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Abstract. A reduction of methane emissions could help mitigate global warming on a short time scale, making monitoring of

local and regional anthropogenic methane emissions crucial for understanding the methane budget. The study compares various

retrieval schemes for estimating localized methane enhancements around ventilation shafts in the Upper Silesian Coal Basin

in Poland, using nadir observations in the short-wave infrared from the airborne imaging spectrometer HySpex. Nonlinear and

linear methods are examined and put into perspective, with an emphasis on strategies to address degeneracies between the5

surface reflectivity and the broad band molecular absorption features attributed to the instrument’s low spectral resolution. The

results demonstrate that the weighted nonlinear least squares fit in the Beer InfraRed Retrieval Algorithm (BIRRA), where

the scene’s background covariance structure accounts for the reflectivity statistics, is able to quantify enhanced methane levels

from hyperspectral data with good accuracy and precision. Some BIRRA setups suffer from surface-type dependent biases

although combining multiple spectral intervals mitigates the adverse impact. Linear estimators such as the Matched Filter10

(MF) and the Singular Value Decomposition (SVD) are fast and able to detect and to a certain extend quantify enhanced levels

of methane. Using k-means clustering in a preprocessing step can further enhance the performance of the two linear solvers.

The linearized BIRRA fit (LLS) underestimates methane but agrees well on the enhancement pattern. The non-quantitative

Spectral Signature Detection (SSD) method does not require any forward modeling and can be useful in the detection of

relevant scenes. In conclusion, the BIRRA code — originally designed for the retrieval of atmospheric constituents from space15

borne high resolution spectra, turned out to be applicable to hyperspectral imaging data for the quantification of methane

plumes from point-like sources. Moreover, it is able to outperform well established linear schemes such as the MF or SVD,

however, at the expense of high(er) computing time.

1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas next to carbon dioxide (CO2) according to the lat-20

est IPCC report (Masson-Delmotte et al., 2021). Due to its comparatively short lifetime of approximately 9 years, a reduction of

methane emissions could help to mitigate global warming on a relatively short time scale of approximately one decade. Despite

improvements in monitoring regional and global CH4 emissions in recent years the IPCC report points out that fundamental

uncertainties pertaining to the methane budget remain (Intergovernmental Panel on Climate Change, 2014).
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Observations indicate an increasing trend in atmospheric CH4 content since 2007, the cause of which is still subject to25

scientific debate. The vast majority of anthropogenic CH4 emissions is caused by small scale phenomena such as agriculture

(enteric fermentation & manure), waste management (landfills) and fossil fuel exploitation, where the latter is responsible for

20-30 % of all anthropogenic CH4 emissions. Consequently there exists the need for continuous long-term methane observa-

tions on a global scale, in order to foster understanding on the global methane cycle, devise future reduction measures and

monitor their effectiveness. The monitoring of anthropogenic emissions of CH4 and CO2 is also part of the United Nations30

Framework Convention on Climate (2015) as nationally determined contributions should be assessed via global stock takes on

a 5 year basis from 2023 (Article 13 & 14 of the Paris Agreement).

Satellite observations are typically the method of choice for such continuous and global long-term observations although

also ground based networks such as the Global Atmosphere Watch (GAW) Programme of the World Meteorological Organ-

isation (WMO) or the European Integrated Carbon Observation System (ICOS) are crucial assets in monitoring atmospheric35

composition. Space-borne spectrometers measuring short-wave infrared (SWIR) solar radiation reflected at the Earth surface

are especially well-suited to observe atmospheric CH4 in the lower atmosphere by measuring its absorption around 1.6 µm and

and 2.3 µm. In contrast, the thermal infrared is less sensitive to variations in CH4 concentration close to the surface. Moreover,

mid-infrared sensors often have lower spatial resolution making them less favorable for emission monitoring (Richter, 2010).

Operational CH4 products from contemporary atmospheric composition missions such as TROPOMI (TROPOspheric Moni-40

toring Instrument; Veefkind et al. (2012)), GOSAT/GOSAT-2 (Greenhouse gases Observing SATellite; Kuze et al. (2009, 2016))

measure trace gas concentrations with very high accuracy, nevertheless, they are not optimally suited to measure emissions of

point-like sources. This design inherent limitation is due to their focus on rapid global coverage, which entails a comparatively

coarse spatial resolution of several square kilometers per pixel. Since the emission of a single point source inside a pixel is

averaged over the entire resolution cell, even large sources seldomly elevate the mean CH4 concentration within one pixel45

by more than one percent compared to the undisturbed background (Lauvaux et al., 2022). A way to increase the contrast

of enhancements is to operate typical atmospheric remote sensing spectrometers at lower altitudes (e.g. on aircraft), thus in-

creasing the spatial resolution while leaving the overall optical design untouched. This strategy is followed by instruments

such as MAMAP/MAMAP-2D (Gerilowski et al., 2011) or GHOST (Humpage et al., 2018) which are very well-suited for the

calibration and validation of their space-borne counterparts.50

In order to increase the sensitivity towards smaller sources an increased spatial resolution is required. This in turn necessitates

a trade-off in spectral resolution because the loss of photons caused by the smaller ground pixels reduces the Signal-to-Noise

Ratio (SNR) of the image which has to be compensated by broadening the spectral interval per spectral channel. Imaging

spectrometers for land surface remote sensing (often referred to as hyperspectral cameras) are typical examples of instruments

optimized for spatial resolution this way. Their technology matured over the last 30 years and a variety of airborne instruments55

and several space-borne versions are either in orbit Guanter et al. (2021, PRISMA), Chabrillat et al. (2020, ENMAP) or going

to be launched in the future Rast et al. (2021, CHIME). Yet other sensors dedicated for the detection of methane Jervis et al.

(2021, GHGSat) or MethaneSat and carbon dioxide, e. g., Hochstaffl et al. (2023, CO2Image), have slightly higher spectral
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resolution than their hyperspectral counterparts but still offer a much higher spatial resolution than atmospheric composition

missions.60

Thorpe et al. (2013) were the first to demonstrate that localized CH4 emissions over land can be detected from hyperspectral

cameras with the Airborne Visible/Infrared Imaging Spectrometer Green et al. (1998, AVIRIS) and that a limited quantitative

analysis is possible (Thorpe et al., 2014). Similar studies were repeated with airborne instruments (AVIRIS-NG, Frankenberg

et al. 2016; Duren et al. 2019; Borchardt et al. 2021; HySpex, Nesme et al. 2020) and space-borne instruments (Thompson

et al., 2016; Guanter et al., 2021). Varon et al. (2019) and Jervis et al. (2021) demonstrated that CH4 sources can even be65

detected with the multi-spectral MSI instrument on-board the Sentinel-2 satellites, but these measurements are restricted to

’favourable conditions’ (i. e., strong sources and high surface albedo).

One of the core challenges when retrieving methane from measurements with high spatial and moderate spectral resolu-

tion (> 1 nm) is the separation of spectral variations caused by molecular absorption and surface reflectivity (Ayasse et al.,

2018). Classical trace gas retrievals for high-spectral resolution instruments such as RemoteC (Lorente et al., 2021), Weighting70

Function Modified Differential Optical Absorption Spectroscopy (Buchwitz et al., 2005, WFM-DOAS), or the Beer InfraRed

Retrieval Algorithm (Gimeno García et al., 2011, BIRRA) exploit the high frequency characteristics of gaseous absorption and

attribute the smooth varying part to the surface albedo and scattering. Instruments with coarse spectral resolution, however,

are unable to sufficiently resolve those molecular signatures which causes ambiguities that often leads to surface-type related

biases in the ‘classical‘ retrieval schemes (e. g., Borchardt et al. (2021, Sec. 3.3) or Thorpe et al. (2014, Sec. 9.2)). Alternative75

more ‘data-driven‘ retrieval schemes such as the Matched Filter (MF) or the Singular Value Decomposition (SVD) estimate

enhancements based on methods from linear algebra and statistics (Thorpe et al., 2013; Thompson et al., 2015; Thorpe et al.,

2014).

This study aims to compare various retrieval schemes applied to measurements from the German Aerospace Center’s (DLR)

HySpex sensor system. The objective is to evaluate the retrievals performance in terms of accuracy, precision and speed and80

show advantages and drawbacks for each method. Another goal is to assess the latest BIRRA updates and its applicability to

moderately resolved spectra from airborne sensors. Therefore, the paper is structured as follows: First, the experimental setup

is briefly described, followed by a quick review of atmospheric radiation and an introduction to the various BIRRA setups

examined in this study. Afterward, other simpler but faster retrieval schemes employed in this work are briefly discussed. The

result section starts with a feasibility analysis and then proceeds with the presentation of the retrieval results from HySpex85

observations over the Pniowek V ventilation shafts. In the last section, the results are summarized and put into perspective.

2 Methodology

The methodology introduced in this section can be divided into linear and nonlinear schemes. While the former are very fast

and often of sufficient accuracy, the nonlinear iterative solvers require more computing power and time to come up with a best

estimate. The retrieval methods are tailored to address the issue of albedo-related biases, which arises due to correlations with90

broad-band absorption features resulting from the instrument’s low spectral resolution.
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The data analyzed in this study was collected with the DLR HySpex sensor system during a survey flight conducted within

the scope of the COMET (Carbon diOxide and METhane) campaign on June 7th, 2018. The CoMet campaign focused on the

detection and characterization of CO2 and CH4 sources in the Upper Silesian Coal Basin (USCB) in southern Poland.

(a)

(b)

Figure 1. (a) Flight lines 09 and 11 are illustrated as a dashed red line and a solid red line, respectively. Flight line 9 was obtained around

09:55 UTC, while Flight line 11 was acquired around 10:10 UTC. The aircraft flew at an altitude of approximately ≈ 1.200m and ≈ 2.600m

above ground level, respectively, while heading eastward at 115 degrees. The map was generated using QGIS software and OpenStreetMap

data (OpenStreetMap contributors, 2022). (b) False color image from the SWIR-320m-e camera around the three Pniovek V shafts in scene

09.

The airborne imaging spectrometer HySpex consists of two commercially available hyperspectral cameras (a VNIR-160095

and a SWIR-320m-e) and its basic specifications are presented in Table 1. The aim of this survey was to conduct evaluate the

feasibility of localized methane emission retrieval using the SWIR-320m-e data. To achieve this goal we planned 18 flight lines

at two different altitudes over a number of known ventilation shafts around Katowice. However, it was not known in advance

which of these ventilation shafts would be actively emitting methane during overpass, because only monthly averages of the

emission rates are reported by the mining companies operating the shafts Nickl et al. (2020).100
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Table 1. Summary of some important HySpex properties. The sensor is described in detail in (IMF) and references therein.

HySpex specifications

Detector MCT Sofradir MARS

Spectral Range [nm] 968-2498

Field of View (with FoV Expander) [◦] 13.2 / 27.2

Number of (spectral) Channels 256

Sampling Interval [nm] 6.0

Bandwidth [nm] 5.6–7.0

Number of (geometric) Pixels 320

Dynamic Range [bit] 14

The weather during the survey was well-suited for remote sensing measurements. Apart from very few occasional patches

of thin cirrus clouds there were no further low or mid-infrared-level clouds. However, some amount of haze was observed from

the aircraft during the flights. Actual wind data for the USCB area on the measurement day is presented in Luther et al. (2022,

Fig. 4 and 6). Fig. 1 displays the flight tracks over the Pniovek V and other two shafts. It took the aircraft approximately three

minutes to complete one track, during which time 7130 (scene 09) and 5075 (scene 11) observations were recorded for each of105

the 320 across-track detector pixels. To compare the effectiveness of various retrieval methods, we limit our analysis to the two

flight lines shown in Fig. 1a, namely Flight line 9 (called scene 09) and Flight line 11 (called scene 11). The map also depicts

the location of the potential sources with their nominal (reported) emission rates.

(a)

(b)

Figure 2. (a) HySpex average spectrum with the span (minimum to maximum) depicted in gray for measurements across the 320 across

track detector pixels for scene 09 (left). The center shows a bunch of individual spectra around 1.67 µm with the black lines indicating the

pixel positions and sampling distance. The radiance values of pixel 104 (cyan) at ≈ 1.677 µm (5960 cm−1), which is relevant for the CH4

retrieval appears to be problematic. (b) Reference reflectances for different surface types (measured at the John Hopkins University).

5



In Fig. 2a an ensemble of along track averaged HySpex measurements is depicted. The sensor’s sampling distance across the

spectral axis is indicated by the vertical grid lines. The spectral coverage of the HySpex SWIR-320m-e camera ranges from110

967–2496 nm (4005–10338 cm−1), with the exact number depending on the across track pixel (≈±1 cm−1). The figure shows

that the radiative intensity in the interval around 1.6 µm (≈ 6000 cm−1) is significantly larger than that between 2.3 µm (≈
4300 cm−1) mostly due to H2O absorption.

The values for the spectral resolution, i. e., the full width at half maximum (FWHM) of the SWIR-320m-e camera in the

1500–2500 nm (4000–6500 cm−1) region ranges from 6.0–9.5 nm (10–40 cm−1), are provided for each across track pixel of115

the detector (a 2D array) with the level 1b data set. This data set was basically created as described in Lenhard et al. (2015),

except for the optical distortion correction. The Instrument Spectral Response Function (ISRF) calibration was performed

according to Baumgartner (2021). Hence, the ISRF for each pixel is available as a lookup table with an sampling distance of

1.2 nm.

Figure 2b displays reference reflectances for various surface types across the same spectral interval. Due to the instrument’s120

coarse spectral resolution, the measurement is only capable of resolving broad-band molecular absorption features. A possible

bad pixel is shown in the figure around 1.65 nm (a descending cyan line) which shows with systematically lower radiance

values along the flight track. The pixel corresponding to across track pixel 104.

2.1 Radiative transfer

In the SWIR spectral range the radiative transfer through the atmosphere under clear sky conditions (cloud and scattering free125

in general) is well described by Beer’s law (Zdunkowski et al., 2007) with the monochromatic transmission in wavenumbers ν

given by

Tm(ν;s) = exp

(
−
∑
m

τm(ν,s)

)
= exp

− ∫
path

ds
∑
m

nm(s)km
(
ν,p(s),T (s)

) . (1)

The model assumes a pure gas atmosphere with molecular m optical depth τ given by the path integral along s over the

molecular number densities nm and km, the pressure p and temperature T dependent absorption cross section. This study130

utilizes the 2020 spectroscopic line data from GEISA (Gestion et Etude des Informations Spectroscopiques Atmosph’eriques;

Delahaye et al., 2021) for molecular absorption calculations.
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Figure 3. Monochromatic transmissions of CH4, CO2 and H2O for the SWIR spectral range and a nadir looking observer at 1.5 km at a solar

zenith angle (SZA) of 30◦ are depicted in the top panel. The aerosol transmission in the mid-infrareddle panel has only smooth variations

across the spectrum. The magenta line in the lower panel represents the total transmission degraded to HySpex resolution. The spectral

intervals used for the CH4 fit are indicated by the yellow background. The two fitting windows range from 4100–4900 cm−1 (4K) and

5700–6300 cm−1 (6K), respectively. Note significant differences in transmissions of the monochromatic spectrum and convolved instrument

spectrum.

In conditions where particles such as haze, dust or high clouds prevail, extinction (scattering and absorption) by aerosols

should be taken into account (De Leeuw et al., 2011). Aerosol optical thickness is often described by a simple power law with

an exponent β (details see Hochstaffl (2022)). The mid-infrareddle panel in Fig. 3 exemplary depicts such a model’s result for135

different exponents.

In Fig. 3, the top panel shows the individual components of the monochromatic total transmission for the US-Standard at-

mosphere, including methane’s first overtone of the fundamental vibrational transition 2ν3 (with its P and R branches) around

6000 cm−1 (1560-1660nm, tetradecad band), as well as additional strong absorption lines ranging from 4200–4600 cm−1

(2090-2290nm, octad). The bottom panel illustrates how the observer’s coarse spectral resolution smooths the total monochro-140
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matic transmission (shown in black). There are 67 and 28 HySpex pixels used by the retrievals within the range of the 4K and

6k spectral windows, respectively.

2.2 Model atmosphere setup

The model atmosphere’s vertical extent ranges from 0–80 km with 39 levels in total. The atmosphere is composed of pure

gaseous layers above altitude z = 10 km and layers containing gases and particles below z = 10 km. The vertical resolution is145

highest in the (plume) layer below zpl = 2 km where the enhancement is expected to takes place. The CH4 optical depth is

modeled in terms of a climatological background and a Gaussian plume

τCH4
= τbg + ατ , (2)

where α represents the molecular scaling factor for the plume optical depth while τbg represents the background.

Although the shape of the plume profile is not crucial as the nadir viewing geometry does not allow to retrieve information150

on the vertical distribution of trace gases in the SWIR (see Buchwitz et al., 2000, Sec. 3) our setup constrains the fit to the

lowest atmospheric layer up to 2.0 km (see Thorpe et al., 2014, 5.2).

The CH4 background profile as well as the CO2 background profile are modeled according to the Air Force Geophysical

Laboratory (Anderson et al., 1986, AFGL) atmospheric constituent profiles scaled to 1875 ppb and 400 ppm, respectively. The

molecules H2O as well as the auxiliary parameters temperature and pressure are taken from reanalysis data provided by the155

National Center for Environmental Prediction (Kalnay et al., 1996, NCEP).

2.3 Beer InfraRed Retrieval Algorithm (BIRRA)

The BIRRA level 2 processor, developed at DLR, uses the line-by-line forward model Generic Atmospheric Radiation Line-

by-line InfraRed Code (Schreier et al., 2014, GARLIC) and a separate (SLS) or nonlinear least squares solver (NLS) for trace

gas retrieval in the SWIR spectral region (Hochstaffl et al., 2018). It has been successfully applied to SCIAMACHY (Scanning160

Imaging Absorption Spectrometer for Atmospheric Chartography, Gimeno García et al., 2011; Hochstaffl and Schreier, 2020)

and TROPOMI (TROPOspheric Monitoring Instrument, Hochstaffl et al., 2020) observations. In this study, however, the new

Python version of BIRRA is used which is based on Py4CAtS (Python for Computational Atmospheric Spectroscopy, (Schreier

et al., 2019)), a Python reimplementation of the validated Fortran code GARLIC (Schreier et al., 2013).

The mathematical forward model Φ(x,ν) describes the measured intensity spectrum I(ν) for a nadir looking observer165

according to

Φ(x,ν) =
r(ν)

π
cos(θ)Isun(ν)T ↓m(ν)T ↑m(ν) ⊗ S(γ(ν)) , (3)

where r refers to the surface reflectivity and θ represents the solar zenith angle. The terms T ↓m and T ↑m denote the total trans-

mission between Sun and reflection point (e.g. the Earth) and between reflection point and observer, respectively (see Eq. 1).

The transmission by aerosols for different Ångstrom exponents according to is depicted in Fig. 3 (center). Its behavior can be170
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represented by a low order polynomial hence the forward’s model total transmission is described as

Tm(ν;s) = exp

(
−
∑
m

αm τm(ν) −
∑
i>0

ai ν
i

)
. (4)

The unknown (to be estimated) parameters are composed as elements of the state vector x and include the molecular scaling

factors αm, the aerosol coefficients ai, and the coefficients for the surface reflectivity rj (with j ≥ 0) which is also modeled by

a polynomial. Note that since the information of the vertical profile is well under-determined in the observed spectrum scaling175

factors αm for the initial guess profiles are retrieved (Gimeno García et al., 2011, Fig. 1). Finally, the instrument’s spectral

response is described by the ISRF S. Its parameters such as the half width γ or a spectral shift can (optionally) be part of the

state vector.

2.3.1 Nonlinear solvers

This study examines various nonlinear retrieval schemes that were implemented in the BIRRA level 2 processor and are180

briefly introduced below. Nonlinear least squares methods are iterative and require calculating derivatives for each of the

nonlinear state vector elements across the spectral axis, represented by a Jacobian matrix J. Note that || · || represents the

2-norm throughout this study.

Nonlinear (NLS) and separable least squares (SLS)

The nonlinear least squares fit minimizes the objective function L for given measurements y according to185

min
x
‖y−Φ(x)‖2 , (5)

and applies when the model function Φ is nonlinear in one or more parameters of x.

The so called separable least squares solver splits (separates) the state vector x into nonlinear and linear parameters x=

(η,ζ) where the elements in ζ enter the forward model Φ linearly (see Sec. 2.4.1). The minimization problem is hence given

by190

min
η,ζ
‖y−Φ(η)ζ(η)‖2 . (6)

This setup is also known as the Variable Projection (VarPro, Golub and Pereyra, 2003) method where η is independent of ζ

in the matrix product Φ(η)ζ(η). The parameters in η can hence be fitted in the usual way by means of Gauss–Newton or

Levenberg–Marquardt algorithms (Hansen et al., 2013, see).

Generalized least squares (GLS)195

To account for correlated errors, a generalized least squares fit is used. The covariance matrix C takes into account the spectral

variations of the scene’s background, which includes parts of the flight track that are not affected by the CH4 plume. To

create the matrix C, the location of the point source and wind data must be known. The spectral covariance for a given
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scene is computed to account for possible background variations similar to methane band absorption that could be mistakenly

interpreted as a molecular enhancement. Fig. 4 shows the covariance matrices for the methane retrieval intervals.200

The error covariance matrix C is a symmetric positive semi-definite matrix that is precomputed for each flight track. To

account for correlated errors, the non-negative square root matrix S = C1/2 is used to estimate x by minimizing the 2-norm of

the weighted residual vector:

min
x
||S−1(y−Φ(x))||2. (7)

(a) (b)

Figure 4. Scene 09 background covariance matrix for the (a) 4100-4900 cm−1 (4K, left) and (b) 5700-6300 cm−1 (6K, right) spectral range.

The background area was defined outside of the pixels along-track=(6300,6670), across-track=(180,285). Note that beside the bad HySpex

pixel mentioned in Fig. 2 at 5992.74cm−1 there appears to be another suspect pixel at 4691.04cm−1.

2.3.2 Methane enhancement estimate for nonlinear solvers205

The state vector x for the methane plume fit comprises the CH4 scaling factor and a second-order reflectivity polynomial per

spectral window. Further parameters were found to be unnecessary as they did not improve the retrieval outcome but rather

destabilized the solutions, owing to an increase in the condition number of the Jacobi matrix.

A scene averaged spectrum, excluding ground pixels around the suspected CH4 sources, was employed to estimate H2O,

CO2 and CH4 background concentrations. The CO2 background level of the scene is inferred from the 1.6µm and 2µm bands210

via a multi-interval (4K and 6K spectral windows) fit. A scene averaged background scaling factor of α̃CO2 = 0.96 for scene

09 and α̃CO2 = 0.93 for scene 11 was found. Due to the degeneracy between H2O and the reflectivity polynomial at HySpex’s

spectral resolution the scene averaged H2O scaling factor should be viewed as effective parameter that partly captures low

frequency components in the spectrum. The scene averaged CH4 background profile was found to be within 5 % of the initial

guess of 1875 ppbv, hence it was maintained and not scaled.215
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The decision to exclude aerosol parameters from the CH4 plume fit was encouraged by findings from Borchardt et al.

(2021), who concluded that different aerosol scenarios in the SWIR do not induce errors greater than 0.2 %. Moreover, since

the spectra were observed at low flight altitudes on a rather clear day (see Fig. 1 and Luther et al. 2019), retrieval errors induced

by aerosol scattering should be negligible in our scenario as well (also see Fig. 3 and Thorpe et al. 2013; Thompson et al. 2015).

Nonetheless the study accounts for light path modifications in the reported CH4 estimates by using the scene average αCO2220

scaling factor from above. The actual CH4 column given by the background concentration plus the retrieved enhancement

includes corrections for light path modifications via the prefitted scene averaged background CO2 α̃CO2 given by

NCH4 = Nbg +
α

α̃CO2
N̂pl(z0) , (8)

with

N̂pl(z0) =

zpl∫
z0

npl(z)dz , (9)225

and z0 representing the bottom of the atmosphere. Note that this approach assumes that the CO2 profile upon which α̃CO2

was estimated corresponds to the true profile and that α̃CO2 is 1 in absence of scattering. The actual retrieval fits the methane

enhancement factor along with a second order reflectivity polynomial so that the state vector is given by x= (α,r0, r1, r2).

This setup is found robust toward lower SNR values and less prone to correlations across state variables.

2.4 Linear solvers230

In contrast to nonlinear fitting schemes, linear solvers for x can only be used when equations can be expressed as a linear

combination of the variables in x. To utilize such methods, it is usually required to linearize the forward model with respect to

the variables of interest. The solvers can be split into two groups, i. e., one that take background statistics into account (MF

and SVD) and the two others that do not (LLS and SSD).

2.4.1 Linear least squares (LLS)235

The LLS method uses a linear fitting scheme to estimate the CH4 parameter (see Eq. 2). Assuming that the increase in optical

depth caused by the plume, τ , is relatively small, the BIRRA forward model from Sec. 2.3 is linearized with respect to α by

approximating the transmission spectrum of the plume by Taylor expansion according to

exp(−τ) ≈ (1−ατ) . (10)

The linear least squares problem of M measurements can then be formulated according to240

min
x
||y−Φx|| (11)

where the model functions in Φ for the linear parameters of the state vector x= (r0, b0 = r0α) are given by

φ1 =
cos(θ)

π
IsunT ↓T ↑ ⊗ S , (12)

φ2 = −cos(θ)

π
IsunT ↓T ↑ τ ⊗ S . (13)
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It is important to note that with this setup the reflectivity coefficient r0 is present in both elements of the state vector. In245

order to avoid this and allow for higher order reflectivity polynomials in the fit, which are required for large spectral intervals,

the retrieval is performed in two steps. In a first step only the reflectivity coefficients are fitted while in a second step α is

estimated with the prefitted reflectivity coefficients given as input. This setup allows fits for an increased spectral interval.

In addition, the setup allows for spectral separation by de-weighting individual pixels in the albedo fit that are impacted by

methane. This basically ensures that the reflectivity coefficients can be fitted outside the absorption bands of the target, and250

then the enhancement factor can subsequently be estimated from the range where absorption occurs. This approach minimizes

interference between the two fits, preventing the reflectivity polynomial from capturing absorption of CH4.

Another aspect that should be kept in mind is that that since 1 − ατ ≤ exp(−ατ) for α≥ 0 the linearized model underes-

timates the CH4 enhancement for a given optical depth τ compared to the nonlinear setup (forward plus inversion). However,

the setup should be sensitive enough to yield elevated methane levels.255

2.4.2 Matched Filter (MF)

The MF is a well-established method for estimating molecular concentration enhancements from hyperspectral sensors, with

numerous studies supporting its effectiveness (Theiler and Foy, 2006; Villeneuve et al., 1999; Funk et al., 2001; Thorpe et al.,

2013; Thompson et al., 2015). The linear enhancement factor estimate is derived by perturbing an average (background)

radiance spectrum µ with a known target spectrum t. The approach is analogous to that used by Thompson et al. (2015), where260

CH4 enhancements are estimated by linearly scaling a target signature that perturbs the mean radiance

αi(y) =
(t(µ))TC−1 (yi−µ)√

(t(µ))TC−1 (t(µ))
. (14)

This equation constitutes the linear minimizer that solves the Gaussian log-likelyhood

min
αi

||C−1/2d||2 with d = yi− (µ+αi t(µ)) and t(µ) = −µτ . (15)

The method assumes that the measured spectrum can be represented as a linear superposition of the CH4 plume’s optical depth265

and the mean unperturbed radianceµ and tests an observed vector yi against a base vector while accounting for the background

covariance C. Note that the mean background spectrum µ and C were computed per scene and the inverse covariance C−1 is

approximated by decomposing C into eigenvalues and eigenvectors (Thompson et al., 2015, Eq. 6-8).

In order to get a more accurate target spectrum estimate, a per pixel estimate of the target spectrum was computed which

accounts for the pixel’s albedo (Foote et al., 2020, II. Methods, C.). This albedo normalized matched filter includes an albedo270

factor ri for each measurement spectrum according to

dr = yi− (µ+ riαi t(µ)) with ri =
yT
i µ

µTµ
(16)

According to Guanter et al. (2021), the classical matched filter is relatively sensitive to surface albedo which could be

mitigated by k-means clustering of the scene. This approach reduces within-class variance, which in turn should minimize

the albedo sensitivity of α. In the so called cluster-tuned matched filter, instead of computing a single background covariance275
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statistic, a background statistic Ci is computed for each cluster i, determined by k-means clustering (Thorpe et al., 2013; Nesme

et al., 2020).

2.4.3 Singular Value Decomposition (SVD)

The retrieval of methane enhancements from hyperspectral AVIRIS data using singular vectors of the observed spectrum plus a

target signature was first demonstrated by Thorpe et al. (2014). The SVD method is well-suited for parameter estimation from280

moderately resolved spectral data because it allows to consider only the most significant components of the spectrum while

preserving the main spectral information.

In this study the orthogonal singular vectors are obtained from HySpex spectra that are not impacted by the plume. The

scene’s log-space background spectra Ibg was decomposed into USVT. The target spectrum is represented by the CH4 plume’s

optical depth τ which was computed with Py4CAtS.285

The basic idea is analogous to the MF, i. e., to represent the general variability in spectral radiance by a linear combination

of singular vectors and a target signal. The minimization problem is then given by

min
w
||y−Aw||2 with Aw =

N∑
k

ukwk + twCH4 (17)

where A represents the concatenated matrix of the first N columns of the unitary matrix U. The vector w contains the corre-

sponding weights with α=wCH4 scaling the contribution of enhanced methane in the lowest atmospheric layers t= τ . In the290

cluster-tuned variant the background spectra are clustered by k-means and the SVD performed for each cluster separately and

the respective base vectors per cluster were then used in the linear fit.

(a) (b)

Figure 5. Standardized singular vectors and the methane plume’s target signature t in 4K (left) and 6K (right) spectral intervals, respectively.

Standardization removes the mean and scales to unit variance. While the u vectors were yielded from the SVD the vector t was computed

with the radiative transfer model Py4CAtS. Modelling the plume’s optical depth with the same tools and for an equivalent setup (< 2 km) is

crucial for comparability with the nonlinear BIRRA setups.
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2.4.4 Spectral signature detection (SSD)

A straightforward approach for detecting spectral methane absorption is the SSD fit which compares the ratio of spectral

residual norms to produce a score. Unlike other methods, this approach does not require any radiative transfer calculations,295

look-up tables, or initial guess information, only calibrated sensor data for a specific interval.

The algorithm is based on a simple polynomial fit of spectral pixels and the calculation of spectral residuals. The idea behind

this method is similar to the continuum interpolated band ratio (CIBR) from Green et al. (1989) and Thompson et al. (2015,

Eq. 2), which also measure absorption depths (Pandya et al., 2021). The method splits the spectral interval into pixels where

CH4 absorbs and where it does not (or only weakly, also see the LLS method) and by linear least squares a polynomial of300

degree P is fitted to the M out-of-band pixels

min
x
||y−p(x)||2 with p(x,νi) =

P∑
j=0

αj ν
j
i , j = 1,2, · · · ,P and i= 1,2, · · · ,M. (18)

Next the residual norms for the in- and out-of-band pixels are computed and the ratio formed rin/rout which provides an

absorption band depth score for each observation, i. e., the score indicates variations in the CH4 absorption if in- and out-of-

band pixels were properly chosen.305

The algorithm constitutes a fast detection scheme which can also be applied for real-time detection of enhancements, e. g.,

determine whether or not a CH4 ventilation shaft is active at the time of instrument overpass. When a zero order polynomial is

used for the out-band fit, the method is comparable to the CIBR algorithm. However, by using higher order polynomials, the

method can model the surface reflectivity and other interfering species more precisely, especially over larger spectral intervals.

3 Results310

This section presents the results for the CH4 estimates from various retrieval methods over the Pniovek V shafts. The site was

selected since it showed significant methane releases during the times of overpass in flight track 9 (scene 09) and flight track

11 on June 07, 2018 (see Fig. 1). The results presented subsequently focus on measurements from scene 9. Except otherwise

stated, the retrievals were performed on 3× 3 pixels averaged spectra in order to increase the signal-to-noise ratio and thereby

reduce scattering of the CH4 fits across pixels.315

3.1 NLS and SLS fits

Figures 6b and 6c show the results of the classical BIRRA NLS fit. The position of the source is indicated by the intersection

of the dashed line. The fits reveals a significant enhancement of CH4 in both spectral intervals above and downwind of the

ventilation shaft. However, the bias caused by different surface types is opposite in the 4K and 6K intervals, which is worth

mentioning. An analogous behavior is observed for the SLS fit although it is more sensitive to variations in the background.320
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(a) (b) (c)

Figure 6. Methane enhancements for 3×3 spatially averaged HySpex observations in the (a) multi-interval fit (combining 4K and 6K ranges).

(b) shows the result for the 4150–4900 cm−1 (4K) interval, while (c) depicts enhancements inferred from the 5700–6300 cm−1 (6K) range.

Note that the latter two fits suffer from albedo correlations with the target in opposite direction.

The multi-interval retrieval shown in Figure 6a improves the result by reducing albedo-induced variabilities on the target,

however the retrieval still suffers from surface-correlated offsets but to a much smaller degree than single-interval fits. The

maximum enhancements and plume pattern are similar, but the downwind shape of the plume is better captured (see Table 2).

3.2 GLS fits

Figure 7 displays the retrieved columns using the generalized least squares (GLS) fit from averaged spectra for scene 09 in the325

4K and 6K intervals. Compared to other methods, it reduces the correlation between the methane enhancement and surface

reflectivity significantly, resulting in a more distinct plume signal and less background clutter.
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(a) (b)

Figure 7. Methane plume depicted for the single window covariance weighted fits for scene 09. The background pixel concentration is rather

stable in the 4K interval depicted in (a) while there is still some overestimation of CH4 in the 6K range in (b).

Figure 8 shows the multi-window covariance weighted GLS fits for scene 09 and 11. In both cases the retrieval yields a

distinct plume that separates well from background clutter. Figure 8bshows the impact of decreasing ground pixel resolution

(from higher altitudes) on the inferred concentrations as enhancements are less pronounced. However, partly this could also330

be attributed to less emissions since the observation was taken at another point in time. Also winds could have changed as the

plume’s shape is different compared to scene 09 in Fig. 8a.
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(a) (b)

Figure 8. Best results are acquired for GLS setups. (a) depicts the enhancements for scene 09 while (b) depicts the output for scene 11.The

stripe pattern in the along track direction is a multi-window retrieval artefact.

Figure 9 depicts the fits from individual (non-averaged) HySpex spectra for scene 09 and 11 for the GLS multi-window

retrieval setup. The single pixel total columns are more affected by retrieval noise caused by the lower signal-to-noise ratio

(SNR) which varies significantly over different surface-types. However, the method still identifies elevated methane concen-335

trations and is moreover only minor affected by albedo correlations. Also note that the maximum enhancements are more

pronounced, particularly in scene 11 where further degrading ground pixel resolution by spatially averaging apparently has

somewhat greater impact on downwind concentrations.
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(a) (b)

Figure 9. Same as Fig. 8 but for single pixel spectra (not 3× 3 averaged). Again (a) depicts scene 09 results and (b) scene 11.

3.3 MF fits

The classical and the albedo normalized matched filter is examined for scene 09. Both variants are able to identify the methane340

plume but the and as shown in Fig. 10, the cluster-tuning is beneficial in reducing the interference of the plume signal with

surface reflectivity.
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(a) (b) (c)

Figure 10. (a) Albedo normalized variant of the MF (b) the cluster-tuned MF and (c) the classical MF fits in the 4K interval (4100-

4900 cm−1).

3.4 SVD fits

The SVD-based retrieval method illustrated in Fig. 11 is able to identifying elevated levels CH4 in the HySpex spectrum.

The method yields consistent results for both spectral intervals employing four base vectors and the CH4 Jacobian for lowest345

2km (see Fig. 5). Including more than four base vectors significantly increase the condition number of A as columns five

interferes with the methane signal. The albedo normalized MF variant yields somewhat larger CH4 values depicted in Fig. 10b

compared to the classical variant in Fig. 10c. Cluster-tuning also improves the results in Fig. 10a but since the MF already takes

background covariance into account the impact is small.

The plume was also identified for the purely ‘data-driven‘ approach, i. e., where the base vector that mimics the CH4350

absorption, i. e., the fifth column in U is used instead of the CH4 spectrum. This approach does hence not require any forward

model and is hence purely data-driven. Cluster-tuning in general improves the fit due to a reduction in variance within each

cluster, however, the results become more sensitive to the selected number of base vectors. It was found that within a cluster

the number of base vectors required to ensemble A should be reduced.
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(a) (b)

Figure 11. (a) Standard SVD fit and (b) background cluster-tuned SVD, both for the 6K spectral range. Three clusters reduce background

clutter but suppresses some enhancements close to the source. However, also false positives like the spot around the coordinate (200,6350)

are diminished.

3.5 LLS fits355

The results for the linearized BIRRA fits are shown in Fig. 12. The method is able to identify CH4 enhancements, although

it differs significantly in the absolute values in the 4K (Fig. 12) and 6K (Fig. 12) spectral range. As pointed out in Sec. 2.4.1,

the method is prone to underestimate enhancements. Moreover, the selected weights for the reflectivity coefficients fit were

found to impact the CH4 result. However, for the sake of simplicity and since the optimal selection of weights was not clear at

the time of writing no weighting was applied. Its CH4 results turned out to be sensitive to which deweight the CH4 impacted360

pixels. Similar to its nonlinear counterpart (NLS) the fit is also affected by albedo related offsets in opposite directions in the

two intervals. However, relative enhancements between plume and background values are rather similar.
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(a) (b)

Figure 12. CH4 enhancements for scene 09 estimated with the linear forward model setup. The results in Fig. (a) show the results for the 4K

spectral window while Fig. (b) shows 6K outcome. In the latter method, the methane enhancements are less pronounced, but the reflectivity

related bias is also smaller.

3.6 SSD fits

In Fig. 13 results for the SSD method are shown. A second order polynomial is fitted in Fig. 13a while a constant is used in

Fig. 13b. The result show that relative variations are more pronounced in the zero-order fit while the higher order fit better365

captures the downwind plume by suppressing background clutter.

It is important to note that the method yields better results for the 6K absorption since the 4K absorption features are

distributed over a larger spectral range which causes more uncertainty in the out-of-band polynomial fit since many pixels need

to be omitted.
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(a) (b)

Figure 13. The ratio of the spectral residuals in the 6K range for the in- and out-band pixel are depicted. In (a) the in-band residuals were

computed towards a quadratic polynomial while in (b) a constant was used.

3.7 Statistical significance of results370

In order to provide a more quantitative measure on the quality and confidence of the fits a Student’s t-test was applied to the

results. The test helps to measure how well the plume is represented with respect to the background for a given retrieval setup.

This is accomplished by testing for pixels that contradict the null hypothesis (background pixel) and hence should belong to

the plume.

The method assumes that the CH4 background samples are normal distributed with equal variance, and that they are inde-375

pendent (Bruce et al., 2020). The null hypothesis was rejected for significance levels 0.01 which can be considered a strong
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evidence against the null hypothesis. Although some fit results may ask for a tighter significance level in the t-test to isolate the

plume and get rid of most outliers, for the sake of comparison 0.01 is used throughout this study.

(a) (b)

Figure 14. Plume pixels according to the Student’s t-test for the nonlinear multi-window GLS fit. (a) Shows scene 09 while (b) displays

scene 11.

Figure 14 depicts the result of the t-test applied to the retrieval output for scene 09 and 11 from the covariance weighted

nonlinear solver (GLS) in the 4K range. The plume is well pronounced and the test is able to isolated enhanced CH4 values380

from the background. In particular the higher ground-resolution scene 09 shows almost no outliers at the selected significance

level meaning that the depicted values occur only in ≤ 1% of the cases given the null hypothesis (background methane con-

centrations) is true. Moreover, finding such extreme values by chance in such a pattern is even more likely and hence the result

gives confidence that the is is a methane plume originating at the source that is transported downwind.
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(a) (b) (c)

Figure 15. Plume pixels identified by the t-test in scene 09 for the different linear schemes. Note that the color scale was adapted. (a)

Classical MF output from the 4K range, (b) displays plume pixels accoding to the SVD method in the 6K interval, and (c) presents the SLLS

fit in 6K.

The Student’s t-test was also applied to the linear solvers and the results are shown in Fig. 15. The test was performed with385

the same significance levels as above. Each of the linear methods provide enough pixels within the confident range to isolate

the plume pixels. While MF provides most accurate enhancement values with respect to the nonlinear solver in Fig 14 the

SVD better captures the downwind plume, however, peak enhancements are ≈ 30% lower. The LLS method does capture the

downwind plume but is much less sensitive to enhancement as it significantly underestimates these.

3.8 Errors and correlations390

In general the retrieval’s fit quality is assessed with respect to the discrepancy between the measurement y and the converged

spectrum I according to σ = ||y− I(x̂)||, also known as the residual norm. In order to get the uncertainties (variance) in the

estimates of the model parameters for a particular fit, the residual norm is multiplied by the retrieval error covariance matrix

V =
σ2

M −N
(JT J)−1 with x̂i±

√
Vii , (19)

representing the standard error for the fitted state vector x̂ and J the Jacobi matrix.395
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(a) (b)

Figure 16. Uncertainties in the estimated CH4 according to Eq. 19 for the covariance weighted fit in the (a) 4K and (b) 6K spectral windows.

The 6K range shows larger errors as it contains less than half the number of pixels than the 4K window. Beside the higher variances also the

bad pixel close to methane lines depicted in Fig. 2 is also likely to increase the spectral residuum norm.

The errors of the individual state vector parameters are represented in the square root of the diagonal elements of V . The

standard error
√
V11 for the CH4 scaling factor is shown inf Fig. 16. The uncertainty varies with different surface types which

is a product of errors induced by correlation and the spectral residual. A different way to evaluate the quality of the retrieval for

a scene is to estimate the fit error from the variability of pixels identified as background by the t-test. This method calculates

a score by comparing the means of pixels from the target area and the background area, and dividing this by the standard400

deviation of the background. These values are also obtainable for all the linear fit variants.
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Table 2. Mean and standard error for the background pixels of the t-test. Relating the standard error to the mean is a good indication on the

accuracy and precision of a method.

Background pixels

Nonlinear Solvers Window Score mean std. dev.

GLS 4K 5.34 1832 ± 150

GLS 6K 4.94 2051 ± 122

GLS 4K6K 4.57 1926 ± 170

SLS 4K 3.05 3278 ± 673

SLS 6K 2.22 1320 ± 537

SLS 4K6K 2.94 3085 ± 577

NLS 4K 3.05 3247 ± 251

NLS 6K 2.21 1369 ± 199

NLS 4K6K 3.40 2840 ± 244

Tables 2 and 3 present the findings of this analysis for the nonlinear and linear solvers, respectively. The analysis shows that

the GLS fit performs best and that SLS and NLS yield similar results while the MF scores highest amongst the linear solvers.

In accordance with Fig. 16 fits in the the 4K window score higher, compared to the 6K. Note that the less sensitive the retrieval

is to CH4 enhancements the less variations will be observed in the background. Therefore, the standard deviation in the last405

column should not be overemphasized in the evaluation of the setups.

Table 3. Same as Table 2 but for the linear retrieval setups.

Background pixels

Linear Solvers Window Score mean std. dev.

MF 4K 4.22 1778 ± 208

MF 6K 3.20 1775 ± 217

SVD 4K 3.23 2237 ± 383

SVD 6K 3.18 1700 ± 157

SLLS 4K 2.72 2069 ± 140

SLLS 6K 2.71 1713 ± 145

Figure 17 shows the correlation matrix of the retrieval outputs for the various solvers and spectral intervals. It reveals that

most solvers have rather good correlations with the GLS solvers (sort of benchmark), particularly in the 4K and 4K6K spectral

ranges. Moreover, the GLS, MF and SVD show blocks of high correlation. Blue colors indicate that inferred concentrations

tend to move in opposite directions which is the case for example in the single window NLS fits in Fig. 6.410
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Figure 17. Pearson correlation coefficients for inferred methane from scene 09 for the nonlinear and linear solvers in the two examined

spectral intervals.

4 Discussions

This study found that the BIRRA based nonlinear methods which utilize background pixel covariance statistics (GLS) are able

to quantify CH4 concentrations with good accuracy and precision. On the other hand, the unweighted BIRRA suffers from

degeneracies between the surface reflectivity and the broad band molecular absorption signal. It was found that the separation

of linear (reflectivity coefficients) and nonlinear (target) parameters in the SLS fit does not mitigate the problem of correla-415

tion between these quantities but only the inclusion of the background covariance significantly reduces surface reflectance

depending biases.

In accordance with Guanter et al. (2021) surface brightness and homogeneity were found to be important factors in detecting

and quantifying methane plumes. The issue of different surface types and their impact on the uncertainty of the CH4 enhance-

ment was also addressed by Borchardt et al. (2021). In accordance with our results the authors noted that retrieval noise can420

vary significantly depending on surface type, and that different retrieval schemes can yield disparate total column values (see

Fig. 9). For example, they found that paved concrete induces a positive bias while barbed goatgrass leads to a underestimation

of enhancements and hence the total columns.
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In order to scan for potential CH4 leakages on large datasets with millions of pixels, linear solvers such as the SVD, MF or

LLS are more appropriate due to their significantly better speed performance. While the iterative setups require roughly one425

second per fit the linear methods are two, up to three orders of magnitude faster. In particular the SVD and MF solvers yield

enhancements that agree well with the more sophisticated nonlinear BIRRA method although their sensitivity and accuracy is

lower which in some cases and hampers the ability to detect downwind patterns. Although the SVD method does not explicitly

incorporate a covariance matrix it is important to note that the singular vectors are generated from assumed background pixels,

hence the solver takes background statistics into account and is considered an equivalent alternative to the MF approach. Both430

methods are sensitive to the selection of the background and has significant impact on the retrieval result (Thorpe et al., 2014;

Foote et al., 2020).

The simple linearization of the BIRRA forward model lacks background covariance information and hence the fit suffers

from albedo correlations similar to its nonlinear counterparts (NLS and SLS). Moreover, the fit significantly underestimates

enhancements although it is able to capture parts of the pattern. For the rather simple SSD method polynomials up to second435

order were able to capture the enhanced methane signal while the selection of an adequate polynomial is depending on the

width of the spectral interval and its surface reflectivity. Note that it is not designed to quantify methane but only for (tactical

onboard) detection.

As mentioned by other authors before (e. g. Thompson et al. 2015) linear methods should be regarded as a complement to

other more complete retrieval algorithms. While linear methods are well-suited to survey vast datasets and pinpoint potential440

sources, the iterative BIRRA solvers are adequate to quantify enhanced concentrations at known locations as the slower speed

is not of much concern for some thousands of observations.

Cluster-tuned linear retrieval setups can help to mitigate background clutter and surface reflectivity induced biases (Nesme

et al., 2020), however, incorporation of an adequately compiled background covariance matrix into the fitting scheme was

found to be more effective. It was also found that allocating the right cluster for the pixel to be retrieved is crucial in order for445

the method to improve results as otherwise inaccurate background statistics are used for the fit. Nonetheless, cluster-tuning can

be a beneficial preprocessing step as it e. g. allows to potentially reduce the base vectors per cluster in the SVD method since

background variability is reduced and fewer base vectors are sufficient to model the background spectrum. However, note that

in this case a separate model matrix A needs to be compiled for each cluster.

5 Conclusions450

The study examines the feasibility of methane retrievals from hyperspectral imaging observations using various retrieval meth-

ods. It was found that localized CH4 enhancements close to the ground can be quantified from HySpex airborne observations.

The generalized covariance weighted BIRRA retrieval is well-suited for investigating potential methane emissions. The state-

ment is underpinned by the relatively low background variations and distinct CH4 enhancement pattern in the surface-albedo

covariance weighted BIRRA fits in, e. g., Fig. 8 and Table 2.455
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The BIRRA NLS and SLS fits were found to be sensitive to spectral variations in the albedo, leading to surface-type depen-

dent biases that were reported in previous studies utilizing data from hyperspectral sensors. This effect was more pronounced

for single spectral intervals but less evident when multiple intervals were used for the fit, such as combining 4K and 6K.

The linear estimators proved to be highly efficient, making them suitable for near real-time processing of large hyperspectral

datasets. The well-established MF method for hyperspectral data produced results that agree well with the BIRRA inferred460

enhancements. The SVD method yields similar enhancements and is able to capture most parts of the downwind plume with

great statistical confidence. While also the LLS method is able to capture some of the enhanced plume pixels, it is much less

sensitive. For detection purposes the SSD was found to be a useful tool.

In conclusion, covariance weighted methods are able to quantify methane enhancements om hyperspectral SWIR observa-

tions at high spatial resolution with good accuracy. The weighted nonlinear methods are more precise and are better suited465

to capture the downwind plume which is essential for emission estimates. Considering the significant speedup and reasonable

accuracy of the linear methods MF and SVD, both constitute a valueable tool in examining plumes on vast datasets.

The methods are applicable to other airborne as well as space borne sensors and this should be considered as a next step. As

a final note, the new Python version of the BIRRA code used in this study, based on Py4CAtS as its forward model, turned out

to be a flexible toolbox for prototyping.470
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