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Abstract. A new generation of cloud radars, with the ability to make observations close to the surface, presents the
possibility of observing fog properties with better insight than was previously possible. The use of these instruments
as part of an operational observation network could improve the prediction of fog events, something which is still
a problem for even high-resolution Numerical Weather Prediction models. However, the retrieval of liquid water
content (LWC) profiles from radar reflectivity alone is an under-determined problem, something which ground-based
microwave radiometer observations can help to constrain. In fact, microwave radiometers are not only sensitive to
temperature and humidity profiles but also known to be instruments of reference for the liquid water path. By
providing the thermodynamic state of the atmosphere, to which the formation and evolution of fog events are highly
sensitive, in addition to accurate liquid water path, which can be used to constrain the LWC retrieval from the cloud
radar alone, combining microwave radiometers with cloud radars seems a natural next step to better understand
and forecast fog events.

To that end, a newly developed one dimensional variational (1D-Var) algorithm designed for the retrieval of
temperature, specific humidity and liquid water content profiles with both cloud radar and microwave radiometer
(MWR) observations is presented in this study. The algorithm was developed to evaluate the capability of cloud
radar and MWR to provide accurate LWC profiles in addition to temperature and humidity in view of assimilating
the retrieved profiles into a 3D/4D-Var operational assimilation system.

The algorithm is firstly tested on a synthetic dataset, which allows the evaluation of the developed algorithm
in idealised conditions. This dataset was constructed by perturbing a high resolution forecast dataset of fog and
low cloud cases by its expected errors. The algorithm is then tested with real data from the recent field campaign
SOFOG-3D, carried out with the use of LWC measurements made from a tethered balloon platform.

As expected, results from the synthetic dataset study were found to contain lower errors than those found from
the retrievals on the dataset of real observations. It was found that LWC can be retrieved in idealised conditions
with an uncertainty of less than 0.04 gm—3. With real data, as expected, retrievals with a good correlation (0.7) to

in-situ measurements, but with a higher uncertainty than the synthetic dataset, of around 0.06 gm=2 (41%), was
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found. This was reduced to 0.05gm™2 (35%) when an accurate droplet number concentration could be prescribed
to the algorithm.

A sensitivity study was conducted to discuss the impact of different settings used in the 1D-Var algorithm and
the forward operator. Additionally, retrievals of LWC from a real fog event observed during the SOFOG-3D field
campaign were found to significantly improve the operational background profiles of the AROME model (Application
of Research to Operations at MEsoscale) showing encouraging results for future improvement of the AROME model

initial state during fog conditions.

1 Introduction

Incorrect fog forecasts have been shown to cause major disruption, especially in the aviation industry (Gultepe
et al., 2007). Despite the development of high-resolution numerical weather prediction (NWP) models, the forecast
skill of these models is still lacking, demonstrated by high false alarm ratio and undetected events in the case of the
AROME model (Steeneveld et al., 2015; Philip et al., 2016). Improving the initial conditions of NWP models through
assimilating new observations is one way in which forecasts may be improved (Morss and Emanuel, 2002; Martinet
et al., 2020). Technological improvements in ground-based remote sensing instruments present the opportunity to
expand the operational observation network in a region of the atmosphere both important for fog prediction and
typically under-sampled: the boundary layer.

Measurements of brightness temperatures made by ground-based microwave radiometers (MWR) are sensitive to
temperature and humidity profiles, and the total liquid water path (LWP) of the atmosphere. Equally, cloud radars
measuring radar reflectivity are sensitive to the liquid water content at different altitudes throughout the atmosphere
from as little as 40 m from the surface (Delanoé et al., 2016). Through the combined assimilation of cloud-radar and
microwave radiometer observations, it may be possible to improve the initial conditions of temperature, humidity,
and liquid water content in NWP models, that could lead to an improved fog prediction. Even if a direct assimilation
of raw measurements should be the most optimal, assimilation of retrieved profiles has often been used as a first step
towards a direct assimilation (Bauer et al., 2006; Janiskova, 2015) and has been chosen in this study. A first step
towards the assimilation of MWR and cloud radar observations thus relies on the combined retrievals of temperature,
humidity and LWC profiles.

One issue facing the retrieval of temperature, humidity and LWC profiles from MWRs and cloud radars, is that the
retrievals are typically under-constrained. That is to say that a multitude of possible atmospheric states could lead
to the same observed brightness temperatures and multiple values of LWC with differing droplet size distributions
could cause the same observed radar reflectivities. For this reason, retrievals of temperature, humidity or LWC using
cloud radars or MWRs typically employ further constraints. This can be done with physical parameterisations- for
example, about the size distribution of hydrometeors or adiabaticity- (Fox and Illingworth, 1997; Pospichal et al.,

2012), variational retrieval methods which include additional information on an a priori estimate of the atmospheric
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state (Martinet et al., 2015, 2017), instrumental synergy (Matrosov et al., 1992; Crewell and Lohnert, 2003; Tinel
et al., 2005) or a combination of these techniques (Lohnert et al., 2008; Che et al., 2016; Ebell et al., 2017; Turner
and Lohnert, 2021).

Variational methods constrain retrievals with prior information, which is otherwise known as a background, an a
priori or a 'first guess’. This consists of the variables that will be retrieved with the algorithm at a specified vertical
resolution. The retrieval algorithm makes increments to this background in such a manner that the retrieved profile
will become in better agreement with the observations than the background profile. How closely the retrieved profile
resembles the background profile and the observations will depend on the respective estimated errors of both sources
of information.

Variational algorithms making retrievals of humidity, temperature and LWC using cloud radar-MWR synergy
using a static climatological background or RS ascents have already shown promising results (Ebell et al., 2017;
Lohnert et al., 2007). Similarly, Martinet et al. (2020) have demonstrated that a variational algorithm using MWR
observations in a complex terrain showed that a more accurate background profile resulted in improved retrievals of
temperature and humidity profiles.

This study aims at taking advantage of newly developed 95 GHz cloud radars to evaluate how synergistic retrievals
of temperature, humidity and LWC profiles combining a MWR with a 95 GHz cloud radar could help to improve
the initial state of the AROME convective scale model. The final aim is the assimilation of the retrieved profiles to
evaluate how fog forecasts could be improved by an improved initial state. However, this study concentrates on the
first part of the assimilation strategy by evaluating the capability of a new extended one dimensional variational

(1D-Var) algorithm to assimilate both 95 GHz cloud radar and MWR observations in an optimal way.

2 Methodology

Variational approaches to solve under-determined problems follow the framework outlined in Rodgers (2000). While
more complex variational approaches such as 3D- and 4D-Var aim to combine model and instrumental measurement
information throughout three spatial dimensions and one temporal dimension, the 1D-Var algorithm outlined here

does so in one vertical spatial dimension.
2.1 MWR and cloud radar observations
2.1.1 BASTA Cloud Radar

Cloud radar measurements were provided by the Bistatic Radar System for Atmospheric Sounding (BASTA), which
uses a 95 GHz frequency (Delanoé et al., 2016). The instrument employs a frequency modulated-continuous wave
(FMCW) transmitter for which the change in frequency is used for the ranging of targets. This is in contrast to the

pulsed wave transmitter which is conventionally used, but is required to be more powerful and thus significantly
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more expensive, making the cost of the instrument restrictively high for wide spread deployment in an observation
network.

Cloud radars typically use a frequency in the Ka- (24 GHz to 40 GHz) or W-bands (75 GHz to 110 GHz) of the
radar spectrum. The backscatter efficiency of a reflected target will be proportional to the sixth power of the diameter
of a target, and the fourth power of the frequency of the transmitted wave whilst inside the Rayleigh scattering
regime (McCartney, 1976). Radars using a higher frequency will therefore have a greater sensitivity to targets of a
size described by Rayleigh scattering (smaller than around 0.3 mm for 95 GHz radar). It does, however also mean
that signal will become attenuated by particles more quickly. Due to the fact that cloud radars are designed for very
small targets over a relatively short range, a higher frequency is employed compared to operational precipitation
radar.

The BASTA cloud radar also uses a separate transmitter and receiver (bistatic), whereas in other systems, the
receiver must be switched off during the transmission of a pulse, and signal from targets close to the instrument
can not be detected due to the insufficient transmission time of the wave. The minimum detectable range for the
BASTA radar is as close as 40 m, though the sensitivity at this range is degraded due to the coupling between
the transmitter and receiver. Coupling occurs when signal emitted from the transmitter is collected directly by the
receiver (as opposed to being reflected by a target). This can cause large levels of noise and increase the minimum
detectable radar reflectivity signal in some gates and render other gates unusable. It was found that the gates
including and below 37.5m were unusable in daylight hours, and gates including and below 25 m were unusable
during nighttime hours due to coupling (Jorquera and Delanoé, 2020).

The radar can operate with three different configurations with differing maximum altitudes and range gate resolu-
tions, with the highest resolution being 12.5 m with a vertical range of 12 km and the lowest resolution of 100 m with
a vertical range of 18 km. The instrument is also able to combine the different modes to give an increased resolution
near the surface and improved sensitivity at larger ranges. In this configuration, as shown by the Contoured Fre-
quency by Altitude Diagram (CFAD) in figure 1, the radar sensitivity is discontinuous due to the decreased vertical
resolution from 12.5m below 500m to 25 m between 500 m and 5000 m, and 100 m above 5000 m.

The radar sensitivity, Zmin, above 200 m was found by using the analytical relation described in equation (1), where
r is the range gate of the radar observation and ry is a range at which the sensitivity is known. These sensitivity
values were found by fitting equation (1) to the minimum values obtained in and figure 1, an approach which is

explained in detail in Wattrelot et al. (2014).
r
Zmin(r) =20 IOglo(%) + Zmin(r0) (1)

Below 200 m, the coupling between the transmitter and receiver meant that additional noise is present for range
gates closer to the ground, and the analytical relation could not be used. Instead, the radar sensitivity was found

manually for each range gate below 200m by a fit to the BASTA CFAD.
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Figure 1. Contour frequency by altitude diagram of the number of observations made by the radar for reflectivity intervals

(in dBz). The sensitivity of the instrument is marked in the yellow line.

2.1.2 The HATPRO Microwave Radiometer

The humidity and temperature profiler (HATPRO) (Rose et al., 2005) is a two-band microwave radiometer with
seven channels in each band. The first spectral K-band targets the water vapour absorption line at 22.24 GHZ while
the second spectral V-band targets the oxygen complex absorption line at 58 GHz. The radiometer output voltage
is directly converted into brightness temperatures via the Planck function. In this study, the third channel of the
K-band measuring the downwelling emission of the atmosphere at 23.84 GHz had to be discarded due to a hardware
problem identified during the experiment. Brightness temperatures observed only in the following 13 channels are
used in this study: 22.24, 23.04, 25.44, 26.24, 27.84 and 31.4 GHz for the K-band and 51.26, 52.28, 53.86, 54.94, 56.66,
57.3 and 58 GHz for the V-band. The radiometer is also able to scan at elevation angles ranging from 0° (horizontal)
to 90° (vertical), to increase the vertical resolution of temperature profiles by assuming spatial homogeneity in the
neighborhood of the instrument. For the configurations that were used in this study, elevation scans with 10 angles’

from 90° down to 4.2° above the surface were performed once per 10 min, with the radiometer facing vertically at

190°, 30°, 19.2°, 14.4°, 11.4°, 8.4°, 6.6°, 5.4°, 4.8°, 4.2°
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other times. When using low elevation angles in this study, only the four most opaque channels (above 54 GHz),
ensuring the spatial homogeneity assumption in the vicinity of the instrument are used.

In order to ensure that biases are not present, the radiometer is calibrated before use in a field campaign with
the aid of a black body target (with assumed emissivity = 1), which is cooled with liquid nitrogen, which has a well
known boiling temperature of 77.5 K. The radiometer also has an internal black body target, which is not heated or

cooled, but contains an accurate thermometer so that the black body emission may be accurately estimated.
2.2 1D-Var Algorithm

A variational algorithm aims to minimise the departures from the observations and the background profile, weighted
by the expected errors of the background profile and the observations. In the case of the MWR and cloud radar,
the observed measurements of radar reflectivity and brightness temperatures (BT) are not the same as the variables
being retrieved, known as the control variables. This necessitates the need for forward operators to convert the
control variables into equivalent brightness temperatures and radar reflectivity. A cost function J, shown in (2), may
be calculated, where xy, is the background state, B is the background error covariance matrix, y is the observation
vector, F' is the forward operator and R is the observation error covariance matrix. In this study, the observation
vector y contains both the BASTA reflectivity (Z) of the 90 range gates corresponding closest to the heights of the
90 AROME background profile vertical levels and the MWR (BT) observed both at zenith and off-zenith elevation
angles. The notation used here is that of Bouttier and Courtier (2002), with the exception that F' is used for the
forward operator to clearly distinguish it from the Jacobian matrix, H. The (BT) vector thus corresponds to 13
channels at zenith and 4 channels at each of the 9 lower elevation angles (see section 2.1.2), which corresponds to a
total size of 49 measurements. At all vertical gates, when the BASTA reflectivity is below the minimum detectable
signal (shown in figure 1) the reflectivity is set to this minimum detectable signal.

Radar reflectivity observations are provided with a mask defining the type of hydrometeor which the observation
corresponds to (liquid water/airborne plankton, ice, or drizzle/rain). The mask detects the melting layer from the
radar reflectivity and Doppler velocity gradients. For the liquid section, rain drizzle and cloud are defined from the
Doppler velocity (Delanoé and Jorquera, 2021). Retrievals are not attempted when rain is present in any pixel of the
observations, due to the added complexity for making retrievals when the radome of the radar is wet (due to unknown
attenuation effects). Where ice clouds are present in the observations above a liquid water cloud, retrievals of liquid
water content in the lower part of the atmosphere are still performed by filtering out the ice cloud signal from the
radar reflectivity. To do this, the BASTA reflectivity is set to the radar sensitivity at the range gate containing ice.
The aim of the algorithm is to focus on retrievals in warm fog only, but, as the MWR is not affected by the presence
of ice, this configuration still allows the additional retrievals of temperature and humidity even during the presence
of ice clouds.

In this study, the background state xy, is defined as the AROME model 90 levels of temperature, specific humidity

and liquid water content. Background profiles taken from the AROME model were found to commonly contain a mix
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of different hydrometeors alongside LWC, most frequently rain or ice. As the algorithm is currently developed only
for multi-layer liquid clouds, 1D-Var retrievals are not performed when the AROME background profile contains
a significant amount of ice or rain. To evaluate the significance of the amount of rain and ice in the AROME
background profile, radar reflectivity was simulated with only CLW and with all hydrometeors. Profiles significantly
altered in the radar reflectivity simulations by other hydrometeors were not considered - as explained in Bell et al.
(2021). To that end, the radar reflectivity was simulated from the background profiles with all hydrometeors, and
then with only LWC. If the profile contained pixels with differences of more than 3 dB between the simulation with
all hydrometerors and with only LWC, the other hydrometeors were considered to make up a significant portion of
the cloud, and 1D-Var retrievals are not performed for this case. In the other cases, 1D-Var retrievals are performed
considering rain and ice water contents as negligible. No correction is brought to the AROME LWC background
profile when there is a cloud in the observation but not in the background state and vice-versa. In fact, the 1D-Var
algorithm should easily remove non-observed cloud layers in the background. This is more complex when the AROME
background is clear but the radar observation is not. To deal with this issue, new developments are proposed during
the computation of the Jacobian matrix for the cloud radar reflectivity. This is discussed later on in this section.
The 1D-Var algorithm aims to minimise the cost function for the control variable state x, for which the statistically

optimal state given all the input components is considered to be found.

36 = 5 (x = x0) "B 30 + 5y~ F() R (y — Fx) 2)

The minimisation of the cost function is performed by iteration, with subsequent values of x being found through
equation (3), where x;41 is the following state vector, and xg, the initial state, is equal to xp. Factor v is a coefficient
specified by the Levenberg—Marquardt descent algorithm. Here H; represents the Jacobian matrix, the predicted

sensitivity of the observation matrix to a change in state x; (H; = 0F(x;)/0x;).

xit1 =%+ ((1+9)B ' +HIR'H;) (HIR '(y — F(x;)) —B 7' (x; — x3)) (3)

For this experiment, the 1D-Var package maintained by the NWP Satellite Application Facility (NWPSAF;
https://www.nwpsaf.eu/site/software/1d-var/, last access: 25 October 2021), modified for the 1D assimilation of
ground-based MWR, observations (Martinet et al., 2020), has been extended to cloud radar observations. The forward
operators F' used both for MWR and cloud radar observations are described in section 2.3.

The Jacobian matrix for cloud radar reflectivity was calculated through the brute force method, which involved
running the forward models with small perturbations to each element of x; (De Angelis et al., 2016), due to the
difficulties of linearising the forward operator. This method has been used in previous studies investigating the data
assimilation of radar reflectivity, and been shown to be an effective way to estimate the Jacobian matrix (Thomas

et al., 2020). This is formulated in equation (4), where 0xy is the perturbation made to element k of the current state
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vector x; for a state vector of size n, and Fk (x) is the simulated observation corresponding to the Ky, observation

from state x;, for an observation matrix of size N.
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The perturbation size of the forward operator with respect to the different variables has been selected according
to the observed linear behavior of the forward operator after testing different values of perturbation with changes
of this size.

As previously stated, when the AROME background is clear whereas the BASTA observation shows a cloud layer,
the 1D-Var algorithm would not be able to add a new cloud layer due to zero values in the Jacobian matrix. In fact,
where the AROME background is clear, the simulated radar reflectivity is below the minimum detectable signal and
set to the radar sensitivity to be consistent with the BASTA observations. In that case, a small perturbation in the
initial LWC profile is unable to create a radar reflectivity above the radar sensitivity, the difference between the
two simulated reflectivities (with the perturbed profile minus the initial profile) would be zero. Consequently, the
Jacobian values calculated from the brute force method would be equal to zero, which means that the inclusion of
a new cloud layer in an initially dry background profile would not be possible.

Here this work differs from others (Thomas et al., 2020), and Jacobian values are forced to be non-zero when
the background profile is clear to give more flexibility to the algorithm to create a cloud layer when necessary. In
order to do this, for each range gate, the minimum value of LWC leading to a radar reflectivity value equivalent to
the radar sensitivity at that specific vertical altitude has been defined. Jacobians values are then calculated in the
neighborhood of this defined minimum LWC values to fill in the Jacobian matrix where the background is clear.

For MWR brightness temperatures, the adjoint of the tangent linear of the fast radiative transfer model RT'TOV-gb
is used (De Angelis et al., 2016).

The algorithm will converge when a state x, is obtained that minimises the cost function. The errors associated
with this state are specified by the analysis error covariance matrix, A (following again the notation of Bouttier
and Courtier (2002), and not to be confused with the averaging kernel). This may be found from equation 5, with

diagonal terms giving an estimate of the variance of the retrieval error.

A=H'R'H+B )! (5)
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2.3 Forward Models: Radiative Transfer Model and Radar Simulator

Forward models, otherwise referred to as observation operators, are used to convert the control variables of the
algorithm into observation type variables, the use of which are a common approach for the assimilation of observations
indirectly related to the control variables (Courtier et al., 1998).

The fast radiative transfer model RTTOV-gb, (Saunders et al., 2018; Cimini et al., 2019) was used as the forward
model for brightness temperatures in this experiment. This gives simulated brightness temperatures at the required
microwave frequencies by using a radiative transfer equation for upward looking passive sensors. The model computes
the Planck radiances emitted from the top of the atmosphere to the surface, and takes into account the absorption
between the height level of the emitted radiance and the surface. In RT'TOV-gb, liquid water is taken into account
as an absorbing species, meaning that the effects of clouds on observed microwave brightness temperatures may be
taken into account (De Angelis et al., 2016). This is necessary in order to more accurately model the brightness
temperatures, which is essential to retrieving accurate profiles of temperature and humidity with this methodology.
It also permits the retrieval of the LWP. While several radiative transfer models are able to simulate downwelling
radiance with the aforementioned capabilities, RTTOV is designed to make fast calculations, and is thus highly
suited to operational variational methods.

In order to simulate the radar reflectivity from the control variables, a radar simulator for vertically pointing W-
band radar designed by Borderies et al. (2018) was used. Inputs of pressure, temperature, humidity and mixing ratio
of five hydrometeor types (liquid cloud, ice cloud, rain, snow and graupel) must be specified. Radar reflectivity is
computed at the same resolution as the input profiles, taking into account backscattering due to the five hydrometeor
types and attenuation from moist and dry air. The simulator assumes a modified gamma distribution for the size
distribution of hydrometeors, consistant with the ICE3 microphysical scheme in the AROME model, with the
distribution coefficients being specified as additional inputs. An evaluation of the radar simulator capability for

ground-based 95 GHz cloud radar and sources of uncertainty can be found in Bell et al. (2021).
2.4 Background Profile: The AROME model

The background profile is used to constrain the retrieval, and hence the more accurate the background profile is,
the more accurate the retrievals are likely to be. The French convection-scale NWP model AROME was hence used
to provide background profiles for this study. The AROME model has 90 vertical levels from the surface to a height
of approximately 30km, and a horizontal resolution of 1.3 km over the domain centered over mainland France, and
covering most of western Europe (Brousseau et al., 2011).

Bell et al. (2021) have shown that large errors due to the spatial and temporal displacement of fog events could be
expected from model short-term forecasts during fog events, leading to sub-optimal background profiles for future
1D-Var retrievals. An approach to select a more adapted background profile with reference to the observed radar

reflectivity within a 27 km sub-domain and within a 6 hour time window, named the most resembling profile (MRP)
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method was therefore proposed, which was shown to significantly reduce innovation (observation minus background)
error statistics. This study follows the work of Bell et al. (2021) by using the MRP method to provide an adequate
background profile to the 1D-Var retrieval algorithm. The impact of using the MRP method will be discussed in

section 4.3.
2.5 Estimation of the Observation Error and Background Error Covariance Matrices

The specification of the errors associated with the background profile and observations instruct the algorithm on
the level of trust placed in both the observations and the background profile. The retrieved profile will take into
account the relative weight of the observation errors compared to the background errors, thus the smaller either the
background or observation errors are, the more closely the retrieved profile is likely to agree with the background
or the observations respectively. It is the role of the background error co-variance matrix to specify the background
errors to the 1D-Var algorithm. Background errors are not assumed to be independent of one another, thus co-
variances between the different control variables are specified in the off-diagonal terms of this matrix.

There are two common approaches to the modelling of background error statistics: to compute innovation statistics
by comparing background profiles to observations with a low observation error, or to use a surrogate method,
which it is assumed can approximate the errors (Fisher, 2003). Due to the difficulty of gathering observations
representative for all forecast conditions, and for 3D/4D-Var algorithms, the difficulty of modelling the relation of
errors in different locations, surrogate techniques have been a common choice. These surrogate techniques normally
involve comparing forecasts run with different lead times (Fisher, 2003; Derber and Bouttier, 1999; Descombes
et al., 2015; Bannister, 2008). The background error covariance matrix used operationally in the AROME 3D-Var is
computed from a climatological dataset of 3 hour ensemble forecasts derived from the operational AROME Ensemble
Data Assimilation system. Ménétrier and Montmerle (2011) have demonstrated that a B matrix specifically adapted
for fog exhibited significant differences compared to a B matrix designed for cloud-free areas, and that the use of
this led to an improved analysis during fog conditions. The B matrix used in this experiment was generated in a
similar way applying a fog-mask in order to better represent background-error-covariances specific to fog conditions.
More explanations about the B matrix computation can be found in Martinet et al. (2020).

The observation error covariance matrix (R matrix) is comprised of the instrumental error for each measurement
plus the error contained in the forward operator used to simulate the measurement from the state vector x. For
observations made with the microwave radiometer, forward model errors vary significantly between each channel.
Uncertainty in the modelling of brightness temperatures resulting from uncertainties in absorption modelling has
been assessed to range from 0.3K at 22.24 GHz up to 3.18 K at 52.24 GHz in winter in the midlatitudes (Cimini
et al., 2018). The total uncertainty due to the MWR calibration technique has been assessed to be between 0.2 K
and 1.2 K by Maschwitz et al. (2013). Finally, instrumental noise is below 0.5K at all channels (Rose et al., 2005).

10
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Each source of uncertainty has been added in quadrature to provide the total observation error:

— 2 2 2
Otot = \/O'noise + Ocaliv” + O0r M

with o4 the total observation error, o,.;se the uncertainty due to the instrumental noise, o4 calibration uncer-
tainties and opps the uncertainty due to spectroscopic errors in the radiative transfer model. The observation error

covariance matrix is assumed to be diagonal with observation error values for each channel provided in table 1.

Table 1. Observation uncertainties (K) corresponding to MWR brightness temperature measurements prescribed in the

observation-error-covariance matrix for each channel.

Frequency (GHz):|22.24|23.04|25.44|26.24|27.84|31.4|51.26|52.28|53.86|54.94|56.66|57.3| 58
oo (K): 1.3411.71|1.08|1.25|1.17|1.19| 3.21 | 3.29 | 1.30 | 0.37 | 0.42 |0.42|0.36

For the cloud radar errors, instrumental error of 2dB was assumed from work on the calibration of the BASTA
cloud radar (Toledo et al., 2020). As discussed in Bell et al. (2021), the primary component of forward model errors
in the radar simulator comes from the hypothesis made on the assumed cloud droplet size distribution. Droplet
number concentrations were found to range from 30cm ™3 to 300cm ™3 and the shape parameter v was found to
range from 2.5 to 15 for the expected cloud types and conditions. This resulted in a forward operator parameter
error of approximately 3dB when the 25" to 75" percentiles of these values were considered (Bell et al., 2021).
A forward model error of 3dB is thus assumed hereafter. The total expected variance is found from the variance
of measurement errors plus the variance of forward model errors, and it follows that the standard deviation, what
is considered as the instrumental error here, is the square root of this. The total instrumental error used for the
retrievals was therefore considered to be 3.6 dB.

Despite the probability of a degree of correlation between the radar observation errors at different range gates,
which could come from both the calibration uncertainties and correlations in the size distribution errors, as well as
uncertainties in attenuation modelling, the R matrix was assumed to be a diagonal matrix, i.e. there was assumed
to be no correlation in the observation errors. Despite this, tests were made with use of a square R matrix with high
error correlations between the radar observations, which suggested that little impact would be brought to retrievals

with the use of this.

3 1D-Var retrieval validation on synthetic dataset

In order to ensure the good behaviour of the newly developed algorithm, a method of verification is needed. Though
this could indeed be performed by using a dataset of in-situ real measurements, these will themselves incur a certain
amount of instrumental error, and large datasets of temperature, humidity and liquid water content profiles collocated
with the BASTA cloud radar and the HATPRO microwave radiometer are rare or non-existent. For this reason, an

artificial synthetic dataset of cloud radar reflectivity, microwave radiometer brightness temperatures and background
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profiles simulated from assumed true profiles of temperature, humidity and liquid water content may be created.
Through the validation between 1D-Var retrievals, made using the simulated background profiles and observations,
and the true profiles, the algorithm may be verified as working as intended, and the expected improvement made
to the background profiles by the retrievals can be quantified. This methodology, commonly used to evaluate the
benefit of new observations (Martinet et al., 2013; Ebell et al., 2017), provides the expected retrieval accuracy under
idealized optimal conditions, i.e. without instrumental biases and that forward model assumptions are consistent
with the observations. This approach is also valuable to evaluate the sensitivity of the retrievals to the algorithm

settings.
3.1 Synthetic Dataset

The requirements for making a synthetic database are that we have a dataset which best resembles that of the
real observations. For this, it was required that: i) the true profiles would be physically consistent and resemble
atmospheric profiles that would be observed ii) background profiles contain the expected error of the real background
profiles (i.e. representative of the AROME model short-term forecasts) iii) observations contain the expected errors
seen in the real observations, plus the expected errors due to forward operator approximations.

To that end, the considered true profiles were generated from the 10 minute to 180 minute AROME model short-
term forecasts at the SIRTA observatory (Site Instrumental de Recherche par Télédétection Atmosphérique) (Ha-
effelin et al., 2005) between November 2018 and February 2019 (Bell et al., 2021). The background profiles were
derived from the true profiles by perturbing the temperature, humidity and LWC profiles according to the ex-
pected AROME background error covariance matrix during fog conditions. This was done with the use of the
random.multivariate _normal function in the python Numpy package (Harris et al., 2020), to produce random vec-
tors having a covariance equal to the B matrix. By adding these vectors to the true profiles, a dataset containing
the error expected in the real background profiles was created. To ensure that this would reflect the conditions in
which retrievals would be made, a specific fog B matrix was computed from one AROME EDA cycle valid for one
fog case simulated in November 2018.

Similarly, the synthetic observation dataset could be derived by simulating the MWR, brightness temperatures and
then perturbing these by the expected observation error covariance matrix described in section 2.5. An estimation
of radar reflectivity error of 3dB was made initially and used in the synthetic data study. This is in line with the
3.6 dB estimated uncertainty from Toledo et al. (2020), that was later used in the application to real measurements.

From the synthetic database, forecasts involving mixed phase cloud were excluded, as the retrieval algorithm has
not yet been developed to make retrievals of ice, and where there is radar reflectivity which comes from a mixture of
ice and liquid water, it is not currently possible to distinguish between the radar reflectivity signal from ice crystals
and the signal from water droplets. In total, 1063 suitable profiles were found involving a range of different synoptic

conditions, with radiative fogs, low stratus cases, and stratus lowering fog found to make up most of the dataset.
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Figure 2. Scatter plots showing the values of LWC of the a) background and truth and b) the retrieval and truth; and the LWP
for ¢) background and truth and d) retrieval and truth. 1063 atmospheric profiles containing LWC were used, and comparisons
were made across all height levels where LWC was present. Where points lie on the black line, a perfect prediction of the
LWC/LWP is made, and the further from the black line, the worse the prediction is. The standard deviation and bias of the

background/retrieval - true values is also indicated.

3.2 Quantification of Retrieval Accuracy

In this section, 1D-Var retrievals have been carried out on the database of suitable liquid cloud profiles. A requirement
for the convergence of the algorithm is made based on the value of the cost function, the normalised gradient of the
cost function and the gamma factor of the Levenberg—Marquardt minimisation. Successful retrievals were made for
97 percent of the profiles, with a maximum number of iteration set at 15.

Figure 2 shows that the background profiles present a positive bias in the LWC field. This is caused by the way
in which perturbations are made to all the fields. By adding or subtracting LWC amounts from the true profiles
based on the background error covariances according to a Gaussian distribution, occasionally perturbations will be

made that decrease the LWC field to be below zero. As this is un-physical, any values of LWC below zero were set
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to zero. As this meant that a net increase was being made to the LWC field, a positive bias was seen. Figure 2 shows
that the 1D-Var is able to correct this bias, reducing it from 0.028 gm =2 in the background to 0.004gm™2 in the
retrieval. A significant improvement is also observed in the total root-mean-square-error (RMSE) from 0.047 gm ™3
in the background profile to 0.018 gm™3 in the retrievals. The correlation with the true LWC values is also improved
from 0.90 to 0.98.

As anticipated, the retrieval was also able to improve the values of LWP. From figure 2, the effect of the positive
bias on the LWC can be seen more clearly. In fact, in the background profiles, a large positive bias of 41.5g m—?2
can be seen, with a standard deviation of LWP errors of 50.6 g m~2. The standard deviation of errors is improved
by around 75 % in the retrievals, to reach the values of 11.5g m~2. It can be noted that this estimated uncertainty
is much smaller than the expected 20 g m~2 when MWR are used alone to derive the LWP (Crewell and Lohnert,
2003) highlighting the potential benefit of the instrumental synergy.

Another point of interest in the study is to quantify the benefit of the dual retrieval method compared to retrievals
made with one instrument alone. As highlighted in section 1, the microwave radiometer is sensitive to the temperature
and humidity profiles, but only the integrated value of LWC (the LWP) (Crewell et al., 2009). The radar, meanwhile,
is sensitive to the LWC at each range gate observed, but has very little sensitivity to the temperature and humidity.
Because of this, it was not expected that retrievals made with radar observations alone would result in changed
temperature and humidity values. However, if appropriate cross-correlations between variables are used during the
1D-Var algorithm, we can expect that an improvement in LWC increments could positively impact the temperature
and humidity increments. Additionally, by better locating the cloud in the vertical, we should also improve the
radiative transfer simulation of MWR channels sensitive to humidity and LWC during the 1D-var minimisation. If
dual instrumental retrievals were statistically found to be better than retrievals with the radar alone, this would
suggest the benefit of a single multi-instrumental algorithm compared to separate algorithms.

The statistics of the retrieved vertical profiles presented in figure 3 confirm the previous conclusion concerning
an initial LWC positive bias in the background profile, with a peak of 0.03g m™2 bias at 500m. This bias is
fairly well corrected for in the retrievals with absolute biases smaller than 0.01 g m~2. The standard deviation of
background /retrieval minus truth statistics also show that the most benefit is brought to the retrievals of liquid water
content when both instruments are used. It can be noted that the cloud radar shows the largest benefit of either
instrument alone but the additional MWR information manages to decrease the standard deviation with respect
to truth profiles at all vertical gates with the largest improvement above 1km. An overall accuracy of 0.02gm—3
above 400m and 0.04 gm =2 below is expected when both MWR and cloud radar measurements are used, giving a
relative standard deviation of errors of around 20 %. When the MWR alone is used the expected retrieval error is
approximately twice the one obtained with the synergistic retrieval but already managed to decrease the background
error from 0.09g m—3 to 0.05g m—3 at 250 m.

The retrieval uncertainty due to the forward model error and forward model parameter uncertainty may also be

investigated. As mentioned in section 2.3,several parameters must be specified to the radar simulator to prescribe
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the cloud droplet size distribution. As these parameters may not be representative of the observed cloud droplets,
this induces a certain amount of error into the retrieval. From Rodgers (2000), the covariance of the error in the

retrieval due to errors in the forward model parameters, A, may be calculated from equation 6.

A, = GH,R,H{ G” (6)

G=H'R'H+B)"'"H'R™' (7)

where Ry is the covariance matrix of forward model parameter errors, H; is the sensitivity of the forward model
to the prescribed parameters (analogous to equation 4) and G is called the gain (or contribution function) matrix.
A, represents the error covariances in the retrieval due to the assumptions about the forward model parameters. In
Bell et al. (2021), an analysis of expected error in two of the droplet size distribution parameters- the total droplet
concentration N and the shape parameter v- was conducted with the aid of previous literature on fog and cloud
droplet distributions. These uncertainties can be used to estimate the matrix Ry. In this study, it was found that
the total droplet concentration could be expected to range from 30 cm™3 to 300 cm ™2 and the shape parameter from
2.5 to 15. It was assumed that this matrix was diagonal i.e. that the error in the two parameters was not correlated,
and error was not correlated between different retrieval height levels.

In order to avoid directly calculating H,, the reflectivity from a profile can be simulated with the radar simulator,
and then once again by making a small perturbation to the simulator parameters. By finding the difference between
the first and second simulations and dividing this by the perturbation size, the matrix H, may be approximated —
in a manner as was explained in section 2.2.

The retrieval error resulting from errors in forward model parameters was estimated for one profile with a maximum
LWC of 0.3g m—3. From the square root of diagonal components of matrix A, calculated from equation 6, model
parameters were found to contribute between 0.01g m—2 and 0.025g m™—2 to the total

retrieval error for liquid water content. If the droplet concentration would be known, the contribution of parameter
error fell to between 0.006g m—3 and 0.014g m—3.

The effect of the assumed instrumental error was also investigated, with retrievals being made with a cloud radar
instrumental error of 1dB, 3dB and 6 dB, whilst the same synthetic database of observations and background profiles
was used. There were no significant differences seen by reducing the observation error from 3dB to 1dB, however,
when the instrumental error was increased to 6dB, the retrieval accuracy was degraded slightly by 0.01g m—3, as
shown in table 2.

Figure 3 also shows the statistics for the temperature and humidity fields. As expected, the use of MWR ob-
servations significantly decreases the temperature errors with respect to the truth profiles from approximately 1.3

K in the background to 0.7 K in the retrieval at 200 m altitude. At 200m agl, the standard deviation of errors is
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Figure 3. Statistics showing a) the bias and b) the standard deviation of the background/retrieved profiles minus truth for
LWC;c) the bias and d) standard deviation of errors for temperature; e) and f) again the same statistics for specific humid-
ity. Retrievals made with only microwave radiometer observations, only radar observations, and both radar and microwave

radiometer observations are shown. The statistics were gener%tﬁed from the same 1063 atmospheric profiles used in figure 2



420

425

430

435

440

Table 2. Bias and standard deviation of LWC errors resulting from cloud radar observation errors of different magnitudes

being used in the retrieval taking into account all radar vertical bins.

Observation Errors|STD (g m™3)|Bias (g m™?)

1dB 29%x1072 | 0.3x1072
3dB 3.4x1072 0.3x 1072
6 dB 47%x1072% | 0.3x1072

slightly improved for the dual retrieval compared to the microwave only retrieval, though these differences can not
be considered to be significant.

It can be noted that the radar alone lacks any meaningful sensitivity to either variable, shown in figure 3 ¢), d),
e) and f). Though attenuation of radar reflectivity is affected by the temperature and humidity of the air below the
backscattering target, the perturbation of humidity and temperature from the background profile needed to bring
about a change in radar reflectivity, relative to their respective errors, is far higher than the relative change in LWC
needed to bring about a change in reflectivity relative to LWC background errors. However, changes to the LWC
field can impact the retrieval of temperature and humidity. In fact, as the B matrix contains the cross correlation of
errors between all retrieved quantities (i.e. temperature, humidity and LWC for 90 height levels, which are the same
as those in the AROME model), a larger perturbation in the LWC field at a certain height could be associated with
a larger perturbation in temperature or humidity, should the correlation between the errors of the two variables be
strong. When the radar is used in conjunction with the microwave radiometer, the effect of this is generally seen to
a greater extent.

Such an impact is seen in the humidity retrievals in figure 3 e) and f) with there being little difference between the
standard deviation of errors in the radar only retrieval compared to the background profile. The standard deviation
of errors did, however, become slightly reduced in the dual retrieval configuration compared to the microwave only
retrieval. However, for the altitudes where this improvement is seen, there persists a negative bias for the dual radar
plus microwave radiometer retrievals which is larger than for the microwave only retrievals.

Due to the existing positive bias in the LWC background profiles, as the retrievals using the cloud radar involve
a net reduction in the LWC, the positive cross correlation of background errors between LWC and specific humidity
in this region (for variables at the same height level), could encourage too large reductions in the specific humidity
field and the appearance of this negative bias in the humidity retrievals.

A similar impact is observed in figure 3 for temperature retrievals. In fact, the only height at which the standard
deviation of temperature retrieval errors with cloud radar alone are visibly different from the standard deviation
of background errors is at 200m agl, the height at which the largest errors in the LWC field are observed, and the
height at which the radar alone retrieval bias is the largest. It should be noted that the bias in the temperature

retrievals at this height increases to four times the value of bias in the dual retrieval.
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3.3 Degrees of Freedom for Signal

It can be useful to know how many independent pieces of information are used in the retrievals. Modern microwave
radiometers contain many channels, between which there is often a high degree of correlation. The number of
independent observations is therefore considerably lower than the number of channels. The measurement uncertainty
will also affect the information content in the retrievals, with a larger uncertainty resulting in a lower information
content. In Rodgers (2000), this problem is formalised by relating the number of independent columns of information
to the concept of degrees of freedom. We may then ask how many of the degrees of freedom of measurement are
related to noise, and how many are related to signal.

To calculate the number of independent pieces of information that are used in the 1D-Var retrieval, formula 8

may be used:

DFS = tr(I— AB™') (8)

Here, I is the identity matrix, tr refers to the trace of a matrix and A is the analysis error covariance matrix
described earlier. We may also split the degrees of freedom for signal (DFS) into the three variables being retrieved,
showing the DFS for temperature, humidity and liquid water content independently. The mean DFS for all the
synthetic profile retrievals made is shown in table 3.

For the liquid water content retrievals, we expect the radar to contribute the most to degrees of freedom for signal
compared to the microwave radiometer measurements. As the DFS coming from a radar is likely increased as the
number of range gates affected by a cloud layer increases, the relative DFS for the liquid water content retrievals is
calculated instead of the absolute DFS. The relative DFS for LWC is the DFS for LWC divided by the total number
of levels containing non-zero LWC values. While MWR, provides very few independent pieces of information on the
LWC profile with a relative DFS of 2.7 %, a relative DFS of 37 % is obtained by the single use of the cloud radar.
The synergistic use of both MWR and cloud radar manages to increase the relative DFS up to 38.2 %. These results
agree well with a previous study by Ebell et al. (2010).

When only MWR observations are used, with respective values of 2.31 and 0.75, the DFS between the surface and
30 km asl for temperature and humidity was smaller than that found in other works (Léhnert and Maier, 2012; Ebell
et al., 2017). However, these studies used climatological background profiles which typically have larger background
errors. The DFS measures the sensitivity of the retrieved profiled to changes in the true profile. The larger the
background errors are assumed to be, the more weight will be given to the observations, which will change with
respect to the true profile while the background remains fixed. Therefore, the more relative weight given to the
observations, the higher the DFS will be. As a dynamic background taken from an NWP model is used in this study,
the background errors are considerably lower than those of a climatological background approximately by a factor

10 for temperature and factor 5 for humidity, resulting in a lower DF'S similarly to what has been observed in Turner
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Table 3. Average DF'S for temperature, humidity and LWC retrievals between the surface and 30 km asl.

- Temperature | Specific Humidity | Liquid Water Content (%)

Dual Retrieval 1.99 0.86 38.2

Radar Only 0.11 0.09 37.0
MWR Only 2.31 0.75 2.7
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Figure 4. The cumulative degrees of signal for freedom for the synthetic temperature (orange line) and humidity (blue line)

retrievals.

and Lohnert (2021). It may be noted that as expected almost no information can be extracted about temperature
and humidity from the radar alone. However, through the background error covariance matrix correlations, the
synergistic retrievals slightly decrease the temperature DFS while increasing the humidity DFS. The cumulative
DFS may also be examined. This shows at which altitudes the signal used in the retrievals comes from, and is shown
in figure 4. At a given altitude, the higher the rate of change of cumulative DFS, the greater the signal used in
the retrievals. It may be seen that most information from the temperature retrievals is found in the lowest 750 m,
whereas for humidity, it is found mainly between 1000 m to 3000 m. It should here be noted that most humidity
information brought by the measurements is significantly above the fog layer. For the SOFOG-3D field campaign,
80 % of events measured with the tethered balloon had a maximum fog top height lower than 200 m, thus a limited

improvement could be expected.
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Table 4. Table of instruments that were deployed during the SOFOG-3D field campaign that were used in this study. *The

measurement uncertainty is not well defined and may change as a function of the droplet sizes and diameters.

Measurement
Instrument Name Measured Variable Units Measurement Range IOP Only
Uncertainty
BASTA Cloud Radar Radar Reflectivity dBZ 2dB —52dBZ to 20dBZ No
PWD22 Visibility Sensor Meteorological m  10% (below 10km)  0.01km to 20 km No
Optical Range
RS-41 Radiosonde Temperature °C 0.3°C —65°C to 70°C Yes
Relative Humidity % 1% 0% to 100 %
HATPRO Microwave Brightness
K 0.3K to 0.5K N/A No
Radiometer Temperature
LWC m~3
Cloud Droplet Probe g 30% * N/A Yes
Number cm ™3 20%
Concentration
CT25K Ceilometer Cloud Base Height m 2%+7.5m Okm to 7.5km No

4 Application to Real Data

Although the synthetic data study allowed the potential of the algorithm to be shown, it relied on idealised as-
sumptions about instrumental and background errors, which are likely to themselves contain errors in real world
applications. To be sure that these assumptions were valid, and to analyse the performance of the algorithm in an

operational context, it is necessary to test the algorithm in real-world conditions.
4.1 SOFOG-3D Field Campaign

The south-west fog 3D experiment for process studies (SOFOG-3D) field campaign took place between October 2019
and March 2020, and was an observational field campaign focused on fog (Burnet et al., 2020; Martinet et al., 2020).
In addition to numerous other measurements across the south-west of France, a main measurement site was located
near to the village of Saint-Symphorien in the department of Gironde, 50 km south of Bordeaux. Here, the BASTA
cloud radar and HATPRO microwave radiometer were deployed, making continuous measurements throughout the
6-month period. During fog episodes, intensive observation periods (IOPs) took place. During these IOPs, a tethered
balloon to which a cloud droplet probe (CDP), optical particle counter (OPC) and cloud condensation nuclei counter
(CCNC) were also used for vertical profiling of both aerosol and cloud microphysical properties. During the IOPs,
radiosondes recording temperature, humidity and wind were also launched two to four times per night. Table 4 notes

the instruments at the supersite which were used in this study.
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Figure 5. The radar reflectivity simulated from the CDP droplet measurements, observed with the BASTA cloud radar, and

the observation after a 1 hour bias correction had been performed.

Measurements from the CDP were averaged by total flow volume over each 10second period. Although the binned
distribution of liquid water droplet diameters is provided by the CDP, only the total number concentration and the
LWC were considered in this study.

One issue with using radar reflectivity to make retrievals of liquid water content can be the presence of pollen,
insects and other non-meteorological airborne particles (sometimes referred to as airborne plankton). These can
affect radar reflectivities in the boundary layer, and can be difficult to distinguish from signal caused by clouds. In
this study, to ensure that radar reflectivity observations were caused by cloud droplets only, the cloud base height
and visibility measurements were used to ensure that only cloud radar reflectivities corresponding to either a fog or
a cloud layer were used.

The minimum observable radar reflectivity is found from the signal to noise ratio. This therefore depends on the
height of the gates, as both the noise and the maximum reflected power change with altitude. The sensitivity of the
radar was found to range from —52dBZ at 75m to —33 dBZ at 1000 m (gates above 1000 m were not investigated
due to the very small amount of radar gates not affected by ice particles above that altitude).

In order to investigate potential biases in the cloud radar reflectivity or radar simulator, figure 5 shows the
comparison between the simulated reflectivity from the CDP measurements and the BASTA radar reflectivity. In
this study, both the LWC and droplet number concentration from the CDP are directly used in the radar simulator.
It can be noted that significant discrepancies can be observed between the two reflectivities, as observed between
4h30 and 6h UTC with a large under-estimation of the simulated reflectivity from the CDP measurements compared
to the BASTA measurements.

Though the exact reason for this is not perfectly known, it could come partially from temperature dependencies

of certain components of the radar (Toledo et al., 2020), from the CDP underestimating the LWC (through missing
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Figure 6. Time series of a) radar reflectivity observed by the BASTA cloud radar in the background and equivalent radar
reflectivity factor simulated from measurements of LWC and droplet number concentration made with the CDP in coloured
circles, retrievals of a) temperature profiles and b) the LWP from the HATPRO microwave radiometer for the fog event

observed on the 7-8h March 2020. 99
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droplets or the mis-sizing of droplets for example) or other unaccounted-for effects. It should be noted that the max-
imum droplet size observable by the CDP is 50 pm. Due to the fact that the larger droplets have a disproportionately
large impact on radar reflectivity, the presence of these droplets could have contributed to this effect. In fact, Faber
et al. (2018) have attempted to characterise the uncertainty of the CDP instrument in studies using both glass beads
and water droplet generators, wherein a known size distribution is observed by the instrument and measurements
are compared to the distribution. Two common problems experienced by the CDP are coincidence error- where two
droplets cross the beam at the same time and are interpreted to be one droplet, and mis-sizing, normally caused by
droplets traversing the edge of the beam and interpreted as smaller droplets. The liquid water content observation
from the CDP is calculated from the sum of the mass of all droplets observed within the sampled volume, hence the
uncertainty in droplet diameter and concentration results in an even greater error for measurements of LWC, as the
LWC is proportional to the third power of droplet diameter.

Although the CDP can only measure droplets of up to 50 um, very few observations were recorded of cloud droplets
with a diameter over 40 um, and the assumed droplet size distribution predicted that droplets over this size would
account for only 0.15 % of the volume of cloud liquid water observed, for an LWC of 0.12 g m~3. However, the modal
diameter sizes observed often had a non-negligible difference compared to that predicted by the assumed droplet
distribution in the forward model (for the same LWC). It is therefore possible that a larger proportion of droplets
with a diameter bigger than 50 um were present and not observed by the CDP.

An additional phenomenon was also observed by Russchenberg et al. (2004) and hypothesised to be due to cloud
inhomogeneities at a scale smaller than the cloud radar sampling volume. These could be particularly pertinent at
the fog top height, where radar gates could be only partially covered by LWC. In regards of the observed biases
between the BASTA and CDP simulated reflectivities, and in order to be able to validate 1D-Var retrievals with
CDP measurements consistent with the cloud radar observations, a time-dependant bias correction was performed
on the radar observations. To that end, the reflectivity bias is computed as the 60 minutes average of the differences
between the cloud radar and CDP simulated reflectivities and then subtracted from the received power. Figure
5 shows the overall improved agreement between the CDP simulated and the cloud radar reflectivities after bias
corrections. The bias-corrected radar reflectivities are then used in the next sections.

Brightness temperatures from MWR observations were also bias-corrected with a similar method as detailed in
Martinet et al. (2017, 2020). This method is based on a daily monitoring of differences between observed brightness
temperatures and simulated brightness temperatures from the AROME model 1hour forecasts during clear-sky
conditions only. This MWR, unit was also calibrated with the use of liquid nitrogen just before the experiment. The
obtained bias correction is thus relatively small with absolute values from 0.1 K to 1.8 K, the largest biases being

due to spectroscopic modelling errors in the oxygen band.

23



555

560

565

570

575

580

585

4.2 Case Study

In this study, one fog event taking place on the 7-8th March 2020 was examined due to the length of the event and
the thickness of the fog layer. This fog event had a large spread of LWC values, as well as going through phases of
thinning, a phase with a cloud aloft, and a phase of lifting from the surface before dissipation. The event also had
a relatively long duration of 9 hours, with in-situ measurements made over 11 hours.

In general, reliable radar signal is available from the third gate (37.5m) during the night and the fourth gate 50 m
during the day. It was also shown in the synthetic data study that despite the liquid water path retrieval having a
smaller errors compared to the HATPRO microwave only retrieval, an error of 11.5g m~—2 was present in retrievals
of the liquid water path. For this reason, the retrievals of liquid water content were expected to show good results
of liquid water content only for fog layers with at least a thickness of 50 m.

As may be seen from the radar reflectivity observation shown in figure 6, an initial thin low cloud present around
21:00 UTC lowered to the surface to form a thin fog layer. This grew in thickness as cooling throughout the night
took place. Observations with the tethered balloon began at around 23:00 UTC and continued until 10:00 UTC the
following day, at which time the fog layer had lifted to form a low stratus cloud before completely dissipating. Figure
6 also shows the time series of retrieved temperature profiles and LWP from the MWR alone using the manufacturer
neural networks implemented in the instrument software. Pre-fog stable conditions with a thermal inversion close
to the surface up to 3 UTC may be observed on this figure. Between 3 and 8 UTC, the temperature profile is
almost iso-thermal within the first 300 m corresponding to the fog mature phase. Around 8 UTC, at the time of
fog dissipation, the increase in surface temperature due to the heating of the sun may also be identified. The LWP
retrievals show values below 20 gm~2 until 0 UTC with then a large increase up to 80 gm~—2 during the fog mature
phase.

The radar and radiometer were situated in close proximity but were separated from the tethered balloon by
a distance of up to 300m. This distance varied as a function of the balloon height and the wind speed. From a
scanning version of the cloud radar stationed close to the supersite, large variations in values of radar reflectivity
were observed with horizontal spatial displacements. To ensure that comparisons of measurements made by the CDP
were therefore comparable to the retrievals, it had to be ensured that all instruments were observing a similar fog
layer. In order to do this, a screening procedure has been applied to remove from the statistical analyses cases from
which the BASTA cloud radar differ from the CDP simulated reflectivity by more than 3dB. This difference took
into account the instrumental and radar reflectivity simulator errors, meaning that differences of more than this must
come from one of the previously mentioned effects which could account for differences between observed reflectivity
and that simulated from the CDP. The most likely explanation between the discrepancy between the observed radar
reflectivity and the radar reflectivity simulated from the CDP was postulated to come from inhomegeneites, as

highlighted in section 4.1.

24



590

595

600

605

610

615

620

In figure 7, the AROME forecasts corresponding here to the closest time (within a 3 hour windows) and location
to the observation as well as the 1D-Var retrievals are shown. Also shown is the MRP background with the retrievals
using this as a background. With reference to the radar reflectivity shown in 6 a), it is evident that the presence of
LWC is better modelled in the retrieval compared to the AROME background.

The initial lowering of cloud at 21:00 UTC is clearly seen in the retrieval, whilst the fog event begins with a
thin layer at the surface in the model at 22:00 UTC. From the CDP measurements of the fog event investigated, a
noticeable variation in the total droplet number concentration was observed, shown in figure 8. It can be seen that the
number concentration frequently diverges from the assumed concentration of 150 cm™2 used in the radar simulator,
from zero (evidently in the absence of LWC) to a maximum of 300 cm ™~ which was observed in the middle of the fog
layer where the LWC was relatively large (approximately 0.3 g m~3). The lowest values of number concentration,
where the CDP was inside a cloud or a fog layer with an LWC above 0.5g m—2, were around 50 g m—3- significantly

higher than the lower bound of number concentration of fog events observed in some studies (Mazoyer et al., 2019).
4.3 Quantification of Improvements in Real Dataset

The retrievals were made with different configurations at a one minute time resolution, in order to estimate the
sensitivity of the retrieval to certain parameters. In this section, 1D-Var retrievals will be directly compared to CDP
LWC measurements when the BASTA reflectitivy and the CDP simulated reflectivity are comparable. Here, the two
observations were considered comparable for a radar and CDP observation made at the same time and valid at the
same height, with a difference in the simulated and directly observed radar reflectivity of 3dB. However, several
CDP measurements at ten second resolution are located within each 1D-Var gate with a variable grid size between
around 10 m at surface and 80 m at 1km. To take into account the CDP measurement variability within each 1D-Var
gate, the 1D-Var LWC retrieval is compared to the median CDP measurements within certain spatial and temporal
bounds. To that end, only CDP measurements within 10 m of the height corresponding to the middle of the 1D-Var
gate are taken into account in the calculation of the median. If the time needed by the tethered balloon to sense the
whole +/- 10m bin is spread overall several minutes, an average of the 1D-Var retrievals within the time of ascent
of the tethered balloon are directly compared to the median CDP LWC measurements.

The sensitivity of the 1D-Var algorithm to different settings is investigated by quantifying the impact on the LWC
accuracy.

We first examine the effects of an improved background profile, found by using the MRP method to select the
AROME background profile the closest to the observation within a 27 km domain and 6 hour time window (Bell
et al., 2021). To this end, retrievals were made by with the MRP background and the background corresponding to
the nearest time and location of observation. For the case in question, it is to be noted that the closest AROME
model in time and location was able to forecast fairly well the overall structure of the second half of the fog event
(figure 7), in which most of the in-situ observations were made. Because of this, the standard deviation of LWC errors

in the nearest background profiles, found through comparisons to the in-situ observations, was very similar to that of
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Figure 7. Background and Retrievals of LWC from the fog case on the 7-8th March 2020 using the nearest background
(top row) and the MRP background (bottom row). Figure a) shows the LWC predicted by the AROME model; b) shows
the retrieval of LWC made with the 1D-Var algorithm using both radar and microwave radiometer measurements from the
nearest background; ¢) shows the MRP background and d) shows retrievals as made from the MRP background. The circles

in all plots show the in-situ measurements made by the CDP of LWC. The configuration where Jacobians are forced to be

positive was used.
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Time Series of Number Concentration Recorded from In-Situ Observations
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Figure 8. The total cloud droplet number concentration recorded by the CDP throughout the fog event observed on the 7 - 8
March 2020, with the height of the instrument shown on the same graph. The number concentration assumed in the retrieval

of 150 cm™? is highlighted with the black line.

Table 5. The standard deviation and biases (observation - background/retrieval) of the retrievals using different background

profiles.

Nearest Profile| MRP Profile
STD| Bias |STD | Bias
Background|0.082| 0.047 |0.080(-0.019
Retrieval [0.064| -0.028 |0.073|-0.040

the MRP background with values close to 0.08¢ m~3 (table 5). As shown in table 5, the standard deviation of LWC
errors was reduced for retrievals using both background profiles. The observed impact was, however sligthly better
when the nearest background profile was used, with a 0.009 g m~—3 lower standard deviation of errors and a lower
bias by 0.012g m—3. The differences in LWC retrieval statistics with both backgrounds are probably small enough
to be considered within the spatial variability and uncertainty of the CDP measurements within each radar vertical
gate, which was found to be 0.02g m—3. As mentioned earlier, it is possibly due to the reasonably well-described fog
structure from the nearest AROME background when the CDP measurements were performed during this unique
fog event which prevents the benefit of the MRP method being seen. However, further analysis was performed
concerning the better performance of the 1D-Var algorithm using the nearest profile compared to retrievals using
the MRP background despite the larger number of clear-layers in the nearest background profile at range gates
covered by fog or low clouds in the observation.

As was highlighted in section 2.2, one possible reason arises from the calculation of the Jacobian matrix which was
handled so that diagonal components of the matrix could not be zero as it should be the case when the background

profile is clear. Forcing Jacobians values to be non-zero even during clear-sky conditions was found to improve our
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Figure 9. Retrievals performed when Jacobians are not forced to be positive. Retrievals made using a) nearest profile back-
ground and b) MRP background for the same fog event on the 7-8/03/2020, between 01:00 UTC and 05:00 UTC. The retrieval
is shown in the background while in-situ observation are shown in circles. Where the retrieval failed to converge, the profile

is left white.

Table 6. The convergence rate and median number of iterations for retrievals made with the MRP and the nearest background
profiles for the fog case on the 7-8/20/2020. The all non-zero column refers to retrievals made with diagonal components of the
Jacobian matrix made to be always non-zero, whilst the zero below sens column refers to retrievals made with the Jacobian

matrix allowed to be zero where simulated radar reflectivity is below the sensitivity.

All Non-Zero

Zero Below Sens

Convergence Rate

Median Iterations

Convergence Rate

Median Iterations

Nearest

99.5%

8.0

84.0%

14.0

MRP

99.3%

4.0

87.8%

12.0

results but probably hampers the benefit of the MRP which successfully corrected the fog vertical structure in the
first part of the event. In fact, it can be noted that, at the beginning of the fog event, the nearest profile tended
to underestimate the number of levels containing non zero LWC, whilst the MRP was able to better approximate
the cloud structure as expected. The impact of not being able to force non zero Jacobians values where the initial
hydrometeor contents of a pixel is zero was then investigated, as this is generally the case with variational frameworks
using tangent linear approximation of the forward model due to the faster computation time. To that end the MRP
method was again compared to the use of the nearest profile when the Jacobian values were this time set to zero
when the the background is clear.

Figure 9 highlights that for times when the nearest background poorly predicts the pixels containing LWC, the
ability to replicate cloud in the retrieval is greatly degraded compared to when the Jacobians are forced to be non-
zero (see figure 7 for comparison). Table 6 shows that whilst the algorithm is able to converge more that 99 % of

the time for both background profile methods when the Jacobians are always non-zero, this is reduced to 84 % and
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88 % when allowing Jacobians to be zero for the nearest and MRP backgrounds respectively. Another point to note
from the table is that the median number of iterations needed for convergence was improved and even divided by
two where non-zero Jacobians are forced through the vertical profile when using the MRP method, meaning that
less time and computational power is needed to make the retrievals thanks to the MRP method. Further evaluation
will be performed in the future to investigate deeper the benefit of the MRP method especially during cases when
the closest AROME background in time and locations show larger discrepancies with the observed reflectivity.

Due to the better performance of the nearest profile on this specific fog case, however, the next evaluation of
different 1D-Var configurations was performed using the nearest profile and allowing non-zero LWC Jacobians even
when the background profile is clear.

Figure 10 shows the scatter plots comparing both the AROME background and the retrieved LWC of three
configurations of the algorithm to the CDP LWC measurements. Comparisons were made by finding the median
LWC observed within 120s of the retrieval and within 10m of the retrieval height level. Error bars marked on
the plots show the minimum and maximum values of LWC observed by the CDP over this time range and height
difference for the retrieval in question. It may be seen that for certain comparisons, a wide range of LWC values are
observed, which leads to uncertainties in the accuracy of the comparisons of + 0.15g m™3.

Whilst after 6:00 UTC, fog was predicted in the model, with values that were fairly close to those observed, the
fog event began with a large cluster of values where no LWC was predicted but was observed. Figure 10 b) shows
the retrieval made using the nearest background profile improves all statistical measures of the LWC field with a
decreased RMSE from 0.096 gm = in the background to 0.066 gm 3 in the 1D-Var retrievals. The correlation is also
significantly increased from 0.56 to 0.72.

Two other configurations tested are also shown in figure 10 ¢) and d) to evaluate the impact of the background
error covariance matrix cross-correlations and the impact of microphysical assumption errors in the radar simulator.
Figure 10 c) shows the retrievals made with a block diagonal B matrix in contrast with a full B matrix with cross-
correlations adapted to fog events. Though an improved LWC field is obtained even with a block-diagonal background
error covariance matrix compared to the AROME background, it can be noted that the 1D-Var analyses are slightly
degraded compared to the retrieval with a fully correlated B matrix. In fact, the largest degradation is observed
on the correlation coefficient which is decreased from 0.7 to 0.6. This could suggest that the information from the
increments in the temperature and humidity profiles can provide information useful to the retrieval of LWC as long
as proper cross-correlations between variables can be defined.

Optimal estimation techniques often derive background error covariance matrices from observations (such as Cimini
et al. (2009) ), which could very likely be improved through improved measurements of fog and cloud properties.
However, this methodology requires that long-term in situ measurements are made for each site, which constitutes
a serious drawback. As explained in section 2.5, the B matrix for this work was produced through an ensemble data
assimilation. It is thus likely that an improvement in the understanding and the modelling of fog processes in high

resolution models such as AROME could lead to more accurate background profiles with smaller background error
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Figure 10. Scatter plots of the liquid water content a) background and b) ,c) ,d) retrieved versus the liquid water content
observed through with in-situ sensor for the fog case on the 7-8/03/2020, between 01:00 UTC and 05:00 UTC. Panels b, ¢ and
d refer respectively to 1D-Var retrievals run with the nearest background profiles and full fog B matrix with cross-correlations
between variables, 1D-Var retrievals run with the nearest background profile and a bloc-diagonal B matrix, 1D-Var retrievals
run with the nearest background profiles and full fog B matrix with cross-correlations with the use of the CDP droplet number
concentration inside the radar simulator during the minimization. Error bars indicate the range of in-situ observations recorded
throughout the height level corresponding to the retrieval height levels. The scatter plots show comparisons for all retrieval

height levels between 37 m and 400 m.
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Figure 11. Scatter plots of the liquid water content retrieved versus the liquid water content observed through with in-situ
sensor. Panels a) and b) refer respectively to 1D-Var retrievals run with the only the microwave radiometer and only the cloud
radar, both with the nearest background profiles and full fog B matrix with cross-correlations between variables. Error bars
indicate the range of in-situ observations recorded throughout the height level corresponding to the retrieval height levels. The

scatter plots show comparisons for all retrieval height levels between 37 m and 400 m.

covariances between different variables and model layers in the B matrix. In the future, improved measurements of
fog and cloud properties could be useful for evaluating the efficacy of the ensemble data assimilation of generating
representative background error matrices.

Another configuration to be investigated evaluated the impact of forward model errors due to inaccurate approx-
imation on droplet number concentration. To that end, the total droplet number concentration initially fixed at
150 cm—2 was changed to the observed number concentration from the CDP (figure 8).

As can be seen in figure 10 d), a significant improvement in the 1D-Var retrievals is observed. In fact, the RMSE
is decreased from 0.066 g m—3 to 0.049 ¢ m~3 and the correlation coefficient significantly increased from 0.7 to 0.8.
This indicates that a non-negligible portion of the retrieval error is indeed due to the errors in the assumptions
of size distribution of droplets. This sensitivity study demonstrated that optimal 1D-Var retrievals with increased
accuracy can be obtained when forward model errors can be limited and an optimal background error covariance
matrix is used.

The impact of synergistic benefit of using the two instruments in real world conditions was also investigated.

As is shown in figure 11, retrievals were run with the same configurations shown in figure 10 b), but with only
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one instrument. Figure 11 a) shows liquid water content retrievals made using only the microwave radiometer, and
figure 11 b) with only the cloud radar. As expected, the radiometer is not able to well describe the distribution of
liquid water content alone, and only small increases in the correlation coefficient, from 0.57 to 0.62, are found when
compared to the AROME model. With the radar only configuration, results were slightly degraded compared to those
found from the synergistic retrievals, with a correlation coefficient of 0.64 compared to 0.71 and a standard deviation
of errors of 0.61 compared to 0.60 in the synergistic setup. One-instrument retrievals of temperature and humidity
at the times of the radiosonde launches were also performed to investigate whether any benefit could be added to
the radiometer retrievals through the inclusion of a cloud radar. As was found in the synthetic dataset studies, the
retrievals made with only the radiometer were not statistically worse than with both instruments, indicating that
information from the cloud radar does not significantly contribute to retrievals of humidity and temperature.

It may of course be seen from the errors shown from the fog case in question that the retrieval errors were larger
than those found from the synthetic dataset study. This was expected and there are several factors that could
contribute to this. The first is that in the synthetic study, it is assumed that the background and observation errors
may be perfectly modelled. The dataset of background profiles will contain the errors specified in the B matrix, and
similarly the observational dataset will contain the errors specified in the R matrix. However, these matrices are
only estimations of the true errors. Additionally, observations are supposed to be un-biased which might not be the
case- even though a bias correction is proposed in this study, it may not be optimal. Another reason for the apparent
increase in errors in this study compared to the synthetic data study probably comes from the fact that the in-situ
measurements used in this study themselves contained substantial error. Indeed, the error in LWC measurement
by similar CDP instruments has been estimated to be up to 50 %(Wendisch et al., 1996). Compared to the CDP
measurement variability which was used in Figure 10 to quantify the error when comparing the retrieved LWC with
the CDP LWC, the expected CDP measurement errors are of the same order of magnitude as the CDP variability
for the highest values of LWC (>0.25gm™2) but they should be smaller for the lowest LWC values (<0.1gm™3).
The variability in the measurement can be seen from the error bars on the scatter plots, with the range of CDP LWC
measurements in some cases being greater than 100 % of the median observed value. An error in the comparison
could also arise from the fact that the observations made from the balloon platform were of a much smaller sampling
size, and in a location up to 300 m away from the radar and radiometer field of view. Though an attempt to reduce
the impact of this error was made through the permitting of comparative statistics only when the difference between
observed radar reflectivity and radar reflectivity simulated from the CDP was less than 3dB, a difference in size
distribution in the droplets could not be ruled out.

Finally, to check the validity of temperature and specific humidity retrievals as expected from previous studies using
MWR alone (Martinet et al., 2020), a verification was performed through checks against radiosonde observations.
In the field campaign, radiosondes were launched up to four times per day, meaning that fewer points of comparison

could be made between observations and retrievals per fog event, compared to for the LWC observations from the
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Figure 12. RMSE and bias of a) temperature retrievals and b)specific humidity retrievals relative to radiosonde observations.
These were made throughout the SOFOG-3D field campaign, between 1st December 2019 and 12th March 2020 and consisted
of 51 radiosonde launches. Solid lines correspond to the background profile and dashed lines to retrieved profile statistics,

where blue lines denote the standard deviation of errors and yellow lines to the bias.

tethered balloon. To make the verification over a statistically significant number of observations, all radiosoundings
launched during the campaign IOPs were thus taken into account.

It can be seen in figure 12 that in both temperature and humidity retrievals, the standard deviation of errors
is reduced when compared to the nearest background profile, which was the AROME model valid at the time and
location of the observations with a much higher impact for temperature compared to specific humidity . It may be
noted, however, that both the temperature and the humidity retrievals do not improve by the magnitude shown in the
synthetic dataset study. Whilst the temperature retrievals were more accurate than the AROME model throughout
the boundary layer, this improvement tended to range from 10% to 20%, in contrast to the 40 % seen in the
synthetic dataset study. It should also be noted that there was a degradation in the temperature bias below 500 m.
For the specific humidity retrievals, the retrievals showed smaller improvements of up to 10 % between 1000 m agl
and 2000 m agl.

As mentioned in Martinet et al. (2020), 1D-Var retrievals are quite sensitive to the choice of the background
error covariance matrix especially for humidity retrievals and temperature retrievals within the first kilometer. One
possible reason for the smaller improvement obtained on the temperature and humidity retrievals could thus come

from a non optimal B matrix used during the minimisation. In fact, it should be noted that for the application to real
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observations, the same static fog B matrix valid for November 2018 has been re-used. However, our validation takes
into account all the SOFOG3D radiosoundings launched at the super-site during atmospheric conditions prone to
fog occurrences according to the AROME model forecasts but only 9 of them were found to be launched within a fog
layer. The temperature and humidity retrievals might thus be representative of stratus clouds and clear conditions
more than fog conditions making the fog SIRTA B matrix potentially sub-optimal. Further evaluation will thus be
conducted in the future to adapt the fog B matrix to the time and location of the observation to be more consistent

with the real observation errors.

5 Conclusions and Future Prospects

In this article, a methodology for the initial step towards the assimilation of cloud radar and microwave radiometer
combined observations is presented. A description was given of the 1D-Var algorithm which is used to perform
retrievals on temperature, humidity and LWC in vertical profiles.

A validation of previous work to improve the accuracy of the background profile was also attempted in this study.
It was found that for the fog case investigated that the accuracy of LWC retrievals was not improved by using this
improved background profile, called the MRP profile. One factor influencing this finding was the decision to force
the Jacobian matrix to have non-zero diagonal values where they would otherwise have been calculated to be zero
(especially in cases where the initial background is clear). When this configuration was not used, the MRP profile was
seen to improve retrieval convergence and to better resolve the cloud structure compared to the nearest background
profile, especially when the nearest background profile is not able to predict a fog or cloud layer when it is observed.

Additionally, in the fog case investigated, the AROME model nearest background tended to predict fog or low
cloud for most times when these phenomena were observed at the supersite at the corresponding altitude of the
CDP measurements. As the main aim of the MRP method was to correct the background errors for times at which
a fog event is undetected due to spatial and temporal forecasting errors, it is possible that a larger benefit of the
MRP method could be concluded with another fog case study where the nearest AROME background profiles shows
larger errors. With this in mind, it is recommended that other fog cases should be examined in the future to provide
a more robust evaluation of the benefit of the MRP method to improve the 1D-Var retrievals.

It was shown that when retrievals were made using the assumed droplet number concentration of 150 cm™3,
an overestimation of concentration was made for much of the fog event analysed. An overestimation of droplet
concentration will lead to an underestimation in radar reflectivity with the radar simulator used inside the 1D-Var.
This can lead to the algorithm incorrectly increasing, or not reducing by enough, the LWC in state vector x. By
changing the droplet number concentration in the radar simulator to that recorded by in-situ measurements, both
the standard deviation and bias of retrieval errors were reduced by 0.010g m—> and 0.024g m—3. This suggests
one area in which the algorithm could be improved. Though there is little consensus on how cloud microphysical

properties vary with fog properties, such as the height of the fog top, the change in distribution within the fog layer
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(at the top, middle or bottom), the LWP, turbulent properties or the stage in the fog life cycle (formation, mature,
dissipation), more research into this topic could allow a parameterisation of the total number concentration, which
if more accurate than the assumed number used in this study, could improve retrievals.

The inclusion of a new microphysical scheme could also improve the accuracy of the droplet size distribution
specified in the retrieval. The Liquid Ice Multiple Aerosol (LIMA) scheme is a quasi two-moment microphysical
scheme which adapts the droplet concentration number to the cloud condensation nuclei. Work is currently underway
for this to be integrated into the operational model AROME. If this is able to provide better estimates of the total
droplet concentration number than is currently assumed, this information could also be specified to the algorithm
to improve the accuracy of retrievals.

It was demonstrated that the combination of cloud radar and microwave radiometer observations showed potential
to give more accurate retrievals of LWC compared to the use of cloud radar observations alone. In the synthetic
dataset study, the retrieval error was seen to decrease for synergistic retrievals compared to when only the radar
was used, and the DFS for LWC was also seen to increase.

As the persistence and evolution of a fog event has been demonstrated to depend on the LWC of the fog event
(Toledo et al., 2021), it is likely that the improved LWC field in a high resolution model can improve forecasts
of the dissipation of fog events. The forecasting of stratus lowering fog events may also be improved through the
improved representation of the presence and LWC distribution of low clouds, something which this framework could

also contribute towards.
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