Supplementary Material of the Manuscript Grossi et al.,: ' Characterizing the automatic radon flux Transfer Standard system *Autoflux*: laboratory calibration and field experiments'

Here we present the support material of the Grossi et al., manuscript: 'Characterizing the automatic radon flux Transfer Standard system *Autoflux*: laboratory calibration and field experiments'.

Institution	F (mBq m ⁻² s ⁻	Reference
CANMET Elliot lake Laboratory (Canada)	285 ± 41	Stieff et al. (1996)
Radon Laboratory of the University of South China	1480 ± 50	Tan & Xiao (2011)
Oak Ridge Associated Universities (USA)	430 to 80	Altic (2014)
Institute of Industrial Ecology (Russia)	700 ± 80	Onishchenko et al. (2015)
University of Unable (Spain)	13.3 ± 0.2	Gutiérrez-Álvarez et al.
University of Huelva (Spain)	23.4 ± 0.3	(2020)

Table S1. Summary of the exhalation bed facilities studied.

Table S2. Sensor features used to monitor the environmental conditions.

Sensor	Manufacturer	Model	Range	Declared Accuracy
Tomporatura	Teste	175T2	(-35 to 55) °C	±0.5 °C
Temperature	Testo	Probe	(-40 to 120) °C	±0.3 °C
Soil moisture	ODYSSEY	Xtreem	(0 to 100) %	±1%
Pressure	ITEFI-CSIC	-	(-600 to 600) Pa	± 3 Pa

Figure S1. Picture of the setup used to empirically determine the exhalation rate reference value of the EB.

							Enviro	Env	Source
							nment	iron	
							al		
C							sensors	Sens	
							within	ors	
oa							the	with	
e							monito	in	
							r	the	
	Manuf	Volu	Fyhalati		Chamb		•	Cha	
	acturo	mo	DAHAIAU 0.0700	Dofr	or			mbo	
	r	(m^3)	(m^2)	osh*	shana	Radon monitor /mode		r	
	1	(ш)	(m)	CSII	snape	Radon monitor / mode		1	
1	ANST						Y	Ν	
	0	0.019	0.13	Y	Drum	AG/Pump			-
						_			
2						AG2 x 1L lucas cells	Y	Ν	Zahorowski and
	ANST				Shallow	(separated by 6 min flow			Whittlestone, 1996
	0	0.018	0.26	Ν	conical	path)/Pump			
3							_	N	https://www.licor.com/env/
5	LICO				Hemien		-	1	products/soil flux/#chambe
	D	0.041	0.02	v	horo	/Bump			r difference
	к	0.041	0.03	1	nere	-/Fump			1-difference
4					Cylinde		Y	Ν	Ferry et al., 2001
	IPSN	0.037	0.21	Y	r	AG/Pump			
						_			
5	Univ.				Circular		Y	Ν	Stefani et al., 2016
	of	0.002			,				
	Wisco	0.002,	0.02,		Circular				
	nsin-		0.07		Circular				
	Madis	0.018,	0.07,		,				
	0	0.352	2.32	Ν	Square	RAD7/Pump			
6	II.al1.						N	v	Vana at al. 2017
0	Heimn						IN	Y	r ang et al., 2017
	oltz								
	Zentru								
	m M"								
	Nunch	0.014	0.12	v	Cylinde				
	en	0.044	0.13	Y	r	6 Lucas cells/Pump			
7				Only			Ν	Ν	-
l.				pum	Cvlinde				
	UPC	-	0.01	p	r	DOSEman/Diffusion			
				Ľ	-				
8				Only			Ν	Ν	-
				pum	Rectang				
	UC	0.008	0.04	р	ular	AlphE/Diffusion			
1				-					

Figure S2. Pictures of enlisted radon chambers, code numbers correspond to those in Table S4.

Figure S3. Schematic representation of the AutoFlux system (ANSTO).

Figure S4. *AutoFlux* drum during a typical radon flux measurement: accumulation period (1 hour, on the left side) and ventilation period (2 hours, right side).

Figure S5. Evolution of radon concentration with time in a volume V during the experiment to establish the emanation factor ε of the radon from the soil sample. The coefficients of the exponential fit are presented.

Figure S6. Example of radon concentration over time during the experimental determination of exhalation rate.

Figure S7. Setup of the *AutoFlux* during a typical laboratory measurement at UC.

Figure S8. Conceptual box model of the ANSTO AutoFlux system.

Figure S9. Simulated ²²²Rn concentration behavior within each one of the volumes of the *AutoFlux* system during the hour for which the chamber was closed C_D (light blue line), C_u (blue line) and C_{AG} (red line).