
 

We would like to thank referee 2’s insightful comments, which greatly help improve this 

paper. A list of our responses and the marked-up manuscript are given below, highlighted 

in Blue.  

 Reviewer’s comments on “Near global distributions of overshooting tops derived from Terra and 

Aqua MODIS observations” by Hong et al.  

General comments 

This paper used MODIS IR brightness temperatures to identify overshooting tops (OTs) and 

compiled a two-decade record of OTs. The authors utilized a Logistic Regression algorithm to come 

up with the OT probability for each MODIS IR pixel. Those with OT probability higher than 0.9 are 

classified as OTs.  The Logistic Regression was trained and validated with about 300 hand-picked 

cases with the collocated CloudSat vertical profile as the ground truth.  Once the OT dataset is 

created, the authors continue to study season distributions of OT occurrences, their diurnal cycle 

(based on 4 samples on a 24-hr time scale from Aqua and Terra), and land-ocean contrasts. Results 

are largely consistent with previous studies. 

Using a long data record to compile OTs should contribute to study of the climatology and 

variabilities of OTs. Initial results all look reasonable. Therefore, the paper is publishable. There are, 

however, a few concerns which need to be addressed in revision.  

First, using only 287 hand-picked cases to build the Logistic Regression algorithm is probably not 

robust enough.  Asking the authors to increase the cases to 2000 or 20,000 would probably be 

unrealistic since the hand-picking procedure is very time consuming.  I’d suggest the authors find 

another 300 different cases, build another Logistic Regression relationship, and use it to re-process 

all data. Then, compare some benchmark statistics between the two OT datasets.  

Thank you for this question. There is no consensus about how many samples are sufficient to reach a 

robust performance of a model. Usually, more samples are required for a model when it depends on 

more predictors (variables). Here in our paper, the Logistic Regression is dependent on three 

variables. We have 287 cases, whose size is 95 times larger than the number of variables. The sample 

size is enough for training our model based on papers in the literature that examine the minimum 

sample size for developing a predicted model (e.g. Riley et al., 2018). 

Also, the complexity of the dataset plays a key role in obtaining a robust model as well. We selected 

the samples over four seasons and in different locations on Earth (Figure 1). This makes the dataset 

as abundant as possible, which help improving the performance of our model. 



 

Figure 1. The locations of selected OTs for training the Logistic Regression.  

Another way to check if the amount of data is enough is to look at the learning curve, which shows 

the model performance as function of training sample size (e.g. Beleites et al., 2012). Using our 

dataset to check the performance of Logistic Regression, Figure 2 displays that our model reaches to 

a stable and acceptable accuracy (~ 0.84) when sample size is larger than 150. This demonstrates that 

our sample size near 300 OTs should be sufficient to ensure a robust performance of our model.  

 

Figure 2. the accuracy of Logistic Regression with training datasets in different sample sizes.  

Therefore, we keep our analysis without searching for another 300 OTs for benchmark. we now add 

more statements to clarify this question in the paper.  

In Lines 238-239, we add:  



“The total 287 samples were randomly distributed over four seasons and in different 

locations on Earth. The data are available in Supplementary 2. ” 

In Lines 303-305, we add: 

“We have tested the accuracy as a function of sample size and found a stable model accuracy 

of ~84% when total sample size is larger than about 150, indicating that total samples of 287 should 

be sufficient for training a robust model in our study. ” 

Reference 
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Second, due to parallax shift, MODIS pixels for deep convection are about 5 km away from the 

CloudSat footprint. See Wang et al. (2011 https://doi.org/10.1029/2011JD016097). The authors cited 

this paper but didn’t really incorporate the parallax correction in their methodology.  Mismatch 

between MODIS pixels and OTs could lead to biases in their Logistic Regression algorithm. 

Thank you for this comment. We did check the parallax bias in the colocated Tb from MODIS to 

CloudSat track using the method from Wang et al. (2011) during the early phase of our analysis. 

After a careful examination of the parallax bias, we decided not to incorporate the parallax correction 

for three reasons.  

First, the collocated Tb is very similar in deep convective clouds before and after parallax correction 

(Figure 3), i.e. parallax bias in Tb is relatively small for our study. This is also consistent with the 

statement in Wang et al. 2011: The effect of parallax correction is small if the cloud object occupies a 

large enough area and is relatively homogeneous over the range comparable to the parallax 

correction.  

Second, the parallax correction method relies on cloud top height (CTH). Using different CTH 

product will lead to different collocated Tb. For example, left panel in Figure 3 is collocated Tb 

derived with the CTH from the 2B-CLDCLASS-LIDAR product, which includes thin cirrus cloud 

top, and right panel in Figure 3 is the collocated Tb derived using CTH determined by the topmost 

height of -25 dBZ, which misses the cloud top information of thin cirrus. Differences in the parallax 

corrected Tb using different CTH products can be observed. This indicates that additional uncertainty 

in parallax correction induced by biases in CTH retrievals which will propagate to the parallax 

correction.  

Third, there are more bumpiness (spikes) in the parallax-corrected Tb owing to noisiness in the CTH. 

In our methodology, we have tried to smooth the curve for better deriving the derivatives along the 

Tb curves. Therefore, the bumpiness induced by parallax correction is not helpful in our algorithm.  



 

Figure 3 collocated Tb before (blue) and after (red) parallax correction: left using CTH from the 2B-

CLDCLASS-LIDAR product and right using topmost height of -25 dBZ as CTH.  

Overall, considering that parallax bias is small in deep convective cloud region, accuracy of CTH 

product affects the accuracy of parallax correction, and parallax correction induces more spikes, we 

did not apply parallax correction for our algorithm.  

In Lines 214-221, we add: 

“Parallax correction was examined, but not employed in this work. We found that parallax 

correction produced nearly identical T_b11 values as those without parallax correction. This is 

consistent with Wang et al., (2011), who stated that the effect of parallax correction will be small if 

the cloud object occupies a large enough area and is relatively homogeneous over the range 

comparable to the parallax correction, which is certainly the case for the OTs being studied here. 

Additionally, the parallax correction introduces a small amount of noise in the along-track T_b11 

values due to noise in the cloud top height used in the parallax correction. The noise is sufficient at 

times to create artifacts in our OT algorithm.” 

Overall, I’d like to recommend the paper be accepted after these issues are addressed. 

Specific comments: 

(Line 112) “...large spatial resolutions”: sounds a little awkward. “Coarse spatial resolution” may 

sound better. 

Thank you. Corrected as suggested.  

(Lines 224-226) A typical non-OTs (NOTs) example should be shown. “Tb11 is cold”: how cold is 

considered cold enough for NOTs? Any threshold? 

Thank you for this question. Manual selection of OT and NOT varies from case to case. However, 

the Tb of NOT should be close to the tropopause temperature. We now add additional OT and NOT 

cases in supplementary 1.  

Also, to clarify the OT and NOT selection, in Lines 223-224,  we add: 

 



“The OT selection basically followed four principles: 𝑇𝑏11 colder than 𝑇𝑝, cloud top height above 

tropopause height, 𝑇𝑏11 smaller than 𝑇𝑏6.7, and an obvious convective core .”  

In Lines 234-237, we modify the statement: 

“The NOTs share very similar characteristics with OTs, i.e. 𝑇𝑏11 is cold (close or colder than 

𝑇𝑝) and has a local minimum, but no obvious convective core is observed from the visualization. 

Supplementary 1 displays four OT and three NOT cases.” 

(Line 250) “Figure 1b indicates the cirrus anvil in cyan”: the right-side cirrus anvil ends before 

Tb11 > 260K. I wonder why it doesn’t extend all the way to where Tb11 > 260K, the threshold set 

for cirrus anvil. 

Our algorithm needs the brightness temperature difference between OT and OT’s surrounding region. 

Cirrus anvil in this study is defined as a small area within 20 km from the OT center, which is 

sufficient to check Tb difference between OT and its surrounding region because OT’s size is usually 

smaller than 15 km. Although Tb11 > 260 K could also have cirrus, but it is too far away from the 

OT center.  

In Lines 268-272, we add: 

“Note that cirrus anvil is only defined as a small area within 20 km from the OT center, 

which is sufficient to check Tb differences between the OT and its surrounding region because 

the OT’s size is usually smaller than 15 km (Bedka and Khlopenkov, 2016). Pixels outside the 

20-km radii can also contain cirrus, but do not contribute to our calculation of cirrus 𝑇𝑏.” 

(Line 264) I am a little puzzled to see that only 16% of NOTs are warmer than the tropopause 

temperature. For the remaining 84%, the cold centers are colder than the tropopause but no 

overshooting feature?  I guess showing a few examples of NOTs will help. 

Yes, we now add three NOTs examples in Supplementary 1. Also, the training dataset includes Tb 

and tropopause information, which is now included as Supplementary 2.   

In Line 280, we add: 

“The selected OTs and NOTs are available in Supplementary 2.” 

(Line 360) “...considering the tropopause height variability”: in the presence of overshooting tops, 

local temperature profile often shows double tropopause: one is associated with the background 

tropopause and another is caused by the overshoots which are extremely cold. Some examples of the 

double tropopause can be found near hurricane eyewalls, e.g.,Fig. 2 in 

https://doi.org/10.1002/2013JD020934 . This kind of overshoot-generated tropopause height 

variability should be noted. 

Thank you for sharing this interesting paper. We add the reference in Lines 379-381: 



“Previous studies also adopted a level below the tropopause as the OT reference considering the 

tropopause height variability (Sun et al., 2019; Zhuge et al., 2015) such as the noted double 

tropopause observed in deep convection (Vergados et al., 2014).” 

(Lines 430-441) OTs associated with shallow convection are interesting. How tall are these OTs and 

what is the mean tropopause height in this region? 

Thank you for this comment. We do not have statistical results for those OTs associated with shallow 

convection. However, based on the limited cases that we observed, these OTs likely have cloud top 

height between 5- 8 km. Tropopause height is about 5 – 6 km.  

Here is an example of OT associated with shallow convection where tropopause is 1-2 km lower than 

the tropopause climatology, allowing these shallow convection overshoots the tropopause. There is 

another case shown by Geerts et al. 2022 

(https://journals.ametsoc.org/view/journals/bams/103/5/BAMS-D-21-0044.1.xml), displaying that 

OTs are below 5 km during the COMBLE Campaign in Arctic Cold-Air Outbreaks (their fig. 6a).  

 

 

Fig. an overshooting case associated with shallow convection from Jan. 19th, 2007 Over North 

Atlantic Ocean.  

In our paper (Lines 452-457), we also mention that: 

“Cold air outbreaks can produce shallow convection when cold air blows from frozen 

surfaces to warmer ocean. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment 



(COMBLE) found that these convective clouds are commonly lower than 5 km associated with 

updrafts of 4-5 m s-1 (Geerts et al., 2022). In the cold air outbreaks, the tropopause is low, which 

is often at a level below 500 hPa (Papritz et al., 2019; Terpstra et al., 2021), compared to the 

mid-latitude tropopause climatology of  200-300 hPa (Wilcox et al., 2012).” 

(Line 445) “Without no strong convective cores”: should be “without strong convective cores”. 

Corrected. Thank you!  

(Line 626) Change “accept” to “except”. 

Corrected. Thank you!  


