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Abstract. While the use and data assimilation (DA) of operational Moderate Resolution Imaging Spectroradiometer 

(MODIS) aerosol data is commonplace, MODIS is scheduled to sunset in the next year. For data continuity, focus 

has turned to the development of next generation aerosol products and sensors such as those associated with the 

Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPOESS Preparation Project (S-NPP) and NOAA-20. 20 
Like MODIS algorithms, products from these sensors require their own set of extensive error characterization and 

correction exercises. This is particularly true in the context of monitoring significant aerosol events that tax an 

algorithm’s ability to separate cloud from aerosol and account for multiple scattering related errors exacerbated by 

uncertainties in aerosol optical properties. To investigate the performance of polar orbiting satellite algorithms to 

monitor and characterize significant events, a Level 3 (L3) product has been developed, using a consistent 25 
aggregation methodology, for four years of observations (2016-2019) which is referred to as the SSEC/NRL L3 

product. Included in this product is AErosol RObotic NETwork (AERONET), MODIS Dark Target, Deep Blue, and 

Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithms. These MODIS “baseline algorithms” 

are compared to NASA’s recently released NASA Deep Blue algorithm for use with VIIRS. Using this new dataset, 

the relative performance of the algorithms for both land and ocean were investigated with a focus on the relative 30 
skill of detecting severe events and accuracy of the retrievals using AERONET. Maps of higher percentile AOD 

regions of the world by product, identified those with the highest measured AODs, and determined what is high by 

local standards. While patterns in AOD match across products and median to moderate AOD values match well, 

there are regionally correlated biases between products based on sampling, algorithm differences, and AOD range – 

in particular for higher AOD events. Most notable are differences in Boreal biomass burning and Saharan dust. 35 
Significant percentile biases must be accounted for when data is used in trend studies, data assimilation, or inverse 

modeling. These biases vary by aerosol regime and are likely due to retrieval assumptions on lower boundary 

condition and aerosol optical models.  
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 1 Introduction 

Monitoring the aerosol system is an integral part of many applications such as air quality, human health, climate 

monitoring, and visibility impairment. Passive imager observations, from polar orbiting, sun synchronous satellites, 45 
have allowed researchers to monitor global aerosol for decades. With once-a-day or better coverage over most areas 

of the globe, these satellite sensors have helped to characterize overall aerosol climatology, but also to detect 

significant events of dust, smoke, and pollution. From such data, research frequently maps regional impacts and 

estimate emissions. More recently, the incorporation of satellite aerosol data into data assimilation (DA) systems has 

worked to systematize inverse estimations of emissions, improve aerosol forecasting, and open numerous new 50 
climate applications (2D-Var- Zhang et al., 2008; 3D-Var-Randles et al., 2017; 4D-Var-Benedetti et al., 2009; 

Ensemble Kalman Filter-Schutgens et al., 2010; Khade et al., 2012; Pagowskie and Grell, 2012; Rubin et al., 2016; 

2017; Hybrid-Schwartz et al., 2014). Model reanalyses that depend heavily on consistent and well-characterized 

satellite datasets in their assimilation and evaluation cycles are used by the community to establish trends and 

estimate emissions (Lynch et al., 2016; Randles et al., 2017; Yumimoto et al., 2017; Inness et al., 2019). Yet, 55 
although satellite data is continuing to improve, bias and uncertainty remain due to instrument calibration and 

retrieval method shortcomings (Zhang and Reid, 2006; Zhang and Reid, 2010; Shi et al., 2011; Sayer et al., 2013; 

Levy et al., 2018). This is especially true for observing and quantifying severe events, which is the focus of this 

manuscript. Indeed, the transition from the Terra and A-Train sensors to the Joint Polar Satellite System is 

happening just as climate changed significant events such as wildfires are on the rise (Bondur et al., 2020; Coogan et 60 
al., 2020; Zhang et al., 2020). 

In addition to simple stochastic errors, satellite products show strong and spatially correlated errors that 

systematically vary with aerosol optical depth (AOD), composition, and lower boundary conditions (e.g., non-

aerosol = surface reflectance, molecular scatterings and absorptions, clouds; Shi et al., 2011).  Both inverse 

modeling and Data Assimilation (DA) systems are sensitive to observational errors, thus requiring significant quality 65 
assurance corrections and careful filtering of the satellite data (Zhang et al., 2008; Hyer et al., 2011).  

Examples of satellite-derived datasets used for DA or inverse-modeling include aerosol retrievals from the Moderate 

Resolution Imaging Spectroradiometer (MODIS), on Terra and Aqua (Sessions et al., 2015; Xian et al., 2019) and 

more recently from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-National Polar-orbiting 

Operational Environmental Satellite System Preparation Project (S-NPP) and JPSS-1 (now known as NOAA-20) 70 
satellites. While other satellite products have been used in data assimilation, including the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) and Multi Angle Imaging Spectroradiometer (MISR) (Sekiyama et al., 2010; 

Zhang et al., 2011; Lynch et al., 2016), product lines associated with MODIS and VIIRS see the most usage due to 

their coverage, accessibility, delivery speed, and high level of characterization (see requirements outlined in Zhang 

et al., 2014; Benedetti et al., 2018). Given the imminent transition from MODIS to VIIRS based global observations, 75 
the focus is on their derived products of total aerosol optical depth (AOD). 

Since quality-assured data are needed for aerosol DA, it is important to identify and characterize biases and 

uncertainties for products from specific instruments and retrieval algorithms. In addition, for “severe aerosol events” 

which occur relatively infrequently and may be defined differently based on application and location one must be 
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extremely careful in assessing uncertainties. In other words, characterizing outlier uncertainty may be an entirely 

different exercise than characterizing bulk uncertainty. 

The operational MODIS and VIIRS-derived AOD datasets are intended to represent aerosol conditions in clear-sky 

(non-cloudy) conditions, and over land and ocean surfaces which are free of ice/snow, glint, and underwater 

sediments. Therefore, their bulk uncertainty is related to 1) estimation of the lower boundary condition (e.g., surface 85 
reflectance plus Rayleigh/molecular scattering and absorption), 2) assumption of an aerosol model (e.g., physical 

and optical properties) which is sufficiently representative of the aerosol in the scene, and 3) masking of clouds, 

ice/snow and other retrieval “obstacles”.  For the lowest AOD conditions, it is relatively easy to separate aerosols 

from clouds and choice of aerosol model is relatively unimportant. Therefore, for low AOD, aerosol retrieval 

uncertainties are dominated by uncertainties in the surface boundary condition. As AOD increases, choice of aerosol 90 
model becomes more important, as errors in assumed single scattering albedo (SSA), size or shape distributions, and 

interactions of multiple scattering lead to increased error (Shi et al., 2019). At even larger AODs, opaque aerosol 

begins to look like clouds or other retrieval obstacles. In fact, for the largest (extreme) AODs, the algorithm may 

mask these scenes entirely leading to no retrieval at all.   

A challenge facing satellite aerosol data product development is that there is no fundamental spatially contiguous 95 
dataset to provide validation; everything is typically inferred from point measurements. While field experiments 

often provide a high frequency of observations over a small area, most of the validation relies on using ground-based 

measurements from the AErosol RObotic NETwork (AERONET; Holben et al., 1998). AERONET consists of 

globally distributed sun photometers capable of providing near-real-time AOD. Size and absorption data has become 

the validation standard throughout the satellite aerosol community to benchmark products and identifying biases 100 
(Zhang and Reid, 2006; Hyer et al., 2011; Shi et al., 2011; Sayer et al., 2013; Sayer et al., 2018). AERONET 

measurements are also incorporated into aerosol forecasting models despite the limited amount of spatial coverage 

they have (Schutegens et al., 2010; Randles et al., 2017; Rubin et al., 2017).   

While providing a global benchmark dataset with numerous sites, using AERONET to investigate severe aerosol 

events is limited due to the inherent sparse nature of AERONET coverage where AERONET rightly observes low 105 
AOD, but nearby thick aerosol plume features exist (or vice versa – AERONET manages to sample an extremely 

localized plume). AERONET provides an overall strict cloud screening, meaning that satellite colocations with such 

ground-based data are essentially doubly cloud-screened, leading to an under-estimate of satellite-retrieval 

uncertainty. Nevertheless, while cloud screening has been vastly improved, AERONET Version 3 Level 2 products 

can still screen out haze conditions (Eck et al., 2018). For the very highest AOD conditions, the solar disk can be so 110 
attenuated that mid-visible AOD measurements are no longer possible. Regardless, with these caveats and 

performing the work in proper context, AERONET is still the most reliable instrument for providing verification if 

placed in the proper context, especially over larger scales. 

This is the first report of several studies that investigate the nature and trend in severe aerosol events in remote 

sensing data and modeling simulations. The first task is to answer the question “What constitutes a severe aerosol 115 
event?” That is, what is the measured median AOD versus 84th, 95th or 98th percentile events over the globe? In this 

article, a baseline of the global distribution of higher-percentile AOD retrievals from NASA’s polar orbiting MODIS 
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and VIIRS aerosol products is developed, and the resulting probability distributions and biases are examined. The 

MODIS and VIIRS instruments are the basis for the multi decadal NASA aerosol climate data records and are the 

most applied products used for model evaluation and DA. Also of interest is comparison of the product performance 125 
as the community transitions of the EOS MODIS to the JPSS VIIRS era and what this implies for monitoring trends 

in significant events in association with climate change. The focus is on the bulk relative probability distributions of 

high AOD events and pairwise relationships between products. However, since the most severe aerosol events occur 

near their terrestrial sources over land, statistics are developed that define severe events locally.   

While many aerosol product evaluation studies have been conducted (Remer et al., 2008; Levy et al., 2010; Hyer et 130 
al., 2011; Sayer et al., 2013; Li et al., 2014; Bilal et al., 2018; Lyapustin et al., 2018; Wei et al., 2019; Reid et al., 

2022), this study deviates in that it does not strictly compare products against AERONET, or even between each 

other, but rather it is an assessment of differences in the probability distribution functions of AOD with a focus on 

the relative differences between the aerosol retrieval algorithms. Section 2 describes each of the satellite data 

products and the ground based AERONET observation used in the SSEC/NRL L3 product. Section 3 describes the 135 
methods used to aggregate the data as well as the data analysis used throughout. Section 4 provides both a global 

overview of the satellite datasets describing the aerosol PDFs and characterizing the nature of severe events. Section 

5 identifies and investigates regions associated with high aerosol loading using satellite datasets and using 

AERONET data to provide a quantitative assessment of the retrieval biases of severe events. The discussion and 

conclusions of this study are resolved in Section 6. 140 
 

2 Data 

The datasets in this study use AOD values at 0.55mm (AOD550). Here a 4-year time span is used from 2016-2019 to 

create a L3 product called the SSEC/NRL L3 product gridded at 1°x1° using a consistent aggregation method 

similar to commonly applied DA products. From each dataset the highest quality assurance flag available is used to 145 
approximate the quality of assimilation-grade data without additional filtering. By using the highest quality 

retrievals, the amount of AOD pixels is reduced by approximately 55%, 52%, and 51% for VIIRS AERDB, MODIS 

DT/DB and MODIS MAIAC.  

 

2.1 AERONET 150 

The federated AErosol RObotic NETwork (AERONET; Holben et al., 1998) network of Cimel sun sky radiometers 

is the primary basis set for evaluating satellite products. The nature of this data is discussed in detail in Giles et al., 

(2019). The spectral AOD measured by direct sun observations in AERONET are highly accurate with Level 2 data 

uncertainties for overhead sun ranging from ~0.01 in the visible and near-infrared to ~0.02 in the UV (Eck et al., 

1999). AOD uncertainties in Level 1.5 data that do not have the final calibration applied are on average an additional 155 
~0.01 higher at 500 nm at mid-day and mid-deployment (assuming a 1-2 year deployment interval), therefore 

exhibiting an average uncertainty of ~0.02 at 500 nm (Giles et al. 2019; Figure 20).  Over the 4-year time span, 

261,255 AERONET AOD observations are collected from 102 to 231 sites each day. To match typical DA cycles, 

all AERONET data is sampled globally and averaged at 6-hour time interval for each file. While this study uses 
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Version 3 Level 1.5 AOD data, it is noteworthy that these products now share the same cloud screening criterion as 

level 2 and products are regularly updated to final calibrations as instruments are recalibrated. Thus, they are much 

more similar to level 2 than in the past. Since AERONET sun photometers do not observe AOD at the 550 nm 175 
wavelength, the Spectral Deconvolution Algorithm (SDA) is applied to the five 380, 440, 500, 675, and 870 nm 

channels to derive AOD550 (O’Neill et al., 2003; 2008; Kaku et al., 2014). SDA is also used in the analysis to 

separate fine and coarse mode AODs from AERONET. Under very high AOD conditions the AOD cannot be 

measured since the high value limit of sun photometry in measuring AOD is AOD*m < 7.3 where m is the optical 

airmass or path length through the atmosphere (Eck et al., 2019; Giles et al., 2019). 180 
 

2.2 Satellite products 

This study focuses on the transition and consistency of Terra and Aqua based MODIS to S-NPP and JPSS VIIRS 

products with the data quality assessed in the context for data assimilation. The polar orbiting sun-synchronous 

morning Terra and afternoon Aqua satellites were launched in 1999 and 2002, respectively. Since both Aqua and S-185 
NPP are both in afternoon orbit, this study only focuses on Aqua-MODIS.    

For MODIS, this study examines products from three of NASA’s aerosol retrieval algorithms. Two of them, known 

as Dark Target (DT) and Deep Blue (DB), are contained together in a product known as MYD04. DT retrieves 

aerosols over ocean and vegetated (dark) land, whereas DB retrieves over vegetated and barren (brighter) surfaces. 

Although derived separately, DT and DB are also combined into a joint product within the MYD04, and that DT/DB 190 
product is used in this study. It is important to note that both DT and DB are performing instantaneous single-view 

granule-based retrievals, meaning that there is no information used from previous or subsequent granules. Collection 

6.1 is used in this study. On the other hand, the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

utilizes multiple overpasses to derive a higher resolution 1 km product with simultaneous AOD and land surface 

products. MAIAC products are contained in a product known as MCD19, and they are derived using combinations 195 
of MODIS observations from both Terra and Aqua. The product can be separated by satellite, so only Aqua is used 

in this study. The latest version of MCD19 is known as Collection 6.  

For VIIRS, a product known as AERDB is examined, which follows the heritage of DB on MODIS. Unlike on 

MODIS, where DB is performed over land only, DB also uses an algorithm known as Satellite Ocean Aerosol 

Retrieval (SOAR) to retrieve over ocean. This study uses Version 1.0 of the AERDB product. Note that now there is 200 
now an available version of DT on VIIRS (known as AERDT; Sawyer et al., 2020), but was not yet operational at 

the commencement of this study.   

All products include an estimation of total AOD at 0.55 µm (AOD550) as well as spectral AOD at selected 

wavelength bands. Given this is a study of severe aerosol events, it is important to note the maximum AOD values 

produced by each algorithm. The DT and DB algorithms have a maximum AOD of 5. MAIAC has a maximum 205 
AOD value of 4. 
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The MODIS Dark Target (DT) algorithm is the heritage aerosol algorithm used for global aerosol monitoring. DT 

generates AOD550 products over visually dark surfaces such as vegetated land and ocean regions, using two separate 215 
algorithms (Kaufman et al., 1997; Levy et al., 2013). Retrievals are based on the aggregates of NxN worth of native-

resolution pixels, where the N equals 40, 20 or 10 depending on the native resolution, resulting in nadir retrieval 

sizes ranging from 10x10 km (at nadir) to ~50x30km (edge of swath). Numerous studies have evaluated DT’s 

performance from inception of collection 3.1 until its current version of collection 6.1 with evaluations provided in 

Levy et al. (2013), Sayer et al. (2013), Sayer et al. (2017), and Wei et al. (2018).  Collection 6.1 has significantly 220 
removed many of the previous deficiencies, such as insufficient cloud screening, better aerosol-cloud discrimination, 

and improvements in constraining the lower boundary condition.  

A limitation of the DT algorithm is its inability to retrieve AOD over bright desert surfaces due to the loss of 

contrast to isolate the aerosol signal in visible bands. The MODIS Deep Blue (DB) algorithm was initially 

developed to better retrieve AOD550 over bright desert surfaces, taking advantage of the fact that iron in sand and 225 
soil absorbs blue light and thus reduces the surface albedo. In other words, deserts appear “dark” at blue and deep 

blue (e.g., 0.41 µm) wavelengths to provide sufficient contrast for aerosol retrieval. Since vegetation also appears 

dark in deep blue wavelengths, the DB algorithm has been subsequently expanded to also include vegetated 

surfaces. Like DT, the MODIS DB algorithm is only performed over snow-free and cloud-cleared land pixels, 

however, instead uses top-of-atmosphere reflectance at 650, 470, and 412 nm to determine spectral AOD550 (Hsu et 230 
al., 2004; Hsu et al., 2013) by matching to lookup tables. Also, like DT, the DB product for MODIS is provided at a 

nadir spatial resolution of 10x10 km and edge of swath 50x30 km. Collection 6.1 contains improvements for heavy 

smoke detection, heterogeneous terrain, elevated surface types, and changes within aerosol optical models (Sayer et 

al., 2019). 

Given the different use cases of the DT and DB algorithms, the MODIS combined product provides a retrieval-by-235 
retrieval selection from both algorithms to form a merged dataset that is recommended for general use by both the 

DT and DB development teams. Selection is based on the underlying surface’s monthly-averaged Normalized 

Difference Vegetation Index (NDVI) value gleaned from a separate MODIS product (Levy et al., 2013). So, just as 

there have traditionally been over ocean and over land retrievals, the current paradigm is to likewise have land 

retrievals separated by lower boundary condition with future releases even able to retrieve over snow and ice. Using 240 
the combined Dark Target and Deep Blue product increases spatial coverage, especially over deserts and low 

vegetation regions. This combined DT/DB methodology is most comparable to the Deep Blue retrieval applied to 

VIIRS (see below) and thus is the focus of this analysis.  

 

2.2.2 MAIAC 245 

The MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) product uses time-series analysis 

and a combination of image-based and pixel-base processing (Lyapustin et al., 2011, Lyapustin et al., 2018). 

MAIAC grids MODIS L1B data to a 1km resolution and creates a 16-day time series using a sliding window 

technique in order to obtain multiple viewing angles to capture the surface Bidirectional Reflectance Distribution 

Function (BRDF). This time series analysis separates slowly varying lower boundary conditions from more rapid 250 
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atmospheric conditions to provide a 1x1 km product projected onto a sinusoidal grid. While MAIAC is generated for 

overland pixels, it also captures coastal waters and major island areas.  The highest quality assurance of the product 265 
only retrieves AOD over land and land-containing regions. 

There have been several regional evaluation studies of the MAIAC algorithm (Martins et al., 2017; Superczynski et 

al., 2017; Chen et al., 2021). However, to our knowledge this is first multiyear global analysis. 

  

2.2.3 VIIRS NASA Deep Blue 270 

VIIRS on S-NPP and NOAA-20 has 22 spectral bands ranging from 0.412 µm to 12.01 µm. While both MODIS and 

VIIRS have a fixed Field of View (FOV), VIIRS data is aggregated on board to provide a more consistent spatial 

resolution across the swath with a nominal surface footprint of 750 meters for the moderate-resolution (M) band 

channels that are used by the algorithms (Sayer et al., 2017). The sensor has a swath width of 3060 km, allowing for 

complete global coverage over a day including the equator where MODIS has gaps. A version of the Deep Blue 275 
algorithm that produces aerosol AOD and their properties at a nadir spatial resolution of 6x6 km for both dark 

scenes and bright land surfaces was selected by NASA as the primary Earth System Data Record (ESDR) for VIIRS. 

Over land, Deep Blue draws its heritage from the MODIS-based Deep Blue product of Hsu et al., (2013; 2019) 

while over water the product uses the Satellite Ocean Aerosol Retrieval (SOAR; Sayer et al., 2017;2018). SOAR has 

heritage based on SeaWiFS aerosol products and uses a traditional least-squares fit of multiple channels to retrieve 280 
AOD550 (Sayer et al., 2010). There are two primary aerosol products produced for VIIRS by both NASA and 

NOAA, but this study only uses the NASA product.  

 

3 Methodology 

3.1 L3 Data Integration through YORI 285 

For the purposes of global model applications, data is aggregated and regridded to 1°x1° resolution suitable for most 

global aerosol data assimilation applications using a python toolkit developed by the UW A-SIPS called Yori that 

provides a consistent framework to integrate multiple products into a gridded dataset known as Level 3 (L3). Yori 

provides easy integration of new datasets from both satellite and ground-based observations allowing for custom 

filtering and masks as well as multi-dimensional histograms for each grid cell.  Currently, Yori is used for the L3 290 
cloud products for VIIRS and is being integrated into the MODIS processing for Collection 7 to generate the L3 

cloud and aerosol MYD08 products. That is, the regrading tool used in this study is the same one used operationally 

at NASA for its operational aerosol products. The products for this analysis are gridded at 1°x1° every 6 hours to 

match the standard output of the global aerosol models. The creation of this SSEC/NRL L3 product differs from 

other operational L3 products because of the use of a consistent aggregation method and the options of filtering and 295 
masking which Yori provides.  

Figure 1 (a) provides a map of AERONET sites used in this analysis and the subdomains for more in-depth 

discussion. Figure 1(b), (c) and (d) provides maps of the number of aggregated 1°x1° data points for MODIS Aqua 

DT/DB, MAIAC and VIIRS, respectively, generated over the 2016-2019 study period. Clearly, there are 
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significantly different numbers of samples by a product for any given region, largely dictated by cloud cover and for 

over ocean, sun glint and available daylight. This is highlighted further in Fig. 1(e)-(g) where the ratios of the 

number of data points between products is provided. For example, for the same Aqua MODIS swath, MAIAC 315 
provides a 10-20% higher data population when upscaled to the 1°x1° grid. This is because with its 1 km uniform 

resolution and Boolean cloud flag nature, there is likelihood of generating data somewhere within the 1°x1° grid. 

The VIIRS AERDB product, with its 30% wider swath, geometrically out-samples the Aqua MODIS counterpart by 

a likewise amount. Interestingly, overland Aqua MODIS MAIAC out-samples VIIRS in some regions by as much as 

a factor of two, again due to its much-higher 1 km resolution. 320 
 

3.2 Global Analysis Metrics 

There are many metrics available to intercompare satellite products. Here two approaches are taken, a global 

analysis of the differences in product probability distribution functions, and pairwise comparisons by regression. In 

section 4, the relative differences in the global distribution of aerosol events across MODIS and VIIRS algorithms 325 
are globally mapped by probability distribution (Section 4.1) followed by mapped regressions in a manner similar to 

Shi et al., (2011) in Section 4.2. Gridded netcdf files of this data in these figures are provided as supplemental 

materials. 

The global analysis of severe aerosol events begins with the comparison of probability distribution functions. Since 

AERONET is limited in terms of spatial area in comparison to the satellite products, only the satellite data is used in 330 
this section. Over the 4-year period, a probability distribution function is performed on each grid cell.  

The other metric used in the global analysis is a pairwise regression analysis similar to what was presented in Shi et 

al. (2011). The pairwise metrics are used to analyze the spatial bias between each of these satellite datasets. For the 

regression, the gridded satellite data is matched up pairwise for where there are AOD values < 0.8. The regression 

parameters studied include r2, slope, and intercept. It is important to investigate all these metrics because satellite 335 
products are often well correlated but show slope and intercept biases. Shi et al. (2011) revealed areas with larger 

intercept values are often linked to differences in surface reflectance values. Highly correlated areas with larger 

slope values were linked to aerosol microphysical biases. AOD values > 0.8 tend to show nonlinearities when 

regressed, so pairwise mean ratios calculations were used to explore the spatial biases of each product. 

 340 
3.3 Regional Analysis Metrics 

The global overview provided an initial review of the relative distributions of high AOD550 events between the three 

AOD products. But dissimilarities in the AOD550 distributions can be a result of several aforementioned root causes 

of sampling, microphysics, lower boundary condition, and aerosol/cloud discrimination. To attribute product 

differences by region, nine regions as shown in Fig. 1 were selected for further discussion based on areas of higher 345 
geometric standard deviations, noticeable differences between the datasets, and variation in fractional identification 

of high percentile occurring events. Each region demonstrates its own challenges for retrievals and sampling. Here 

AERONET is used as a reference dataset for each of the regions given it’s the closest form of validation despite its 

limited coverage. Since AERONET is included in this analysis, the regional satellite datasets only use land data. The 
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regional analysis uses time series, scatter plots, log-probability plots, and case studies to demonstrate the challenges 

in retrieving high AOD events between each of these datasets.  365 
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Figure 1. (a) Selected Regions for more detailed analysis of severe events including Boreal Canada, South 
America, Saharan Africa, central Africa, southwest Asia, India, eastern Asia, boreal Asia, and Southeast 
Asia. Included are the AERONET locations use in this analysis.  (b)-(d), The number of 1°x1°data points used 
over the 4-year study period for MODIS DT/DB, MODIS MAIAC, and VIIRS.  (e)-(g), Ratios of the number 
of data points between products. 
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4 Global Overview 

4.1 Event probabilities  

The global distribution of 2016 through 2019 aggregated AOD550 datasets is provided in Fig. 2 projecting AOD550 370 
onto a lognormal distribution. Provided for each grid cell are the median (i.e., 50th percentile), 84th percentile, and +1 

geometric standard deviation (𝜎!, here taken as the ratio of the 84th percentile to the median). Higher-level 

percentiles (95th and 98th) as well as the number of days with AOD550>0.8 are provided in Fig. 3. Ratios of the 

MODIS products to VIIRS are also included in the lower two panel sets in Fig. 2 & 3. VIIRS AERDB is chosen as 

the baseline for the ratios since it is the newest of the products and provides an integrated bright and dark surface 375 
retrieval. Over land and ocean ratios are also provided in Table 1, with additional regional values provided for 

discussion in Section 5. The 84th percentile values accounts for that value that separates the highest ~8 weeks of 

loading for the year, and its ratio to the median (an approximation of sg) is a measure of the relative dispersion of 

the AOD550 probability distribution. The 95th and 98th percentile values of AOD550 (e.g., highest 18 and 7 days) focus 

on the tail end of the distribution which comprise the most significant severe events. Finally, the number of days 380 
with AOD550>0.8 metric provides an absolute threshold of the world’s most significant aerosol hotspots. These 

metrics where selected to provide insight to where the most significant aerosol events occurred, what is considered 

locally an exceptional event, and how these events vary spatially between datasets. It also shows areas where 

datasets do not make retrievals such as over the Arctic and over most of the ocean for MODIS MAIAC, which 

contains a quality flag requiring a portion of land within the sinusoidal gridded area. It is important to highlight that 385 
given the lack of a truth data set for the global results, it is not possible to directly screen for incorrect cloud/aerosol 

classification. 
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Figure 2. Median (left), 84th percentile (center), and geometric standard deviation (right) of AOD for VIIRS Deep Blue, MODIS 
Dark Target/Deep Blue combined, and MODIS MAIAC. The bottom two rows present the ratio of MODIS DT/DB and MODIS 

MAIAC relative to VIIRS AERDB over the years 2016-2019 for each individual 1°x1° area. The ratios filter areas where 84th 
percentile of AOD < 0.1. 
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 395 

Region Satellite Median 84th 
Percentile 

𝜎! 95th 
Percentile 

98th 
Percentile 

Global 
Land 

MODIS DT/DB 0.158 0.403 2.55 0.691 0.960 
MODIS MAIAC 0.147 0.324 2.20 0.574 0.833 
VIIRS AERDB 0.151 0.414 2.74 0.733 1.041 

 
Figure 3. 95th percentile of AOD (left), 98th percentile of AOD (center), and number of days where AOD > 0.8 (right) for VIIRS 

AERDB, MODIS DT/DB, and MODIS MAIAC for 2016-2019. The ratio of MODIS DT/DB and MODIS MAIAC to VIIRS 
AERDB is presented in the bottom two rows. 
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Global  MODIS DT/DB 0.114 0.217 1.91 0.360 0.517 
Ocean MODIS MAIAC 0.109 0.220 2.01 0.351 0.468 

 VIIRS AERDB 0.114 0.203 1.78 0.313 0.450 
Boreal 
Asia 

MODIS DT/DB 0.131 0.355 2.72 0.994 1.807 
MODIS MAIAC 0.113 0.235 2.07 0.565 1.412 
VIIRS AERDB 0.097 0.293 3.04 0.841 1.429 

Boreal 
North 

America 

MODIS DT/DB 0.109 0.263 2.42 0.548 0.942 
MODIS MAIAC 0.105 0.214 2.05 0.333 0.553 
VIIRS AERDB 0.083 0.219 2.62 0.539 1.353 

Central 
Africa 

MODIS DT/DB 0.228 0.502 2.20 0.788 1.022 
MODIS MAIAC 0.201 0.380 1.89 0.612 0.812 
VIIRS AERDB 0.221 0.542 2.45 0.885 1.131 

South 
America 

MODIS DT/DB 0.130 0.274 2.11 0.459 0.672 
MODIS MAIAC 0.129 0.229 1.77 0.325 0.409 
VIIRS AERDB 0.125 0.279 2.23 0.476 0.683 

Southeast 
Asia 

MODIS DT/DB 0.197 0.406 2.06 0.688 0.960 
MODIS MAIAC 0.188 0.355 1.89 0.603 0.870 
VIIRS AERDB 0.201 0.389 1.94 0.650 0.939 

Saharan 
Africa 

MODIS DT/DB 0.261 0.538 2.06 0.828 1.120 
MODIS MAIAC 0.238 0.473 1.99 0.761 1.043 
VIIRS AERDB 0.336 0.680 2.02 1.080 1.466 

Southwes
t Asia 

MODIS DT/DB 0.247 0.489 1.98 0.730 0.942 
MODIS MAIAC 0.181 0.375 2.07 0.637 0.883 
VIIRS AERDB 0.243 0.513 2.11 0.812 1.105 

South 
Asia 

MODIS DT/DB 0.368 0.729 1.98 1.126 1.479 
MODIS MAIAC 0.407 0.747 1.84 1.078 1.372 
VIIRS AERDB 0.383 0.674 1.76 0.937 1.157 

Eastern 
Asia 

MODIS DT/DB 0.150 0.444 2.96 0.802 1.125 
MODIS MAIAC 0.172 0.392 2.28 0.690 0.989 
VIIRS AERDB 0.135 0.400 2.98 0.750 1.066 

       
Table 1. AOD550 Median, 84th percentile, and +1 geometric standard deviation (𝜎!) for selected regions for each 
dataset.  Apart from Global Ocean, all values are for over land only. 
 
As expected, the overall distribution of median AOD550 is consistent with existing aerosol climatologies of aerosol 400 
means by satellite (Mishchenko et al., 2007; Remer et al., 2008; Li et al., 2009; Wei et al., 2019; Sogacheva et al., 

2020) and operational model (Sessions et al., 2015; Xian et al., 2019). Globally the median over land AOD550 is 

consistent between products, ranging from 0.14-0.15 (Table 1). Median AOD550 were in agreement by product and 

were highest in the subtropical belt of a) South Asia Indo-Gangetic plain, 0.37<AOD550<0.41, for pollution and 

biomass burning coupled with haze formation (Dey and Di Girolamo, 2011); b) Saharan Africa, 0.25<AOD550<0.35,  405 
for dust (Caton-Harrison et al., 2019); c) tropical and central Africa 0.20<AOD550<0.23 for smoke (Swap et al., 

2003; Eck et al., 2013); d) SW Asia, 0.18<AOD550<0.25, for a combination of dust and pollution (Reid et al., 2013; 

Al-Taani et al., 2019). Additional sub domain hotspots in median AOD550 include portions of the North China Plain 

(An et al., 2019) and the Taklimakan desert (Ge et al., 2014). Over ocean, MODIS DT/DB and VIIRS are within 

0.01 of each other (0.10-0.12). By region, however, spatially correlated biases between products are readily 410 
apparent. For the ratios of MODIS products to VIIRS in Fig. 2 values greater than 1 indicates the MODIS products 
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observed higher AOD550 values, whereas values less than 1 indicates VIIRS AERDB observed higher AOD values. 

As reflected in the domain average, VIIRS AERDB overall shows the highest climatological magnitude of gridded 

AOD550 medians while MODIS MAIAC has the lowest magnitudes. The most notable locations of differences are 

clean background (low AOD) regions of the arid western United States, the Gobi Desert, and the arctic where both 425 
MODIS products are higher than VIIRS. Although at the median level, this is only a 0.03 difference in AOD. For 

more heavily loaded environments, the largest discrepancies are in central to southern Africa and East Asia. In 

Section 5, these regional differences are investigated using AERONET to help quantify the biases.  

At the 84th percentile level, which inherently accounts for some seasonality in aerosol loadings, additional aerosol 

hot spots are visible that defined the remainder of the regions in Fig. 1. Most notably are the biomass burning 430 
regions of South America, Southeast Asia, and the boreal Asia and Canada as well as a more consistent 

identification of the Taklimakan desert. At the 84th percentile level, AOD550 signal is good in revealing areas of 

seasonal aerosol loading, and products also largely agree, but some divergence becomes evident. For example, over 

land at the 84th percentile level, MAIAC provides distinctively lower AODs for nearly all regions (0.31 for MAIAC 

versus ~ 0.4 for MODIS DT/DB and VIIRS). The lowest values for MAIAC are associated with central African and 435 
boreal biomass burning. While MODIS DT/DB and VIIRS are largely within 10% of each other, for Saharan Africa 

VIIRS is 25% higher at the 84th percentile. By region, the strongest divergence between satellites is in central to 

southern Africa – unsurprising given the variability in aerosol speciation, single scattering albedo and land surface 

characteristics. Divergence also still exists in the western United States, although even at the 84th level, AODs are 

still quite low. Finally, the sign of the ratios to VIIRS often switches between land and water – an indicator of 440 
algorithmic differences used for those two surfaces. 

In the context of AOD variability, 𝜎! normalizes the 84th percentile with respect to the medians of each dataset to 

make them more comparable. 𝜎! can be used as an indicator of AOD550 dispersion, with higher values indicative of 

a higher prevalence of episodic aerosol events relative to the mean. Over ocean, the equal area average value is ~1.8-

2.0, with notable enhancements associated with the northern portion Saharan dust plume (due to seasonal variability) 445 
as well as northern latitudes, presumably due to biomass burning events. Over land, regions with the highest spread 

(in excess of 3) include boreal biomass burning of Siberia and North America followed by seasonal biomass burning 

regions of Africa, South America and Southeast Asia. Datasets are largely consistent in region identification to these 

hotspots. For dust, the Taklimakan desert and coastal Argentina are also highlighted. Interestingly, the distribution 

spread for African dust, is much more muted – likely owing to the dominance of a single and frequently active dust 450 
source.  

Notable differences between datasets are apparent in Fig. 2, especially between land and ocean. Overall, MODIS 

MAIAC, when aggregated, shows the lowest values of dispersion in comparison to the other two datasets. Regions 

that show high standard deviations for VIIRS AERDB and MODIS DT/DB include Northwest North America, 

Southern Africa, Central South America, Southeast Asia, and Central Russia. These all are associated with biomass 455 
burning events. 

To further evaluate the differences between each of these datasets from a severe events perspective, Fig. 3 includes 

the 95th and 98th percentile values of AOD550 (e.g., highest 18 and 7 days). Over the ocean, MODIS DT/DB 
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generally observes larger 95th percentile values of AOD550 compared to VIIRS AERDB. The difference in products 470 
is especially noticeable over the central Atlantic where dust events occur, as well as high-mid latitudes and Arctic. 

Over land, both MODIS products show greater values of 95th percentile AOD550 than VIIRS over India, Eastern 

Asia, southwest North America, western coast of South America, and South Africa. VIIRS AERDB dominates over 

land with higher values over Boreal Canada, central South America, Saharan Africa, and Boreal Asia. In the case of 

the Arctic Ocean, Africa and Southwest Asia a clear transition from a low MODIS to VIIRS ratio to high from the 475 
boreal to the Arctic Ocean, is likely related to the switch between land to ocean retrievals. 98th percentile values of 

AOD550 have similar spatial patterns to the 95th percentile of AOD550. MODIS DT/DB and VIIRS AERDB show a 

large plume off the western coast of the Hawaiian Islands.  

As opposed to probability distributions, the number of days with AOD550>0.8 presented in Fig. 3 was used in this 

analysis as a threshold benchmark. While probability distributions to an extent normalize out sampling (account for 480 
both swath width and for over ocean, the higher swath fraction to glint), threshold scores are useful in their ability to 

detect an event. AOD550 > 0.8 is used because the lowest global over land 98th percentile value of all datasets is 

approximately 0.8 (0.82 for MAIAC) and corresponds to an AOD alert as part of the ICAP_MME consensus 

(Sessions et al., 2015). While thresholds are useful, they can also be problematic given the overall lognormal 

distribution of AOD; slight systematic biases may result in larger systematic differences in a threshold metric. 485 
VIIRS, with its wider swath, could be expected to observe higher AOD events than MODIS. However, over land the 

differences between MODIS and VIIRS largely resemble the differences in the 95th and 98th percentile AODs. 

Strong gradients in the ratios from land to water further highlight the effect of having different ocean and land 

retrievals. Thus, retrieval differences for VIIRS overtake the gains made by coverage for this type of metric. This is 

explored further in the pairwise comparisons conducted in Section 4.2. 490 
 Taken as a whole, the over land VIIRS AERDB dataset, with its larger swath, shows the most AOD550 > 0.8 days in 

comparison to both MODIS datasets over Africa, Boreal Canada, central South America, and Boreal Asia. However, 

both MODIS datasets show more AOD550 > 0.8 days over India and portions of eastern Asia, and the MODIS 

DT/DB observes more AOD550 > 0.8 days over the central Atlantic Ocean. Without having an exact truth to provide 

validation of AOD550 over whole regions, it is difficult to determine which best captures severe events, although it is 495 
suspected that differences can come from several sources. For example, the differences over the central Atlantic 

Ocean between MODIS DT/DB and VIIRS may be due to the difference in the dust models used in the algorithm 

over ocean. This is reflected in the high bias in the MODIS DT/DB AOD over the N. Atlantic Ocean. 

A second type of threshold score is slightly more relative, by calculating the probability of each dataset capturing a 

95th percentile event compared to the total number of detected 95th percentile events detected by as well as the 500 
probability of only a single dataset detecting a 95th percentile event. That is, relatively speaking, we ask is a 95th 

percentile from one set matched by 95th percentile of another, thus accounting for slight biases in the datasets. Of 

course, if no dataset captures a 95th percentile event then it can’t be counted. This metric is used to identify how 

common it is for the datasets to be in agreement and identify areas where the detection of 95th percentile events is 

missed by the individual algorithms with the results presented in Fig. 4. In order to focus on high aerosol events, a 505 
threshold was set to eliminate points where the 95th percentile AOD550 was less than 0.3. It is important to be 
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reminded that this metric does not define the accuracy of capturing 95th percentile AOD550 events, but rather the 

consistency that two algorithms are in agreement that an event has taken place. Such consistency is required to 

bridge the climate data record between sensors and algorithms and important for data assimilation.  

Overall datasets are generally in agreement when detecting 95th percentile aerosol events, particularly in regions 520 
where high aerosol loadings occur. Not surprisingly with its increased coverage, VIIRS AERDB shows the highest 

likelihood of identifying an event at the 95th percentile. VIIRS AERDB is more likely to detect individual 95th 

percentile events over ocean. Over land, MODIS MAIAC identifies more individual 95th percentile events than the 

other two datasets.   

MODIS DT/DB was regionally inconsistent in detecting 95th percentile events, especially over northern South 525 
America, central Europe, northeastern Asia, and the central Atlantic Ocean. This may be due to the cloud 

conservative nature of the algorithm in order to minimize cloud contamination. This may also be due to a sampling 

related difference as MODIS DT/DB products are available at 10x10 km resolution at nadir while MODIS MAIAC 

and VIIRS AERDB aerosol products are available at 1x1 and 6x6 km resolution at nadir, respectively.  MODIS 

DT/DB and MODIS MAIAC show lower detection rates along the ocean coastlines of Asia with respect to VIIRS 530 
AERDB with all three datasets seem to be detecting different events within central Africa.   
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4.2 Global Pairwise Analysis 

While the comparison of the probability distributions of datasets characterizes overall sampling, we also wish to 

know how products compare at individual points and times, especially for significant AOD events. Here we briefly 

repeat the pairwise global analysis of Shi et al., (2011) with the updated algorithms and an emphasis on higher AOD 540 
regimes where we expect nonlinearities in AOD to exist between products. The global analysis presented here will 

then feed discussions of specific regional phenomenology that are provided in Section 5. While regression is a 

useful tool, there are considerations when interpreting the results. The quality of a relationship is often indicated in 

the coefficient of determination (r2) which provides the fraction of variance captured by a regression line. Thus, for a 

given error bar (say +/- 0.1 in AOD), data with wider dynamic range will by nature have a higher AOD, and low 545 

 
Figure 4. Consistency of detection for 95th percentile events by each dataset compared to the total detected 95th 
percentile events (left) and amount of 95th percentile events detected by a single sensor/algorithm in comparison 
to total detected 95th percentile events (right) for VIIRS AERDB (top), MODIS DT/DB (middle), and MODIS 
MAIAC (bottom) with a threshold for 95th percentiles > 0.3  
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AOD environments are penalized by the r2 metric. Further, for higher AOD events, retrieval microphysical 

assumptions and degrees of freedom (absorption, size/refractive index/phase function etc.) should create a host of 

local nonlinear and multi-modal relationships between products. Indeed, the products examined here do not even 550 
differentiate between fine and coarse mode over land other than what is regionally pre-defined. Errors due to lower 

boundary conditions should diminish with increasing AOD. Seasonal differences often exist. Ultimately, linear 

regression, while useful, is not a universal tool.   

To account for nonlinearity, calculations were made two ways. First, linear regression is performed on the 1°x1° 

bins for when AOD550<0.8 for either of products being regressed (Fig. 5). Above this value, we found nonlinearities 555 
became prominent. Second, to extract AOD dependent biases we calculate pairwise mean deviation between 

products for differing optical depth bands (Fig. 6), less than the median (<0.15), moderate AOD in the linear regime 

(0.15-0.4), transition to multiple scattering (0.4-0.8), multiple scattering (0.8-2); and exceptional AOD550 (2-3). The 

pairwise occurrences for AOD550 > 3 were limited, so the comparison ends at that point. The mean ratios calculated 

in Fig. 5 and Fig. 6 are defined as the averages of the ratios of the pairwise satellite products. As noted in Section 5, 560 
even this formulation is inadequate for regions with multi modal behavior. 

As in Shi et al., (2011), strong spatially correlated biases are evident in Fig. 5 and 6, as evidenced by widely varying, 

slope, intercept and r2 values. Regions with the highest r2 are coastal waters, no doubt aided by the dark ocean 

boundary conditions and higher AOD relative to the open ocean. Slopes are also reasonably close to one for VIIRS 

and DT/DB products, with DT/DB slightly low differences from 0-20% for moderate AOD. DT/DB also has a slight 565 
positive offset. MAIAC coastal waters show stronger gradients in slope to the traditional dark target counterparts, 

perhaps due to its use of more prescriptive optical models. 

 

 

Figure 5. Pairwise regression and mean difference maps between the NASA VIIRS and MODIS Dark Target/Deep Blue 
(DT/DB) and MAIAC optical depth products. Regressions are performed for AOD550<0.8, with mean ratio between 
products from AOD550>0.8. 
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Over land products continue to show significant spatial correlation of AOD between products. Over land, the highest 

correlations are for moderate to high AOD regions over low-albedo vegetated lands including biomass burning 580 
regions of South America, boreal Asia, central Africa, and peninsular Southeast Asia, as well as pollution dominated 

regions of the eastern United States and Europe. In contrast, regions of low r2 values, and hence indeterminate value 

of slope and intercept, include the low-AOD areas of the tropical to subtropical Pacific Ocean and the deserts and 

mountain ranges of the western United States, Chile, central Asia and Australia. However, arid areas with 

moderately strong AOD signals also compare poorly, especially Saharan Africa and Southwest and Central Asia. 585 
Large intercept deviations between products are generally highly localized, likely due to arid land surface features 

(desert playa, rocks, bare soil), and orographically related haze and dust features (such as in India and western China 

as discussed in Section 5). Saharan Africa, with its proclivity for dust production, shows the most dispersion 

between products for a region of moderate to high AOD. Mean deviations from high AOD events likewise have 

strong regional patterns, again perhaps due to different dust models.   590 
Like the probability distributions, regression and bias statistics are often markedly different across the land and ocean 

boundary – especially between arid regions and water. Outstanding examples of sharp gradients in model comparisons 

of this include the transition from Saharan Africa to the Atlantic Ocean and south and southwest Asia to the Arabian 

Gulf and Bay of Bengal. In Reid et al. (2022), this is apparent when the ICAP consensus models are compared to 

MODIS. These models do not have the sharp boundaries for significant land plume ejections like the MODIS product 595 
does. This provides evidence that there are differences between the land and ocean retrievals resulting in coastal 

changes in AOD even when compared pairwise. While it is surmised that this is largely due to lost signal to noise over 

bright backgrounds, it is a reflection of the differences in over land and over water portions of retrievals. Finally, while 

mostly regressed out in the pairwise comparison, one must also consider that the very sample populations are different 

on either side of the shoreline. Influences include orography, glint, and differences in cloud features. The AOD 600 
distributions also may be truly different due to land/sea breeze interactions. Over water, sun glint removes up to a 

third of the large fraction of the swath. In all these cases, examples are provided in the regional results section, and 

even a cursory view of the NASA worldview site (https://worldview.earthdata.nasa.gov/) will show numerous 

examples of retrievals being available of only one side of the shoreline.  

As noted earlier, while product to product regressions are quite useful, they do not explain why one sensor/algorithm 605 
might have difficulty capturing AOD related dependencies to microphysics and lower boundary condition. By 

looking at product differences by regime or region, one can begin to infer how algorithm assumptions are 

influencing them. The largest relative differences are at the lowest AODs, well correlated with lower boundary 

condition. For DT/DB-MODIS versus VIIRS, they are seen at the obvious geographic boundaries between dark and 

bright surfaces, and in the case of MAIAC relative to traditional dark target, the land sea boundary. As AODs 610 
increase, the gradients in AOD ratios between products decrease, in part due the diminishing influence of the lower 

boundary condition, but also due to a reduction in coverage of areas with higher AODs. Nevertheless, regional 

deviations remain for high AODs environments. For AODs higher than the regression range (i.e, 0.8<AOD550<2; 

2<AOD550<3), deviations over regions still span +/-40% over large regions, with perhaps the strongest gradients 

along the African and Southwest Asian Coast, with VIIRS having higher AODs550 over MODIS. Interestingly, mean 615 
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deviations over the Siberian Boreal Region are opposite in sign to most of Boreal Canada. Also notable are strong 

deviations (greater than a factor of 2 or even 5) over the high latitude regimes, presumably due to cloud 

contamination.  Likely the same can also be said about ice over the arctic regions. At the individual pixel level for 

high AOD regions, there is still a great deal of variability, most likely due individual sampling differences between 625 
products along plume edges. All of these are discussed by region in the following section. 

 

5 Regional Analysis 

To capture the differences in nature between the different regions, domains are intercompared in three figures. 

Figure 7 provides an area averaged time series of Aqua Dark Target/Deep Blue, Aqua MAIAC, SNPP-VIIRS and 630 
AERONET over the 2016-2019 study period. Figure 8 provides the corresponding scatter plots of the MODIS 

 
Figure 6. Pairwise mean ratios between products for differing AOD ranges where at least one of the products 
has a value within that range. 

Pairwise Mean Ratio
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products and AERONET to the VIIRS product. Finally, Fig. 9 plots log-probability of individual 1°x1° point that 

make up the regional averages used in Fig. 7 and 8. Even though AERONET’s point nature results in limited 660 
coverage, its data are included in these plots to investigate local representativeness (as indicated in Fig. 1(a)). For 

better comparison to AERONET, this regional analysis will focus only on land data. In addition to these composite 

figures, scatter plots between 1°x1° products for each region are provided in supplemental material S1. In the 

following section, it examines biomass burning (e.g., Fig. 7 (a)-(e)), dust (e.g., Fig. 7 (f)), and pollution/mixed 

dominated environments (Fig. 7 (g)-(i)).  665 
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Figure 8. Regional scatter plots of time series data presented in Fig. 7. Retrievals include AERONET (orange), 
MODIS DT/DB (red), and MODIS MAIAC (green). Also shown is the 1:1 line (black). 
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5.1 Biomass burning dominated regimes 

While Fig. 2 and 3 demonstrates that biomass burning is second to dust for median or even 84th percentile AOD550, 675 
any picture of a significant biomass burning event shows plumes which have some of the very highest AODs on the 

planet, locally rivaling clouds. Even regionally, smoke AODs from fire complexes can be extreme. Peat burning in 

Indonesia can generate AOD550 values that can only be estimated by AERONET’s near infrared wavelengths, 

indicating mid visible AOD>10 (Eck et al., 2019, Shi et al., 2019). Likewise AERONET data corroborate dramatic 

photographs of the San Francisco Bay Area during the Sept 2020 fire season (outside the period of study) led to 680 
twilight conditions at solar noon (https://theglobalherald.com/news/wildfires-on-us-west-coast-turn-day-into-night-

dw-news/; last accessed 10 AUG 2021). It is this extreme behavior of smoke emission that makes the quantitative 

monitoring of biomass burning by satellite so challenging. 

 

5.1.1 Boreal Regions: Continental and Intercontinental Scales 685 

Boreal Asia and Canada (Fig. 7/8/9(a)&(b), respectively) are excellent examples of regions exhibiting extremely 

dispersive AOD550 distributions, with low median values but occasional severe continental to intercontinental scale 

wildfire smoke events. As shown below, this aerosol domain is perhaps the most difficult to assesses. Nevertheless, 

 

Figure 9. Log probability plots of 550 nm AOD taken from the 1°x1° samples within the regions defined in Fig. 1. 
Retrievals include AERONET (orange), VIIRS AERDB (blue), MODIS DT/DB (red), and MODIS MAIAC (green).  SDA 
derived coarse mode AOD from AERONET is also provided (orange-dashed)  
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within the regional spatial average domains, all three satellite algorithms tracked one another well, even with very 

sharp peak days without the gradual seasonality seen in other regions (Fig. 8(a)&(b)). With only 3 AERONET sites 

in Boreal Asia, there are periodic spikes due to the proximity of fires to instruments. In comparison, the higher 

number of AERONET sites in North America shows more convergence between satellite and sun photometers. 695 
From a probability distribution point of view (Fig. 9), Boreal Asia clearly has the highest prevalence of detected 

high AOD events globally, ranging from 1.7-2.5 at the 99th percentile level, with Boreal North America showing 

more dispersion between products with 99th percentile AODs ranging from 0.8-2. Not surprisingly, AERONET 

demonstrates high AODs are almost always associated with the fine mode. This said, high latitude dust does exist 

from isolated sources or transport (Bullard et al., 2016). However, such events are unlikely to be detected by isolated 700 
AERONET sites or identified as coarse mode dominated by the satellite products examined here. 

Figure 7 and 8 statistics are consistent with Fig. 6; pairwise deviations between products switch in sign between the 

Asian and North American domain. Indeed, Fig. 9 and Fig. S1&S2 show that DT/DB and MAIAC provide 20% 

lower values than VIIRS for the Boreal Asia. However, for Boreal Canada, the MODIS values are greater than 

VIIRS by more than 50%. However, for these two regions, the differences between the satellite products are much 705 
smaller than the differences between the satellite products and the AERONET data used for verification. Given there 

are so few AERONET verification points for high AOD and multiple populations visible between copious satellite 

data populations, one cannot say definitively which product is most “correct.” Assumptions on an individual 

retrieval’s overland size /optical properties (most notably absorption as AOD increases) coupled with multiple 

scattering are expected to result in spatially correlated differences between products. Indeed, mid visible single 710 
scattering albedo can vary considerably by individual fire and age, ranging from 0.9-0.99 (Reid et al., 2005; Eck et 

al., 2009; Nikonovas et al., 2015).   

The extreme behavior of fires in boreal and temperate forested domains provide cautionary examples of sampling 

and regional averaging. For this study, the most significant boreal smoke outbreak was observed over the North 

American boreal region domain in early July 2018 (Fig. 7(b)), for which all products reported smoke AODs over 1. 715 
Meanwhile Boreal Asia showed modest fire activity with AODs<0.5. However, this North American event was 

Siberian in origin. Significant thermal hotspot anomalies and smoke build up over the Siberian Boreal started in 

earnest was detected starting 26 June, 2018 in association with convection and consistent with lightning. By July 1, 

AOD were well above 1 along a 2000 km band over Siberia (Fig. 10 (a)). By July 5, smoke was advected 

northeastward into the Polar Regions along with significant cloud cover masking it from quantification.  720 
This smoke outbreak was collocated with significant cloudiness and the retrieved AODs are likely biased high. 

Much of the smoke plume that is cloud free has failed retrievals Fig. 10(b). By 9 July, the smoke is adverted 

southeastward into Canada, again with relatively few observations relative to the 2000 km size of the plume Fig. 10 

(c). Thus, these aerosol events, perhaps the largest by AOD and size, are a significant challenge to track and 

apportion by standard satellite products alone. 725 
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 730 
 

 

  
Figure 10. A case of Siberian smoke transport from Asia to North America for early 2018.  a)-c) 
corresponding RGB images of plume evolution for July 3, 5, and 10, 2018, respectively. d)-f), 
corresponding VIIRS AOD550 for Asia through North America.  The magenta box corresponds to 
the images in (a)-(c), zoomed in (g)-(i). (j)-(l) and (m)-(o) ratios of DT/DB and MAIAC to VIIRS, 
respectively. Satellite RGB imagery is from NASA Worldview. 
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A second difficulty is that, for Boreal Asia, significant AOD events are not just biomass burning. As a second 

example, strong regional AOD550 were logged 6 March 2016 (Fig. 11(a)) for both DT/DB and VIIRS, appearing to 

be the fringes of a dust storm. Hand inspection of these cases showed that they were nearly entirely covered by snow 

and clouds (Fig. 11(a)). However, there were just a few retrievals solely associated with a significant Asian dust 735 
event along the southern edge of the domain dominating the area average. Such events are exceptional, but 

obviously not impossible. Given that imager retrievals lack information content for fine-coarse partition, aerosol 

sources can easily be confused. Indeed, numerous thermal anomalies are observed in the region (Fig. 11(a)) although 

they are persistent and likely from petrochemical flaring enhanced by the cold background. Such differences 

between products may become more significant as developers create different cloud and snow screening techniques. 740 
In light of what is presented here, the observed integer factors in regional bias between products due to sampling and 

interpretation alone is not unreasonable, although the exact source of the error will require further study. 

 
5.1.2 Central Africa and South America: Variability within large scale plumes 

In comparison to the extreme behavior of boreal biomass burning regions, the tropical to subtropical Central Africa 745 
and South America biomass burning regions have more manageable seasonal biomass-burning signals, dominated 

by the August to October period (Fig. 7 (c) and (d), respectively). Instead of isolated mega fires with exceptional 

transport phenomenon, smoke is generated from numerous small grass and deforestation burns that merge into 

regional plumes embedded in more subdued meteorological regime (Reid et al., 2009). These regions also have 

significantly higher AERONET site prevalence compared to the boreal region, allowing for more assessment 750 
opportunities (Fig. 1, Fig. 8, S3&4). Over these domains, satellite products and AERONET track well (Fig. 7), and 

 

 
 
Figure 11. Case study of a springtime dust intrusion from China into the Siberian domain on 6 
March, 2016. Included is (a) RGB image of dust transport and MODIS thermal anomalies; and 
(b) a map of coverage of where retrievals are available. Satellite RGB imagery is from NASA 
Worldview.  
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with the exception a slight discrepancy for MAIAC probability distributions, overlay each other almost exactly (Fig. 

9). Over Central Africa satellite products generally show low scatter between each other, although in pairwise 

comparisons to AERONET they all show a distinct low bias (Fig. S3). Being the world’s largest biomass burning 755 
source (Mu et al., 2011), Central Africa has a smaller range of regional optical depth than other biomass burning 

regions. South America in contrast, has even better pairwise consistency between products (Fig. S4) but MAIAC 

and VIIRS have lower values relative to DT/DB.   

While bulk comparisons suggest overall agreement between products, it is of concern that pairwise model biases do 

not always manifest themselves in comparisons to the prevalent AERONET sites in the region despite these region’s 760 
broad plume features. Further, regionally prescribed wo and differences in over water retrievals result in sharp 

discontinuities in inter-product bias (Fig. 5 and 6). For Africa, a well-established seasonal cycle in wo starting at 

~0.84 in the early season due to a high prevalence of grass fires and increasing in time to 0.93 with increased forest 

fuels until the end of the season manifests itself in a seasonal cycle in MODIS bias (Eck et al., 2013).   

Figure 12 provides plots of Sept 9, 2018 as an example day of interproduct differences, including (a) an Aqua 765 
MODIS RGB; (b) coverage diagram; (c), (d), (e) DT/DB, MAIAC, and VIIRS AOD, respectively, with AERONET 

AODs overlaid; (f),(g), (h), interproduct ratios of DT/DB to VIIRS, MAIAC to VIIRS, and MAIAC to DT/DB, 

respectively. This example was picked as a typical day, but with an Aqua orbit gap in the middle to allow for 

examination of extreme differences in scattering angles. At first glance, AOD patterns do match well overall, but 

there are some spatially correlated regions of difference. These are highlighted in the ratio plots. Notable differences 770 
include 1) magnitude, with the largest ratios being associated not with higher but lower AODs; 2) All three products 

compare well to AERONET on the eastern portion, but there is low bias in the west, possibly due to differences in 

smoke optical properties (worthy of future study). The next version of VIIRS V2.0 has been described as improved 

by its developers; 3) there is a sharp coastal delineation in AODs across the AOD values matching the near shore 

AERONET sites. 4) DT/DB relative to VIIRS has a high bias of up to 30% along the edge of swath views; 5) 775 
DT/DB also has varying biases relative to VIIRS offshore of the eastern coast, with higher in the north with low 

AOD, a good match west of Madagascar for moderate AODs, and a slight high bias south of Madagascar. MAIAC 

yields higher values than the others to the north, and lower to the south. 6) MAIAC has rectangular regions of bias 

that are quite distinct from both DT/DB and VIIRS. This is likely due to the tile processing nature of MAIAC. 

Resolving all these issues is far outside the scope of this study. But the conclusion here is that it is clear that on a 780 
daily basis that significant spatially correlated biases exist between products based on a host of sources even if on a 

larger scale they converge to similar average values. This finding requires consideration when the data products are 

used for high fidelity data assimilation and inverse modeling applications.  
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5.1.3 Southeast Asia: Exceptional AODs 

Southeast Asia has two biomass burning seasons: 1) boreal spring agriculture, deforestation, and wildfires in 

mainland Southeast Asia countries of Myanmar, Thailand, Cambodia and Laos; and 2) boreal summer and early fall 790 
agriculture, deforestation and peat fires for Maritime Southeast Asian countries of Indonesia and Malaysia (Reid et 

al., 2012). Mainland Southeast Asia tends to have more consistent seasonal behavior with periodic enhancements 

 
  

  
Figure 12. Intercomparison of aerosol retrievals for Southern Africa for Sept 19, 2018. (a) Aqua RGB 
image; (b) Locations where retrievals are available; (c)-(e), MODIS DT/DB, MODIS MAIC and VIIRS 
AOD550 retrievals, with AERONET AOD550s in boxes.  (f)-(h) ratios of retrieved AOD550 to each source. 
Satellite RGB imagery is from NASA Worldview. 
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(Reid et al., 2013), similar to the Africa and South America regions. Maritime Southeast Asia, however, has strong 

variations due to El Nino-Southern Oscillation (ENSO; Nichols, 1998; Field et al., 2016) as well as a host of 795 
interseasonal meteorological dependencies such as the Madden Julian Oscillation/ and Boreal Summer Intraseasonal 

Oscillation (Reid et al., 2012). AODs can be exceptionally high for weeks at a time, so that even for wavelengths as 

long as 870 nm, sun photometers have insufficient solar signal (Eck et al., 2019). Given its high regional cloud 

cover, extremes in AOD, and variable aerosol optical properties, the Maritime Southeast Asia is exceptionally poor 

at sampling these extreme conditions (Reid et al., 2013). Yet, all three satellite products track each other 800 
exceptionally well at characterizing regional average (Fig. 7&8) and show similar probability functions (Fig. 9). 

Even scatter plots between products show good comparisons (Fig. S5).  

Despite the excellent overall comparability, satellite products under-sample extreme events observed by AERONET. 

Indeed, 99th percentile AOD for the satellite products are only 60% of the AERONET values (0.95 versus 1.6). This 

behavior has already been well-documented by Reid et al., (2013) and Eck et al., (2019) for El Nino induced drought 805 
periods.  Now with Version 3 of AERONET, it can infer AOD550>5 by inferring from the 1020 nm channel. For 

example, the year 2019 in our study period had exceptional biomass burning AOD. Figure 13 provides a timeseries 

of 550 nm AOD from AERONET at three sites on Borneo: (a) Palangkaraya (2.3 S; 113.9E), in the heart of biomass 

burning activity in southern Kalimantan Indonesia with maximum measured AODs; (b) Pontianak (0.1N; 109.2 E), 

on the shore of western Kalimantan as smoke exits to Java Sea; and (c) Kuching (1.5 N; 110.3 E) on the southern 810 
border of Sarawak, Malaysia as smoke exits into the South China Sea). Over southern Kalimantan in the heart of the 

source region, we find the greatest discrepancies between products. For the whole month of August, AODs from the 

satellite products significantly underestimate smoke levels. By mid-September, when smoke loadings are at a 

maximum, the sun photometer is attenuated, and AODs over 4 can only be estimated by using near-infrared 

wavelengths. Given saturation, estimates shown in this figure are not even included in the probability distributions 815 
shown earlier in this paper. Owing to its higher resolution, MAIAC has additional coverage than the other products. 

By the end of the season when AODs diminish, AERONET and satellite products reconcile. Along the coast at 

Pontianak, products compare well between themselves and AERONET, we hypothesize due in part to smoke 

homogenization from many plumes into a single high AOD region. However, the highest AODs are still 

understandably missed. By Kuching, smoke AODs are even lower, and all products compare well.  820 
An example day is provided in Fig. 14, in a manner similar to Fig. 12 for Central Africa, with RGB, coverage, AOD 

and ratio plot panels. The difference between this case and Africa is striking. Whereas Africa showed good coverage 

across all products, Borneo shows slight changes in AOD and cloud mask thresholds as well as increased VIIRS 

coverage which results in more variable retrieval coverage. All products miss the center of Kalimantan, due to 

extreme aerosol conditions. Along the border of the plume, ratios between products can be extreme depending on 825 
the individual retrievals that make up the aggregates. The conclusion in this case is that all retrievals have some 

physical limits. To cope when AODs are this exceptional, new techniques need to be developed for measurement, 

aggregation and assimilation.  
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Figure 13. Time series of satellite product AOD to AERONET for 3 sites on Borneo for 
the 2019 biomass burning season (a) Palangkaraya, southern Kalimantan, Indonesia; (b) 
Pontianak, western Kalimantan, Indonesian; (c) Kuching southern Sarawak, Malaysia. 
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 835 

5.2 Dust Dominated Saharan Domain: Bright surfaces and dust microphysics. 

The North African/Saharan region is the only subcontinental domain that can be said to be fully dominated by dust. 

With median AODs on the order of ~0.3 and 98th percentile values of 1 to 1.5 by product, the Sahara is the largest 

contiguous aerosol feature on earth. Visible in Fig. 7 is the Sahara’s dynamic nature with frequent region-wide 

spikes in AOD550. While the dust season is often envisioned as comprised of massive boreal summer Saharan Air 840 

 
  

  
Figure 14. A Borneo image and AOD analysis for Sept 16, 2019.  Included is (a) corresponding 
Aqua MODIS RGB image; (b) coverage coincidence map (c) MODIS DT/DB AOD; (d) MODIS 
MAIAC AOD; and (e) VIIRS AOD. Also shown are the ratios between products, including (f) 
Aqua DT/DB to VIIRS; (g) Aqua MAIAC:VIIRS; and (h) Aqua MAIAC: MODIS. Satellite RGB 
imagery is from NASA Worldview. 
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Layer outbreaks traversing across the subtropical Atlantic into the Americas, major events can occur any time of 

year with only a minor boreal winter minimum.  

Generally, regional dust products are comparable for regional average (Fig. 7, 8) and probability density (Fig. 9). 845 
Even from a bulk point-by-point comparison (Fig. S6), the products correlate well to themselves and with the few 

AERONET sites in the region. VIIRS AERDB tends to be consistently higher than MODIS counterparts by up to 

30-50%, most likely due to assumptions in dust optical properties as well as perhaps due to some improvements in 

cloud/dust discrimination. In contrast, MODIS MAIAC shows the lowest daily average of AOD550, which is a 

difference that persists throughout the analysis of severe events. The AERONET values are less correlated with the 850 
satellite observations, likely a result of the sparse sampling in this region. However, close examination of these plots 

(most notably S6) in combination of Fig. 5 shows there are multiple data populations embedded into the whole with 

regions of significant decorrelation and bias. Areas of particular decorrelation are coincident with areas that are 

dominated by evaporates (i.e., low Fe absorption), such as the Tenere Desert/Bodele Depression of Chad, Qattara 

Depression of Libya and Egypt and the Western Sahara of Mali, Mauritania, Morocco (Goudie et al., 2002; Perlwitz 855 
et al., 2015). 

The spatially correlated nature of bias between products is provided as an example in Fig. 15 for June 6, 2017. 

Given deserts’ bright surfaces, dust may not be visually obvious (Fig. 15(a)). However, there is minimal cloud cover 

and excellent satellite coverage is available (Fig. 15(b)). All three products show the same overall dust features, of 

multiple dust plumes (Fig. 15(c)-(e)). However, by ratio, significant patterns emerge (Fig. 15(f)-(h)), sometimes 860 
with opposite signs in bias for adjacent plume features (e.g., western Africa), along straight lines due to regional 

boxes used in the retrieval, along coastlines, and on either side of an orbit where scattering angles abrupt change.  

Of all the cases shown in Section 5, Fig. 15 best demonstrates the challenges of assimilating or performing source 

function inversions. Because data assimilation must account for observation localization and there are such few 

temporal observation opportunities to begin with, differences such as these result in a smeared source area (Khade et 865 
al., 2012). Further, since there are so few AERONET sites available and day to day changes in solar geometries, 

these differences are difficult to deconvolve. 
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 870 
5.3 Mixed pollution/dust domains of Asia  

It so happens that some of the regions with the strongest pollution emissions are also influenced by dust transport. 

Indeed, the coastal arc extending from the Arabian Sea, through India and up to East Asia hosts some of the most 

heterogeneous “mixed” aerosol environments of the world. Figure 9 shows that Southwest Asia and southern Asia 

have coarse mode AODs on the order of 50% of the total value out past the 99th percentile. East Asia, known for its 875 
significant haze dominated by the fine mode, nevertheless is frequently impacted by dust storms from central Asia, 

such as the Taklimakan and Gobi deserts. The main dust events (high AOD events) in East Asia occur in spring 

(March-May), but background dust levels persist throughout most of the year. Like the Sahara, correlations and 

biases across the SW to East Asia arc have strong spatial variability (Fig. 5, 6). Correlations are best for northern 

 
  

 
Figure 15. A pan Saharan image and AOD analysis for June 8, 2017.  Included is (a) corresponding 
Aqua MODIS RGB image; (b) coverage coincidence map (c) MODIS DT/DB AOD; (d) MODIS 
MAIAC AOD; and (e) VIIRS AOD. Also shown are the ratios between products, including (f) 
Aqua DT/DB to VIIRS; (g) Aqua MAIAC:VIIRS; and (h) Aqua MAIAC: MODIS. Satellite RGB 
imagery is from NASA Worldview. 
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mainland SE Asia due to having dark, vegetated surfaces and sufficiently large biomass burning sources. Areas with 

the lowest agreement include bright deserts, especially areas with aerosols having low values of light absorption.  

In Asia, there is so much aerosol activity that numerous individual events can be observed on most days. Figure 16 

provides a comparison for November 3, 2018, which includes significant dust events over SW Asia, biomass 

burning and pollution over India, and haze over western China (Fig. 16(a)). Like other cases, products compare well 885 
qualitatively (Fig. 16(b)-(d)) but there are regional differences over both land and ocean (Fig. 16(e)-(g)). Each 

region has its own characteristics that are described below. 

 

 

5.3.1 Southwest Asia 890 

 

 
Figure 16. A pan Asian image and AOD analysis for Nov 3, 2018.  Included is (a) 
corresponding Aqua MODIS RGB image (b) MODIS DT/DB AOD; (c) MODIS 
MAIAC AOD; and (d) VIIRS AOD. Also shown are the ratios between products, 
including (e) Aqua DT/DB to VIIRS; (f) Aqua MAIAC:VIIRS; and (g) Aqua 
MAIAC: MODIS. Satellite RGB imagery is from NASA Worldview. 
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Southwest Asia is a significant producer of dust, although less than the Sahara. Like the Sahara, biases are expected 

due to lower boundary condition, dust microphysics, and optical geometry. Taken as a whole, products do track each 

other reasonably well at the seasonal level (Fig. 7, and 8) and even look reasonable in the context of a point-by-point 

scatterplot (Fig. S7), albeit with some biases. Imbedded in these regressions and many populations, and regression 895 
between products at the 1o level are likewise poor over land, but good over water (Fig. 5). AOD dependent biases 

exist between products, especially along the land-ocean border. However, complicating matters beyond the Sahara is 

that owing to its large petrochemical based economy Southwest Asia also can exhibit exceptionally strong pollution 

events (e.g., Smirnov et al., 2002; Reid et al., 2008) as exhibited in half the 84th percentile of AERONET AOD 

being fine mode (Fig. 9 (g)). Thus, while the very largest events are dust dominated, it is not necessarily a given that 900 
moderately high AOD is dust – potentially leading to confusion for overland algorithms that cannot extract 

fine/coarse partition. 

 

5.3.2 South Asia 

Not surprisingly, the South Asian/Indian Subcontinent domain, with its diverse sources from pollution, dust 905 

transport, and agricultural biomass burning, has the highest median AOD of the regions studied here. Like almost all 

regions, products generally agree on the overall distribution statistics (Fig. 8(h)). Although there are many 

AERONET sites in the region, AERONET averages depart sharply from the satellite products. Examining the time 

series further (Fig. 7(h)), the dominant aerosol features are biomass burning during the fall, and haze during the 

winter and early spring. Pre-monsoon can also be associated with significant coarse mode dust. However, taken at 910 

the subcontinent scale, the largest AODs detected by the satellites occur during the northern hemisphere summers, 

and the MODIS DT/DB retrieves the largest. Yet, AERONET retrievals are also not well correlated with the 

regional satellite depiction, showing higher AODs overall, but lower values in the monsoon period. This difference 

between satellite and AERONET are likely resulting from a) the limited network in this region, notably concentrated 

in the Indo-Gangetic plain; and b) cloud contamination. To investigate these large disagreements, case studies where 915 

selected using NASA WorldView where it shows that there is a correlation between occurrences of peak AOD550 in 

the satellite datasets and low amounts of AOD550 from the AERONET sites. These correlations arise when there are 

high AOD events in the northern portion of the country along the Indo-Gangetic Plain of India. In this region, the 

AERONET stations are located at boundary of the regions with high amounts of AOD. This similarly occurs for the 

opposite case where the satellite datasets observe lower amounts of AOD and AERONET observes large amounts of 920 

aerosol and helps confirm that sampling bias is causing the disagreement in the regional analysis.  

5.3.3 Eastern Asia 
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Completing the coastal arc to east Asia, this region shows better inter-product agreement than any other in this 

category. This is despite being one of the most heterogeneous environments of the world, with significant dust 

transported from the Taklimakan and Gobi deserts, winter-time haze over the east China Plain, severe pollution from 

the Pearl River Delta and industrial centers, and biomass burning intrusions from Southeast and boreal Asia. There 930 
are also sharp gradients in land surface properties. Similar to other arid regions, Fig. 5 shows that far western China 

has the poorest relationships between products. There is gradual improvement eastward. But, taken as a regional 

average, products largely converge – with the exception of high biases of AERONET sites – a result of sites being 

selected to monitor some of the most polluted areas of an already highly polluted region. It should also be noted that 

MODIS products often screen out high AOD fine mode events in eastern China since many of these events are 935 
associated with significant cloud cover (Eck et al., 2018; Shi et al, 2021). In fact even the Version 3 AERONET L2 

cloud screening and quality checks result in eliminating ~15% of the fine mode AOD days with fine AOD (500 

nm)>1 which are identified by utilizing SDA in the Level 1 data before cloud screening is applied (Eck et al., 2018; 

Table 3). Indeed, even though the region is known for all types of aerosols, AERONET is generally situated in 

populated areas, likely more reflective of pollution sources with high fine mode fractions. 940 
 

6 Discussion and Conclusions 

It is expected that in late 2023 there will be a marked shift in global aerosol monitoring as the 20+ year MODIS 

instruments are decommissioned, and the community must finish its adaptation to SNPP/JPSS VIIRS instruments. 

This transition will have a notable impact on such applications as aerosol data assimilation and the generation of 945 
consistent climate data records. An area of particular concern is in the monitoring of extreme events that already 

stress aerosol algorithms and are expected to become “more extreme” in frequency and magnitude with ongoing 

climate change. Therefore, to examine potential differences in the efficacy of MODIS and VIIRS based AOD 

algorithms and what a 2023 change in sensor platforms will result in, severe aerosol events from VIIRS DB, 

MODIS DT/DB, and MODIS MAIAC are assessed at global, regional, and ground based sensor perspective from 950 
2016-2019.  

Using a consistent gridding methodology across products statistics of AOD by each product were generated to 

identify where most significant aerosol events have occurred, what is considered a locally exceptional event by 

region, and how these differences spatially vary between datasets. These findings include: 

a)  The median AOD values show relative agreement between all three datasets. Thus, a dramatic shift in 955 
typical AOD values as systems progress from MODIS to VIIRS is not expected. However, there are slight 

regionally correlated biases by region. VIIRS has a slightly higher bias in comparison to MODIS DT/DB 

and MAIAC in high aerosol producing regions. The largest median differences are seen in the clean regions 

such as the western United States, Gobi desert, and the Arctic with the MODIS products being higher than 

VIIRS. Thus, pristine regions may show a decrease in AOD from MODIS to VIIRS. 960 
b) When observing the 84th, 95th and 98th percentile of AOD values, the biases between products start to 

become ever more apparent by region, especially surrounding areas impacted by biomass burning. For 

example, for Africa, mid latitude fires, and the Boreal regions, MODIS DT/DB has consistently higher 
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AOD values than VIIRS, with a more neutral bias for South America and a reversal in bias in sub-

Sahel/tropical Africa. Conversely, VIIRS provides higher 84th percentile values for African, SW Asian, and 970 
Asian desert regions. In regions such as the Arctic Ocean, Africa, and southwest Asia, the ratios of MODIS 

to VIIRS along the land/ocean border show a clear distinction between land and ocean retrievals algorithms 

are being used. MAIAC generally retrieves lower high percentile AOD values than the other retrievals. 

Areas of correlated bias exist between lower MODIS MAIAC values and the MODIS DT/DB and VIIRS 

counterparts. This reveals algorithm differences caused by aerosol speciation, single scattering albedo, and 975 
surface differences between land and ocean. Thus, AOD observations for higher AOD environments will 

notably shift with the MODIS to VIIRS transition.  

c) Over ocean, median and 84th percentile values are also very similar between products. However, at 95th and 

98th percentile events than VIIRS AERDB retrieves lower values – especially in the central Atlantic, high 

mid latitudes, and the Arctic. Thus, over ocean we expect a decrease in AOD in the transition from MODIS 980 
to VIIRS for high AOD events. 

d) When comparing the number of days where AOD > 0.8, the contrast between the land and ocean further 

highlights the differences in land and ocean retrievals. The number of days where AOD > 0.8 also reveals 

more of the effects of swath width, sun glint, and different dust models used for ocean algorithms. When 

comparing the amount of joint detected 95th percentile AOD events against the single algorithm detected 985 
events, VIIRS AERDB has the highest likelihood of identifying 95th percentile events over ocean, while 

MODIS MAIAC presented the highest likelihood over land.  

e) The global analysis was further investigated by comparing products at individual points through linear 

regression for AOD values < 0.8 and the mean ratios for AOD > 0.8. Most notable is a clear reduction is 

slope from MODIS versus VIIRS, offset by a positive intercept. The highest coefficient of determination 990 
(r2) is seen over coastal waters where there are dark ocean boundary conditions and higher AOD relative to 

open ocean. For land, the best correlations are seen over low albedo vegetated lands in biomass burning 

regions and pollution dominated regions. Lowest correlations are seen in regions with little dynamic range, 

such as the tropical Pacific Ocean, Chile, central Asia, western United States, and Australia. The strongest 

biases are seen for low AOD correlated with the issue of lower boundary conditions and at the high 995 
latitudes. 

Based on the findings above, a series of more in-depth regional analysis was performed aimed to dissect the product 

differences in retrievals and sampling. This is done through comparisons to AERONET sensors, time series, 

probability distributions, and case studies. Regions investigated included a host of biomass burning, arid, polluted, 

and mixed environments. 1000 
a) The biomass burning dominated regimes were separated into Boreal Asia, Boreal Canada, Central Africa, 

and South America. All three satellite products are in relatively good agreement with one another and 

AERONET. These regions show that time series regional averaging can provide a good estimate of severe 

aerosol events especially where there is a good distribution of AERONET sites, such as in South America, 

whereas Boreal Asia and central Africa are underrepresented. Nevertheless, there is evidence of issues 1005 
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associated with sampling, scattering angle, the fine-coarse mode partitions, and under-sampling of severe 

events. Algorithms intercompare best for South America and Central Africa, although MAIAC does exhibit 

a noticeable low bias. Boreal smoke is more problematic, with reversals in bias between algorithms 1015 
between Asian and North American Boreal smoke plumes.  

b) In the dust dominated Saharan region, MODIS products are lower than VIIRS due to changes in 

assumptions in dust optical properties. Higher values can also be associated with algorithm improvements 

in cloud and dust discrimination. There are few AERONET sites available for evaluation, however, and 

correlations are in determinant.  1020 
c) Regions with mixed pollution and dust within Asia include southwest Asia, Southeast Asia, south Asia, and 

eastern Asia. The correlations between products are strongest over land for dark vegetated surfaces and 

biomass burning in northern Southeast Asia and Eastern Asia. Like over the Sahara, lower correlations are 

exhibited in bright deserts. Given the mixed aerosol sources in these regions, there are often difficulties in 

the fine and coarse mode partition as well as the land/ocean boundaries. Sampling bias seems to occur 1025 
based on the sensor locations.  

This studies evaluation results show that even after 20 years of experience with dark target types of algorithms, 

correlated divergence between products is still problematic for higher fidelity applications and notably here, higher 

optical depths when multiple scattering aggravates errors in assumed aerosol optical properties. This will no doubt 

require adjustments in 2023 with the shift from the EOS to the JPSS constellations. It can be argued that the spatially 1030 
correlated biases observed between products here is a natural result of the underdetermined observations that single 

view and non-polarization passive remote sensing provide for aerosol characterization. Nevertheless, until some 

agreed upon baseline is made in the community, scientific results on climate change, inverse modeling of sources, 

and aerosol impacts will continue to have regional biases. Next generation polarimeters are expected to provide 

additional information that is hoped to resolve regional biases that are observed in MODIS and VIIRS. Nevertheless, 1035 
they too will require studies such as conduced here that in turn will require multi-year datasets for evaluation and 

algorithm integration.  

 

7 Code availability 

Publicly available software was used to produce the results in this paper. The L3 software used in the analysis is 1040 
available in GitHub and is in the process of being open sourced. 
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