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Abstract. This study investigated the accuracy of the Random Forest (RF) model in gap-filling the sensible (H) and latent heat 6 

(LE) fluxes, by using the observation data collected at a site over rice–wheat-rotation croplands in Shouxian County of eastern 7 

China from 15 July 2015 to 24 April 2019. Firstly, the variable significances of the machine learning (ML) model’s five input 8 

variables, including the net radiation (Rn), winds speed (WS), temperature (T), relative humidity (RH), and air pressure (P), 9 

were examined, and it was found that Rn accounted for 78% and 76% of the total variable significance in H and LE calculating, 10 

respectively, showing that it was the most important input variable. Secondly, the RF model’s accuracy with the five-variable 11 

(Rn, WS, T, RH, P) input combination was evaluated, and the results showed that the RF model could reliably gap-fill the H 12 

and LE with mean absolute errors (MAEs) of 5.88 Wm-2 and 20.97 Wm-2, and root mean square errors (RMSEs) of 10.67 Wm-13 

2 and 29.46 Wm-2, respectively. Thirdly, 4-variable input combinations were tested, and it was found that the best input 14 

combination was (Rn, WS, T, P) by removing RH from the input list, and its MAE values of H and LE were reduced by 12.65%  15 

and 7.12%, respectively. At last, through the Taylor diagram, H and LE gap-filling accuracies of the RF model, the support 16 

vector machine (SVM) model, the k-nearest neighbor (KNN) model, and the gradient boosting decision tree (GBDT) model 17 

were inter-compared, and the statistical metrics showed that RF was the most accurate for both H and LE gap-filling, while 18 

the LR and KNN model performed the worst for H and LE gap-filling, respectively. 19 

 20 

1 Introduction  21 

The turbulent fluxes between the atmosphere and the ground play a crucial role in global climate change and atmospheric 22 

circulation, and the inaccuracy of long-term observations of surface turbulent fluxes is a major factor in erroneous weather 23 

predictions and climate projections. Research on the ecological effects of urban green spaces, agricultural ecosystems, and 24 

forests all use surface turbulent fluxes as key indicators. Currently, the eddy covariance (EC) technique can be used to directly 25 

measure the turbulent fluxes (Wilson et al., 2001; Jiang et al., 2021; Wang et al., 2021). However, due to sensor failure and 26 

adverse meteorological factors (such as rainfall and frost), these high-frequency turbulence data are subject to errors (Khan et 27 

al., 2018). As a result, it is difficult to obtain a continuous time series of ground-based turbulent fluxes. Furthermore, quality 28 

assurance methods lead to unavailable sections of flux datasets (Nisa et al., 2021). Based on the above reasons, gap-filling is 29 

in need to retrieve continuous datasets of EC-based fluxes. Researchers have developed approaches based on existing 30 
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meteorological information to fill up the gaps in atmospheric databases, such as interpolation, nonlinear regression, mean 31 

diurnal method, and sampling techniques from the marginal distribution (Falge et al., 2001; Hui et al., 2004; Stauch et al., 32 

2006; Foltnov et al., 2020). Further, the ML technique has also become an effective method to be used in the calculation of 33 

turbulent fluxes (McCandless et al., 2022).  34 

 35 

As a result of recent developments in high computing technology, machine-learning-based algorithms have been developed 36 

and successfully used in various areas, such as natural language processing, data mining, biometrics, computer vision, search 37 

engines, clinical applications, video games, robots, etc. To address the missing data issue, machine-learning-based models 38 

have recently been used to fill data gaps in meteorological elements and turbulent fluxes (Bianco et al., 2019; Yu et al., 2020). 39 

As a result of their reliable and repeatable results, these models are now regarded as a standard gap-filling algorithm (Beringer 40 

et al., 2017; Isaac et al., 2017). ML algorithms have several deficiencies even if they perform well in some areas. For instance, 41 

over-fitting is a major concern that can occur when the training window is too short or the training dataset's quality is poor. 42 

That's because the present ML approaches are not sufficiently adaptable to work in extreme situations with large values 43 

(Kunwor et al., 2017; Moffat et al., 2007). Furthermore, even with the best technique, the model uncertainty of gap-filling still 44 

plays a role, particularly when the gaps are relatively large. Numerous novel ML and optimization algorithms have been created 45 

and put to use in numerous scientific domains since the 2000s, and their superiority has been demonstrated, either singly or as 46 

a component of a hybrid or ensemble model (e.g. Gani et al., 2016). 47 

 48 

Based on the need for fluxes dataset gap-filling, and the effectivity of the ML technique, this paper aims, firstly, to investigate 49 

the performance of the RF machine learning algorithm trained from a dataset obtained over rice-wheat-rotation croplands in 50 

Shouxian County, eastern China, in gap-filling the sensible and latent heat fluxes; and secondly, to analyze the RF model's 51 

accuracy with various meteorological input combinations during training; and thirdly, to compare the performance of RF model 52 

with other four typical ML models. 53 

 54 

2 Materials and Methods 55 

2.1 Study area  56 

This observation was conducted at a site in Shouxian County in the eastern Chinese province of Anhui (32.42°N, 116.76°E) 57 

(Figure 1). The altitude of the site is 27 meters, and the annual mean air temperature and annual cumulative precipitation here 58 

are 16°C and 1115 mm, respectively. Summer (from June to September) precipitation accounts for nearly 60% of the annual 59 

precipitation amount, which meets the high water demand of rice. Drought sometimes occurs due to lack of precipitation in 60 

the growing season of wheat. This observation site is rather flat, with farmland accounting for more than 90% of the area. 61 

Winter wheat is grown here from November until late May, while from June to November the field is flooded, plowed, and 62 
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harrowed as rice paddies (Duan et al., 2021) (Figure 2). The subtropical northern boundary of the monsoon humid climatic 63 

type describes the area's climate.  64 

 65 

 66 

 67 

Figure 1. Geographical location and land-cover map of Shouxian County. 68 

 69 

 70 
 71 

Figure 2. Crop calendars for the rice and wheat in the North Yangtze River Delta region. 72 

 73 

2.2 Data  74 

Over the site described above, EC sensors (EC 150, Campbell Scientific Inc., Logan, UT, USA) were installed at 2.5 meters 75 

above the ground, including a three-dimensional sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA) and 76 

a CO2/H2O open-path infrared gas analyzer. The sensible and latent heat fluxes were computed half-hourly using EddyPro 77 
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software, with time lag compensation, double coordinate rotation, spectrum correction, and Webb-Pearman-Leuning density 78 

correction (Wutzler et al., 2018; Anapalli et al., 2019). Poor-quality fluxes (Eddypro quality check flag value=2) were 79 

discarded. And a quality check based on the relationship between the measured flux and friction velocity was carried out to  80 

 81 

 82 

Figure 3. Daily averaged a) Rn: net radiation(Wm−2) , b) u*: friction velocity(m/s), c) T: air temperature(℃), d) RH: relative 83 
humidity(%), e) P: air pressure(hPa), and f) WS:wind speed(m s−1). 84 

 85 
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remove the biased data (Papale et al., 2006). Then, using the marginal distribution sampling technique, the flow data were gap-86 

filled (Reichstein et al., 2005). The time series of air temperature, relative humidity, wind speed, air pressure, friction velocity, 87 

and net radiation were also subjected to quality control. The missing data which need gapfilling are H and LE, with 7205 and 88 

16013 missing, accounting for 12.09% and 26.87% respectively.According to the criteria of X(h) < (X − 4σ) or X(h) > (X + 89 

4σ), where X(h) indicates the time series of the component, X is the mean across the averaging interval, and σ is the standard 90 

deviation, noisy data were eliminated (Gao et al., 2003). Data observed from 15 July 2015 to 24 April 2019 are used in this 91 

study, and Figure 3 shows the daily average data of Rn: net radiation(W m−2), u*: friction velocity(m/s), T: air temperature(℃), 92 

RH: relative humidity(%), P: air pressure(hPa), and WS: wind speed(m s−1). 93 

 94 

2.3 The RF Model 95 

RF is a machine learning method that is quick, adaptable, and frequently used to analyze classification and regression jobs 96 

(Breiman, 2001). This model can successfully evaluate highly dimensional and multicollinear data and is resistant to overfitting 97 

(Belgiu et al., 2016). The RF model provides a feature-selection tool to assist in determining the importance of the predictor. 98 

The contribution of each variable to the model, with important variables having a higher effect on the results of the model 99 

evaluation, is the definition of feature significance (Liu et al., 2021). 90% of the data collected at the Shouxian observation 100 

site throughout the study period were used to train the RF model, while the remaining 10% was used to independently validate 101 

the model (hereafter, validation dataset). To lessen the overfitting in this case, a 10-fold cross-validation (CV) procedure was 102 

used (Cai et al., 2020). All training data used here was randomly divided into ten subsamples of equal size for the 10-fold CV 103 

tests. And nine out of the ten subsamples were used as training data (hereafter, training dataset), while the remaining subsample 104 

was used as testing data (hereafter, testing dataset). All ten of the subsamples were utilized as testing data exactly once for 105 

each of the 10 iterations of the CV procedure. One estimate was created by averaging the 10 findings from the folds. We 106 

modified the four RF model hyperparameters based on Bayesian optimization to get the optimal model (Baareh et al., 2021; 107 

Frazier, P.I., 2018): the maximum number of features considered to split a node (Max features), the maximum number of trees 108 

to build (n estimators), the minimum sample number placed in a node prior to the node being split (min split), and the maximum 109 

number of levels for each decision tree (Max depth). Bayesian optimizer is used to tune parameters, you can quickly find an 110 

acceptable hyperparameter value, compared with grid search, the advantage is that the number of iterations is less (time saving), 111 

the granularity can be very small. For example, if we want to adjust the regularized hyperparameters of linear regression, we 112 

set the black box function to linear regression, the independent variable is a hyperparameter, the dependent variable is linear 113 

regression in the training set accuracy, set an acceptable black box function dependent variable value, such as 0.95, the obtained 114 

hyperparameter result is a hyperparameter that can make the linear regression accuracy exceed 0.95. The simulated 115 

performance of the 10-fold CV outcomes was evaluated using four statistical metrics: the correlation coefficient (r), mean 116 

absolute error (MAE), root mean square error (RMSE), and standard deviation(𝜎𝑛). As a result, the final RF model's parameters 117 

were adjusted to n estimators = 246, min split = 2, Max features = 10, and Max depth = 35, to have the best statistical metrics.  118 
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The four statistical metrics are calculated by: 119 

r =
∑ (𝑆𝑖−𝑆̅)(𝑂𝑖−𝑂̅)𝑁

𝑖=1

√∑ (𝑆𝑖−𝑆̅)2𝑁
𝑖=1 √∑ (𝑂𝑖−𝑂̅)2𝑁

𝑖=1

,      (1) 120 

 121 

MAE =
1

𝑁
 ∑ |𝑆𝑖 − 𝑂𝑖|

𝑁
𝑖=1 ,      (2) 122 

 123 

RMSE = √
∑ (𝑆𝑖−𝑂𝑖)2𝑁

𝑖=1

𝑁
,      (3)  124 

 125 

𝜎𝑛 =
√∑ (𝑆𝑖−𝑂𝑖)2𝑁

𝑖=1

𝑁
.      (4) 126 

 127 

where S stands for the modeled value, O is the observation, 𝑂 ̅is the mean observed value, and 𝑆̅ is the mean modeled 128 

observation, 𝜎𝑛 indicates the standard deviation. The subscript i represents the serial number of samples, and N represents the 129 

total number of samples.  130 

 131 

3 Results and discussion 132 

3.1 Driving Factors of H and LE on a Seasonal Scale 133 

The possible driving factors of H and LE were investigated to determine their respective contributions by the RF model as 134 

shown in Figure 4. Rn, which accounted for 78% and 76% of the total variable significance of H and LE, respectively, was the 135 

most crucial variable in regulating the heat fluxes (Figures 4a and 4c). Consistent with the high variable significance values, 136 

H and LE also had the highest r of 0.79 and 0.75 with H and LE, respectively, as shown in Figures 4b and 4d. The other four 137 

factors contributed much smaller than Rn, and WS, T, RH, and P had importance values of 2%, 4%, 7%, and 5% (2.2%, 19%, 138 

2%, and 0.6%) for H (LE), respectively. All these elements such as Rn, T, WS, RH are normalized before the model starts 139 

training. When these elements are normalized, it ensures uniformity and comparability. In general, all of these predictors 140 

played a role in the H and LE calculation, and for H, the sequence of importance was Rn, RH, P, T, and WS; while for LE, it 141 

was Rn, T, WS, RH, and P. The most significant impact on the change of H and LE came from Rn, which was the most 142 

important energy source of the surface and modulated the surface temperature directly. RH and T had a minor impact on the 143 

H and LE changes in terms of climatic parameters, which carried the information of the light-dependent reactions of H and LE 144 

fluxes. Particularly, WS and P had the minimal impacts on the H and LE fluxes. The WS, T, and RH also affected H and LE 145 

according to the Monin-Obukhov similarity theory (Monin and Obukhov, 1954), while P represented the contributions from 146 

the background weather systems. 147 
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 148 

Figure 4. The feature importance of the variables for a) H and c) LE, and the correlation coefficient between each of the input 149 
variables for b) H  and d) LE.  150 

 151 

3.2 RF Model Evaluation 152 

Figures 5-6 show the comparison between the observed and the RF-estimated H and LE, respectively. In the period of rice, the 153 

RF model showed good performance for both the training dataset (MAE =8.51 and 17.89 Wm-2; RMSE =14.11 and 29.82 Wm-154 

2, for H and LE, respectively) and the testing dataset (MAE =9.61 and 10.34 Wm-2, RMSE = 15.63 and 17.21Wm-2, for H and 155 

LE, respectively) (Figures 5a, 5b, 6a, and 6b). RF model also showed high consistency with direct measurements for the 156 

validation dataset (MAE=5.88 and 20.97 Wm-2, RMSE = 10.67 and 29.46 Wm-2, for H and LE, respectively), (Figures 5c and 157 

6c). In the period of wheat, the performance of the RF model for the training, testing, and validation datasets of H and LE was 158 

similar to that in the period of rice. For the training, testing, and validation datasets, respectively, the MAEs are 7.18, 8.01, 159 

and 6.01 Wm-2 for H, and 13.58, 8.82, and 19.93 Wm-2 for LE; and the RMSEs are12.27, 13.61, and 9.86 Wm-2 for H, and 160 
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24.92, 15.17, and 28.74 Wm-2 for LE (Figure 5d,e,f, Figure 6 d,e,f). These results demonstrate that the RF model is capable of 161 

effectively calculating the H and LE with input variables of Rn, WS, T, RH, and P. 162 

   

   

 163 

Figure 5. Scatter density plots of the observed and the RF-estimated H values, a) and d) for the training dataset, b) and e) for the 164 
validation dataset, and c) and f) for the testing dataset.  And a), b) and c) are in the period of rice, while d), e) and f) are in the period 165 
of wheat. 166 

 167 
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Figure 6. Same as Figure 5, but for LE. 168 

3.3 Examination of Input Combinations  169 

Meteorological elements may occasionally be unavailable due to the failure of sensors so the 5-variable input combination 170 

derived in Section 3.2 is not always applicable. Therefore, examination of other alternative input combinations is important to 171 

have substitute choices for data gap-filling when the 5-variable input combination is unavailable. In this subsection, we 172 

investigated the RF model's performance under the situation of lacking one element in the 5-variable input combination, i.e., 173 

we tested the 4-variable input combinations of (WS, T, RH, P), (Rn, T, RH, P), (Rn, WS, RH, P), (Rn, WS, T, P), and (Rn, 174 

WS, T, RH), by removing Rn, WS, T, RH, and P from the 5-variable input combination, respectively. The MAEs and RMSEs 175 

for these combinations are shown in Table 1, and it demonstrates that the RF model's accuracy may either increase or decrease 176 

as a result of the removal of a meteorological element during the training phase. For instance, it was found that the model's 177 

performance greatly improved once RH was eliminated from the input combination, with the MAE and RMSE of H decreasing 178 

from 6.48 and 11.94 Wm-2 to 5.66 and 11.06 Wm-2, respectively, and LE from 19.1 and 39.39 Wm-2 to 17.74 and 35.27 Wm-179 

2.  This outcome is logical given that RH and H do not have a strong correlation, as a result, performance will be enhanced if 180 
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RH is not included in the gap-filling processing pipeline. According to our findings, the RF model's performance may be 181 

greatly enhanced by excluding irrelevant meteorological elements from the study and choosing only those that have a 182 

significant impact on the variable. Our findings imply that in order to attain the best gap-filling accuracy, it is necessary to 183 

take into account both the advantages and disadvantages of ML-based models as well as the ideal input components.The results 184 

suggested that RH at a single level was not well correlated to the fluxes as shown in Section 3.1, because the one-level RH 185 

was strongly affected by the irrigation activity which was an external factor of the weather system. As a result, RF model 186 

performance was enhanced when the irrelevant variable (i.e., RH) was removed from the input list. The same condition also 187 

happened to the removal of WS, as could be seen from Section 3.1,  WS showed small correlations with the fluxes. WS over 188 

this site was rather small, and frequently below 2 m s-1, and under this light wind condition, the fluxes were mostly driven by 189 

the buoyancy rather than the wind shear. Figure 7 presents the MAE variation percentage of the 4-variable input combinations 190 

from the  5-variable input combination. After RH was removed from the input list, the RF model showed favorable performance 191 

for both H and LE, as shown in Figure 7, with MAE values improvements of 12.65 and 7.12%, respectively. Notably, the 192 

removal of Rn from the input combination resulted in a considerable decline in the RF model's performances, with MAE 193 

degradation percentage values reaching 16.20% and 10.73%, respectively. This outcome makes sense since Rn is highly 194 

associated with H and LE; hence, performance will be declined if Rn is left out of the input training dataset. As a consequence, 195 

our findings demonstrated that choosing strongly associated components could greatly increase the gap-filling accuracy. 196 

According to our findings, the best input combination is (Rn, WS, T, P). 197 

 198 

Table 1.The MAEs and RMSEs of the RF-estimated heat fluxes for the 4-variable input combinations, and the corresponding 199 
changes from the 5-variable input combination. 200 

 201 

Factors Included Factors Eliminated  MAE (change) RMSE (change) 

 WS, T, RH, P Rn 
H 7.63(+1.15) 10.72(-1.22) 

LE 21.15(+2.05) 39.38(-4.62) 

Rn, T, RH, P WS 
H 6.15(-0.33) 11.42(-0.52) 

LE 18.36(-0.74) 36.13(-2.34) 

Rn, WS, RH, P T 
H 6.68(+0.20) 11.48(-0.46) 

LE 19.54(+0.44) 38.54(-1.46) 

 Rn, WS, T, P RH 
H 5.66(-0.82) 11.06(-0.88) 

LE 17.74(-1.36) 35.27(-4.12) 

Rn, WS, T, RH P 
H 6.49(+0.03) 11.77(-0.17) 

LE 19.12(+0.02) 38.13(-1.07) 

 202 
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 203 

 204 

Figure 7.  The MAE percentage variation after changing the 5-variable input combinations to the 4-variable input combinations, a) 205 
for H, and b) for LE, respectively. The x-axis labels indicate the removed variables. 206 
 207 

It should be noted that other variables that might have an impact on the H and LE were not investigated here. For example, 208 

given that our research site was over farmland and plants were growing, knowledge of the variations of the leaf area index 209 

(LAI) and inclusion of it to the training dataset should also be useful to increase the accuracy of the RF model in H and LE 210 

gap-filling. The monsoonal climate here also incurred considerable precipitation variations, which might as well potentially 211 

contribute to the RF model accuracy improvement. However, due to the lack of LAI and precipitation observations, the 212 

inclusion of the two variables into the RF model training dataset was not applicable in this study. Additionally, as shown above, 213 

more variables would bring a higher observation demand, and lead to more complexity and potentially decreased results, such 214 

as the adding variable of RH.  215 

 216 

3.4 Comparison with other four ML methods 217 

3.4.1 Comparison in H estimation 218 

 219 

To further investigate the reliability of the RF model, we used a Taylor diagram to compare its performance in H estimation 220 

with other four ML models: support vector machine (SVM), k-nearest neighbor (KNN), gradient boosting decision tree 221 

(GBDT), and linear regression (LR). SVM is a data-oriented classification algorithm, and the basic model is to find the best 222 

separation hyperplane on the feature space so that the positive and negative sample intervals on the training set are maximum. 223 

Its advantages are that the kernel function can be used to map to a high-dimensional space; the use of the kernel function can 224 
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solve the nonlinear classification ; the classification idea is very simple, that is, to maximize the interval between the sample 225 

and the decision-making surface ;the classification effect is better ;and the nonlinear relationship between data and features is 226 

easy to obtain when the small and medium-sized sample size is large.KNN is particularly suitable for multi-classification 227 

problems. Its advantage is that it is simple in thought, easy to understand, easy to implement; No estimation parameters, no 228 

training; High accuracy, insensitive to outliers.GBDT can flexibly handle various types of data, including continuous and 229 

discrete values. With relatively few parameter adjustment times, the prediction preparation rate can also be relatively high. If 230 

the data dimension is high, the computational complexity of the algorithm will increase. Using some robust loss functions, the 231 

robustness to outliers is very strong.LR is a statistical analysis method that uses regression analysis in mathematical statistics 232 

to determine the quantitative relationship between two or more variables that depend on each other.The results have good 233 

interpretability, can intuitively express the importance of each attribute in the prediction, and the calculation of entropy is not 234 

complicated.  235 

All the models were optimized with the same technique described above for the RF model. The results are shown in Figure 8. 236 

The EC measurements were used as the benchmark. It can be seen that the RF model generally outperforms the other four 237 

models, with the standard deviations (𝜎𝑛) and correlation values of 1.05 and 0.98 during the period of rice planting, and 0.96 238 

and 0.95 during the period of wheat planting, respectively. The SVM model is the second most accurate model, with the 𝜎𝑛 and 239 

correlation of 0.92 and 0.98 during the period of rice planting, and 0.91 and 0.93 during the period of wheat planting, 240 

respectively. The LR model performs the worst, with the 𝜎𝑛 and correlation of 0.60 and 0.76 during the period of rice planting, 241 

and 0.80 and 0.72 during the period of wheat planting, respectively. The accuracy of KNN and the GBDT models is in between 242 

the above-discussed models, and the 𝜎𝑛and correlation during the rice and wheat period for KNN are 0.68 and 0.73, and 0.77 243 

and 0.82; and for GBDT are  0.79 and 0.80, and 0.81 and 0.9, respectively.  244 

 245 

 246 

 247 

Figure 8. The performances of the five models for estimating H in the period of a) rice and b) wheat. 248 
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 249 

3.4.2 Comparison in LE estimation 250 

 251 

Figure 9 illustrates a comparison of the estimated LE by all five models during the period of rice and wheat planting. The 252 

results are similar to those in the H estimation, and the RF model is found to perform better than the other four models, with 253 

the 𝜎𝑛 and correlation values of 0.95 and 0.97 during the period of rice planting, and 0.97 and 0.96 during the period of wheat 254 

planting, respectively. Nonetheless, the KNN model performs the worse for LE estimating and has the 𝜎𝑛 and correlation 255 

values of 0.68 and 0.82 during the period of rice planting, and 0.62 and 0.79 during the period of wheat planting, respectively. 256 

Overall, as shown by the Taylor diagram of Figures 8 and 9, in this study the RF model has the best accuracy in either H or 257 

LE estimation for data gap-filling.   258 

 259 

 260 

Figure 9. Same as Figure 8, but for LE 261 

 262 

4 Summary and Conclusions 263 

To assess the RF model's capacity for gap-filling the sensible and latent heat flux measurements over rice-wheat rotation 264 

croplands, 90% of the total observation data gathered at Shouxian were utilized for training and testing, and the remaining 10% 265 

for independent validation. Our findings demonstrate that Rn is the most important variable in regulating H and LE, and it 266 

accounts for 78% and 76% of the total variable significance in the RF model construction for H and LE calculation, respectively. 267 

The least important variables are WS and P, and their total variable significances are 2% and 0.6%, respectively. During the 268 

periods of rice and wheat planting, the RF model with a 5-variable input combination shows reliable performance, with MAE 269 

values of 5.88 Wm-2 and 20.97 Wm-2, and RMSE values of 10.67 Wm-2 and 29.46 Wm-2, respectively. However, further 270 

analysis of the RF model with 4-variable input combinations indicates that the performance of the model is improved when 271 
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RH is removed from the input list, and the MAE values decrease by 12.65% and 7.12% for H and LE, respectively. Nonetheless, 272 

the 4- variable input combination without Rn causes an increase in the MAE values of the model, by 16.20% and 10.73% for 273 

H and LE, respectively.  Therefore, the best input combination found in this study for heat fluxes gap-filling is (Rn, WS, T, P). 274 

Statistical comparison of RF and other four typical ML models (LR, KNN, SVN, and GBDT) by Tylar diagram further shows 275 

that RF is the most accurate, with the standard deviations and correlation values of 0.95 and 0.97 during the period of rice 276 

planting, and 0.97 and 0.96 during the period of wheat planting, respectively. While the LR and KNN models perform the 277 

worst for H and LE gap-filling, respectively, according to the statistical metrics of the Tylor diagram. 278 

 279 

This study is based on only the data collected over rice–wheat-rotation croplands, but the method presented above to find a 280 

reliable gap-filling ML model can also be used over other types of the underlying surface and in other climate zones. It should 281 

be noted that over different types of the underlying surface and climates, the variable significances can vary and a careful 282 

check of the input combinations is needed. For example, over polar oceans with strong winds, Rn probably is not the most 283 

important driving factor,  while the winds which cause mostly the turbulence may take the first place. On the other hand, over 284 

areas without human irrigation activity, RH will possibly be strongly related to the latent heat flux, and hence the inclusion of 285 

it into the input list may increase the ML model performance.  Besides the examination of the input combinations, the choice 286 

of an ML model and the method to optimize its parameters are also important.  287 

 288 

Overall, this study shows the potential to use the RF model to produce trustworthy gap-filling data of H and LE over rice–289 

wheat-rotation croplands, and the ML methods are suggested to be used to derive the fluxes’ estimations when direct EC 290 

observations are not available. 291 
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