrated that the raw PAS measurements are precise, but biased high compared to regulatory PM2.5 95 

measurements.  Several groups have developed correction equations for the PAS measurements. The Lane Regional 

Air Protection Agency (LRAPA), the University of Utah, and the EPA have empirical corrections for PM2.5 and 

these can be implemented directly on the PurpleAir website (PurpleAir, 2022).  Barkjohn et al. (2021) (hereafter 

referred to as Barkjohn 2021) conducted a comprehensive evaluation of PAS PM2.5 data against regulatory PM2.5 

data and developed a U.S.-wide correction equation starting from PAS raw data (CF=1) and using the  RH as 100 

measured by the PAS: 

Corrected PAS PM2.5 = raw PAS PM2.5 data (CF=1) * 0.52 – RH * 0.085 + 5.71     (1) 
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The LRAPA and the Barkjohn corrections are in close agreement, whereas the University of Utah correction gives 

somewhat higher values. While the Barkjohn 2021 algorithim (equation 1) was initially used by the EPA, they have 

recently developed a new correction algorithm that it is now being used for the national Fire and Smoke Map 105 

(Barkjohn et al., 2022).  This algorithm differs significantly from the earlier Barkjohn 2021 relationship in that it 

starts from the PAS data with CF=Atm and involves a more complex, 5-part piece-wise regression, with weighting 

to smooth the transitions between segments.  For our analysis, we will refer to the new algorithm as "new EPA".  

Note that the PAS data can be downloaded with either CF=1 or CF=Atm.   In the present analysis, we start from raw 

data with CF=1 (for Barkjohn 2021) or CF=Atm (for the new EPA correction).  Figure S1 compares the raw 110 

CF=Atm data with the new EPA correction algorithm, and Figure S2 compares the Barkjohn 2021 and the new EPA 

correction for the data used in Part I of this analysis. 

Because many PAS devices are now installed around the world, both outside and inside, they can experience a wide 

range of aerosol types.  Thus, it is essential to understand the accuracy and precision of the PAS for various aerosol 

events, which could differ based on the particle size distribution or other aerosol characteristics.  In this study, we 115 

evaluated the Barkjohn 2021 correction  and the new EPA correction for 50 different aerosol pollution events, 

encompassing typical urban aerosols, as well as smoke and dust aerosols. Our goals are:  

1. Evaluate the accuracy of both correction equations for each aerosol type; 

2. Examine whether the correction changes at very high PM2.5 levels (e.g., >250 µg m-3); 

3. Identify whether the PAS data can provide an indication of the aerosol type and, if so, whether this information 120 

can be used to improve the correction algorithm.  

Below we first describe data treatment and events and aerosol type identification.  Then we report on results 

comparing regulatory and PAS observations for different aerosol types for 50 short-term pollution events.  We also 

use a longer time series from a single site (Keeler, CA) that experiences frequent high dust and smoke pollution 

episodes.  Our results demonstrate that the PAS sensors can give accurate PM2.5 data in urban pollution and smoke, 125 

but more work is needed to develop an improved correction for dust aerosols.   

Methods 

Part I: 50 paired sites 

For this analysis we identified 50 short term pollution events where the aerosols could be clearly characterized as 

either typical urban, smoke or dust.  For these events, PAS data were downloaded for each sensor from the 130 

PurpleAir website (map.purpleair.com). The raw data (CF=1 and CF=Atm) were downloaded as hourly averages. 

Regulatory PM data for the nearest monitoring site were downloaded from the EPA Air Data website 

(https://www.epa.gov/outdoor-air-quality-data) or the AirNow-Tech website (airnowtech.org), except for data from 

the monitoring site at Portland Cully Helensview School in Portland, OR (AQS Id 410512011), which were 

downloaded from the Oregon Department of Environmental Quality website (https://www.oregon.gov/deq/aq).   135 

For each paired PAS-regulatory site, we identified an intense pollution event that had an hourly peak PM2.5 value at 

the regulatory site >40 µg m-3 for at least 3 hours.  We also required that there be a good correlation between the 

https://www.epa.gov/outdoor-air-quality-data
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regulatory and PAS data.  For the 50 events we analyzed, the correlation coefficients between the regulatory and 

PAS-corrected data ranged from 0.77 to 0.996.  For each pollution event, we identified the most likely source of 

elevated aerosols: typical urban wintertime pollution, biomass burning smoke, or dust.  Table 1 summarizes the 140 

method used to characterize each pollution event. Table S1 provides details on each of the 50 individual events, 

including PAS site, regulatory site ID, event dates, and distance between the two sites.  The average distance 

between the PAS and regulatory sites was 5.4 km, with a range of 0-15 km.  As shown in Figure S3, there is no 

significant relationship between the correlation coefficient and distance between sites. 

Typical urban pollution events were identified for the non-wildfire season (winter months) and with no evidence of 145 

smoke or dust.  The PM sources for those events reflect typical urban wintertime pollution (vehicles, power plants, 

industry, and residential wood combustion), and the PM2.5 mass is dominated by particles with diameters in the 

range of 0.30–0.60 μm (Zhang et al., 2010; Herner et al., 2005).  The typical urban pollution events had peak hourly 

PM2.5 values at the regulatory sites of 47–259 µg m-3. 

Smoke events were identified by elevated PM2.5 during the summer fire season and confirmed using the Hazard 150 

Mapping System (HMS) Fire and Smoke Product (Rolph et al., 2009; Kaulfus et al., 2017).  The HMS product is 

derived from multiple satellite images and updated multiple times each day.  Details on the HMS product are given 

in the references above. The HMS imagery was obtained via the AirNow-Tech website.  The smoke events had the 

highest peak PM2.5 values at the regulatory sites with peak hourly values of 60–713 µg m-3. 

Dust events were identified by examining large-scale spatial patterns of PM2.5, media reports, and the measured 155 

PM10/PM2.5 ratios from regulatory sites, if available. In Part I of our analysis, all 6 dust events occurred during the 

well-known June 2020 Saharan dust cloud that was transported to the U.S. and impacted surface concentrations 

across the southern U.S. (Francis et al., 2020; Euphrasie-Clotilde et al., 2021; Pu and Jin, 2021).  This event brought 

huge amounts of dust to the southern U.S. and resulted in daily average PM2.5 concentrations of 60–103 µg m-3 at 

many locations.  The six dust events included in our analysis had peak hourly PM2.5 values at the regulatory sites of 160 

52–72 µg m-3.  Figure S4 shows the impact of this dust on PM2.5 across the southeastern U.S.   

In total, we identified 50 events as either typical urban, smoke, or dust, lasting from 24 to 528 hours. We verified 

that each had an operating PAS and a nearby regulatory monitoring site.  For typical urban pollution, 16 cases were 

identified, with the majority (13) located in California and the remainder in Utah. We identified 28 smoke cases, 

with locations in Alaska, California, Idaho, Oregon, and Washington. Six dust cases were identified, with locations 165 

throughout the southeast U.S.  Of the 50 events identified, 17 have co-located regulatory PM10 data (3 urban, 8 

smoke, and 6 dust).  The event times were chosen to incorporate a few hours of low concentrations before and after 

the highest PM2.5 concentrations to improve correlations.  The corrections on these low PAS values can sometimes 

yield negative values at high RH. If corrected PAS values were less than 2 µg m-3, these values were excluded from 

the calculation of correlation with the regulatory measurements. 170 

Data quality control 

The data were quality controlled and screened using four criteria:   
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1. Since most PASs contain two sensors, A and B, we compared mass concentrations from the two sensors and the 

data were used only if the values were within 30 %.  Most values are much closer than this, with an average 

difference of 10 % across all events considered (4.6 % for the Keeler, CA, PAS data). 175 

2. The PAS raw A and B values were averaged and excluded if less than 1 µg m-3.  

3. The PAS values were corrected using the Barkjohn 2021 correction and included only if greater than 2 µg m-3.   

4. Regulatory PM2.5 data must be greater than 1 µg m-3 (there were a number of 0 and negative values in the EPA's 

PM2.5 data records).    

In total, these steps removed approximately 10% of the available data.  After screening, the PAS data were corrected 180 

using the Barkjohn et al (2021) algorithm and the new EPA correction algorithms. We evaluated both sets of  

corrected PAS data using the same linear relationship using standard linear regression: 

Regulatory data = Slope * PAS data (corrected) + Intercept   (2) 

We also compared the slopes with reduced major axis regression (RMA) and found essentially no difference in the 

results.  Generally, the intercepts were small (a few µg m-3), so we can interpret the slopes as giving the overall 185 

indication of agreement between the two datasets.  A slope near 1 with a zero intercept would indicate no bias.  A 

slope <1 indicates that the corrected PAS data are biased high compared to the regulatory data, a slope >1 indicates 

the corrected PAS data are biased low compared to the regulatory data.   

Part II: Keeler, CA, site  

To further understand the nature of the PAS response to dust aerosol, we also used data from Keeler, CA, near 190 

Owens Lake.  Owens Lake is a dry lakebed due to diversion of its primary water source, the Owens River, to Los 

Angeles.  As a result, the dry lakebed is one of the largest sources of dust in North America (Cahill et al., 1996; 

Gillette et al., 1997), and the region experiences many significant dust events each year.  With increasing drought, it 

appears that the dust flux from Owens Lake is increasing (Borlina and Rennó, 2017).  We use regulatory PM2.5 and 

PM10 data from February 2019–May 2022 from a site in Keeler CA and a nearby PAS site. Both the regulatory and 195 

PAS instruments are operated and maintained by the Great Basin Unified Air Pollution Control District 

(GBUAPCD, Chris Howard, personal communication, Dec. 2022) and the regulatory data were obtained from their 

data archive (https://www.gbuapcd.org/).  The regulatory PM2.5 and PM10 data are measured using a Thermo Fischer 

model 1400a TEOM with a Thermo Fischer model 8500C conditioning system.  Other information about the site is 

given in Table S2.  Based on the coordinates for the Keeler data, the PAS and regulatory sensors are within 30 200 

meters of each other.  For the Keeler PAS data, as in Part I, we use the mean of channels A and B, which have a 

mean difference of 4.6 %.  For the Keeler analysis, we did not specifically identify events.  Instead, we consider 

only hours where the Keeler regulatory PM2.5 >25 µg m-3, which provides 1366 hours of data 3.3 year period.  We 

also restrict the analysis of the Keeler data to hours where regulatory PM10 exceeds PM2.5 by at least 0.5 µg m-3 and 

where simultaneous regulatory and PAS data are available.  This yields 1257 hours of data with mean PM2.5 and 205 

PM10 concentrations from the regulatory monitors of 59 and 118 µg m-3, respectively.    

Results 

https://www.gbuapcd.org/
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Part I:  Event analysis 

Figure 1 shows time series plots of two example events (# 44 and # 45).  The top plot in Figure 1 shows PAS and 

regulatory data during a major smoke event in Washington State during July–August 2021.  The regulatory PM2.5 210 

exceeded 200 µg m-3 at this site.  This figure demonstrates that the Barkjohn 2021 correction yields excellent bias 

correction of the data.  The new EPA also improves the fit, compared to the raw data, but appears to yield a positive 

bias at the highest concentrations (200–250 µg m-3).  The bottom plot in Figure 1 shows data from a dust period in 

June 2020 (event # 45).  In contrast to the smoke event, both correction algorithms significantly under-predict the 

regulatory values and there is essentially no difference between the two correction schemes.  While there is still a 215 

good correlation between the regulatory and PAS data (R value of 0.82), the slope is 6.76, indicating that both 

correction equations are significantly under-estimating the true concentrations by a factor of 6 or more.  Table S3 

shows the results for each of the 50  individual events. Table 2 summarizes the relationship and correlation slopes 

between the corrected PAS data and the regulatory measurements for the 50 events and for the three different 

aerosol types.  The results are consistent with Figure 1 in that urban pollution and smoke events are reasonably 220 

corrected by either the Barkjohn 2021 or new EPA algorithms, whereas dust events are not.    There are some 

differences between the two correction equations, which we discuss below. 

Table 3 and Table 4 summarize the results by aerosol type and includes all hourly data for each identified aerosol 

type.  Table 3 uses the Barkjohn 2021 correction, whereas Table 4 shows results using the new EPA correction.  For 

urban, smoke, and dust aerosols, the slope of regulatory PM2.5 versus the PAS-corrected data with the Barkjohn 225 

2021 algorithm were 1.02, 1.08,  and 4.98, respectively, using all hourly data of each type (Table 3).  Using the new 

EPA correction, the slopes were 0.95, 0.81, and 4.99, respectively (Table 4).  These slopes indicate that both 

correction algorithms yield excellent bias correction for typical urban and smoke events, but they generate a large 

negative (low) bias for dust events.  Using either correction on the PAS data during dust events gives values that are 

low by a factor of 5–6.   230 

Tables 2, 3 and 4 suggest that the new EPA algorithm has slightly lower slopes, especially for the smoke events.  

For example, the mean slope for smoke events (shown in Table 2) is 0.99 for the Barkjohn 2021 correction, vs 0.88 

for the new EPA correction.   Similarly, using hourly data for smoke influenced periods the slopes are 1.08 using the 

Barkjohn 2021 correction (Table 3) vs 0.81 using the new EPA correction (Table 4).   We also want to examine 

whether there is evidence that the PAS data respond differently at very high PM concentrations. Figure 2 shows the 235 

mean bias using the hourly data with both correction algorithms versus the regulatory PM2.5.  This plot includes only 

data during the urban and smoke events.  The bias is strongly negative using the Barkjohn 2021 correction at very 

high PM2.5, greater than about 300 µg m-3.  At medium high PM2.5 concentrations, such as 150–300 µg m-3, the new 

EPA correction shows a positive bias, which is consistent with the results shown in Figure 1a and Tables 2-4.   Thus 

we conclude that the new EPA correction improves the bias at very high concentrations (>300 µg m-3),  but 240 

introduces a modest bias at moderately high pollution levels (150–300 µg m-3), compared to the Barkjohn 2021 

algorithm. 
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We show above that the PAS data, for both corrections, are substantially under-reporting PM2.5 concentrations 

during dust events. The next question is whether the PAS data can give some information about dust events (i.e., the 

presence/absence of dust), despite significant issues with the reported size distribution (Ouimette et al., 2022).  To 245 

address this question, we calculated the slopes of the PM1 to PM10 mass ratios and the 0.3 µm to 5 μm particle 

counts ratio, using the PAS data for each event.  The results are reported by event type in Table 2.  The results show 

that the PAS reports a greater fraction of coarse mass and proportionally more larger particles, compared to the 0.3 

µm particles, in the dust aerosols, compared to urban or smoke aerosols. Both the PM1/PM10 mass ratio and the 0.3 

µm to 5 µm particle counts ratio increases in the order dust < smoke < urban.  These differences are statistically 250 

significant (P<0.05) for urban versus dust using a two sample, two tailed t-test and assuming unequal variance.  

These relationships will be explored further below in Part II of this analysis. 

We also looked at the coarse aerosol fraction (CAF) for these events using both the regulatory and PAS data.  We 

define the CAF as: 

CAF = (PM10 - PM2.5) / PM10       (3) 255 

Out of the 50 events considered, 17 have both regulatory PM2.5 and PM10.  Figure 3 shows the CAF, calculated using 

both the regulatory data and the PAS raw data for all hours for the 17 events with both PM2.5 and PM10 data.  For the 

PAS data, we use the raw values for PM2.5 and PM10, since there are no known correction algorithms for the PM10 

data.  Several things are apparent in Figure 3.  First, the CAF values using the regulatory data are much higher than 

CAF values obtained from the PAS data.  Nonetheless, both the regulatory and PAS data show the expected pattern 260 

of higher CAF in dust compared to the other aerosol types.  In addition, the number of data points is much higher for 

the PAS, due to the relative sparsity of regulatory PM10 data.  We note that these relationships change very little if 

the PAS data are restricted to the same times as the regulatory data. 

Part II: Keeler, CA, analysis 

In Part II we use the multi-year dataset from the Owens Lake/Keeler, CA, site.  The hourly data cover a period of a 265 

little more than 3 years (February 2019–May 2022).  We focus exclusively on hours with regulatory PM2.5 >2.5 µg 

m-3, which yields 1257 hours, after our quality control described above.  Table S2 has more details on both the 

regulatory and PAS sites in Keeler, CA.   

Figure 4 shows a histogram of the CAF based on the regulatory data.  There is a clear bimodal distribution, 

indicating two very different aerosol types during these pollution events.  Given that Keeler is ca 150 km from the 270 

urban areas of Bakersfield and Fresno, CA, this aerosol is likely either dust generated from Owens Lake or smoke 

from the many California wildfires during 2019–2022.  For the points with CAF<0.5 (n=1013 hours), the vast 

majority (99 %) occurred in August–October 2020 or August–September 2021, both times when large fires were 

burning in central California and influencing air quality across the region.  Thus, it is reasonable to conclude that 

those hours with CAF<0.5 are predominantly wildfire smoke (1013 hours), and those with CAF>0.7 (200 hours) are 275 

predominantly dust.  In contrast to the smoke data, the dust data tend to occur in the winter and spring periods.  
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There are a relatively smaller number of points (44 hours) with 0.5 < CAF < 0.7 and these appear to have a mixed 

character, as shown below.   

Table 5 and Figure 5 show results grouped by the CAF calculated using the regulatory data.  Tables shows that for 

all values of CAF below 0.5, there are similar ratios of PM1/PM10 and 0.3 µm/0.5 µm counts.  For this group, the 280 

PAS PM2.5 with the Barkjohn 2021 correction shows a good fit to the regulatory PM2.5.  For the values with 

CAF>0.7, there is similar consistency in the PAS-measured ratios (PM1/PM10 and 0.3 µm/5 µm counts), but for this 

group the PAS Barkjohn 2021 correction significantly underestimates the regulatory concentrations.  For the group 

with CAF between 0.5 and 0.7, the aerosol has a mixed character, likely including both smoke and dust. 

Figure 5 shows a plot of the regulatory PM2.5 versus PAS PM2.5 with the Barkjohn 2021 correction, sorted by these 285 

three groups (CAF<0.5, 0.5<CAF<0.7, and CAF>0.7).  For the smoke aerosols, the PAS with the Barkjohn 2021 

correction shows a slope of 0.99 and an R2 of 0.92, whereas for the dust aerosols, the slope is 5.6, similar to the 

slopes shown in Table 2 (5.5) and Table 3 (5.0).  Thus, we conclude that for dust aerosols the Barkjohn corrected 

PAS values show a 5–6x underestimate of the PM2.5 regulatory values.  The mixed aerosols show behavior that is 

more difficult to characterize, with some showing more similarity to dust and others to smoke.   290 

Figure S5 and S6, show the 0.3 µm/5 µm counts and the ratios of PM1/PM10, as measured by the PAS versus the 

CAF, and Table 5 shows a summary of the data segregated by CAF.  Both ratios of PM1/PM10 and the 0.3 µm/5 µm 

counts show clear differentiation for the low CAF aerosols compared to the high CAF aerosols. So these unitless 

ratios provide a tool that can identify dust aerosols, so that a separate correction can be applied.  We explored both 

the PM1 to PM10 mass concentrations and the ratio of 0.3 µm to 5µm counts as tools to identify PM2.5 aerosol that is 295 

dominated by dust.  Figure S5 and Table 5 show that using a ratio of the 0.3 µm to 5µm counts of somewhere 

between 150–250 will provide the best separation of dust and mixed aerosols.  By examination of various plots of 

regulatory PM2.5 versus corrected PAS PM2.5 for the Keeler, CA, data, we found an optimum value of 190.  The 

value of 5.6 comes from the slope of the dust aerosols in Figure 5.  So, this leads to a new correction equation that 

depends on PAS-measured values: 300 

If PAS 0.3 µm / 5 µm > 190, use Barkjohn 2021 correction  

If PAS 0.3 µm / 5 µm < 190, use Barkjohn 2021 correction * 5.6    (4) 

In Eq. (4), we use the Barkjohn 2021 correction, but in practice there is little difference in the results regardless of 

whether this or the new EPA correction is used.  Figure 6 shows a plot of the Keeler, CA, regulatory PM2.5 versus 

PAS PM2.5 with Eq. (4) applied.  There is very little change to the smoke data as most of these points have PAS-305 

measured 0.3 µm/5 µm counts >190.  For the dust aerosols, the majority of the data points are now much closer to 

the regulatory values.  The mean bias for the points with CAF >0.7 is now 1.3 µg m-3 compared with 51.4 µg m-3 for 

the dust data using the Barkjohn 2021 correction.  Figures S7 and S8 show how the choice of 0.3 µm/5 µm ratio 

impacts the analysis.  Using a higher threshold in Eq. (4) results in identifying some points (smoke) with corrected 

PM2.5 values that are substantially too high.  Using a lower threshold in Eq. (4) results in missing some dust points 310 

and, for those points, generating PAS-corrected PM2.5 values that are too low.  While using a value of 190 in Eq. (4) 
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does miss a small number of dust points, it appears to be the best balance in finding and correcting the dust data 

points for this location.  Finally, Figure S9 shows regulatory PM2.5 versus PAS PM2.5 with the new EPA correction 

separated by CAF.  The results are nearly identical to Figure 5, showing that both the Barkjohn 2021 and new EPA 

correction algorithms have similar behavior with dust aerosols.   315 

Equation (4) was developed based on data from one site (Keeler) that has strong dust and smoke occurrence and 

with the sensors in close proximity (30m).  We apply Eq. (4) to the 50 events from different sites identified in Part I 

and find a wider range of results.  Table S3 summarizes the results for each event. Out of the 6 dust events, 4 show 

moderate improvements with slopes of 0.46–0.72.  However, for some smoke events (e.g., 38, 39, and 40), the 

slopes are dramatically lower, in the range of 0.17–0.26, which indicates that the PAS-corrected with the dust 320 

algorithm (equation 4) are overestimating the regulatory data by a large amount.  This occurs due to the fact that 

during these smoke events some hours have a ratio of the 0.3 µm to 5 µm counts of >190 and thus get multiplied by 

5.6.  So, while the new dust algorithm does appear to improve PAS-corrected data in dust events at a single 

controlled site that is operated by an air quality agency, it does not provide a useful correction for the bulk of 

publicly operated sensors.  Nonetheless, the fact that the PAS data indicate changes in the observed ratios of 325 

PM1/PM10 and the 0.3 µm/ 5 µm counts during mineral dust events indicates that the PAS data do provide some 

useful information on dust and that more work to identify a suitable correction algorithm for dust is warranted.  

Conclusion 

PASs are now ubiquitous around the world and far outnumber the more accurate, regulatory-grade instruments for 

PM2.5.  These low-cost sensor data are proving to be highly valuable for a variety of analyses, but especially for 330 

improving our understanding of the spatial distribution of PM2.5.  However, to use these data, it is essential to 

understand the measurements.  Using the Barkjohn 2021 and new EPA correction algorithm for PAS data, we find 

that the sensors give reasonably accurate results for PM2.5 for typical urban wintertime pollution and smoke events, 

but give concentrations that are a factor 5–6 too low for dust events.  The Barkjohn 2021 algorithm yields a negative 

bias at very high PM2.5 concentrations (>300 µg m-3), whereas the new EPA algorithm yields a positive bias at 335 

moderate PM2.5 concentrations (150–300 µg m-3).  Both algorithms underestimate PM2.5 during dust events by a 

factor of 5–6. Using the PAS ratios of PM10 to PM1 mass concentrations and 0.3 µm to 5 µm counts, we find that 

there are significant differences in these ratios for smoke and dust at a site with frequent incursions of both aerosol 

types.  Using this result, we propose a new PAS correction algorithm that significantly improves the correction for 

dust aerosols and does not change the results for smoke aerosols, but only at this one site.  Applying this equation to 340 

a broader array of sites, we find significant problems with the proposed dust algorithm—it improves PAS PM2.5 

estimates in some dust cases but worsens PAS PM2.5 estimates for some smoke events.  Nonetheless, our analysis 

demonstrates that it may be possible to develop an improved PAS correction algorithm that could identify dust and 

provide a better estimate of the PM2.5 concentrations when dust is present.    

 345 

Data availability.  All data used in this analysis are publicly available.  Most regulatory data were obtained from the 
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Tables/Figures 

Table 1.  Methodology for identification of pollution events for 50 cases in Part I. 

Event Method of identification PM2.5/PM10  

(if available) 

Typical urban One-hour regulatory PM2.5 measurements exceeded 47 µg m-3 during 

non-wildfire season with no known presence of smoke or dust. 

>0.5 

Smoke One-hour regulatory PM2.5 measurements exceeded 47 µg m-3 in the 

presence of smoke as indicated on the NOAA Hazard Mapping 

System-Fire and Smoke Product. 

>0.5 

Dust One-hour regulatory PM2.5 measurements exceeded 47 µg m-3 during 

a known dust event.   

<0.5 

465 
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NEW Table 2.  Peak regulatory PM2.5, mean slope and R2 results from analysis of regulatory and PAS data, 

with Barkjohn 2021 correction and new EPA correction, for 50 individual pollution events (Part I dataset).  N 470 

gives number of events of each type, SD is standard deviation.  R2
 is the mean value for all events of that type.  

Also shown are the average slopes by aerosol type for the PM1 versus PM10 and 0.3  versus 5 µm counts 

regressions, both of which are unitless. 

 
Average peak 

regulatory 

PM2.5 (µg m-3) 
 

Average slope 

(R2) using 

Barkjohn 2021 

correction 

Average slope 

(R2) using new 

EPA correction 

Average slope of 

raw PAS PM1 

versus PM10 

mass 

concentrations 

Average slope of 

raw PAS 0.3 µm 

versus 5 µm 

counts 

Urban-avg 

(N=16) 
85.15 1.00 (0.88) 0.95 (0.88) 0.56 727 

SD 56.69 0.11 0.15 0.10 426 

Smoke-avg 

(N=28) 
280.32 0.99 (0.93) 0.88 (0.92) 0.44 402 

SD 226.28 0.18 0.13 0.10 265 

Dust-avg 

(N=6) 
59.76 5.54 (0.85) 5.53 (0.85) 0.29 133 

SD 7.91 1.13 1.10 0.08 77 

 

 475 
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NEW Table 3.  Relationship between hourly regulatory PM2.5 and corrected PAS PM2.5 with Barkjohn 2021  480 

algorithm.  Data are included for all simultaneous measurements for the 50 identified events in Part I.  (N 

gives number of hours of data of each type.) .  

  

Mean 

regulatory 

PM2.5 

(µg m-3) 

Mean 

corrected 

PAS PM2.5 

(µg m-3) 

Slope for 

regulatory versus 

PAS w/Barkjohn 

2021 correction 

(R2) 

Intercept 

(µg m-3) 

RMSE* 

(µg m-3) 

Mean 

bias 

(µg m-3) 

Urban (N=966) 33.9 28.7 1.02 (0.793) 4.60 10.9 -5.2 

Smoke (N=6536) 66.4 66.0 1.08 (0.866) -4.68 36.0 -0.4 

Dust (N=240) 30.5 6.4 4.98 (0.661) -1.09 27.9 -24.1 

*Root mean squared error 

 

NEW Table 4.  Relationship between hourly regulatory PM2.5 and corrected PAS PM2.5 with new EPA  485 

algorithm.  Data are included for all simultaneous measurements for the 50 identified events in Part I.  (N 

gives number of hours of data of each type.)    

  

Mean 

regulatory 

PM2.5 

(µg m-3) 

Mean 

corrected 

PAS PM2.5  

(µg m-3) 

Slope for 

regulatory versus 

PAS w/new EPA 

correction (R2) 

Intercept 

(µg m-3) 

RMSE* 

(µg m-3) 

Mean 

bias 

(µg m-

3) 

Urban (N=966) 33.9 30.3 0.950 (0.744) 4.90 11.1 -3.6 

Smoke (N=6536) 66.4 77.3 0.807 (0.858) 5.56 43.2 11.0 

Dust (N=240) 30.5 6.4 4.99 (0.664) -1.22 27.9 -24.1 

*Root mean squared error 

 

 490 

 

 

 

 

 495 

Table 5.  Mean regulatory (reg) PM2.5, PAS PM2.5 (with Barkjohn 2021 correction and with proposed dust 

correction), ratio of PAS PM1/PM10 concentration, and ratio of PAS 0.3 to 5 µm counts by coarse aerosol 

fraction (CAF) bins.  The CAF bins are centered on the indicated value. 

CAF bin  

midpoint 
N (hrs) 

Regulatory 

PM2.5 

(µg m-3)  

PAS PM2.5 

w/Barkjohn 2021  

correction 

(µg m-3) 

PAS PM2.5 

w/dust 

correction 

(µg m-3) 

Mean ratio of 

PAS PM1/PM10 

Mean ratio 

of PAS  

0.3 to 5 µm 

counts 

0.05 260 89.5 91.4 91.4 0.55 730 

0.15 334 59.4 61.5 61.5 0.55 697 

0.25 231 41.6 43.4 43.4 0.56 723 

0.35 131 37.6 38.5 38.5 0.54 623 

0.45 57 36.9 37.3 37.3 0.54 611 

0.55 14 40.6 25.1 33.0 0.44 474 

0.65 30 52.5 16.0 45.7 0.33 249 

0.75 104 68.4 13.5 63.8 0.25 151 

0.85 86 59.3 11.2 60.7 0.20 105 

0.95 10 57.2 12.4 66.1 0.21 111 
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 500 

 
NEW Figure 1: Time series of hourly regulatory and PAS data PM2.5 (raw and corrected) for two events, # 44 

(smoke, top) and # 45 (dust, bottom).  Time is in UTC.  Note that for the dust event (# 45), the two correction 

schemes give identical results.  Details on the sites used for these figures are given in Tables S1 and S3.  For 

event 44, the slopes (using Eq. (2)) comparing the Barkjohn 2021 and new EPA corrections schemes are 0.81 and 505 

0.70, respectively.  For event 45, the slope using the Barkjohn 2021 correction scheme is 6.76. 
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 510 

 

NEW Figure 2:  Comparison of mean bias (corrected PAS-regulatory) using the hourly data for smoke and 

urban pollution events in Part I using the Barkjohn 2021 and new EPA correction schemes.  Data are binned 

by regulatory PM2.5 in 50 µg m-3 bins, as shown on the X axis.  The values above the red points are the 515 

number of hourly datapoints in each bin, which is the same for both the Barkjohn 2021 and new EPA 

corrected values.  The error bars show one standard deviation within that bin. 
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 520 

 

Figure 3:  Mean coarse aerosol fraction (CAF) (Eq. (3)) calculated using the regulatory data and the PAS raw 

data for 17 events from the Part I dataset that had both PM2.5 and PM10.  The values near each point give the 

mean and number of data points (hours) in each bin.   

 525 
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Figure 4.  Histogram of coarse aerosol fraction (CAF) at Keeler, CA, using regulatory PM2.5 and PM10 data 

for hours with PM2.5 > 25 µg m-3.  We assume that the aerosol is primarily smoke whenCAF<0.5, mixed when  

CAF is between 0.5 and 0.7, and dust for times with CAF>0.7. 530 

 

 

Smoke                     Mixed                Dust 
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Figure 5.  Regulatory PM2.5 versus PAS PM2.5 with Barkjohn 2021 correction at Keeler, CA, for hours with 

regulatory PM2.5 > 25 µg m-3.  The data are separated by the coarse aerosol fraction (CAF), as measured by 535 

the regulatory data. 

 

 

 

 540 
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Figure 6.  Regulatory PM2.5 versus PAS PM2.5 with dust correction (equation 4) at Keeler, CA, for hours with 545 

regulatory PM2.5 > 25 µg m-3.  The data are separated by the coarse aerosol fraction (CAF), as measured by 

the regulatory data. 

 

 


