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Abstract. A reduction of methane emissions could help to mitigate global warming on a short time scale, making monitoring of local and

regional anthropogenic methane emissions crucial for so monitoring anthropogenic emissions is critical to understanding the methane budget

. The and its impact on climate. This study compares various retrieval schemes for estimating localized methane enhancements

around ventilation shafts in the Upper Silesian Coal Basin in Poland , using nadir observations in the short-wave infrared

acquired from the airborne imaging spectrometer HySpex. Nonlinear and linear methods are examined and put into perspective, with an emphasis on5

strategies to address Linear and nonlinear solvers are examined with special emphasize put on strategies that tackle degeneracies

between the surface reflectivity and the broad band molecular absorption features attributed to features—a challenge arising from

the instrument’s low spectral resolution. The results demonstrate that the weighted Results reveal that the generalized nonlinear least

squares fitin , employed within the Beer InfraRed Retrieval Algorithm (BIRRA), where can measure enhanced methane levels

with notable accuracy and precision. This is accomplished by allowing the scene’s background covariance structure accounts10

for the reflectivity statistics, is able to quantify enhanced methane levels from hyperspectral data with good accuracy and precision. Some BIRRA setups suffer from surface-

type dependent biases although combining multiple spectral intervals mitigates the adverse impact. to account for surface reflectivity statistics. Linear

estimators such as the Matched Filter (MF) and the Singular Value Decomposition (SVD) are fast and able to detect andto a certain

extend , under favorable conditions, quantify enhanced levels of methane quickly. Using k-means clustering in as a preprocessing

step can further enhance the performance of the two linear solvers. The linearized BIRRA fit (LLS) underestimates methane15

but agrees well on the enhancement pattern. The non-quantitative Spectral Signature Detection (SSD) method does not require

any forward modeling and can be useful in the detection of relevant scenes. In conclusion, the BIRRA code— , originally

designed for the retrieval of atmospheric constituents from space borne high resolution spectra, turned out to be applicable to

hyperspectral airborne imaging data for the quantification of methane plumes from point-like sources. Moreover, it is able to

outperform well established linear schemes such as the MF or SVD , however, at the expense of high(er) computing time.20

1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas next to carbon dioxide (CO2), according to the

latest IPCC IPCC (Intergovernmental Panel on Climate Change) report (Masson-Delmotte et al., 2021). Due to its comparatively

short lifetime of approximately 9 nine years, a reduction of methane emissions could help to mitigate global warming on a rel-

atively short time scaleof approximately one decade. Despite improvements in monitoring regional and global CH4 emissions in recent25

1



years, the IPCC report points out that fundamental uncertainties pertaining to the methane budget remain (Intergovernmental

Panel on Climate Change, 2014).

Observations indicate an increasing trend in atmospheric content since 2007, the cause of which is still subject to scientific debate. The vast majority of anthro-

pogenic CH4 emissions is caused by small scale phenomena processes such as agriculture (enteric fermentation & manure),

waste management (landfills) and fossil fuel exploitation, where the latter last is responsible for 20-30 % of all anthropogenic30

CH4 emissions. Consequently there exists the is a need for continuous long-term methane observations on a global scalelocal to

global scales, in order to foster understanding on the global methane cycle, devise future reduction measures and monitor

their effectiveness. The monitoring of anthropogenic emissions of CH4 and CO2 is also part of the United Nations Framework

Convention on Climate (2015), as nationally determined contributions should be assessed via global stock takes on a 5 five year

basis from 2023 (Article 13 & 14 of the Paris Agreement).35

Satellite observations are typically the method of choice for such used for continuous and global long-term observations although monitoring

atmospheric composition but also ground based networks such as the Global Atmosphere Watch (GAW) Programme of

the World Meteorological Organisation (WMO) or the European Integrated Carbon Observation System (ICOS) are crucial

assetsin monitoring atmospheric composition. Space-borne . Space borne spectrometers measuring short-wave infrared (SWIR) solar radiation

reflected at the Earth surface are especially well-suited to observe atmospheric CH4 in the lower atmosphere by measuring its40

absorption around 1.6 µm and and 2.3 µm. In contrast, the thermal infrared is less sensitive to variations in CH4 concentration

close to the surface. Moreover, mid-infrared sensors often have lower spatial resolution making them less favorable for emission

monitoring (Richter, 2010).

Operational CH4 products from contemporary atmospheric composition missions such as TROPOMI (TROPOspheric Mon-

itoring Instrument; Veefkind et al. (2012)Veefkind et al. 2012), GOSAT/GOSAT-2 (Greenhouse gases Observing SATellite; Kuze et al.45

(2009, 2016)Kuze et al. 2009, 2016) measure trace gas concentrations with very high accuracy, nevertheless, . Nevertheless, they

are not optimally suited to measure emissions of point-like point sources. This design inherent limitation is due to their focus on

rapid global coverage, which entails a comparatively coarse spatial resolution of several square kilometers per pixel. Since the

emission of a single point source inside a pixel is averaged over the entire resolution cell, even large sources seldomly elevate

the mean CH4 concentration within one pixel by more than one percent compared to the undisturbed background (Lauvaux50

et al., 2022). A way to increase the contrast of enhancements is to operate typical atmospheric remote sensing spectrometers

at lower altitudes (e.g. on aircraft), thus increasing the spatial resolution while leaving the overall optical design untouched.

This strategy is followed by instruments such as MAMAP/MAMAP-2D (Gerilowski et al., 2011) or GHOST (Humpage et al.,

2018) which are very well-suited for the calibration and validation of their space-borne space borne counterparts.

In order to increase the sensitivity towards smaller sources an increased spatial resolution is required. This in turn necessitates55

a trade-off in spectral resolution because the loss of photons caused by the smaller ground pixels reduces the Signal-to-Noise

Ratio (SNR) of the image, which has to be compensated by broadening the spectral interval per spectral channelwidth of the spectral

channels. Imaging spectrometers for land surface remote sensing (often referred to as hyperspectral cameras) are typical

examples of instruments optimized for spatial resolution this way. Their technology matured over the last 30 years and a

variety of airborne instruments and several space-borne space borne versions are either in orbit Guanter et al. (2021, PRISMA), Chabrillat et al.60
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(2020, ENMAP) (Cogliati et al., 2021, PRISMA), (Guanter et al., 2015; Chabrillat et al., 2020, ENMAP) or going to be launched

in the future Rast et al. (2021, CHIME)(Rast et al., 2021, CHIME). Yet other sensors dedicated for the detection of methane Jervis

et al. (2021, GHGSat) or MethaneSat and or carbon dioxide, e. g., Hochstaffl et al. (2023, CO2Image), GHGSat (Jervis et al., 2021), CO2Image

(Hochstaffl et al., 2023) or MethaneSat, have slightly higher spectral resolution than their hyperspectral counterparts but still

offer a much higher spatial resolution than atmospheric composition missions.65

Thorpe et al. (2013) were the first to demonstrate that localized CH4 emissions over land can be detected from hyperspectral

cameras with the Airborne Visible/Infrared Imaging Spectrometer Green et al. (1998, AVIRIS) (Green et al., 1998, AVIRIS) and that a

limited quantitative analysis is possible (Thorpe et al., 2014). Similar studies were repeated with airborne instruments (AVIRIS-

NG, Frankenberg et al. 2016; Duren et al. 2019; Borchardt et al. 2021; HySpex, Nesme et al. 2020) and space-borne space borne

instruments (Thompson et al., 2016; Guanter et al., 2021). Varon et al. (2019) and Jervis et al. (2021) demonstrated that CH470

sources can even be detected with the multi-spectral MSI instrument on-board the Sentinel-2 satellites, but these measurements

are restricted to ’favourable conditions’ (i. e., strong sources and high surface albedo).

One of the core challenges when retrieving methane from measurements with high spatial (≈ <100 m) and moderate spec-

tral resolution (> 1≈ >1 nm) is the separation of spectral variations caused by molecular absorption and surface reflectivity

(Ayasse et al., 2018). Classical methods for trace gas retrievals for from high-spectral resolution instruments such as RemoteC75

(Lorente et al., 2021), Weighting Function Modified Differential Optical Absorption Spectroscopy (Buchwitz et al., 2005,

WFM-DOAS), or the Beer InfraRed Retrieval Algorithm (Gimeno García et al., 2011, BIRRA) exploit the high frequency

characteristics of gaseous absorption and attribute the smooth varying part to the surface albedo and scattering. Instruments

with coarse spectral resolution, however, are unable to sufficiently resolve those molecular signatures which causes ambigui-

ties that often leads lead to surface-type related biases in the ‘classical‘ ’classical’ retrieval schemes (e. g., Borchardt et al. (2021,80

Sec. 3.3) or Thorpe et al. (2014, Sec. 9.2)). Alternative more ‘’data-driven‘ ’ retrieval schemes such as the Matched Filter (MF) or

the Singular Value Decomposition (SVD) estimate enhancements based on methods from linear algebra and statistics (Thorpe

et al., 2013; Thompson et al., 2015; Thorpe et al., 2014).

This study aims to compare various retrieval schemes applied to measurements from concentration enhancements from measurements of

the German Aerospace Center’s (DLR) HySpex sensor system . The objective is to evaluate the retrievals performance in terms85

of accuracy, precision and speed and show advantages and drawbacks for each method. Another goal is to assess the latest

BIRRA updates and its applicability to moderately resolved spectra from airborne sensors. Therefore, the paper is structured

as follows: . First, the experimental setup is briefly described, followed by a quick review of atmospheric radiation and an

introduction to the various BIRRA setups examined in this study. AfterwardAfterwards, other simpler but faster retrieval schemes

employed in this work are briefly discussed. The result section starts with a feasibility analysis and then proceeds with the90

presentation of the retrieval results from HySpex observations over the Pniowek V ventilation shafts. In the last section, the

results are summarized and put into perspective.

2 Methodology
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The methodology introduced in this section can be divided into Both linear and nonlinear schemesretrieval schemes for methane enhancements

are examined. While the former are very fast and often of but often lack sufficient accuracy, the nonlinear iterative solvers require95

more computing power and time to come up with a best estimate. The retrieval methods are tailored to address the issue of albedo-related biases, which

arises due to correlations with broad-band absorption features resulting from the instrument’s low spectral resolution.

The data analyzed in this study was collected with the DLR study utilizes measurements collected by the DLR airborne HySpex sensor

system during a survey flight conducted (see Table 1) within the scope of the COMET (Carbon diOxide and METhane) campaign on

June 7th, 2018. The CoMet campaign 2018 that focused on the detection and characterization of CO2 and CH4 sources in the Upper100

Silesian Coal Basin (USCB) in southern Poland.
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Figure 1. (a) (Left, Top) Flight lines 09 and 11 are illustrated as a dashed red line and a solid red line, respectively. Flight line 9 (dashed redline) was obtained

around 09:55 UTC, while Flight line 11 (solid redline) was acquired around 10:10 UTC (OpenStreetMap contributors, 2022). The aircraft

flew at an altitude of approximately ≈ 1.200≈ 1200m and ≈ 2.600≈ 2600m above ground level, respectively, while heading eastward at 115

degrees. The map was generated using QGIS software and OpenStreetMap data (OpenStreetMap contributors, 2022)(Left, Bottom) Photograph of the ventilation

shafts from the Pniowek V site. (b) Photo credit: Leon Scheidweiler (Uni Heidelberg). (Right) False color image from the SWIR-320m-e

camera around the three Pniovek V shafts in scene 09.

The airborne imaging spectrometer HySpex consists of two commercially available hyperspectral cameras (a VNIR-1600 and a SWIR-320m-e) and its basic specifications are

presented in Table 1. The aim of this survey was to conduct evaluate the feasibility of localized methane emission retrieval using the SWIR-320m-e data. To achieve this goal we

planned 18 flight lines at two different altitudes over a number of known ventilation shafts around Katowice. However, it was not known in advance which of these ventilation shafts

would be actively emitting methane during overpass, because only monthly averages of the emission rates are reported by the mining companies operating the shafts Nickl et al.105

(2020)To compare the performance of various retrieval methods, we limit our analysis to the two flight lines shown in Fig. 1,
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namely Flight line 9 (called scene 09) and Flight line 11 (called scene 11). The weather during the survey was well-suited

for remote sensing measurements. Apart from very few occasional patches of thin cirrus clouds there were no further low

or mid-level clouds. Actual wind data for the USCB area is presented in Luther et al. (2022, Fig. 4 and 6).

Table 1. Summary of some important HySpex properties. The sensor is described in detail in (IMF) C. H. Köhler (2016) and references

therein.

HySpex specifications

Detector MCT Sofradir MARS

Spectral Range [nm] 968-2498

Field of View (with FoV Expander) [◦] 13.2 / 27.2

Number of (spectral) Channels 256

Sampling Interval [nm] 6.0

Bandwidth [nm] 5.6–7.0

Number of (geometric) Pixels 320

Dynamic Range [bit] 14

The weather during the survey was well-suited for remote sensing measurements. Apart from very few occasional patches of thin cirrus clouds there were no further low or mid-110

infrared-level clouds. However, some amount of haze was observed from the aircraft during the flights. Actual wind data for the USCB area on the measurement day is presented

in Luther et al. (2022, Fig. 4 and 6). Fig. 1 displays the flight tracks over the Pniovek V and other two shafts. It took the aircraft approximately three minutes to complete one track,

during which time 7130 (scene 09) and 5075 (scene 11) observations were recorded for each of the 320 across-track detector pixels. To compare the effectiveness of various retrieval

methods, we limit our analysis to the two flight lines shown in Fig. ??, namely Flight line 9 (called scene 09) and Flight line 11 (called scene 11). The map also depicts the location

of the potential sources with their nominal (reported) emission rates.115

In Fig.Figure ?? 2 (top) displays an ensemble of along track averaged HySpex measurements is depicted. The sensor’s sampling distance across

the spectral axis is indicated by the vertical grid linesobservations. A possible bad pixel (number 104) is shown in the right plot around

1.65 nm (a descending cyan line). The spectral coverage of the HySpex SWIR-320m-e camera ranges from 967–2496 nm(4005–

10338 cm−1), with the exact number depending on the across track pixel detector (≈±1 cm−1). The figure shows that the radiative intensity

in the interval around 1.6 µm (≈ 6000 cm−1) is significantly larger than that between 2.3 µm (≈ 4300 cm−1) mostly due to absorption.120

The values for the spectral resolution, i. e., the full width at half maximum (FWHM) of the SWIR-320m-e camera in the 1500–2500 nm

(4000–6500 cm−1) region ranges from 6.0–9.5 nm (10–40 cm−1), are provided for each across track pixel of the detector (a 2D array) and is provided

with the level 1b data set. This data set was basically created as described in Lenhard et al. (2015), except for the optical distortion correction. The Instrument Spectral

Response Function (ISRF) calibration was performed according to Baumgartner (2021). Hence, the ISRF for each pixel is available as a lookup table with an for a sampling

distance of 1.2 nm. The figure shows that the radiative intensity in the interval around 1.6 µm (≈ 6000 cm−1) is significantly125

larger than the one around 2.3 µm (≈ 4300 cm−1) mostly due to H2O absorption (see Fig. 3). Also the surface reflectivity,

depicted in Fig. 1, causes spectral variations in the observed radiance.
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Figure ?? displays reference reflectances for various surface types across the same spectral interval. Due to the instrument’s coarse spectral resolution, the measurement is only

capable of resolving broad-band molecular absorption features. A possible bad pixel is shown in the figure around 1.65 nm (a descending cyan line) which shows with systematically

lower radiance values along the flight track.The pixel corresponding to across track pixel 104.130

2.1 Radiative transfer

In the SWIR spectral range the radiative transfer through the atmosphere under clear sky conditions (cloud and scattering freein

general) is well described by Beer’s law (Zdunkowski et al., 2007) with the monochromatic transmission in wavenumbers ν given

by

Tm(ν;s) = exp

(
−
∑
m

τm(ν,s)

)
= exp

− ∫
path

ds
∑
m

nm(s)km
(
ν,p(s),T (s)

) . (1)135

The model assumes a pure gas atmosphere with molecular of molecules moptical depth τ given , i.e. CH4, CO2, H2O. Optical depth τm

is calculated by the path integral along s over the molecular number densities nm and km, the pressure p and temperature T

dependent absorption cross section . This km. The study utilizes the 2020 spectroscopic line data from GEISA (Gestion et Etude

des Informations Spectroscopiques Atmosph’eriquesAtmosphériques; Delahaye et al., 2021) for molecular absorption calculations.

Monochromatic transmissions of , and for the SWIR spectral range and a nadir looking observer at 1.5 km at a solar zenith angle (SZA) of 30◦ are depicted in the top panel. The140

aerosol transmission in the mid-infrareddle panel has only smooth variations across the spectrum. The magenta line in the lower panel represents the total transmission degraded to

HySpex resolution. The spectral intervals used for the fit are indicated by the yellow background. The two fitting windows range from 4100–4900 cm−1 (4K) and 5700–6300 cm−1

(6K), respectively. Note significant differences in transmissions of the monochromatic spectrum and convolved instrument spectrum.

Figure 2. (a) (Left) HySpex average spectrum with the span (minimum to maximum) depicted in gray for measurements across the 320

across track detector pixels detectors for scene 09 (left). The center shows 09. (Middle) Shows a bunch of individual spectra around 1.67 µm with

the black lines indicating the pixel positions and sampling distance. The radiance values of pixel 104 (cyan) at ≈ 1.677 µm (5960 cm−1),

which is relevant for the CH4 retrieval, appears to be problematic. (b) (Right) Reference reflectances for different surface types (measured

at the John Hopkins University Baldridge et al. 2009; Meerdink et al. 2019).
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In conditions where particles such as haze, dust or high clouds prevail, extinction (scattering and absorption)by aerosols should be taken into account (De Leeuw et al.,

2011). Aerosol optical thickness is often described by a simple power law with an exponent β (details see Hochstaffl (2022)). The mid-infrareddle panel in The decision145

to exclude aerosol modelling for HySpex observations was encouraged by findings from Borchardt et al. (2021), who

concluded that different aerosol scenarios in the SWIR do not induce errors greater than 0.2 %. Moreover, since the

spectra were observed at low flight altitudes on a rather clear day (see Fig. 1 and Luther et al. 2019), retrieval errors

induced by aerosol scattering should be negligible in our scenario as well (also see Fig. 3 exemplary depicts such a model’s result for

different exponents. and Thorpe et al. 2013; Thompson et al. 2015).150

In Fig. 3, the top panel shows the individual components of the monochromatic total transmission for the US-Standard at-

mosphere, including methane’s first overtone of the fundamental vibrational transition 2ν3 (with its P and R branches) around

6000 cm−1 (1560-1660nm, tetradecad band), as well as additional strong absorption lines ranging from 4200–4600 cm−1

(2090-2290nm, octad). The bottom panel illustrates how the observer’s coarse spectral resolution smooths the total monochro-

Figure 3. (Top) Monochromatic transmissions of CH4, CO2 and H2O for the SWIR spectral range and a nadir looking observer at

1.5 km at a solar zenith angle (SZA) of 30◦. (Bottom) Total monochromatic transmission (black) vs degraded to Hyspex resolution

(magenta). The spectral intervals used for the CH4 fit are indicated by the yellow background.
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matic transmission (shown in black). There are 67 and 28 HySpex pixels detectors used by the retrievals within the range of the155

4100–4900 cm−1 (4Kand 6k spectral windows, respectively . ) and 5700–6300 cm−1 (6K), respectively (see Fig. 3).

2.2 Model atmosphere setup

The model atmosphere’s vertical extent ranges from 0–80 km with 39 levels in total. The atmosphere is composed of pure

gaseous layersabove altitude z = 10 km and layers containing gases and particles below z = 10 km. The . The highest vertical resolution is highest in the

(plume) layer found in those layers below zpl = 2 km where the enhancement is expected to takes place. The CH4 optical depth is160

modeled in terms of divided in two components, i.e., a climatological background and a Gaussian plume

τCH4
= τbg + ατ ,

where α represents the molecular scaling factor for the plume optical depth while τbg represents the background.

Although the shape of the plume profile τbg and a low-level (Gaussian) plume τ . The vertical profile of the initial guess plume is not

crucial as the nadir viewing geometry does not allow to retrieve since nadir spectra in the SWIR do not contain sufficient information on the165

vertical distribution of trace gases in the SWIR (see Buchwitz et al., 2000, Sec. 3)our setup constrains the fit to the lowest atmospheric layer up to 2.0 km (see Thorpe

et al., 2014, 5.2)(see Buchwitz et al., 2000, Sec. 3).

The CH4 background profile as well as the CO2 background profile are modeled according to the Air Force Geophysical

Laboratory (Anderson et al., 1986, AFGL)atmospheric constituent profiles scaled to 1875 ppb and 400 ppm, respectively. The molecules . H2O as well as

the auxiliary parameters temperature and pressure are taken from reanalysis data provided by the National Center for Environmental170

Prediction (Kalnay et al., 1996, NCEP).

2.3 Beer InfraRed Retrieval Algorithm (BIRRA)

The classical BIRRA level 2 processor, developed at DLR, uses the line-by-line forward model Generic Atmospheric Radiation Line-

by-line InfraRed Code (Schreier et al., 2014, GARLIC) as forward model and a separate (SLS) or nonlinear least squares

solver (NLS) for trace gas retrieval in the SWIR spectral region (Hochstaffl et al., 2018). It has been successfully applied175

to SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, ; Gimeno García et al., 2011;

Hochstaffl and Schreier, 2020) and TROPOMI (TROPOspheric Monitoring Instrument, Hochstaffl et al., 2020) observations.

In this study, however, the new Python version of BIRRA is used which is based on Py4CAtS (Python for Computational At-

mospheric Spectroscopy, (Schreier et al., 2019)), a Python reimplementation of the validated Fortran code GARLIC (Schreier

et al., 2013).180

The mathematical forward model Φ(x,ν) describes the measured intensity spectrum I(ν) for a nadir looking observer

according to

Φ(x,ν) =
r(ν)

π
cos(θ)Isun(ν)T ↓m(ν)T ↑m(ν) ⊗ S(γ(ν)) , (2)

where r refers to the surface reflectivity and θ represents the solar zenith angle. The terms T ↓m and T ↑m denote the total trans-

mission between Sun and reflection point (e.g. the Earth) and between reflection point and observer, respectively (see Eq. 1). The185
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transmission by aerosols for different Ångstrom exponents according to is depicted in Fig. 3 (center). Its behavior can be represented by a low order polynomial hence the forward’s

model total transmission is described as (1)).

The transmission is described by

Tm(ν;s) = exp

(
−
∑
m

αm τm(ν) −
∑
i>0

ai ν
i

)
exp

(
−
∑
m

αm τm(ν)

)
., (3)

The where the molecular scaling factors αm adjust initial guess profiles. The simple scaling approach recognizes the190

significantly under-determined vertical profile information in the observed spectrum and enables an unconstrained least

squares fit. All unknown (to be estimated) parameters are composed as elements of collected in the state vector x and include the molecular

scaling factors which includes αm , the aerosol coefficients ai, and the and the polynomial coefficients for the surface reflectivity rj (with

j ≥ 0) which is also modeled by a polynomial. Note that since the information of the vertical profile is well under-determined in the observed spectrum scaling factors αm for

the initial guess profiles are retrieved j ∈ N) (Gimeno García et al., 2011, Fig. 1). Finally, the instrument’s spectral response is described195

by the ISRF S. Its parameters such as the half width γ or a spectral shift can (optionally) be part of the state vector (also see

Thorpe et al., 2014, 5.2).

2.3.1 Nonlinear solvers

This study examines various nonlinear retrieval schemes that were are implemented in the BIRRA level 2 processor and are

briefly introduced below. Nonlinear least squares methods are iterative and require calculating derivatives for each of the200

nonlinear state vector elementsacross the spectral axis, represented by a Jacobian matrix J. Note that || · || represents the 2-norm throughout this study.

Nonlinear (NLS) and separable least squares (SLS)

The nonlinear least squares fit minimizes the objective function L residual norm (|| · || represents the 2-norm) for given measure-

ments y according to

min
x
‖y−Φ(x)‖2 ,205

and applies when the model function Φ is nonlinear in one or more parameters of x . according to

min
x
‖y−Φ(x)‖2 . (4)

The so called separable least squares solver SLS splits (separates) the state vector x into nonlinear and linear parameters x= (η,ζ)

where the elements in ζ enter the forward model Φ linearly (see Sec. 2.4.1). The minimization problem is hence given by

min
η,ζ
‖y−Φ(η)ζ(η)‖2 . (5)210

This setup is also known as the Variable Projection (VarPro, Golub and Pereyra, 2003) method where η is independent of ζ

in the matrix product Φ(η)ζ(η). The parameters in η can hence be fitted in the usual way by means of Gauss–Newton or

Levenberg–Marquardt algorithms (Hansen et al., 2013, see)(see Hansen et al., 2013).
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Generalized least squares (GLS)

To account for correlated errors, a A generalized least squares fit is used to account for correlated errors. The covariance matrix C takes215

into account the encompasses spectral variations of the scene’s background , which includes parts of the flight track that are and the sensor’s

measurement noise. The motivation is that the matrix compensates for background variations that could mistakenly

attributed to methane band absorption. It is computed from background pixels that are assumed to be not affected by the

CH4 plume. To create the matrix C, the location of enhancements. This of course requires some information on the point sourceand wind data

must be known. The spectral covariance for a given scene is computed to account for possible background variations similar to methane band absorption that could be mistakenly220

interpreted as a molecular enhancement. Fig. 4 shows the covariance matrices for the methane retrieval intervals. ’s location and prevailing wind direction.

Figure 4. Scene 09 inverse square root matrix of C, (Left) 4100-4900 cm−1 (4K) and (Right) 5700-6300 cm−1 (6K) spectral range.

The background area was defined outside of the pixels along-track=(6300,6670), across-track=(180,285). Note that beside the bad

HySpex pixel mentioned in Fig. 2 at 5992.74cm−1 there appears to be another suspect pixel at 4691.04cm−1.

The error covariance matrix C is a symmetric positive semi-definite matrix that is precomputed computed for each flight track. To

account for correlated errors, Fig. 4 shows the non-negative square root matrix S = C1/2 is used to estimate x by minimizing the 2-norm of the weighted

residual vector: S−1 = C−1/2 for the two methane retrieval intervals. In order to reduce fitting errors caused by degeneracies,

S−1 is included according to225

min
x
||S−1(y−Φ(x))||2. (6)

Scene 09 background covariance matrix for the (a) 4100-4900 cm−1 (4K, left) and (b) 5700-6300 cm−1 (6K, right) spectral range. The background area was defined outside

of the pixels along-track=(6300,6670), across-track=(180,285). Note that beside the bad HySpex pixel mentioned in Fig. 2 at 5992.74cm−1 there appears to be another suspect

pixel at 4691.04cm−1.

2.3.2 Methane enhancement estimate for nonlinear solvers230
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The state vector x for the methane plume fit comprises the scaling factor and a second-order reflectivity polynomial per spectral window. Further parameters were found to be

unnecessary as they did not improve the retrieval outcome but rather destabilized the solutions, owing to an increase in the condition number of the Jacobi matrix.

2.3.2 Enhancement estimates for the nonlinear solvers

A scene averaged background spectrum, excluding ground pixels around the suspected CH4 sources, was is employed to

estimate H2O, CO2 and CH4 background concentrations. The CO2 background level of the scene is inferred from the 1.6µm235

and 2µm bands via a multi-interval (4K and 6K spectral windows) fit. A scene averaged background For scene 09 and scene 11,

a scaling factor of α̃CO2 = 0.96 for scene 09 (≈ 385 ppm) and α̃CO2 = 0.93 for scene 11 was found(≈ 375 ppm) was determined,

respectively. Due to the degeneracy between H2O and the reflectivity polynomial at HySpex’s spectral resolution, the scene

averaged H2O scaling factor should be viewed as effective parameter that partly captures constitutes an effective parameter partly capturing

low frequency components in the spectrum. The scene averaged CH4 background profile was found to be within 5 % of the240

initial guess of 1875 ppbv, hence it was maintained and not is not (pre)scaled.

The decision to exclude aerosol parameters from state vector x for the CH4 plume fit was encouraged by findings from Borchardt et al. (2021), who concluded that

different aerosol scenarios in the SWIR do not induce errors greater than 0.2enhancement fit comprises the CH4 scaling factor and the coefficients

for a second-order reflectivity polynomial per spectral interval x= (α,r0, r1, r2). In this setup the parameter α only applies

to the plume component (up to 2.0 %. Moreover, since the spectra were observed at low flight altitudes on a rather clear day (see Fig. 1 and Luther et al. 2019),245

retrieval errors induced by aerosol scattering should be negligible in our scenario as well (also see Fig. 3 and Thorpe et al. 2013; Thompson et al. 2015) . Nonetheless the study

accounts for light path modifications in the reported km) of the CH4 estimates by using the scene average αCO2 scaling factor from above. optical depth

τCH4
= τbg + ατ . (7)

This setup was found robust toward lower SNR values and less susceptible to correlations among state variables, which

in turn enhances the condition number of the Jacobian matrix.250

The actual CH4 column total column is then given by the background concentration plus the retrieved enhancement and

includes corrections for light path modifications via the prefitted scene averaged background CO2 α̃CO2 given by given by

NCH4 = Nbg +
α

α̃CO2
N̂pl(z0) , (8)

with

N̂pl(z0) =

zpl∫
z0

npl(z)dz , (9)255

and z0 representing the bottom of the atmosphere . Note that this and npl the plume’s number density. This approach assumes that

the CO2 profile upon which α̃CO2 was estimated corresponds to the true profile and that α̃CO2 is 1 in absence of scattering. The

actual retrieval fits the methane enhancement factor along with a second order reflectivity polynomial so that the state vector is given by x = (α,r0,r1,r2). This setup is found

robust toward lower SNR values and less prone to correlations across state variables.
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2.4 Linear solvers260

In contrast to nonlinear fitting schemes, linear solvers for x can only be used when equations can be expressed as a linear

combination of the variables in x. To utilize such methods, it is usually required to linearize the forward model with respect to

the variables of interest. The solvers can be split into two groups, i. e., one that take background statistics into account (MF and SVD) and the two others that do not (LLS

and SSD).

2.4.1 Linear least squares (LLS)265

The LLS method uses a linear fitting scheme to estimate the parameter (see Eq. 7). Assuming that the increase in optical depth caused by the plume, τ ,

is relatively small, the BIRRA forward model from Sec. 2.3 is linearized with respect to α by approximating the transmission

spectrum of the plume by Taylor expansion according to

exp(−τ) ≈ (1−ατ) . (10)

The linear least squares problem of M measurements can then be formulated according to270

min
x
||y−Φx|| (11)

where the model functions in Φ for the linear parameters of the state vector x = (r0, b0 = r0α)x= (r0, r0α) are given by

φ1 =
cos(θ)

π
IsunT ↓T ↑ ⊗ S , (12)

φ2 = −cos(θ)

π
IsunT ↓T ↑ τ ⊗ S . (13)

It is important to note that with in this setup the reflectivity coefficient r0 is present in both two elements of the state vector.275

In order to avoid this degeneracy and allow for higher order reflectivity polynomials in the fit, which are required for large

spectral intervals, the retrieval is performed in two steps. In a first step First, only the reflectivity coefficients are fitted while in a

second step only α is estimated with the prefitted reflectivity coefficients given pre-fitted reflectivity coefficients provided as input. This

setup allows fits for an increased spectral interval. In addition, the setup allows for spectral separation The setup can be complemented by de-weighting

individual pixels in the albedo fit that are impacted by methane. This basically ensures that the reflectivity coefficients can be fitted outside the absorption280

bands of the target, and then the enhancement factor can subsequently be estimated from the range where absorption occurs. This approach minimizes interference

between the two fits, preventing the reflectivity polynomial from capturing absorption of CH4.

Another aspect that should be kept in mind is that that since 1 − ατ ≤ exp(−ατ) for α≥ 0 the linearized model underes-

timates the CH4 enhancement for a given optical depth τ compared to the nonlinear setup(forward plus inversion). However, the setup should

be sensitive enough to yield elevated methane levels. .285

2.4.2 Matched Filter (MF)

The MF is a well-established method for estimating molecular concentration enhancements from hyperspectral sensors, with

numerous studies supporting its effectiveness (Theiler and Foy, 2006; Villeneuve et al., 1999; Funk et al., 2001; Thorpe et al., 2013; Thompson et al., 2015)(Vil-

leneuve et al., 1999; Funk et al., 2001; Thorpe et al., 2013; Thompson et al., 2015). The linear enhancement factor estimate is
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derived is inferred by perturbing an average (background) radiance spectrum µ with a known target spectrum t. The approach is290

analogous to that used by Thompson et al. (2015), where CH4 enhancements are estimated by linearly scaling a target signature

that perturbs the mean radiance

αi(y) =
(t(µ))TC−1 (yi−µ)√

(t(µ))TC−1 (t(µ))
. (14)

This equation constitutes the linear minimizer that solves the Gaussian log-likelyhood log-likelihood

min
αi

||C−1/2d||2 with d = yi− (µ+αi t(µ)) and t(µ) = −µτ . (15)295

The method assumes that the measured spectrum can be represented as a linear superposition of the CH4 plume’s optical

depth and the mean unperturbed radiance µ and tests an observed vector yi yi against a base vector while accounting for

the background covariance C. Note that the The mean background spectrum µ and C were are computed per scene and the inverse

covariance C−1 is approximated by decomposing C into eigenvalues and eigenvectors (Thompson et al., 2015, Eq. 6-8)(Thompson et al.,

2015, Eq. (6)-(8)).300

In order to get a more accuratetarget spectrum estimateimprove accurate, a per pixel estimate of the target spectrum was measurement target spec-

trum is computed which accounts for the pixel’s albedo (Foote et al., 2020, II. Methods, C.). This albedo normalized matched

filter includes an albedo factor ri for each measurement spectrum according to

dr = yi− (µ+ riαi t(µ)) with ri =
yT
i µ

µTµ
(16)

However, the MF method has its limitations, e.g. it suffers from heterogeneous background and correlation between the305

plume and the background which limits the detection quality even for strong plumes (Theiler and Foy, 2006). According

to Guanter et al. (2021), the classical matched filter is relatively sensitive to surface albedo which could be mitigated a way to mitigate the effect is

by k-means clustering of the scene. This approach reduces within-class variance, which in turn should minimize the albedo

sensitivity of α. In the so called so-called cluster-tuned matched filter, instead of computing a single background covariance statistic,

a per-cluster background statistic Ci is computed for each cluster i, determined by k-means clustering (Thorpe et al., 2013; Nesme et al.,310

2020).

2.4.3 Singular Value Decomposition (SVD)

The retrieval of methane enhancements from hyperspectral AVIRIS data using singular vectors of the observed spectrum plus a

target signature was first demonstrated by Thorpe et al. (2014). The SVD method is well-suited for parameter estimation from

moderately resolved spectral data because it allows to consider only the most significant components of the spectrum while315

preserving the main spectral information.

In this study the The orthogonal singular vectors are obtained from HySpex spectra that are not impacted by the plume. The matrix

containing the scene’s log-space background spectra Ibg was is decomposed into USVT, where U ∈ Rm×m and V ∈ Rn×n are

unitary matrices, and S ∈ Rm×n is a diagonal matrix. The target spectrum signature (spectrum) is represented by the CH4

plume’s optical depth τ which was is computed with Py4CAtS.320
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The basic idea is analogous to the MF, i. e., to represent the general variability in spectral radiance by a linear combination

of singular vectors and a target signal. The minimization problem is then given by

min
w
||y−Aw||2 with Aw =

N∑
k

ukwk + twCH4 (17)

where A represents the concatenated matrix of the first N columns of the unitary matrix U . (see Fig. 5). The vectorw contains

the corresponding weights with α=wCH4 scaling the contribution of enhanced methane in the lowest atmospheric layers325

t= τ . In the cluster-tuned variant the background spectra are clustered by k-means and the SVD is performed for each cluster

separatelyand the . The respective base vectors per cluster were are then used in the linear fit.

(a) (b)

Figure 5. Standardized singular vectors and the methane plume’s target signature t in 4K (left) and 6K (right) spectral intervals, respectively.

Standardization removes the mean and scales to unit variance. While the The u vectors were yielded from are defined by the SVD and the vector t

was computed with vector by the radiative transfer model Py4CAtS. Modelling the plume’s optical depth with the same tools and for an equivalent

setup (< 2 km) is crucial for comparability with the nonlinear BIRRA setups.

2.4.4 Spectral signature detection (SSD)

A straightforward approach for detecting spectral to identify methane absorption is the SSD fit which compares the ratio of spectral

residual norms to produce a score. Unlike other methods, this approach does not require any radiative transfer calculations,330

look-up tables, or initial guess information, only calibrated sensor data for a specific interval.

The algorithm is based on a simple polynomial fit of spectral pixels and the calculation of spectral residuals. The idea

behind this method is similar to the continuum interpolated band ratio (CIBR) from Green et al. (1989) and Thompson et al. (2015,

Eq. 2)Thompson et al. (2015, Eq. (2)), which also measure measures absorption depths (Pandya et al., 2021). The method splits

the spectral interval into pixels where CH4 absorbs is absorbed and where it does is not (or only weakly, also see the LLS335

method)and by linear least squares a . A polynomial of degree P is fitted to the M out-of-band pixels

min
x
||y−p(x)||2 with p(x,νi) =

P∑
j=0

αj ν
j
i , j = 1,2, · · · ,P and i= 1,2, · · · ,M. (18)

Next the residual norms for the in- and out-of-band pixels are computedand the ratio formed rin/rout which provides an . The ratio of the

residual norms yield a absorption band depth score for each observation , i. e., the score which indicates variations in the CH4

absorption if given taht the in- and out-of-band pixels were properly chosen.340
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The algorithm constitutes a fast detection scheme which can also be applied for real-time detection of enhancements, e. g.,

determine whether or not a CH4 ventilation shaft is active at the time of instrument overpass. When a zero order polynomial is

used for the out-band fit, the method is comparable to the CIBR algorithm. However, by using higher order polynomials, the

method can model the surface reflectivity and other interfering species more precisely, especially over larger spectral intervals.

3 Results345

This section presents the results for the CH4 estimates from various retrieval methods over the Pniovek V shafts. The site was selected since it

showed significant methane releases during the times of overpass in flight track 9 (scene 09)and flight track 11 on June 07, 2018 (see Fig. 1). The results presented subsequently

focus on measurements from scene 9. shaft(s). Except otherwise stated, the retrievals were performed on 3× 3 pixels averaged spectra in

order to increase the signal-to-noise ratio and thereby reduce scattering clutter of the CH4 fits across pixels.

3.1 NLS and SLS fits350

Figures ?? and ?? show Figure 6 shows the results of the classical BIRRA NLS fit. The position of the source is indicated by the

intersection of the dashed line. The fits reveals a significant enhancement of CH4 in both spectral intervals above and downwind

of the ventilation shaft. However, the bias caused by different surface types is opposite in the 4K and 6K intervals, which is worth mentioning. An analogous behavior

is observed for both BIRRA configurations exhibit biases, with the SLS fit although it is more sensitive to variations in the background.

displaying a somewhat more pronounced sensitivity to surface variations (therefore not shown). As depicted in Fig. 6 the355

combination of multiple spectral intervals can alleviate these adverse effects to a considerable extent and the downwind

shape of the plume is captured better (see Table 2).
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Figure 6. Methane enhancements for 3× 3 spatially averaged HySpex observations in the (a) multi-interval fit (combining 4K and 6K ranges). (b) shows

the result for the (Left) 4150–4900 cm−1 (4K) interval , while (c) depicts enhancements inferred from and the (Center) 5700–6300 cm−1 (6K) range.

(Right) Multi-interval fit, i.e., combining the 4K and 6K ranges. Note that the latter former two fits suffer from albedo correlations with the

target methane in opposite direction.

The multi-interval retrieval shown in Figure ?? improves the result by reducing albedo-induced variabilities on the target, however the retrieval still suffers from surface-correlated

offsets but to a much smaller degree than single-interval fits. The maximum enhancements and plume pattern are similar, but the downwind shape of the plume is better captured

(see Table 2).360

3.2 GLS fits

Figure 8 displays the retrieved columns using the generalized least squares (GLS) fit from averaged spectra for scene 09 in the

4K and 6K intervals. Compared to other methods, it reduces the correlation between the methane enhancement and surface

reflectivity significantly, resulting in a more distinct plume signal and less background clutter.
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Figure 7. Methane plume depicted for the single window covariance weighted fits for scene 09. The background pixel concentration is rather

stable in the 4K interval depicted in (a) (Left) while there is still some overestimation of CH4 in the 6K range in (b)(Right).

Figure ?? 8 shows the multi-window covariance weighted GLS fits for scene 09 and 11. In both cases the retrieval yields365

a distinct plume that separates well from background clutter. Figure ??shows The figure depicts the impact of decreasing ground

pixel resolution (from higher altitudes) on the inferred concentrations as enhancements are less pronounced . However, partly for

scene 11. However, this could also partly be attributed to less a decreased amount of emissions since the observation was

taken at another point in time. Also Furthermore, winds could have changed as the plume’s shape is different compared to scene

09 in Fig. ??. 09.370
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Figure 8. Best results are acquired (Left) Multi-window (4K and 6K) retrieval output for GLS setups. (a) depicts the enhancements for scene 09 while (b)

depicts the output and (Right) enhancements for scene 11. The stripe pattern in the along track direction is a multi-window retrieval artefact.

Figure 9 depicts the fits from individual (non-averaged) HySpex spectra for scene 09 and 11 for the GLS multi-window re-

trieval setup. The single pixel total columns are more affected by retrieval noise caused by the lower signal-to-noise ratio (SNR)

which varies significantly over different surface-types. However, the method still identifies elevated methane concentrationsand

is moreover only minor affected by albedo correlations. Also note that the maximum enhancements are more pronounced, particularly in scene 11 where further degrading ground

pixel resolution by spatially averaging apparently has somewhat greater impact on downwind concentrations. .375
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Figure 9. Same as Fig. ?? but for single Single pixel spectra (not 3×3 averaged). Again (a) depicts depicted for (Left) scene 09 results and (b) (Right) scene

11. Retrieval noise is significantly depending on the underlying surface.

3.3 MF fits

The classical and the albedo normalizedmatched filter is albedo normalized, cluster-tuned and classical matched filters are examined for

scene 09. Both Figure 10 shows that all three variants are able to identify the methane plumebut the and as shown in Fig. 10, the , although

absolute CH4 concentrations differ in certain parts of the scene. The cluster-tuning is beneficial in reducing the interference of the plume

signal with surface reflectivity. MF variant in middle panel yields more homogeneous enhancements downwind across various380

surface types but pixels along class boundaries such as streets show some artefacts.

20



Figure 10. (a) (Left) Albedo normalized variant of the MF(b) , (Center) the cluster-tuned MF variant and (c) (Right) the classical MF fits in fit

shown for the 4K interval (4100-4900 cm−1), respectively.

3.4 SVD fits

The SVD-based retrieval method illustrated in Fig. 11 is able to identifying identify elevated levels CH4 in the HySpex spectrum.

The method yields consistent results for both spectral intervals employing four base vectors and the CH4 Jacobian for the

lowest 2km (see Fig. 5). Including more than four base vectors significantly increase increases the condition number of A as385

columns column five interferes with the methane signal. The albedo normalized MF variant yields somewhat larger values depicted in Fig. ?? compared to the

classical variant in Fig. ??. Cluster-tuning also improves the results in Fig. ?? but since the MF already takes background covariance into account the impact is small.

The plume was plume is also identified for the purely ‘’data-driven‘ approach, i. e., ’ approach, where the base vector that mimics mimick-

ing the CH4 absorption,i. e., (the fifth column in U) is used instead of the CH4 spectrum. This approach does hence Thus, this approach

does not require any forward model and is hence purely data-driven. Cluster-tuning in general improves the fit due to a reduc-390

tion in variance within each cluster, however, the results become more sensitive to the selected number of base vectors. It was

found that within a cluster the number of base vectors required to ensemble resemble A should be reduced.
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Figure 11. (a) (Left) Standard SVD fit and (b) (Right) background cluster-tuned SVD, both for the 6K spectral range. Three clusters reduce

background clutter but suppresses some enhancements close to the source. However, also false positives like the spot around the coordinate

(200,6350) are diminished.

3.5 LLS fits

The results for the linearized BIRRA fits are shown in Fig. 12. The method Linear least squares is able to identify CH4 enhancements, although it

differs significantly in the absolute values in the 4K (Fig. 12) and 6K (spectra range (see Fig. 12)spectral range. As pointed out in395

Sec. 2.4.1, the method is prone to underestimate enhancements. Moreover, the selected weights for the reflectivity coefficients

fit were found to impact the CH4 result. However, for the sake of simplicity and since the optimal selection of weights was

not clear at the time of writing initially, no weighting was applied. Its results turned out to be sensitive to which deweight the impacted pixels. Similar to

its nonlinear counterpart (NLS) the fit is also affected by albedo related offsets in opposite directions in the two intervals.

However, relative enhancements between plume and background values are rather similar.400
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Figure 12. CH4 enhancements for scene 09 estimated with the linear forward model LLS setup. The results in Fig. (a) (Left) show the results for

the 4K spectral window while Fig. (b) (Right) shows the 6K outcome. In the latter method, the methane enhancements are less pronounced,

but the reflectivity related bias is also smaller.

3.6 SSD fits

In Fig. 13 results for the SSD method are shown. A second order polynomial is fitted in Fig. ?? while a constant is used in Fig. ??. The result show that

relative variations are more pronounced in the zero-order fit while the higher order fit better captures the downwind plume by

suppressing background clutter.

It is important to note that the method yields better results for the 6K absorption since the 4K absorption features are405

distributed over a larger spectral range which causes more uncertainty in the out-of-band polynomial fit since many pixels need

to be omitted.
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Figure 13. The ratio of the spectral residuals in the 6K range for the in- and out-band pixel are depicted. In (a) (Left) the in-band residuals

were computed towards with respect to a quadratic polynomial while in (b) on the (Right) a constant was used.

3.7 Statistical significance of results

In order to provide a more quantitative measure on the quality and confidence of the fits a Student’s t-test was applied to the

results (Varon et al., 2018). The test helps to measure how well the plume is represented with respect to the background for410

a given retrieval setup. This is accomplished by testing for pixels that contradict the null hypothesis(background pixel) and hence should

, which assumes that all pixels belong to the plume. background (methane concentration). Moreover, samples need to be

independent and identically normal distributed (Bruce et al., 2020).

The method assumes that the background samples are normal distributed with equal variance, and that they are independent (Bruce et al., 2020). The null hypothesis

was rejected for significance levels 0.01 at the 1 % significance level which can be considered a strong evidenceagainst the null hypothesis.415

24



Although some fit results may ask for a tighter significance level in the t-test to isolate the plume and get rid of most outliers,

for the sake of comparison 0.01 1 % is used throughout this study.

Figure 14. Plume pixels according to the Student’s t-test for the nonlinear multi-window GLS fit. (a) (Left) Shows scene 09 while (b) (Right)

displays scene 11.

Figure 14 depicts the result of the t-test applied to the retrieval output for scene 09 and 11 from the covariance weighted

nonlinear solver (GLS) in the 4K range. The plume is well pronounced and the test is able to isolated isolate enhanced CH4 values

from the background. In particular, the higher ground-resolution scene 09 shows almost no outliers at the selected significance420

level meaning indicating that the depicted values occur only in≤ 1% of the casesgiven , assuming the null hypothesis (background

methane concentrations) is trueto hold. Moreover, finding such extreme values by chance in such a pattern is even more likely

and hence the result gives confidence that the is is a methane plume originating at the source that is transported downwind.
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Figure 15. Plume pixels identified by the t-test in scene 09 for the different linear schemes. Note that the color scale was adapted. (a) (Left)

Classical MF output from the 4K range, (b) (Center) displays plume pixels accoding to the SVD method in the 6K interval, and (c) (Right)

presents the SLLS fit in 6K.

The Student’s t-test was also applied to the linear solversand the results are shown , with results reported in Fig. 15. The test was

performed with the same significance levels as abovelevel set for the previous cases. Each of the linear methods provide provides425

enough pixels within the confident range to isolate the plume pixels. While MF provides the most accurate enhancement values

with respect to the nonlinear solver in Fig compared to the GLS (cf. Fig. 14 the SVD better captures the downwind plume, however, peak

enhancements are≈ 30% lower. The LLS method does capture the downwind plume but is much less sensitive to enhancement

as it significantly underestimates these.

3.8 Errors and correlations430

In general the retrieval’s fit quality is assessed with respect to the discrepancy between the measurement y and the converged

modeled spectrum I according to σ = ||y−I(x̂)||, also known as the residual norm. In order to get the uncertainties (variance)

in the estimates of the model parameters for a particular fit, the residual norm is multiplied by the retrieval error covariance

matrix

V =
σ2

M −N
(JT J)−1 with x̂i±

√
Vii , (19)435

representing the standard error for the fitted state vector x̂ and J the Jacobi Jacobian matrix.
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Figure 16. Uncertainties in the estimated CH4 according to Eq. 19 (19) for the covariance weighted fit in the (a) (Left) 4K and (b) (Right) 6K

spectral windows. The 6K range shows larger errors as it contains less than half the number of pixels than the 4K window. Beside the higher

variances also the bad pixel close to methane lines depicted in Fig. 2 is also likely to increase the spectral residuum norm.

The errors of the individual state vector parameters are represented in the square root of the diagonal elements of V . The

standard error
√
V11 for the CH4 scaling factor is shown inf in Fig. 16. The uncertainty varies with different surface types which is

a product of errors induced by correlation and the spectral residual.according to Eq. (19). A different way to evaluate the quality of the retrieval for

a scene is to estimate the fit error from the variability of pixels identified as background by the t-test. This method calculates440

a score by comparing the means of pixels from the target area and the background area, and dividing this by the standard

deviation of the background. These values are also obtainable for all the linear fit variants.
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Table 2. Mean and standard error for the background pixels of the t-test. Relating the standard error to the mean is a good indication on the

accuracy and precision of a method.

Background pixels

Nonlinear Solvers Window Score mean std. dev.

GLS 4K 5.34 1832 ± 150

GLS 6K 4.94 2051 ± 122

GLS 4K6K 4.57 1926 ± 170

SLS 4K 3.05 3278 ± 673

SLS 6K 2.22 1320 ± 537

SLS 4K6K 2.94 3085 ± 577

NLS 4K 3.05 3247 ± 251

NLS 6K 2.21 1369 ± 199

NLS 4K6K 3.40 2840 ± 244

Tables 2 and 3 present the findings of this analysis for the nonlinear and linear solvers, respectively. The analysis shows that

the GLS fit performs best and that SLS and NLS yield similar results while the MF scores highest amongst the linear solvers.

In accordance with Fig. 16 fits in the the 4K window score higher, compared to the 6K. Note that the The less sensitive the retrieval445

is to CH4 enhancements the less variations will be observed in the background. Therefore, the standard deviation in the last

column should not be overemphasized in the evaluation of the setups.

Table 3. Same as Table 2 but for the linear retrieval setups.

Background pixels

Linear Solvers Window Score mean std. dev.

MF 4K 4.22 1778 ± 208

MF 6K 3.20 1775 ± 217

SVD 4K 3.23 2237 ± 383

SVD 6K 3.18 1700 ± 157

SLLS 4K 2.72 2069 ± 140

SLLS 6K 2.71 1713 ± 145

Figure 17 shows the correlation matrix of the retrieval outputs for the various different solvers and spectral intervals. It reveals

that most solvers have rather good correlations with the GLS solvers solver (sort of benchmark), particularly in the 4K and multi-

window 4K6K spectral ranges. Moreover, the GLS, MF and SVD show blocks of high correlation. Blue colors indicate that450
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inferred concentrations tend to move in opposite directions which is the case for example in the single window NLS fits shown

in Fig. 6.

Figure 17. Pearson correlation coefficients for inferred methane from scene 09 for the nonlinear and linear solvers in the two examined

spectral intervals.

4 DiscussionsDiscussion

This study found that the BIRRA based nonlinear methods nonlinear setups that which utilize background pixel covariance statistics

(GLS) are able suited to quantify CH4 concentrations with good accuracy and precision . On the other hand, the unweighted BIRRA suffers from455

and might also allow to quantify emissions. The NLS and SLS fits encounter challenges due to degeneracies between the

surface reflectivity and the broad band molecular absorption signal . It was found that the separation of linear (reflectivity coefficients) and nonlinear

(target) parameters in the SLS fit does not mitigate the problem of correlation between these quantities but only the inclusion of the background covariance significantly reduces

surface reflectance depending biases.

at HySpex resolution. In accordance with Guanter et al. (2021) Borchardt et al. (2021); Guanter et al. (2021) surface brightness460

and homogeneity were found to be important factors in detecting and quantifying methane plumes. The issue of different surface types

and their impact on the uncertainty of the enhancement was also addressed by Borchardt et al. (2021). In accordance with our results the authors noted that retrieval noise can

vary significantly depending on surface type, and that different retrieval schemes can yield disparate total column values . A given type of surface
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can lead to a positive bias in one spectral window while the opposite may be true in another window (see Fig. 9). For example,

they found that paved concrete induces a positive bias while barbed goatgrass leads to a underestimation of enhancements and hence the total columns.465

In order to scan for potential CH4 leakages on large datasets with millions of pixels, linear solvers such as the SVD, MF

or LLS are more appropriate due to their significantly better speed performancehigher speed (Thompson et al., 2015). While the

iterative setups require roughly one second per fit the linear methods are two, up to three orders of magnitude faster. In particular

the SVD and MF solvers yield enhancements that often agree well with the more sophisticated nonlinear BIRRA method methods,

although their sensitivity and accuracy is lower which in some cases and hampers the ability to detect downwind patterns. Although the SVD method does not explicitly470

incorporate a covariance matrix it is important to note that the singular vectors are generated from assumed background pixels, hence the solver takes background statistics into

account and is considered an equivalent alternative to the MF approach. Both methods are sensitive to the selection of the background and has significant impact on the retrieval

result can be significantly hampered by the lack of uniformity in background reflectance (Thorpe et al., 2014; Foote et al.,

2020).

The simple linearization of the BIRRA forward model lacks background covariance information475

The LLS fit ignores background statistics and hence the fit inversion suffers from albedo correlations similar to its nonlinear

counterparts (NLS and SLS). Moreover, the fit The fit also significantly underestimates enhancements although it is able to capture

parts of the pattern. For the rather simple SSD method polynomials

Polynomials up to second order were able to capture the enhanced methane signal while the in the rather simple SSD method.

The selection of an adequate polynomial is depending on the width of the spectral interval and its surface reflectivity. Note that it480

Moreover, the method is not designed to quantify methane but only for (tactical onboard) detection.

As mentioned by other authors before (e. g. Thompson et al. 2015) linear methods should be regarded as a complement to other more complete retrieval algorithms. While linear

methods are well-suited to survey vast datasets and pinpoint potential sources, the iterative BIRRA solvers are adequate to quantify enhanced concentrations at known locations as

the slower speed is not of much concern for some thousands of observationsallows for the detection of anomalies in the spectral residuum.

Cluster-tuned linear retrieval setups can help to mitigate background clutter and surface reflectivity induced biases (Nesme485

et al., 2020), however, incorporation of an adequately compiled background covariance matrix into the fitting scheme was found to be more effective. It was also found that

allocating especially if large background areas are selected. Predicting the right cluster for the pixel to be retrieved is crucial in order for

the method to improve results as otherwise inaccurate background statistics are used for the fit . Nonetheless, cluster-tuning can pixels impacted by the methane

plume is crucial for this method in order to improve fit results. Cluster-tuning can moreover be a beneficial preprocessing

step as it e. g. allows to potentially allows to reduce the base vectors per cluster in the SVD method since background variability is reduced and so490

that fewer base vectors are sufficient to model the background spectrum. However, note that in In this case a separate model matrix

A needs to be compiled for each cluster.

While linear methods are well-suited to survey vast datasets and pinpoint potential sources, iterative solvers such as

BIRRA are adequate to quantify enhanced concentrations at known locations as the slower speed is not of much concern

for some thousands of observations.495
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5 Conclusions

The study examines the feasibility of methane retrievals from hyperspectral imaging observations using for various retrieval

methods. It was found that localized CH4 enhancements close to the ground can be quantified from HySpex airborne ob-

servations. The generalized covariance weighted BIRRA retrieval is well-suited for investigating potential methane emissions. The

statement is underpinned by the relatively low background variations and distinct CH4 enhancement pattern in the surface-500

albedo covariance weighted BIRRA fits in, e. g., Fig. ?? 8 and Table 2.

The BIRRA NLS and SLS fits were found to be sensitive to spectral variations in the albedo, leading to surface-type de-

pendent biases that were reported in known from previous studies utilizing data from hyperspectral sensors. This effect was is more

pronounced for single spectral intervals but less evident when multiple intervals were used for the fit, such as combining 4K and 6Kare

combined.505

The linear estimators proved to be highly efficient and effective for many cases, making them suitable for near real-time processing

in the survey of large hyperspectral datasets. The well-established MF method for hyperspectral data SVD and MF method produced

results that often agree well with the BIRRA inferred enhancements, however, they are less sensitive. The LLS method

turned out to be the least sensitive one. The SVD method yields similar enhancements and is able to capture most parts of the downwind plume with great

statistical confidence. While also the LLS method is able to capture some of the enhanced plume pixels, it is much less sensitive . For detection purposes the SSD was510

found to be a useful tool.

In conclusion, covariance weighted methods are able to quantify methane enhancements om from hyperspectral SWIR ob-

servations at high spatial resolution with good accuracy. The weighted nonlinear methods are more precise and are better In particular the GLS

solver is suited to capture the downwind plume which is essential for emission estimatesenhancements with an accuracy that should allow for

emission estimation. Considering the significant speedup and reasonable accuracy of the linear methods MF and SVD, both515

constitute a valueable valuable tool in examining plumes on vast datasets.

The methods are applicable to other airborne as well as also applicable to space borne sensorsand this should be considered as , which will be

considered in a next step. As a final noteOverall, the new Python version of the BIRRA code used in this study , based on Py4CAtS as its

forward model, turned out to be a flexible toolbox for prototyping.
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