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Abstract. Cloud radars are capable of providing continuous high-resolution observations of the cloud. These observations are

related to the microphysical properties of clouds. Power law relations in the form of Z = a ·LWCb are generally used to esti-

mate liquid water content (LWC) profiles. The constants a and b from the power-law relation vary with the cloud type and cloud

characteristics. Due to the variety of such parameterizations, selecting the most appropriate Z-LWC relation for a continuous

cloud system is complicated. Additional information such as Liquid water path (LWP) from a co-located microwave radiometer5

is used to scale the LWC of the cloud profile. An algorithm for estimating the LWC of warm clouds using radar-microwave

radiometer synergy in a variational framework is presented. This method also accounts for attenuation due to cloud droplets

and retrieves a suitable scaling factor (lna) of the profile in addition to the LWC. The optimal estimation techniques incorporate

a priori information of desired variables, and the forward model converts these variables into observation parameters. In this

algorithm formulation, the measure of uncertainty in observations, forward model and, a priori acts as weights in the retrieved10

quantities. These uncertainties in the retrieval are analyzed in the sensitivity analysis of the algorithm. The retrieval algorithm

is first tested on a synthetic profile for different perturbations in sensitivity parameters. The sensitivity study has shown that

this method is susceptible to LWP information. The algorithm is then implemented to various cloud and fog cases at SIRTA

observatory to estimate LWC and the scaling factor. The scaling factor changes for each cloud profile, and the range of lna

are consistent with suggested values in literature. The validation of such an algorithm is challenging, as we need reference15

measurements of LWC co-located with the retrieved values. During the SOFOG-3D campaign (South-West of France, October

2019 to March 2020), in-situ measurements of LWC were collected in the vicinity of a cloud radar and a microwave radiome-

ter, allowing comparison of retrieved and measured LWC. The comparison demonstrated that the cloud-fog heterogeneity was

playing a key role in the assessment.

The proposed synergistic retrieval algorithm is applied to 39 cloud and fog cases at SIRTA, and the behavior of the scaling20

factor is studied. This statistical analysis of scaling is carried out to develop a radar-only retrieval method. The climatology

revealed that the scaling factor can be linked to the maximum reflectivity of the profile. From climatology, the statistical

relations for scaling factor are proposed for fog and cloud. Thanks to the variational framework, a stand-alone radar version

of the algorithm is adapted from the synergistic retrieval algorithm, which incorporates the climatology of scaling factor as a
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priori information to estimate the LWC of warm cloud. This method allows the LWC estimation using only radar reflectivity25

and climatology of scaling factor.

1 Introduction

Low-level clouds cover a significant area globally and contribute to 60% of net radiative forcing in earth’s radiation budget

(Hartmann et al., 1992). Among all the uncertainties in climate sensitivity estimates, representation of boundary layer clouds

has a significant contribution, specifically in the sensitivity of boundary layer clouds to changing surface and boundary layer30

properties (Bony and Dufresne, 2005). The impact of clouds on climate is further complicated by feedback mechanisms in-

volving cloud and temperature (Stephens, 2005) and cloud–aerosol interactions (Rosenfeld et al., 2014; Fan et al., 2016).

Understanding boundary layer cloud dynamics under changing atmospheric circumstances will help to minimize model un-

certainty and climate sensitivity (Bony and Dufresne, 2005). On the other hand, fog and haze are disastrous low-visibility

phenomena that occur near the surface which are associated to economic implications.35

Active and passive remote sensing instruments are suitable for long-term cloud observations from space and the ground

(Zhu et al., 2017). Such space borne (e.g. CloudSat (Stephens et al., 2002), CALIPSO (Winker et al., 2010)) and ground

based sensors provide observations of various macro and microphysical properties of clouds at different temporal and spatial

resolution (Illingworth et al., 2007). Earlier studies demonstrated the quantification of cloud microphysical parameters such

as effective radius (re) and cloud liquid water content (LWC) using different parameterization with single or multi sensor40

observations as input. The mass of water content in each cubic meter of dry air at a given altitude is defined as LWC, which is

an important parameter for understanding the cloud lifetime and evolution processes.

At 95 GHz (3.2 mm), the Rayleigh regime is still valid as the radar wavelength is nearly two orders of magnitude longer

than the observed cloud droplet size, which is invariably less than 50 µm (Miles et al., 2000). Therefore, radar reflectivity can

be considered proportional to the sixth moment of the droplet spectrum and whereas, LWC is proportional to the third moment45

of the droplet spectrum. However, Mie scattering becomes significant at larger sizes, such as drizzle droplets. An empirical

approach of estimating LWC using radar reflectivity factor by assuming the shape of DSDs, is demonstrated in literature.

Z-LWC relationships derived using in-situ measured droplet spectra collected from a research aircraft are proposed in Atlas

(1954); Sauvageot and Omar (1987); Fox and Illingworth (1997). Table 1 shows details of empirical relations between the

radar reflectivity factor Z and the LWC from literature for a given cloud type. Typically, radar reflectivity Z and cloud liquid50

water content (LWC) are related with a power law equation given as:

Z = a ·LWCb (1)

where a and b are constant coefficients. If Z is known, LWC can be estimated provided the value of constants a and b are

correct for the given cloud type.

LWC calculated using any Z-LWC relationships listed in Table 1 depends strongly on cloud microphysics which varies55

significantly with changing ambient conditions. Due to the inherent heterogeneity of cloud droplet spectra, it is challenging to
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Table 1. Z-LWC relation from literature

Reference Z-LWC relation lna Cloud type Assumption

Atlas (1954) Z = 0.048 · LWC2.0 -3.0365 Clouds without Drizzle Empirical

Sauvageot and Omar (1987) Z = 0.03 · LWC1.31 -3.5065 Non-precipitating stratocumulus and cumulus Empirical

Fox and Illingworth (1997) Z = 0.012 · LWC1.16 -4.4228 Non-precipitating marine stratocumulus Empirical

Baedi et al. (2000) Z = 0.015 · LWC1.17 -4.1997 Stratocumulus clouds Empirical

Wang and Geerts (2003) Z = 0.044 · LWC1.34 -3.1235 Non-precipitating marine stratus Empirical

Krasnov and Russchenberg (2005) Z = 323.59 · LWC1.58 5.7794 Drizzle clouds Empirical

establish a universal Z-LWC relationship as the value of coefficients a varies from 0.012 for marine stratocumulus cloud (Fox

and Illingworth 1997) to 323.59 for drizzling cloud (Krasnov and Russchenberg 2005), and the exponent b varies from 1 to 2.

As mentioned, the empirical approach is also based on certain approximations in DSDs, which widely vary within the cloud

and among different cloud systems. Thus, small variation in droplet spectrum strongly influences the Z and LWC relationship60

and leads to high uncertainties in estimated LWC profile (Löhnert et al., 2001). Since the shape of droplet spectrum changes

significantly within the cloud structure, the retrieval of LWC using only Z information will not be accurate even if the most

appropriate empirical relation for the cloud type is used.

To reduce the uncertainties due to unknown droplet spectra, a synergy of two or more active and passive sensors providing

additional cloud information with sophisticated retrieval techniques has been used in several studies in the past few decades.65

Some studies demonstrated the applicability of dual-wavelength radar system, which uses signals from the Ka-W band (Hogan

et al., 2005), S−Ka band (Ellis and Vivekanandan, 2011) to calculate liquid water profile. Frisch et al. (1995, 1998) used total

integrated liquid water path (LWP) measured by microwave radiometer with cloud radar together. LWP is defined as follows:

LWP = Σ(LWC)dr (2)

where dr is the range resolution in meters if LWP is in gm−2 and LWC is in gm−3.70

This radar-radiometer combination constrained the retrieved LWC exactly to the observed LWP. Further, Ovtchinnikov and

Kogan (2000) used cloud simulated data to conclude that combination of radar reflectivity with liquid water path from mi-

crowave radiometer can significantly increase the accuracy and the robustness of the retrieval. Thereafter, Löhnert et al. (2001)

explained a similar approach of using LWP derived using brightness temperature (Tb) from a passive microwave radiometer,

radar reflectivity profile from a 95GHz cloud radar, and cloud model statistics to derive LWC profiles. The limitation of this75

approach is that the accuracy of LWC profile is reduced in presence of drizzle. O’Connor et al. (2005) calculated the drop size,

liquid water content, and liquid water flux of drizzle using the synergy of cloud radar and backscattering information from

lidar. This technique was applied to the drizzle below the cloud base, as lidar beam is strongly attenuated when it penetrates

the cloud.
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A retrieval method which is applicable to different liquid water clouds and fog is yet to be proposed. The main goal of80

this study is to make the most of the LWC retrieval when additional information is available with radar measurement, and

utilize this knowledge to improve the LWC retrievals when this additional information is not available. The instrumentation

used in this paper is described in section 2 and the retrieval methodology to develop climatology is explained in section 3.

Section 4 elaborates the sensitivity analysis of the retrieval algorithm using synthetic profile, and the validation of retrieval

with in-situ measurements is discussed in section 5. After evaluating the performance of the retrieval algorithm, section 685

focus on derivation of climatology of the retrieved parameters and finally the BASTA standalone retrieval using climatology is

discussed in section 7.

2 Observation sites and instrumentation

Observations for this study are collected from a 95 GHz cloud radar and a microwave radiometer which are co-located in

two different locations. The longest observation period, between November 2018 to May 2019 which corresponds to the90

meteorological conditions of interest including relatively higher concentration of fog and cloudy days, is from SIRTA (Haeffelin

et al., 2005, Site Instrumental de Recherche par Télédétection Atmosphérique). SIRTA is a multi-instrumental atmospheric

research laboratory located in Palaiseau (49N, 2E), 20 km south of Paris (France) in a semi-urban environment which is 160 m

above sea level. The observatory brings together several advanced active and passive remote sensing instruments to study the

dynamic and radiative processes of the atmosphere recorded since 2002 (Haeffelin et al., 2005). The climatology of liquid95

cloud retrievals is derived using the observations from SIRTA. Simulations using the French Convective Scale AROME model

(Seity et al., 2011; Brousseau et al., 2016) for SIRTA are used for sensitivity analysis of the algorithm.

The second site is located in the South-West of France, measurements were collected during the SOFOG-3D (SOuth west

FOGs 3D experiment for processes study) field experiment between October 2019 to March 2020. This field experiment was

conducted to advance the understanding of fog processes by exploring both horizontal and vertical variability of fog layers.100

The super-site is located at Saint-Symphorien commune of France and is centered at 44◦24’44.5 N, 0◦35’51.5 W covering a

circular surface of 5 km radius around this point. The territory is part of a farm named Domaine de la Grande Téchoueyre

which is 69 m above sea level and this site was chosen due to its fog occurrence statistics. Additionally, various measurements

of fog properties were collected with innovative sensors including in-situ and remote sensing networks across a 300× 200

km domain around the super-site. In-situ measurements collected during this campaign are used to validate the LWC retrieval105

algorithm in fog conditions. The next part goes into the details about the specifications of instrumentation used in this study.

2.1 BASTA cloud radar at SIRTA and SOFOG-3D

A vertically pointing cloud radar called BASTA (Delanoë et al., 2016) is operating at SIRTA to record the time height structure

of cloud, fog and light precipitation. BASTA was developed at LATMOS (Laboratoire Atmosphères, Observations Spatiales)

and it has been operational at SIRTA observatory since 2011. This Doppler cloud radar uses the frequency-modulated con-110

tinuous wave (FMCW) technique, rather than pulses, making it less expensive than traditional cloud radars. It measures radar
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reflectivity and Doppler velocity of the atmospheric targets at four different resolution modes depending on the specific ap-

plication. In particular, the 12.5 m vertical resolution mode is dedicated to fog and low clouds and is limited to 12 km range

height. The 25 m mode is suitable for liquid and ice mid-tropospheric clouds and covers the vertical extent from minimum

range of 40 m to 18 km. Furthermore, the 100 m resolution is ideal for optically-thin high-level ice clouds with maximum115

detectable range of 24 km. This radar is calibrated using the approach proposed by Toledo et al. (2020) based on corner

reflectors. Another product developed by combining three modes providing optimized radar reflectivity, velocity and mask in-

dicating the valid signal from noise is also developed. This level 2 (L2 here onwards) processing is a new vertical grid derived

by combining several modes (vertical and temporal resolution) at the same time resolution in order to make the most of each

mode. The largest range resolution data is used for their higher sensitivity, and background noise is removed. In this study, 39120

cloud cases with L2 product of BASTA measurements at SIRTA location are used. During the SOFOG-3D field experiment,

the vertically pointing BASTA radar was deployed at a fog prone region in order to acquire high-resolution observations of the

fog’s characteristics. The L2 product of BASTA observation is used to evaluate the performance of the algorithm for retrieving

LWC of low-level fog. Due to the coupling of the radar antenna the minimum detectable range was 40 m above the ground.

2.2 HATPRO microwave radiometer at SIRTA and SOFOG-3D125

A 14-channel HATPRO (Humidity And Temperature Profiler) MWR manufactured by Radiometer Physics GmbH (RPG) is

operational at SIRTA observatory. HATPRO MWR is a passive instrument, converting the naturally emitted downwelling

radiative energy emitted from the atmosphere within two spectral bands: the first one focuses on the 22.24 GHz water vapor

absorption band up to 31 GHz while the second one is centered on the 60 GHz oxygen complex band (51–59 GHz). Through

the use of calibration coefficients, detected intensities are then directly converted into brightness temperatures. A retrieval130

technique is then needed to convert the brightness temperature spectra into vertical profiles of temperature, humidity as well

as liquid water path. In general, statistical methods (linear, quadratic regressions or neural networks) trained from simulated

MWR observations from a database of radiosoundings or model analyses are used (Cimini et al., 2006). Optimal estimation

retrievals combining an a priori estimate of the atmospheric state with observations through an iterative process can also be

used (Martinet et al., 2020). In this study, LWP retrievals based on MWR observations have been retrieved through quadratic135

regressions trained from a database of radiosoundings for SIRTA while for SOFOG3D, neural networks trained from AROME

short-term-forecasts have been used. MWRs are only sensitive to the total liquid water content present in the vertical profile

(Ware et al., 2002). Humidity profiles can be retrieved with a limited vertical resolution due to the smoother weighting functions

for K-band channels. Temperature profiles show a better vertical resolution, which can be improved through the use of different

elevation angles (generally from 90 to 5.4◦ above the ground).140

If there is a single layered liquid cloud, MWR thus provide a direct estimate of the LWP for the cloud column. The LWP

measurements of the column are unaffected by ice clouds above liquid clouds. The time resolution of LWP measurements used

in this study is 1 second, with brief interruptions due to boundary layer scans. The missing measurements during boundary

layer scans are interpolated to the BASTA observation frequency. The uncertainty of the MWR for LWP is expected to range
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between 10 gm−2 and 20 gm−2 (Crewell and Löhnert, 2003; Marke et al., 2016) particularly dependent on the absolute145

calibration errors of MWR and uncertainties in retrieval algorithms.

2.3 Cloud Droplet Probe (CDP) on tethered balloon during SOFOG-3D experiment

The tethered balloon mounted with in-situ sensor called Cloud Droplet Probe (CDP) which is designed to measure cloud

droplet size distribution from 2 µm to 50 µm. The CDP probe housing contains the forward scatter optical system, which

includes a laser heating circuit, photodetectors, and analog signal conditioning and an appropriate data system can also calculate150

various other parameters including particle concentrations, effective diameter (ED), Median Volume Diameter (MVD), and

Liquid Water Content (LWC) (Lance et al., 2010). This instrument is designed and commercialized by Droplet Measurement

Technology and the specifications are given in table 2. The sampling rate of CDP was 10 sec during SOFOG-3D campaign.

Table 2. Specifications of in-situ cloud droplet probe mounted on tethered balloon

Laser 658 nm, up to 50 mW

Measured Particle Size Range 2 µm – 50 µm

Typical Sample Area 0.24 mm−2

Number Concentration Range 0 – 2,000 cm−2

3 Methodology of LWC retrieval

The objective of the algorithm is to retrieve LWC using radar reflectivity measurements and LWP derived from MWR when155

the latter is available. The integrated liquid water content in the cloud column constrains the vertical profile of LWC which

is strongly related to reflectivity profile. There are several methodologies for modeling such algorithms, including analytical

methods, machine learning techniques, and others. The technique proposed in this paper is framed within the context of optimal

estimation theory (Rodgers, 2000). This approach combines a priori information and uncertainties in the observations, the

way we represent them and is easily expandable to accommodate additional information from multiple instruments. This160

retrieval method must be able to combine active and passive remote sensing instruments to derive the most possible accurate

climatology of liquid cloud properties and also work when only radar observations are available (i.e. stand alone version). This

must be achieved using a common framework. Such a technique has been widely applied in previous studies (Löhnert et al.,

2001; Hogan, 2007; Delanoë and Hogan, 2008). Synergistic retrieval combining radar and microwave radiometer in order to

estimate liquid cloud properties has been already proposed by Löhnert et al. (2001). In their approach, they directly assimilate165

brightness temperature (Tb) and humidity profiles from microwave radiometer. The method presented here aims at providing

more flexibility when the microwave is not available. Therefore, we do not directly assimilate brightness temperatures but the

microwave radiometer product (LWP ) and the associated uncertainties are taken into account. In standalone mode, when only
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radar is available, our method relies on a priori knowledge of liquid cloud properties and their link with radar measurements.

This a priori information will be built using climatology derived when radar and microwave radiometer are simultaneously170

available.

Figure 1, which represents the block diagram of the method illustrates how the input parameters (Z and LWP) are used to

retrieve the output variables (LWC and lna ,where lna comes from the power law relation Z-LWC in Eq.1), will support the

discussion in the next sections.

Forward Model
‘F’

Error in 
LWC

Error 
in lna

Z

LWP

LWC

lna

A Priori

Error in Z Error in 
LWP

‘y’
Observations

‘x’
Retrievals

Measurement Errors 

LWC lna

Error in a priori

Figure 1. Schematic of LWC retrieval algorithm.

3.1 Optimal estimation formulation175

The optimal estimation (Rodgers, 2000) is a retrieval approach in which the measured quantities are related to unknown

atmospheric parameters using a Forward model. If ’y’ is the measurement and ’x’ is the unknown parameter, then the forward

model ’F ’ and errors ‘ϵ’ can be mathematically written as

y = F (x) + ϵ (3)
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where error due to measurements and forward model are accounted in ϵ. The forward model is a mathematical description of180

the atmosphere as a function of the measurements and the atmospheric states. From Eq. (3), to retrieve x (atmospheric states) as

x = F−1(y−ϵ), it is essential to have good knowledge of F before physically inverting it because such operators are generally

complex and non-invertible. This problem is referred as the inverse problem. An example of solution of inverse problem is a

probabilistic optimization based on Gauss-Newton method (Rodgers, 2000) by minimizing the cost function J as:

2J = δyT R−1δy + δxT
a B−1δxa (4)185

And the forward model is linearized about the state vector x at ith iteration, then y can be written as

y = F (xi) +Ki(x−xi) (5)

Minimization of cost function leads to iterative solution for the state at i + 1 iteration

xi+1 = xi + A−1[KT R−1δy + B−1δxa] (6)

where A−1 = KT R−1K + B−1 gives the error covariance matrix of optimized solution of x after convergence is achieved.190

K is called the Jacobian matrix, containing the partial derivative of measurement with respect to state parameter. R is the

error covariance matrix accounting for observation and forward model errors, B is the error covariance matrix for ’a priori’

information and xa denotes the a priori of the state vector. A prior or background information of the unknowns (generally

derived from the climatology or model), is used to constrain the inverse problem. The retrieval starts with the ‘first guess’(can

be a priori) of the states and the forward model is then applied to simulate the values of measurements. The states are updated195

until the simulated and measured quantities are close enough and convergence is achieved.

Convergence is assessed at each iteration using the following variable to estimate the closeness of the observations with the

model:

G = |J(i)− J(i− 1)|

where ’i’ is the iteration number.200

For every iteration, G examines the absolute gradient of cost function and achieves the convergence when the difference

between two successive cost functions is negligible. In this scenario, the retrieval converges when G is of the order of, 10−7

which indicates that the additional iteration is not adding prominent change in the retrievals.

3.2 Definition of the state and observation vectors

The state vector ’X’ is the vector of unknowns, must contain all the variables to retrieve. The observation vector ’Y ’ is driven205

by the available observations. In our case, the radar reflectivity and LWP (when microwave radiometer is available) are the

parameters in the observation vector. These two vectors are also defined in the way that we can link them through the forward

model. The forward model accounting for radar attenuation will be described in details in section 3.3.
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From the power law relation of Z-LWC in Eq. (1) the constants a and b are dependent on many microphysical parameters such

as the particle size, number concentration and other ambient conditions. Through this kind of relationships we can associate210

a LWC value to a reflectivity value, adding LWP retrieved by the microwave radiometer we can release one more constrain

and adjust one of the parameters of the Z-LWC relationship that varies with each profile. This is because the retrieved LWC is

constrained by the observed LWP. The choice of using the pre-factor a is motivated by its capability to adjust the whole profile

of LWC regardless the reflectivity and a shows a much higher variability than b. Note that the impact of variability in b will

be assessed in section 4.1.215

The state and observational vectors are defined as follows:

X =




lnLWC1

...

lnLWCn

lna




, (7)

Y =




lnZ1

...

lnZn

lnLWP




(8)

To account for the large dynamic range of the observations within a profile, this algorithm uses the logarithm of the state

variables and measured quantities which also prevent the unrealistic retrieval of negative values.Therefore, the linear relation220

between Z and LWC in log space in the form of, y = mx + c where lna represents intercept and b is the gradient of the line

can be written as:

lnZ = lna + b× lnLWC (9)

The logarithm of a priori coefficient a is referred to as scaling factor, and logarithm also enables visualizing the wide range

of a. Although, the observation vector y may not incorporate LWP when it is unavailable, however by adding the LWP in the225

observation with Z, the forward model allows retrieving lna in addition to LWC.

The state and observation vectors are defined as shown in Eq. (7) and (8). The errors in measurement are tested using a

synthetic profile of observations, and detailed in the section 4.1.The most suitable error in observation vector is set as 25% and

10% respectively for Z and LWP. As mentioned in section 2.2, LWP estimates from MWRs have an expected uncertainty of

±20 gm−2. However, this uncertainty estimation also depends on the MWR calibration and retrieval algorithm uncertainties,230

an approximate evaluation of the LWP measurements using longwave radiation measurements demonstrates an RMSE in

LWP of around 5–10 gm−2 during fog with LWP< 40 gm−2 (Wærsted et al., 2017). Thus, to minimize the errors due to the

measurement uncertainties, the LWP is assimilated only when the measured LWP is greater than 10 gm−2 because the relative
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error for low LWP values from HATPRO is significantly higher than for high LWP values. Although, 10% error in LWP is very

small when compared to expected error, but the profiles with LWP values below 10 gm−2 are already excluded from retrievals,235

implying that there is less error to be considered. A detailed analysis of errors in measurement of Z and LWP are explained in

section 4.1, covering the sensitivity analysis of retrieval algorithm using synthetic profile.

Prior knowledge of the state parameters enables the retrieval to be constrained in order to avoid unrealistic solutions, es-

pecially when additional measurements are missing. a priori information usually consists of long-term climatology or model

outputs of state parameters, i.e. LWC and lna. For example, from various in-situ measurements of LWC in fog or liquid cloud240

it is known that LWC in the cloud is not equally distributed vertically and is strongly related to reflectivity. A priori of LWC

dependent on reflectivity should be more suitable than a constant LWC profile. In this retrieval, a LWC profile derived from

the empirical relation is used as the a priori with an a priori error of 1000% (or 10) for both LWC and lna. Note that the

errors are presented in logarithm and the error in the a priori is considered high, because LWP measurements are available to

constrain the retrievals. Even so, a priori information is vital in case of missing LWP measurements, which plays an important245

role in case of LWC retrieval using only radar observations and climatology. In such a case, expected error in the a priori will

be considered less. In case of low LWP observations, retrieval depends on a priori which is taken from Atlas (1954) empirical

relation and therefore, the scaling factor is not retrieved for such profiles. The retrieval of LWC for the profiles with LWP

< 10gm−2 incorporates attenuation in the retrievals, rather than just applying empirical relationships.

3.3 Description of the forward model and Jacobian matrix250

The forward model is an approximation of the physical phenomenon represented as a function of measurement and state

variables. In order to expand the retrieval when additional measurement is available, it is recommended to describe the forward

model for each element of the observation vector. The forward model for radar links radar reflectivity to LWC using the Eq.

(9). Furthermore, LWP as additional information constrains LWC using Eq. (2) and allows the retrieval of scaling factor lna.

When additional information is unavailable, the retrieval constrains LWC using lna climatology, which is elaborated in section255

7. The microphysical model for attenuation consideration is discussed in next subsection 3.3.1.

3.3.1 Forward model for attenuation correction

Water vapor and oxygen are the two primary atmospheric gases that contribute to microwave absorption. Even though W-band

radars work in one of the water vapor transmission windows, absorption due to water vapor can exceed 1 dBkm−1 depending

on temperature and humidity in the lower troposphere. Despite the fact that attenuation by atmospheric gases is relatively260

small, attenuation due to liquid clouds droplets can diminish the advantages of W-band radar observation, particularly in the

liquid cloud case. According to Lhermitte (1990), the attenuation due to liquid droplets is more problematic as it depends on

drop size distribution, which is not known in general. Since attenuation due to liquid cloud is dependent on temperature and

density of cloud droplets and clouds consists of randomly distributed, spherical droplets of diameter less than 100 microns,

the 95-GHz microwave absorption can be adequately described by the Rayleigh approximation. Various theoretical studies265

have been conducted to determine the attenuation due to liquid cloud and drizzle at different temperatures. For example, at
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10◦C, Lhermitte (1990) calculated 4.2 dBkm−1 per gm−3 of liquid water attenuation, while Liebe et al. (1989) obtained

4.4 dBkm−1 by using the Rayleigh approximation. On the other hand, Vali and Haimov (2001) assumed spherical hydrome-

teor and obtained the general solution for absorption (and scattering) at W-band using Mie approximation. Extinction due to

liquid cloud at 95GHz using simultaneous and co-located cloud measurements of drop-size distribution, liquid water content,270

temperature, and pressure for maritime stratus clouds was comparable with the theoretical studies mentioned above. This study

further concludes that, for around 10◦C and pressures close to 900 mb, the one-way attenuation ’A’ in dBkm−1 was found to

be linearly dependent on LWC, and expressed as:

A = 0.62 +4.6×LWC in dBkm−1, (10)

where 0.62 dBkm−1 represents gaseous absorption.275

Vivekanandan et al. (2020) calculated attenuation ’A’ as a function of reflectivity Z for cloud droplets and drizzle using

power law fit. Reflectivity and attenuation are simulated using DSDs collected from VOCALS field experiment (Wood et al.,

2011), with Z being proportional to sixth moments and attenuation being proportional to third moments of DSDs. The DSDs

for cloud and drizzle droplets are separated by -17 dBZ threshold for simulated reflectivity and therefore, as given by Eq. (11)

and (12) for clouds and drizzle respectively.280

A = 18.6×Z0.58dB/km (11)

A = 1.68×Z0.9dB/km (12)

However, even with power law fit, the range of attenuation calculated is 0 to 4 dBkm−1, which is almost the same order

of attenuation per kilometer calculated using linear relations proposed in previous studies. Equation (10) is used to calculate285

attenuation due to liquid water in the forward model. As this study is focusing over of retrieval of LWC and its climatology,

attenuation as a function of LWC, will adjust with retrieved LWC for cloud and drizzle without categorizing the hydrometeor

on the basis of forward modelled reflectivity. It is worth noting that all the attenuation relation mentioned above were derived

using DSDs collected from marine clouds, and the calculation of attenuation relation for continental clouds is prospective.

Finally, a sensitivity test for considering inconsistent attenuation in the forward model will be discussed in section 4.3.290

The attenuation correction is achieved within the forward model by correcting at a particular gate to estimate the associated

attenuation, and then using it to correct at all subsequent gates. Therefore, the forward model estimates the two-way attenu-

ation corresponding to LWC using Eq. (10), and then corrects the forward modelled reflectivity to account for the estimated

attenuation. Since the radar is vertically pointing, it is presumed that the lowest gate (closest to the radar) remains unattenuated

due to the liquid droplets, whereas all gates above are affected by liquid droplets present in the preceding gates. As the radar295

beam passes through the cloud profile it gets attenuated due to liquid, as a result the top most cloud pixels of the profile are the

most attenuated. To summarize, each cloud pixel is corrected for the two-way attenuation caused by liquid clouds along the

path of the radar beam.
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3.3.2 The Jacobian formulation

The Jacobian is a matrix representing the sensitivity of the forward model. It consists of partial derivatives of all the element of300

Y vector with respect to X vector. Since the forward model update the element of measurement vector at each iteration, thus,

at each iteration step the Jacobian K is re-evaluated and for a profile of ’n’ cloud pixels as

Ki =




∂lnZ1
∂lnLWC1

. . . ∂lnZ1
∂lnLWCn

∂lnZ1
∂lna

...
. . .

...
...

∂lnZn

∂lnLWC1
. . . ∂lnZn

∂lnLWCn

∂lnZn

∂lna

∂lnLWP
∂lnLWC1

. . . ∂lnLWP
∂lnLWCn

∂lnLWP
∂lna




(13)

K consist of (n+1)× (n+1) elements with top n×n elements are partial derivative of reflectivity with LWC and last row

corresponds to constrain LWC at each cloud pixel with total LWP. The (n + 1)th column corresponds to the relation between305

radar reflectivity and scaling factor (lna) and the very last element is set to zero because lna is not related to LWP measure-

ments. Therefore, for n cloud pixels in a profile, the forward model will evaluate a Jacobian of (n + 1)× (n + 1) to retrieve

the state vector corresponding to radar reflectivity and LWP measurements. The attenuation in forward modelled reflectivity

due to liquid cloud droplets is accounted at every iteration. The Jacobian matrix incorporates the two-way attenuation ‘A’ at

each cloud pixel by calculating the partial derivatives of ‘A’ with respect to LWC at each cloud pixel. It is worth noting that the310

attenuation due to gaseous absorption is not accounted in the Jacobian matrix because L2 reflectivity is already corrected for

it. The value of attenuation corresponding to the lna parameter is assumed zero.

The forward model errors are the errors associated to the mathematical model which relate measurements with atmospheric

physical parameters. The relationships described in the forward model are not necessarily perfect and hence incorporate error in

the retrieval. As mentioned already, Z is closely related to LWC of cloud and hence forward model for reflectivity is represented315

by Eq. (9). In this equation, the errors in Z are taken into error in measurement for Z, whereas lna and LWC are retrieved

parameters. As exponent b is taken constant, there is a possibility to incorporate error in forward model due to b, which is

discussed in sensitivity analysis in section 4.5. The error incorporated because of model representation of attenuation due to

liquid cloud is also discussed in sensitivity analysis. The cloud liquid water is also constrained by LWP as the summation of

LWC for the given cloud column, as shown in Eq. (2). Therefore, the forward model for LWP is simple and therefore, error in320

the estimation of LWC due to forward model is neglected.

3.4 Discussion of the retrieval uncertainty

Other sources of error in the retrieval algorithm are discussed in this section. Doppler radars also detect boundary layer insects,

large dust particles and pollens suspended in the air as a result of the convective boundary layer that grows in the morning

hours and matures shortly after the midday (Geerts and Miao, 2005). These so-called air-borne planktons developed due to325

onset of convective boundary layer, contaminate the reflectivity profile. Therefore, the unwanted signal in the radar reflectivity

due to airborne planktons must be removed before estimating LWC. Additionally, all the cloud above 2500 m are anticipated

to be mixed phase or ice cloud which cannot be addressed in the same way as liquid cloud and therefore clouds above 2500 m
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are excluded. The data set employed in this study indicates that the majority of the liquid cloud are observed below 2500 m.

However, because the height of the melting layer changes with season and geographical location, it would be appropriate to330

determine the height of melting layer to differentiate liquid and mixed phase clouds. As the LWP measurements from MWR

are unaffected by overlying ice cloud, but accounts for liquid in the overlying mixed phase cloud, which adds error in the LWC

retrieval. Therefore, all such cloud profiles are removed before deriving climatology. The profiles with LWP less than or equal

to 10 gm−2, the retrieved LWC is not used for climatology due to high relative error in low LWP values.

Fog on the other hand, causes droplet deposition on the radome and hence contributes towards substantial amount of atten-335

uation in the radar reflectivity which is not accounted in the retrieval. It is worth noting that a blower to remove the droplet

deposition on BASTA at SIRTA is installed since 2019 which has substantially reduced the wet radome attenuation after rain.

Although, the retrieval assumes completely dry radome for all the cases, including clouds immediately after rain and drizzle.

Since the retrieval algorithm deals with two independent measurements and therefore the two instruments have distinct obser-

vation frequency which is addressed by interpolating the LWP measurements into the radar temporal resolution and hence acts340

as additional source of error.

Due to the coupling of transmitting and receiving antennas of radar, the vertically pointing radar misses a few lowest gates

close to the ground. These unavailable gates do not impact the information about the clouds aloft, but the missing information

of thin fog causes over estimation in LWC for the first few available gates. The overestimation is due to the fact that retrieval

forces the assimilated LWP of the profile by constraining it over available range gates and hence overestimates the LWC for345

available gates. The most appropriate way to overcome this issue is to use scanning radar, but for vertically pointing radar

we assume that the properties of fog remain the same between the first available gates and the ground, and thus reflectivity is

extrapolated (extended) downwards for the unavailable range gates. The extension of range gates is particularly significant for

SOFOG-3D experiment cases, which are specifically concerned with fog processes. However, the extension of range gates may

introduce inaccuracy into LWC retrieval for fog, as the reflectivity of fog at the surface is not always equal to the reflectivity of350

the first available gates, particularly for dissipating fog.

3.5 Analysis of the method when microwave radiometer is available

This section describes the analysis of retrieval when applied to various cloud types. As detailed in section 3, the retrieval

technique is applied to reflectivity data from 95 GHz BASTA radar with LWP estimates from co-located RPG HATPRO

microwave radiometer for various cloud cases from SIRTA. Between November 2018 to May 2019, 39 cloud and fog cases at355

SIRTA observatory are selected to address the algorithm’s implementation on warm clouds. The data set contains a relatively

large number of cloudy cases, including fog and light drizzle. A detailed discussion of retrieval and algorithm implementation

is elaborated for a typical example of cloud in the next subsection.

3.5.1 Illustration of retrieval of 05 February 2019 case at SIRTA

A case study of one of the selected cloudy cases from SIRTA on 05 February 2019 is presented in figure 2. Figure 2(a) and360

(b) presents the time height plot of radar reflectivity and velocity respectively. LWP estimated by the radiometer alone through
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Figure 2. (a) Radar reflectivity (b) Vertical velocity (c) Retrieved LWC, (d) LWP and (e) Retrieved lna for 05 February 2019 case at SIRTA.

quadratic regression is interpolated at radar time of observation as shown in figure 2(d). The retrieved LWC for the cloud pixels

is plotted in figure 2(c) and the retrieved scaling factor for each profile is shown in figure 2(e).
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There were no overlapping clouds observed in this instance, and the airborne planktons were removed manually. A dense

cloud from midnight with cloud base close to ground dissipates before noon and the formation stage of a fog is initiated after the365

sunset. The liquid water path remains below 100 gm−2 throughout the day. The radar Doppler velocity, displayed in figure 2(b),

shows variation in the velocity of the cloud droplets, ranging from -1.5 to 1 ms−1. Within the cloud, the velocities are typically

lower and decrease toward the cloud top, when they approach 0 ms−1. Cloud droplets have terminal velocities of only a few

centimeters per second, when drizzle droplets develop, the terminal fall velocity increases. Reflectivity values reach 0 dBZ

for a few profiles indicating drizzle in the beginning (between 00:00 to 03:00 hrs). As indicated by radar observations, higher370

reflectivity values due to drizzle, yet LWP is nearly identical for the cloud with reflectivity as low as -35 dBZ and contributes

the least to LWP. This also explains why it is critical to have LWP information to constrain LWC retrievals, particularly for

profiles with drizzle within the cloud and when it evaporates fully before reaching the ground. Figure 2(c) indicates a general

increase in LWC towards the cloud top, and the retrieved LWC is less than 0.3 gm−3. The scaling parameter has a wide range

from -6 to +3 which supports empirical values of a in table 1. The value of lna changes for each profile. Therefore, this375

case illustration shows that the retrieval of LWC and scaling factor can be utilized to derive a climatology of scaling factor

for different cloud types. It is worth noticing that the retrieval algorithm deals with all the variations of cloud types, and the

behavior of scaling factor must be studied. The next section elaborates the robustness of the retrieval algorithm for various

sensitivity parameters.

4 Sensitivity analysis of retrieval algorithm using synthetic data380

The goal of this section to verify the consistency of the retrieval behavior and to assess the sensitivity of the algorithm to

inputs, errors and hypotheses. Sensitivity analysis does not replace a proper validation of algorithm retrievals, in section 5 a

comparison with in-situ measurement is discussed. Like every other algorithm, this retrieval algorithm also suffers from some

fundamental uncertainties which must be addressed. To do so, we use a sensitivity analysis approach. It can also be referred to

as ‘what-if’ analysis, where the input parameters of the model are varied one by one. As shown in the schematic of the retrieval385

algorithm in figure 1, the retrieval is sensitive to not only input parameters but also other settings like the a priori, expected

errors in measurement and a priori information. To quantify the sensitivity of the retrieval algorithm, real observations are not

used because the true profile of LWC from an in-situ sensor is not always available. Instead, synthetic data which contains all

the characteristics of real observations are used to evaluate the performance of the algorithm. Maahn et al. (2020) highlighted

major benefits of using synthetic data to test algorithms and models. First and foremost, systematic forward model errors cancel390

each other, and second, we know the true atmospheric state Xtruth, which can be compared with the retrieved optimal result

Xret. Hence, considering the mentioned advantages, we are using synthetic data for the sensitivity analysis of the retrieval

algorithm.

The flowchart of sensitivity analysis is presented in figure 3 where sensitivity parameters are the parameters in the retrieval

algorithm which are perturbed, and the impact is tested. The objective is to formulate input parameters from truth and by395

feeding synthetic observation to the retrieval algorithm, the result should match with the truth. In the block diagram, synthetic
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observations (Z and LWP) are fabricated using the forward model. The block inside the dashed line is the same as shown inside

the dashed line in figure 1 with all the sensitivity parameters.

LWC (AROME)

Forward model for 
Z with attenuation

Z, LWP

LWC Retrieval 
ALGORITHM

Compare LWC Make the change in 
Sensitivity 
Parameters

Retrieved LWC

Figure 3. Flow chart for sensitivity analysis of retrieval algorithm.

However, we are aware of the fact that the retrieval errors might be different when observed in real observation scenario,

which are already discussed in the section 3.3 for real observations. The error in retrieved LWC from with respect to what we400

consider as true LWC is calculated using the Eq. (14), (15), and (16) for all the sensitivity test.

1. Root mean squared error

RMSE =

√
Σn

0 (LWCret−LWCtrue)2

n
(14)

2. R2 (coefficient of determination) quantifies the degree of any linear correlation between observations (LWCtrue) and

retrievals (LWCret). The general definition of R2 regression score function is:405

R2 = 1− SSres

SStot
(15)
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where SSres is residual sum of squares and SStot is total sum of squares.

3. Mean absolute percentage error: It measures the accuracy of the retrieval in percentage.

MAPE =
100
n

Σn
0

∣∣∣∣
LWCtrue−LWCret

LWCtrue

∣∣∣∣ (16)

where LWCret and LWCtrue are retrieved and true LWC respectively, and n is the number of data points. Analysis of each410

sensitivity parameter is presented in the next section.

4.1 Description of synthetic data

Synthetic data of LWC can be prepared from empirical relations, satellite observations, theoretical adiabatic LWC or model

forecasts. For this sensitivity analysis, we opted to include physical parameters of 16 November 2018 fog structure simulated

by the AROME model of the retrieval algorithm. The selection requirement for this instance is that it contains a sufficient415

number of LWC profiles to evaluate the behavior of the algorithm.

AROME is a French convective scale NWP model, operational since 2008 covering France and western Europe providing

high-resolution simulations of fog forecasts at 1.3 km of horizontal resolution and 90 vertical levels of 144 profiles. Detailed

setup of the AROME model and fog forecast is explained in Bell et al. (2021). LWC of a fog structure from AROME short-

term forecasts at the nearest grid location of SIRTA is considered as the true atmospheric state. In this case, we are considering420

only liquid droplets, with no overlapping of liquid or ice clouds aloft. Profiles of true LWC are used to synthesize observation

parameters like radar reflectivity using the previously defined power law relation and the liquid water path of each profile by

integrating true LWC at each pixel. The forward model (block in red) consisting of the power law relation and attenuation

correction model for deriving the synthetic profile of Z using coefficients a and exponent b is taken from Atlas (1954) the em-

pirical relation. The two-way attenuation correction applied to Z is calculated from Eq. (10). Figure 4(a) shows the distribution425

of true LWC as a function of time and height, and the synthetic profile of Z is plotted in figure 4(b) and in figure 4(c) LWP

calculated by integrating true LWC.

One of the most obvious sources of uncertainty in the retrieval is the observation (calibration errors and instrumental noise)

and forward model errors. The forward model errors tested in this sensitivity analysis are the variation in attenuation consider-

ation and the variation in exponent b. As the observation vector, Y contains measurements from two independent instruments,430

bringing random and uncorrelated errors within the elements of Y (Maahn et al., 2020). The deposition of liquid droplets on

the radome introduce an additional bias in radar observations. This is tested by analyzing the impact of possible biases in Z.

The next sections cover the sensitivity analysis of the retrieval algorithm for perturbations in different parameters.

4.2 Sensitivity analysis of impact of error in observation

The input for synergistic retrieval in the observation vector Y consists of concatenated observations from the cloud radar and435

the radiometer. Each instrument has different errors, and it is worth mentioning that in case of radar observations, instrumental

errors are considered for each gate whereas for the LWP measurement from the radiometer the observation error is estimated
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Figure 4. Simulations from AROME model for 16 November 2018 showing (a)True LWC in gm−3, (b) Synthetic reflectivity and (c) LWP.

over the entire cloud profile i.e. an integrated measurement. By varying the weight of instrumental error from each observation

(Z and LWP) and keeping the rest constant, impact on the retrieved LWC is compared with the true LWC.

Observation errors are assumed to be independent, and the synthetic observations of Z and LWP are calculated using true440

LWC, as shown in figure 4. Equation (10) is used to calculate attenuation due to liquid water in the synthetic profile as well

as in the forward model. A priori for LWC is calculated using synthetic reflectivity and scaling factor from empirical relation

proposed by Fox and Illingworth (1997). Since we are looking at the impact of observation error, the retrieved parameters

should have the least contribution from a priori and therefore high error in a priori (1000% in this case) is considered. Because

a priori of LWC is calculated from synthetic Z, a priori of LWC must be different from true LWC to minimize the contribution445

of a priori which forces retrieval to be close to true LWC.
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Table 3 shows the combinations of errors in measurements of Z and LWP considered in the retrieval, and the errors are

calculated for retrieved LWC with reference to true LWC. Cases 3 and 4 in table 3 are indicating that the retrieval is more

sensitive to errors in LWP as compared to errors in Z with approximately the same mean absolute percentage error in LWC of

7% whatever the assumed errors in Z. This is because for each profile there is only one LWP value which impacts the whole450

profile for given error but for error in reflectivity, only the associated pixel is impacted. With the increase in percentage errors

in LWP measurement from 1 to 100%, the RMSE in LWC is also increased approximately 100 times, further demonstrating

the high sensitivity of the algorithm to the LWP.

(Delanoë and Hogan, 2008) likewise incorporates a 1 dBZ uncertainty in the measurement of Z for ice cloud retrieval using

95 GHz radar with lidar and microwave radiometer. However, error in LWP has very low difference in MAPE and RMSE when455

1% to 10% error is considered. Therefore case 6 in table 3, is an optimum balance of observational error for Z and LWP. This

combination of error in measurement is used in all the retrieval cases presented in section 3.5 and 5.1.

Table 3. Different configurations of error in measurement and respective statistical errors in retrieved LWC w.r.t. true LWC

Case Error in Z Error in LWP RMSE(LWC) R2(LWC) MAPE(LWC)(%)

1. 1% (0.043 dB) 1% (1.01 gm−2) 0.000209 0.99999 0.05783

2. 100% (4.34 dB) 1% (1.01 gm−2) 0.000245 0.99999 0.15286

3. 1% (0.043 dB) 100% (2.71 gm−2) 0.021870 0.98495 7.37329

4. 100% (4.34 dB) 100% (2.71 gm−2) 0.021832 0.98499 7.43851

5. 25% (1.08dB) 50% (1.64 gm−2) 0.006013 0.99874 2.05276

6. 25% (1.08dB) 10% (1.1 gm−2) 0.000454 0.99999 0.17123

4.3 Sensitivity analysis of impact of attenuation due to liquid droplets model

In this section, the sensitivity of the attenuation model considered in the algorithm to retrieve LWC is highlighted. Wet radome

can cause up to 20 dBZ of two-way attenuation due to rain in the reflectivity (Delanoë et al., 2016), but attenuation due to fog is460

far less than 20 dBZ. Two attenuation relations for liquid clouds from literature are used to test the sensitivity of the algorithm.

Equation (10) is proposed by Vali and Haimov (2001) in which attenuation is a function of LWC (abbreviated as att(LWC) in

table 4) and the relationship in Eq. (11) is proposed by Vivekanandan et al. (2020) where attenuation is the function of radar

reflectivity factor (abbreviated as att(Z) in table 4). Both of these relationships are derived using in-situ observation from 95

GHz radar mounted on a research aircraft. Forward model with different attenuation relationships in the algorithm is tested for465

synthetic Z and LWC. To fabricate synthetic Z, the power law relation with a = 0.012 and b = 2 (in Eq. (1)) is used. Different

combinations of attenuation correction in synthetic profile and in the retrieval algorithm are tested, as shown in table 4. a priori

for state parameters is calculated from Atlas (1954) empirical relation with error in a priori as 1000% and the measurement
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errors for Z and LWP are considered 25% and 10% as discussed in section 4.2. Finally, the comparison of bias in LWC for

attenuation model is shown in figure 5.470

Table 4. Variation in error in a priori and different errors calculated w.r.t. true LWC

Attenuation correction Forward model attenuation RMSE(LWC) R2(LWC) MAPE(LWC)%

in synthetic profile

Z (attLWC) Att (LWC) 0.000204 0.999998 0.056426

Z (attLWC) Att (Z) 0.008286 0.997535 2.780574

Z (attZ) Att (LWC) 0.008012 0.997687 2.660039

Z (attZ) Att (Z) 0.000206 0.999998 0.057094

Figure 5. Bias in retrieved LWC with respect to true LWC for different attenuation consideration in the retrieval algorithm

Retrieved LWC considering same attenuation correction in synthetic Z profile and in forward model, RMSE is 0.0002 and

MAPE is as low as 0.05% as all the parameters are identical. But when the attenuation relation is exchanged for synthetic

profile and the forward model, MAPE increase to 2.7%. Figure 5 shows the bias in LWC when different attenuation relation is

used in the forward model and synthetic profile. The distribution of bias in LWC over the profile is different because attenuation

due to LWC estimated by two relation is different, and thus the estimated LWC is also different. A similar test for attenuation475

with different ‘a’ in the power law relation gives the same errors when the retrieved LWC is compared with true LWC. Bias

in LWC for considering same attenuation relation in synthetic profile and forward model is found close to zero. Therefore, the
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sensitivity test for attenuation indicates that attenuation correction of Z has very low-impact, and it can bring up to 2.7% mean

absolute percentage error in retrieved LWC when wrong attenuation model is used.

4.4 Sensitivity analysis of bias in Z and LWP480

Bias in observation is the systematic error added in measurement, which can be due to the error in calibration of any instrument

or transfer function of the measurement. Similarly, threshold value of MWR also adds a systematic error in LWP measurement.

Therefore, it is necessary to test the behavior of retrieval algorithm for such systematic biases in measurement. For the test

cases of biases, error in observation vector in considered 25% and 10% for Z and LWP with a priori of LWC is calculated using

a = 0.012 proposed in Fox and Illingworth (1997) and a = 0.012 is used as lna a priori. This test is to analyze the impact of485

bias in measurement on retrieval, therefore the a priori should have minimum contribution and hence 1000% error in a priori

of LWC and lna is considered. In this analysis, only one of the two observations is biased at a time to see the individual impact

on retrieval. It is assumed that the bias in Z is 2 dBZ considering that error in calibration in BASTA radar measurements is

around 1 to 2 dBZ (Toledo et al., 2020). The bias in LWP estimation is considered 10 gm−2 which is supported by Wærsted

et al. (2017) for this sensitivity test.490

Table 5. Error in retrieved LWC due to bias in Z and LWP

Case Bias RMSE(LWC) R2(LWC) MAPE(LWC)%

1. LWP-10 (gm−2) 0.029413 0.96343 11.246633

2. LWP+10 (gm−2) 0.030236 0.97184 11.542570

3. Z-2 (dBZ) 0.000355 0.99999 0.131603

4. Z+2 (dBZ) 0.000558 0.99998 0.210887

The order of error in retrieved LWC with respect to true LWC is much higher for 10 gm−2 bias in LWP than 2 dBZ bias

in Z. However, the bias in two measurements is not comparable because parameter Z is measured over each pixel and LWP

is a single point measurement for the whole column. Since the bias applied on Z applies on each cloud pixel and bias applied

in LWP is integrated for whole profile, however, 11% MAPE in LWC is observed which is again indicating the sensitivity of

retrieval for LWP. Another reason for the difference in LWC is due to the fact that Z is in log space and error in observation495

allows more spread in Z (25%) than in LWP (10%) therefore the impact on LWP is larger. The bias in Z is propagated in lna,

but the bias in LWP directly impacts LWC. The simultaneous biases in Z and LWP have been also tested, which reveals that

the bias in LWP is dominating over the bias in Z with 11% MAPE when mentioned biases are considered in Z and LWP.

4.5 Sensitivity of parameter b

The exponent b from the power law Eq. (1) is considered 2 for all the cases discussed in this paper, however the range of500

parameter b in the literature is proposed from 1 to 2. To test the impact of variation in b on the retrieval algorithm, the value
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of b used to fabricate synthetic observations Z and LWP, and b in the forward model are same. Keeping all the other settings

constant, the error in retrieved LWC should be due to changing b. Table 6, shows the range of b and the respective error in

retrieved LWC with respect to true LWC. The retrieved LWP matches with the assimilated LWP only the distribution of LWC

is changed observed least for b = 2. Figure 6 shows that the cost function is also least for b = 2 and MAPE in LWC is twice505

when the value of b is taken 1.

There is negligible impact of variation in b over lna as shown in figure and the error in LWC is between 0.35% to 0.17%.

The convergence is achieved with less cost function and MAPE in LWC is also least for b = 2 case. Because lna is allowed to

be variable in the forward model, it is most likely that the change in b is compensated by the change in lna.

4.6 Analysis of the sensitivity exercise510

In conclusion, since this sensitivity test was performed on a synthetic profile, the overall impact of uncertainty of each parameter

on the retrieval can be very different when applied to a real profile. However, an estimate of errors can be made using this

exercise. The error in observation must be chosen very carefully for retrievals. 25% error in Z is also supported by realistic

calibration error of BASTA radar which was calculated between 1 and 2 dBZ using 20 m mast (Toledo et al., 2020) where

25% error in Z corresponds to 1.08 dBZ. This combination of 25% and 10% error in measurement has only 0.17% MAPE515

when tested with synthetic profile, which is why this combination is used in the algorithm. a priori must be considered only

to stabilize the retrievals for unavailable measurements, otherwise the error in a priori can be kept high. A prior is a constraint

for the entire retrieval, hence the uncertainty in the retrieval must be smaller than the error in a priori. Otherwise, the retrieval

does not add any information from the observations (Maahn et al., 2020). Attenuation by liquid cloud droplets is yet unknown

for continental cloud however the available relations from literature proposed for marine clouds is used in the retrievals might520

bring up to 2.7% error in retrieved LWC. Retrieval is very sensitive to bias in LWP as LWP is point information for whole

cloud column, therefore error in observation and biases in Z and LWP both play a very critical role in the retrieval. Sensitivity

of retrievals for parameter b is showing the least error when b = 2 because this is the same used to fabricate Z synthetic from

the true LWC. Nevertheless, it is worth noting even with other values of b the MAPE is not exceeding 0.35%.

Table 6. Error in retrieved LWC for different b values

Case b value RMSE (LWC) R2(LWC) MAPE (LWC)

1. b=1 0.00069 0.99998 0.35599

2. b=1.2 0.00064 0.99998 0.301158

3. b=1.4 0.00059 0.99998 0.260569

4. b=1.6 0.00054 0.99998 0.227267

5. b=1.8 0.00050 0.99999 0.198041

6. b=2 0.00045 0.99999 0.171237
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Figure 6. (a) Cost function and (b) Retrieved lna for different b values

5 Comparison of LWC retrieval with in-situ data525

In-situ measurements of cloud and fog are required to validate the distribution of LWC with time and height. In general,

in-situ measurements of cloud microphysical parameters are collected using a research aircraft mounted with sensors flying

inside the cloud. During the SOFOG-3D field experiment, a tethered balloon equipped with in-situ sensors was used to collect

the microphysical parameters of fog. This approach is much more economical than the research aircraft flying inside cloud,

however the trajectory of the balloon cannot be fully controlled, and the measurements are limited to the lowermost 1–2530

km level. Simultaneous measurements using remote sensing instruments like BASTA cloud radar, microwave radiometer and

automatic weather stations were also collected for various fog cases (Martinet et al., 2020). Since the LWC retrieval algorithm

described in previous sections essentially works with liquid clouds including fog, measurements collected during the SOFOG-

3D experiment are well suited to validate the algorithm. The input for the algorithm is taken from vertically pointing cloud

radar reflectivity and LWP estimates from MWR measurements. Retrieved LWCs are then compared with the measured LWC535

using in-situ sensors.

23

https://doi.org/10.5194/amt-2022-3
Preprint. Discussion started: 31 January 2022
c© Author(s) 2022. CC BY 4.0 License.



5.1 Presentation of the case study of 09 February 2020

One fog case study observed at the super-site (44.4◦N,−0.6◦E) on 9th February 2020 is presented to compare retrieved LWC

with in-situ measurements collected from the tethered balloon. This case is selected because fog and stratus were observed,

allowing us to validate the algorithm for two different cloud types at once. The observations from vertically pointing radar540

and MWR are used to retrieve LWC with exactly the same algorithm described in previous sections. During this experiment,

MWR was set up to collect boundary layer scan at lower elevation angle down to 4◦ every 10 minutes and therefore the LWP

is interpolated for such gaps. Relying on the previously led sensitivity study, error in observations for Z and LWP is taken

as 25% and 10% respectively, with a priori information calculated from Atlas (1954) empirical relation. Error in a priori is

considered 1000% which is the same as mentioned in section 3.3 when MWR information is available. As stated in section545

3.3, radar misses a few low level gates near the ground due to antenna coupling, which contains critical fog information.

The properties of fog are assumed to remain constant between the first available gates and the ground, and thus reflectivity is

extrapolated (extended) downwards for the unavailable range gates. The fog shown in figure 7 sustained for 4 hours and then

started dissipating to form a stratus cloud. Figure 7(a) illustrates radar reflectivity extended to the lowest gates, whereas in

figure 7 (b) Doppler velocity is plotted only for the available gates. Higher velocity at the fog top are indicating the entrainment550

process causing the dissipation of fog after 04:00 hours. The visibility observed at the super-site is also less than 1000 m until

04:00 hours. The discontinuity in radar reflectivity close to 200 m is due to the beam overlap correction used in L2 product of

BASTA.

The distribution of retrieved LWC over time and height is shown in figure 7(c) along with the trajectory of the tethered

balloon. Figure 7(d) and (e) are the plots for LWP and retrieved lna respectively for this case.555

5.2 Comparison between in-situ and radar measurements

To compare the retrieved LWC with in-situ measurement, the co-location of tethered balloon data with BASTA reflectivity

points is accomplished by determining the closest radar gate that corresponds to the balloon height.

In figure 8(b) and (c) the black dashed line indicates that the visibility is more than 1000 m from 04:00 hours onwards and

therefore separates fog and stratus cloud. Since the balloon also contaminates the radar measurement, therefore all the co-560

located points when the tethered balloon was within the radar detection range are eliminated. The maximum distance observed

between the tethered balloon and BASTA radar was 700 m. Radar reflectivity factor from in-situ measurements is calculated

using the 6th moment of the droplet distribution measured by CDP. Note that the radar reflectivity is still in the Rayleigh regime

as the measurements from CDP cannot exceed 50 µm. The co-located points with reflectivity less than -40 dBZ are masked

because the signal-to-noise ratio for radar is low.565

In figure 8(b) the radar reflectivity from BASTA and CDP are compared for the co-located points and indicates a clear bias

for fog and relatively much better agreement for stratus cloud with -4.44 dBZ mean bias for fog and 0.89 dBZ for stratus

cloud. The bias is calculated as the difference between ZBASTA and Zin−situ. The root mean square error (RMSE) in Z is 5.2

dBZ for fog and 2.8 dBZ for stratus. Figure 8 (c) shows the comparison of the retrieved LWC values with LWC observed by
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Figure 7. (a) Radar reflectivity Z (b) Vertical velocity (c) Retrieved LWC, (d) LWP and (e) Retrieved lna for 09 February 2020 case at

SOFOG-3D super-site. Tethered balloon trajectory over retrieved LWC is shown in black line.
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Figure 8. (a) Radar reflectivity and balloon path (b) Comparison of radar reflectivity with reflectivity calculated from CDP using DSD (c)

Comparison of retrieved LWC with in-situ LWC

26

https://doi.org/10.5194/amt-2022-3
Preprint. Discussion started: 31 January 2022
c© Author(s) 2022. CC BY 4.0 License.



CDP at the co-located points of the balloon trajectory. The mean bias in LWC for fog is 0.06 gm−3 and for stratus cloud is570

0.009 gm−3. The root mean square error (RMSE) in LWC for fog is 0.082 gm−3 and 0.056 gm−3 for stratus. The comparison

of retrieved LWC with in-situ observations of LWC from CDP resulted in a root-mean-square error of 0.067 gm−3 including

fog and stratus.

For a well-calibrated radar, the reflectivity estimated from in-situ sampling should match with the radar reflectivity if both

the instruments are sampling the same cloud column and have a similar sensitivity to DSDs. The sensitivity of the CDP sensor575

is limited to sample the droplet diameters from 2 to 50 µm, while radar can sample a wider range of DSDs and is more sensitive

to the largest droplets. The variations in comparison with in-situ observations are noticed when the balloon is close to the cloud

edge, where a slight difference in altitude can have a significant impact on Z and LWC due to the heterogeneity of this area.

The observed differences in simulated Z and radar measurements could be explained by the vertical and horizontal hetero-

geneity of the fog, which strongly depends on the fog maturity. To further investigate the fog stages, a broader perspective580

beyond the vertical profile of fog is required. Multiple remote sensing and in-situ instruments were operated simultaneously

as part of the SOFOG-3D campaign to explore various fog properties. A 95 GHz scanning radar called BASTA-mini has been

centered 1 km away from the vertically pointing radar, and the 360◦ scan of fog is presented in figure 9(a) and (b). Plane

Polarised Indicator (PPI) of scanning radar shown in figure 9a and 9b, are collected at 4 ◦ elevation angle. Note that this low

elevation of radar can also be contaminated by the ground clutter, indicating locally high reflectivity. In the figure 9b, a larger585

spread of fog is observed, which is due to the development of thicker fog.

Due to the constant evolution of fog stages and the horizontal heterogeneity of fog, the sampled volume away from the

vertically pointing radar will also have distinct Z and LWC. As shown in figure 9b, the distribution of reflectivity in the left and

right-hand side of scanning radar is different. Therefore, the mismatch in Z and LWC can be explained by different radar and

CDP sampling volumes. As the fog lifted into stratus cloud around 04:00 hours, we can observe a better agreement in figure590

8(b) and (c), which could be explained by a more homogeneous situation. Furthermore, as shown in figure 8 (a), samples are

not collected at the cloud edge for stratus and therefore have lesser uncertainties in Z and LWC.

In order to have a better idea of the representativeness of CDP in-situ data, a scatter plot of retrieved LWC with radar

reflectivity from BASTA radar and in-situ measurement of LWC with simulated radar reflectivity using DSD compared with

empirical Z-LWC relationships in figure 10. In-situ measurements are separated for fog and stratus clouds where magenta595

colour denotes fog, yellow-green (Chartreuse) colour denotes the stratus cloud, and the respective linear fits are also plotted.

Various Z-LWC relations for clouds are included in table1, but are not proposed for fog. In Dupont et al. (2018), linear fits for

fog are proposed based on in-situ observations from the tethered balloon and BASTA cloud radar at SIRTA. As a reference for

fog, Flight1, Flight2, and Flight3 in the figure 10 are the fits for three fog instances computed by relating LWC observations

from a light optical aerosol counter (LOAC) sensor to BASTA measurements, as described in Dupont et al. (2018). These600

Z-LWC fits for fog are obtained by finding the linear fit of LWC from LOAC sensor to the radar reflectivity Z of the closest

gate from vertically pointing BASTA radar. We compared the behaviour of in-situ fog measurement during the SOFOG-3D

campaign to that of other fog relationships. As illustrated in figure 10, no empirical relation from the literature, including the

one derived in fog, seems to be able to represent the in-situ observations of this fog situation. However, the scatter for in-situ
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(a) Scan at 01:07 hours (b) Scan at 03:14 hours

Figure 9. Scans of BASTA-mini collected for fog at 4◦ elevation angle. The vertically pointing radar shown as blue dot was located 1 km

away from the scanning radar and cross represents the location of balloon.

measurements of stratus represents a good correlation with other empirical relations as well as with the linear fits for fog from605

Dupont et al. (2018). The in-situ measurements separated for fog and stratus clearly show different characteristics and also

indicate that different reflectivity values for the same LWC can be obtained as shown in figure 10a. This could be because of

the diverse droplet spectra in stratus and fog.

The impact of various DSD characteristics during the fog stages in the simulation of different radiation fogs is discussed in

Maier et al. (2012). In the Raleigh regime Z values might get larger as fog develops due to the increase in droplet radius, while610

the LWC may remain constant. This introduces a non-linear relation between LWC and radar reflectivity Z. The variability

within each fog stage exhibited unique properties depending on the fog event (Maier et al., 2012).

In figure 10b the retrieved LWC from the algorithm with respect to BASTA reflectivity is plotted in blue scatter, and it

matches only with the in-situ observations for stratus and other empirical Z-LWC relations. In-situ fog indicates relatively

less LWC than stratus cloud at the same radar reflectivity. For the sake of comparison with Dupont et al. (2018), we also615

related the in-situ LWC obtained during SOFOG-3D with co-located radar reflectivity from BASTA. By correlating in-situ

measurements of LWC with cloud radar reflectivity, it is assumed that the radar and in-situ sensor are observing the same cloud

volume; however, distance between the balloon and the nearest gate of cloud radar can incorporate uncertainties. In addition to

this, the sensitivity of the in-situ sensor (CDP) and radar (BASTA) is considered the same, despite the fact that the sensitivity
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varies with DSDs. Generally, the cloud probes under sample the true DSD of the volume due to their limited sensitivity to620

droplets.As shown in figure 11, the Z-LWC fits from in-situ observation are in neighborhood to other empirical relation for

reflectivity less than -30 dBZ. Since the power-law relations are valid only in the Rayleigh regime, the in-situ observation

agrees with other empirical relations for low reflectivity. Reflectivity values greater than -30 dBZ may be attributed to larger

droplets, which may or may not include a higher LWC. However, a significantly better correlation of in-situ fit for stratus

cloud with empirical relation by Baedi et al. (2000) (proposed for stratocumulus clouds) indicates representativeness of in-situ625

observations for stratus. The fit for in-situ fog observation still indicates less LWC at the same reflectivity and does not match

with any empirical relation. These observations imply that these are either collected for large droplets beyond the CDP limit or

from a sampling volume distinct from the one cloud radar samples.

(a) (b)

Figure 10. Comparison of in-situ LWC and radar reflectivity relation with (a) available literature for fog and clouds, (b) retrieved LWC and

BASTA radar reflectivity relation.

Unfortunately, the limited in-situ observations collected for fog and stratus here do not represent a validation of the retrieval;

however, this comparison highlights that there are situations more complicated than the other. Due to the non-uniform distri-630

bution of LWC in cloud or fog, homogeneity plays a key role while validating with the in-situ measurements. It is unfair to

expect LWC to match when simulated reflectivity from in-situ does not match radar measurement. In order to validate such an

algorithm, in-situ measurements at different heights for the same volume that radar samples are needed. However, if the in-situ

observation platform is positioned in proximity to the radar sampling volume, it may also contaminate the radar observations.

Therefore, the in-situ measurements must be collected from a homogeneous cloud to compare with the retrievals. Particularly635

for fog, more continuous DSD measurements as well as the vertical profiles during distinct fog episodes are required to produce

more significant results.
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Figure 11. Scatter plot for relation between LWC measured from CDP with radar reflectivity from cloud radar, compared with available

literature

6 Statistical analysis of retrievals to derive climatology

The primary objective of this statistical analysis is to derive a climatology of LWC and lna in order to allow the algorithm to be

able to retrieve LWC for fog and low-level liquid clouds even when additional measurements are not available. As presented in640

section 5.1, when the retrieved LWC is compared with in-situ LWC measurements for fog and stratus cloud from the SOFOG-

3D experiment. Therefore, the climatology is developed from the retrieval technique discussed in section 3.5 using the larger

data set from SIRTA measurements for a variety of cloud and fog incidents. Statistical analysis to derive a climatology of LWC

and scaling factor is presented in this section. Figure 12 presents the histogram of observed parameters followed by retrieved

parameters for the selected observation set.645

The histogram of the retrieved scaling factor lna indicates that, the highest values of occurrence are around -3 which is close

to the lna a priori value from (Atlas, 1954) the empirical relation plotted as the red line, but it is not precisely the same. The

variational framework allows variability in the lna retrieval. The assimilation of LWP brings enough information to retrieve

lna and the spread around the a priori value is directly linked to the a priori error value. Table 1 indicates the lna values for

various cloud types proposed in the literature, which agree well with the range of retrieved lna values. Note that there is one650
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Figure 12. Histogram of (a) Radar reflectivity(Z) (b) LWP from MWR (c) Retrieved LWC (d) Retrieved lna for 39 cloudy days, and the red

line in lna histogram indicates the a priori of lna from table1

single lna value for a given profile, but its value can potentially be used to differentiate clouds from drizzle. All the profiles

with rain and drizzle reaching ground are removed for the statistics, however light drizzle with clouds and fog is discussed.

Since the algorithm does not assimilate LWP for the profiles with LWP less than 10 gm−2, LWP histogram in the figure

12(b) has no value below 10 gm−2 and maximum cloud profiles has the LWP below 120 gm−2.

The parameter LWC is indicating the range up to 0.6 gm−3 which includes light drizzle, while the highest number of cloud655

pixels have LWC value less than 0.2 gm−3. In figure 13, retrieved LWC is plotted as a function of radar reflectivity for the 39

cloud cases, with Z-LWC empirical relationships from literature for various cloud types. The black line represents a priori of

the retrieval algorithm, and the higher concentration of density points overlaps with the black line is due to the profiles with

LWP<10 gm−2 where the retrieval of LWC is based on only Atlas empirical relation. All these profiles are not considered in

the climatology of lna. However, the wide range retrieval points indicates that the algorithm allows LWC retrieval for a variety660

of cloud types. The slope of Z-LWC relationship is dependent on the value of b in equation 9 and because the retrieval method
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Figure 13. Retrieved LWC as a function of radar reflectivity Z for 39 cloudy days, with reference plot of various empirical relation for

different cloud types.

considers b = 2, the slope of the total retrieval in figure 13 is constant. However, retrieval allows variability in lna which could

partly compensates for b as well.

As already described, knowing LWP allows us to retrieve lna and adjust the relationship between LWC and Z. However,

when only BASTA measurements are available, we need to rely on an a priori value for lna. Thanks to this climatology we665

could both define the optimal value for this a priori and also eventually propose to parametrise this value, for instance it is

envisioned to relate the scaling factor to radar reflectivity and/or Doppler velocity. As Z and V are observed for each cloud

pixel and only one value of lna is retrieved for a given cloud profile, one single reflectivity or velocity information should be

associated with lna. We propose to summarise the reflectivity and velocity information to the mean or maximum value of the

profile, in order to have one value per profile.670

Maximum and minimum velocities of the cloud column are associated with the updrafts and downdrafts, which may not

represent the complete profile for lna. Therefore, we rely on the mean velocity of the profile. The density plot of mean velocity

as a function of lna is plotted in figure 14(a) indicating that mean velocity of most profiles is concentrated between -0.5 to 0.1
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ms−1 which is compatible with liquid cloud sedimentation velocity. Mean velocity close to 0 ms−1 with lna values ranging

from -4 to -2 implies pure clouds, whereas few profiles with the mean velocity less than -0.5 ms−1 must be impacted by the675

drizzle droplets in the profile. Standard deviation plotted in the red line indicates that the variability of lna is very high for

the profiles with mean velocity below -0.5 ms−1. Due to the large standard deviation, lna cannot be associated with mean

velocity, however velocity information can be used to classify drizzle droplets. As illustrated in figure 14(b), a substantially

stronger association is observed between maximum radar reflectivity and lna of the profile. For most of the cloud columns,

maximum reflectivity is observed between -30 to -15 dBZ. As maximum reflectivity also represents the drizzle in cloud, the680

maximum reflectivity above -10 dBZ is suspected to indicate drizzle in cloud. High value lna for reflectivity above 0 dBZ,

also supports the empirical relation for drizzle by (Sauvageot and Omar, 1987) as shown in table 1 where the lna is given as

5.77. The standard deviation of lna is also high for profiles with maximum reflectivity above -10 dBZ. The standard deviation

of lna is lowest between -30 to -20 dBZ. The one-dimensional linear fit relating lna and maximum radar reflectivity for clouds

columns, is shown in black dashed line in figure 14 (b). As maximum reflectivity of the profile is showing better correlation685

with lna and the mean lna (red dashed line) coincides with linear fit. Therefore, the one dimensional linear equation relation

between lna and maximum reflectivity(Zmax) is given by

Figure 14. Correlation of (a) Mean velocity versus lna and (b) Maximum reflectivity versus lna for cloud profiles, where color bar indicates

the number of profiles

lna = 0.186 ·Zmax + 1.829 (17)

However, from an investigation by selecting 15 fog cases out of 39 cloud cases indicated that the coefficients of linear fit are

slightly different for fog profile.690

lna = 0.149 ·Zmax + 0.591 (18)
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To utilize the above relationships, it is necessary to differentiate between liquid cloud aloft and fog. This can be easily done

by determining the cloud base height to identify fog, and hence specific climatology is applied to the profile.

7 BASTA standalone LWC retrieval using climatology

In this section, we describe the stand-alone approach and its assessment using MWR LWP retrieval as a reference. The clima-695

tological relation of lna as a function of maximum radar reflectivity in the profile is used for the BASTA standalone retrieval

when MWR observations are unavailable.

7.1 BASTA standalone LWC retrieval approach

The radar is not always accompanied by a MWR and therefore a solution must be proposed to improve the retrieval with

knowledge of lna a priori. Since LWP information is not assimilated, thanks to the lna climatology for clouds and fog derived700

in section 6, this information can be used as lna a priori. lna for the profile can be linked to the maximum value of reflectivity

detected in the profile using Eqs. (17) and (18) for clouds and fog respectively.

In this case, the observation vector ’y’ contains only radar reflectivity of each cloud pixel, with 25% error in measurement,

whereas the state vector still contains LWC and lna both. Therefore, the Jacobian for a cloud profile with n cloud pixels will

have n× (n + 1) elements. The variational method also allows us to control the contribution of a priori information in the705

retrieval by providing error in a priori. A strong a priori of lna is required to constrain LWC retrieval therefore, low error in

a priori of lna is employed. In these standalone retrieval cases, 100% error in a priori of lna is used, because the standard

deviation of lna in figure 14 is approximately 1 which is equivalent to 100% error in a priori. The climatology of lna for fog

from Eq. (18) is applied to the profile with cloud base less than 80 m. Retrieval of LWC should be constrained by LWC a priori

only to avoid non-physical values, therefore the error in a priori of LWC is taken 1000%. In BASTA standalone retrieval setup,710

a priori of LWC is calculated using Atlas (1954) relation exactly the same as radar-MWR synergistic retrieval.

7.2 BASTA standalone LWC retrieval first assessment using LWP retrieved from MWR

With the details given above, LWC retrieval algorithm is adapted to utilize climatology of scaling factor with only radar

reflectivity measurements from SIRTA. BASTA standalone retrieval algorithm is applied to the 39 selected cloud and fog cases

from SIRTA.715

Due to the absence of in-situ sensors at SIRTA for recording the distribution of the liquid water content in cloud and fog,

the integrated LWP from the HATPRO microwave radiometer is utilized to assess the quality of the retrieved LWC for BASTA

stand-alone retrieval. The retrieved LWP is calculated by vertically integrating the retrieved LWC. Because LWP information

is not assimilated and strong lna a priori derived from climatology is constraining the retrieval, and hence lna is not a retrieved

parameter. However, the variational framework allows lna to adjust around its climatology depending on radar reflectivity. In720

this case lna values falls within the range of known values from literature as shown in table 1.
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Figure 15. Comparison of retrieved LWP with LWP retrieved by HATPRO, where the black line represents the exact match of LWP for given

profile.

Figure 15 presents the comparison of retrieved LWP from BASTA stand-alone retrieval with LWP retrieved from HATPRO

microwave radiometer. Number density of profiles with LWP ranging from 10 to 250 gm−2 are compared with LWP from

BASTA stand-alone retrieval. Profile with retrieved LWP less than 50 gm−2 shows good agreement with LWP from HATPRO.

For the profile with higher LWP an increase in bias is clearly observed in figure 15, and the mean bias in LWP obtained as725

the difference between LWP from HATPRO and retrieved is -21 gm−2. The mean absolute percentage error in LWP w.r.t.

LWP from HATPRO is 57.15%. The relative error in LWP shown in figure 16 indicates that the majority of clouds has less

than 35% error in retrieved LWP. Because the climatology of the scaling factor constrains the retrieval, effective estimation

of LWC can be made using only radar information when additional information is unavailable. By investigating the origin

of biases, we discovered that the profiles with light drizzle droplets characteristics tend to overestimate the LWP by a large730

margin. The improvement in standalone retrieval can be made by classifying clouds with and without drizzle and using specific

lna climatology for them.

8 Summary and conclusions

An algorithm for LWC estimation of warm clouds is proposed using a vertically pointing radar and microwave radiometer

synergy. The algorithm also accounts for attenuation due to liquid cloud droplets. This algorithm is based on the hypothesis735

that LWC is related to reflectivity with a power-law fit, and one of the constants of the Z-LWC relationship is allowed to vary
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Figure 16. Percentage error in retrieved LWP with respect to LWP measured by MWR at SIRTA.

according to LWP retrieved by a MWR of the same cloud profile. The scaling factor of the relationship, lna is retrieved while

the exponent b is assumed constant. Therefore, the technique proposed in this study is equivalent to finding a suitable Z-LWC

relationship consistent with the measured LWP for each cloud profile. This synergistic retrieval algorithm works seamlessly

for liquid clouds and fog without prescribing the cloud type. The algorithm is implemented to a set of cloud and fog instances740

observed at SIRTA and the analysis is discussed in this paper. These retrievals have been used to develop a climatology of LWC

and the scaling factor for warm clouds and fog. The application of derived climatology to estimate LWC for stand-alone radar

observations is also presented in this paper. By utilizing the climatology of the scaling factor, this radar stand-alone method can

provide continuous retrieval of LWC for warm clouds even in the absence of radiometer and other additional measurements.

Although this climatology is developed using measurements from SIRTA observatory for limited cloud scenarios, a more745

extensive data collection from several measurement locations might be used to generate a more robust climatology of scaling

factor.

Furthermore, the retrievals are compared against in-situ measurements for a fog and cloud case collected during the SOFOG-

3D field campaign. The comparison of LWC values estimated using this synergistic retrieval algorithm revealed that the fog

and clouds were clearly distinct. The retrieved LWC was more consistent with stratus cloud than fog. A homogeneous cloud750

system is required for the comparison of retrieved LWC with in-situ measurements, or else the in-situ sensors must sample

the same cloud or fog volume as radar. To assess the accuracy of algorithm for LWC estimates in various clouds types, in-situ

measurements of several types of warm clouds like fog, low level stratus clouds with and without drizzle are required.
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However, drizzle in clouds is a substantial source of error in the retrieval. Because drizzle droplets are significantly larger

than cloud droplets, power law may not be applicable in the Mie regime. As a result, the forward model exclusively for drizzle755

must incorporate Mie scattering or eventually another kind of relationship to link Z and LWC. A prospective work for such

cloud columns is planned to separate drizzle and cloud pixels using Doppler velocity information and develop a forward model

for drizzle. The variational framework discussed here can be modified to incorporate additional measurements such as Doppler

velocity.

Another current limitation of our synergistic retrieval method is that it is applicable to profiles with LWP values greater than760

10 gm−2. A better a priori of lna can be proposed in future to estimate accurate LWC for low LWP profiles. Additionally, this

retrieval method is not applicable when a mixed phase cloud overlap the liquid cloud layer, whereas ice cloud above the liquid

cloud does not impact the LWC retrieval of the liquid layer.

As mentioned in the section 3.4, the radar reflectivity profiles can be contaminated by particles in the boundary layer. In

the retrieval method, these airborne plankton must be categorized and hence not processed as hydrometeors. Ultimately, a765

sophisticated algorithm for the classification of hydrometeors to distinguish between fog, liquid cloud, and drizzle is required.

The retrieval algorithm could be updated with an improved target classification scheme to apply two different scaling factors in

one profile, especially when drizzle and cloud co-occur. Also, for multi-layered liquid clouds, different lna might be prescribed

for each cloud layer with proper classification of hydrometeors. Improved classification of hydrometers for the BASTA stand-

alone retrieval will improve the LWC retrieval because the range of scaling factor varies for different categories. Further, the770

climatology of scaling factor for different cloud types will improve the LWC retrieval.

We know that cloud LWC values can fluctuate both horizontally and vertically. The retrieval algorithm can be validated with

in-situ measurements from aircraft, balloons, and UAVs flights with in-cloud sensors for diverse liquid clouds. Since UAVs

and balloons travel at a slower speed than airplanes, which would allow them to sample the clouds more thoroughly. Note that

some sites cannot be overflown by aircraft for safety reason. UAVs can be more efficient in terms of controlling them remotely,775

as the path of tethered balloons cannot be controlled. These platforms can, however, interfere with the radar signal. In order

to avoid contaminating the radar signal, the samples must be taken from a volume that is close enough and least obstructing

the radar. Before comparing the estimated values with in-situ data, it is necessary to verify if the cloud volume represented by

radar and in-situ sample are the same. A well mixed or homogeneous cloud systems is ideal for validating such algorithms.

Data availability. Data used from SIRTA and SOFOG-3D are publicly available from http://sirta.ipsl.fr/ (Site Instrumental de Recherche par780

Télédétection Atmosphérique, 2021) and https://sofog3d.aeris-data.fr/ respectively.

Code and data availability. The code developed in this study can be made publicly available upon request to the authors.
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