

1

2 **Across-track Extension of Retrieved Cloud and Aerosol Properties**
3 **for the EarthCARE Mission: The ACM-3D Product**

4

5

6 ZHIPENG QU

7 *Environment and Climate Change Canada, Toronto, ON, Canada*

8

9 HOWARD W. BARKER*

10 *Environment and Climate Change Canada, Victoria, BC, Canada*

11

12 JASON N. S. COLE MARK W. SHEPHARD

13 *Environment and Climate Change Canada, Toronto, ON, Canada*

14

15

16

17

18

19

20

21

22

23

24

25 Submitted: 1 November 2022

26 Revised: xx xxxx xxxx

27 For publication in: *Atmos. Meas. Tech.*

28

29

30

31 *Corresponding author address: Howard Barker; howard.barker@ec.gc.ca

32

Abstract

33 The narrow cross-section of cloud and aerosol properties retrieved by L2-algorithms that operate
34 on data from EarthCARE's nadir-pointing sensors gets "broadened" across-track by an algorithm
35 that is described and demonstrated here. This *Scene Construction Algorithm* (SCA) consists of four
36 components. At its core is a radiance-matching procedure that works with measurements made by
37 EarthCARE's Multi-Spectral Imager (MSI). In essence, an off-nadir pixel gets filled with retrieved
38 profiles that are associated with a (nearby) nadir pixel whose MSI radiances best match those of
39 the off-nadir pixel. The SCA constructs a 3D array of cloud and aerosol (and surface) properties
40 for entire *frames* that measure ~6,000 km along-track by 150 km across-track (i.e., the MSI's full
41 swath). Constructed domains out to ~15 km across-track on both sides of nadir are used explicitly
42 downstream as input for 3D radiative transfer models that predict top-of-atmosphere (TOA) broad-
43 band solar and thermal fluxes and radiances. These quantities are compared to commensurate meas-
44 urements made by EarthCARE's BroadBand Radiometer (BBR), thus facilitating a continuous clo-
45 sure assessment of the retrievals. Three 6,000 km x 200 km frames of synthetic EarthCARE obser-
46 vations were used to demonstrate the SCA. The main conclusion is that errors in modelled TOA
47 fluxes that stem from use of 3D domains produced by the SCA are expected to be less than ± 5 W
48 m^{-2} and rarely larger than ± 10 W m^{-2} . As such, the SCA, as purveyor of information needed to run
49 3D radiative transfer models, should help more than hinder the radiative closure assessment of
50 EarthCARE's L2 retrievals.

51

52

53

Deleted: sub-algorithms.

55 1. Introduction

56 The objective of the EarthCARE satellite mission is to help improve numerical predictions of
57 weather, air quality, and climatic change via application of synergistic L2-retrieval algorithms to
58 observational data from its cloud-profiling radar (CPR), backscattering lidar (ATLID), and passive
59 multi-spectral imager (MSI) (Illingworth et al. 2015). EarthCARE's overarching scientific goal
60 (ESA 2001) is to retrieve cloud and aerosol properties with enough accuracy that when used to
61 initialize atmospheric radiative transfer (RT) models, simulated top-of-atmosphere (TOA) broad-
62 band radiative fluxes, for domains covering $\sim 100 \text{ km}^2$, agree with their observational-based coun-
63 terparts to within $\pm 10 \text{ W m}^{-2}$ *more often than not*. “Observed” TOA fluxes derive from radiances
64 measured by EarthCARE’s multi-angle broadband radiometer (BBR). As the latter are not used by
65 retrieval algorithms, comparing them to modelled values, obtained by RT models operating on
66 retrieved quantities, affects a “moderately stringent” verification of the retrievals (Barker et al.
67 2023); “moderately stringent” because BBR radiances consist, in part, of photons that share the
68 same gaseous pathlength and number of cloud-aerosol-surface scattering event distributions as
69 those that constitute MSI radiances. These imperfections aside, this radiative closure verification
70 is a well-defined and cost-effective final stage in EarthCARE’s formal [processing chain](#) (Eisinger
71 et al. 2023).

Deleted: “production model”

72 In light of EarthCARE’s ambitious goal of limiting differences between measured and modelled
73 TOA fluxes to $\pm 10 \text{ W m}^{-2}$ [when averaged over “assessment domains” that measure \$\sim 5 \text{ km}\$ across-](#)
74 [track by \$\sim 21 \text{ km}\$ along-track](#), the usefulness of its radiative closure programme depends much on
75 reducing errors and uncertainties in: BBR measurements; variables needed by RT models that are
76 not provided by EarthCARE observations; and RT models. Included in this are issues of observa-
77 tional geometry that face use of BBR data for EarthCARE’s closure assessment. First, L2-retrieved

79 profiles are \sim 1 km in diameter, while the BBR was designed to perform best for footprints of \sim 10
80 x 10 km. For this configuration, fluxes and radiances computed for sequences of retrieved profiles
81 contribute only \sim 10% of the signal to each BBR footprint (or pixel). Second, at only \sim 1 km wide,
82 net horizontal fluxes for each retrieved column, and sequences of them, will rarely be close to zero
83 (e.g., Barker and Li 1997; Marshak et al. 1998). This implies that 3D RT models, as opposed to
84 their ubiquitous 1D counterparts, will be required to make EarthCARE's radiative closure assess-
85 ment fruitful, (Illingworth et al. 2015). Hence the need for 3D arrays of data that describe the Earth-
86 atmosphere system adjacent to the \sim 1 km-wide retrieved L2-cross-section.

87 Fortunately, BBR data are not bound to 10 km resolution, as point-spread function widths of its
88 native radiances are \sim 0.7 km. This offers much flexibility to the design of the closure assessment
89 (e.g., Tornow et al. 2018). The extreme case is to use a single along-track line of BBR radiances
90 that overlap, at best approximately, the \sim 1 km wide curtain of L2-retrieved profiles, referred to
91 hereinafter as the L2-plane. This would, however, degrade BBR performance, via reduced signal-
92 to-noise ratio and pointing accuracy, and thus weaken closure assessments. Alternatively, one
93 could attempt an across-track "broadening" of the L2-plane so as to cover as many BBR native
94 radiances as deemed necessary. Regardless of the route taken and the size of domains over which
95 closure assessments are to be performed, there is the ever-present related issue of lateral flow of
96 photons both within assessment domains *and* between assessment domains and their adjacent areas.
97 Taking these issues together, EarthCARE's science team opted for its closure assessment experi-
98 ment to use 3D RT models applied to assessment domains centred on the L2-plane with across-
99 track widths appreciably greater than 1 km (Illingworth et al. 2015).

Deleted: .

101 The method for approximating 3D geophysical variables adjacent to the L2-plane, in order to
 102 safely use both 3D RT models and BBR data, is the radiance-matching *Scene Construction Algo-*
 103 *rithm* (SCA) (Barker et al. 2011), which forms the basis of the ACM-3D processor. The purpose
 104 of the current paper is to recap, in section 2, the SCA, present several operational details associated
 105 with it, and demonstrate, in section 3, its overall performance using simulated observations for a
 106 virtual Earth-observation system (Qu et al. 2023; Donovan et al. 2023). Application of RT models
 107 to SCA products and subsequent radiative closure assessments for the same virtual environments
 108 are discussed by Cole et al. (2023) and Barker et al. (2023). A brief discussion is given in section
 109 4.

110 **2. 3D Atmosphere-Surface Scene Construction Algorithm**

111 To begin, EarthCARE’s products are partitioned into \sim 6,565 km long “frames”, which makes six
 112 frames / orbit. Position in a frame is defined by the Joint Standard Grid (JSG). Each frame contains
 113 N_{JSG} L2-retrieved columns along-track. Frame widths are 150 km as defined by the MSI’s swath;
 114 35 km to the right and 115 km to the left of the L2-plane (relative to the satellite’s direction of
 115 motion). Some algorithms require data beyond nadir, and so each frame’s files also contain n_e
 116 swaths of data from neighbouring frames. JSG coördinates are denoted as (i, j) , with i running
 117 along-track from $1 - n_e$ to $N_{JSG} + n_e$, and j running perpendicular to the L2-plane, which is located
 118 at $j = 0$.

Deleted: retrieved

119 As documented by Cole et al. (2023), EarthCARE’s radiative products are produced by 1D and
 120 3D broadband RT models. Some of these products are used to perform radiative closure assess-
 121 ments of L2-retrievals (see Barker et al. 2023). While 1D RT models are applied, in ACM-RT, (see
 122 **Deleted:** ,

Deleted: , in ACMB-DF,

124 Cole et al. 2023), to all non-corrupt columns in the L2-plane, their results are averaged over small
 125 domains D , in processor ACMB-DF where radiative closure is assessed, referred to hereinafter as
 126 *assessment domains*, whose along-track centres, at $j = 0$, are the L2-plane. Conversely, 3D RT
 127 models operate directly on D and domain-average results are computed in ACM-RT and used in
 128 ACMB-DF. The structure of D for $j \neq 0$ is defined by the 3D *Scene Construction Algorithm*
 129 (SCA), which is explained in the following subsections. Along-track lengths of D , in terms of JSG
 130 cells, are n_{assess} columns(pixels), while their across-track half-widths are m_{assess} , making full across-
 131 track widths $2m_{\text{assess}} + 1$ columns(pixels). The initial plan is to fix m_{assess} and n_{assess} at 2 and 21,
 132 respectively. Thus, D are $\sim 5 \times 21$ km, so their areal extents, regardless of location, are ~ 100 km²,
 133 which is what the BBR was designed to operate at (see Illingworth et al. 2015).

134 The operational SCA is made up of several sub-algorithms. At its core is definition of D at
 135 $(i, j \neq 0)$ via MSI radiance-matching (Barker et al. 2011). Other crucial components include: def-
 136 inition of buffer-zones around D , as required by the 3D RT models; screening and ranking of D
 137 in an attempt to maximize the usefulness of the radiative closure assessment process; and estima-
 138 tion of errors for TOA fluxes and radiances that stem from the radiance-matching algorithm. To
 139 improve readability of the main text, many details of these sub-algorithms are presented in Appen-
 140 dices. General results are shown and discussed in Section 3.

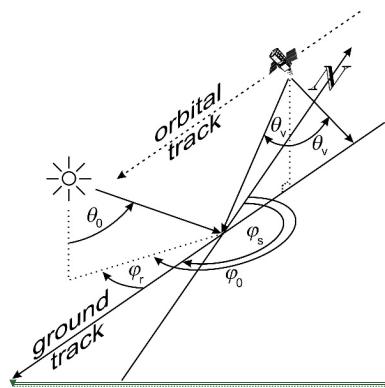
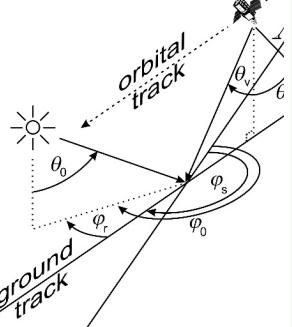


Figure 1: Schematic showing solar zenith angle θ_0 , solar azimuth angle relative to north ϕ_0 , satellite-tracking vectors relative to north ϕ_s , solar azimuth angle relative to satellite-tracking direction ϕ_r , and the BBR's two off-nadir zenith angles θ_v .

142
143
144
145
146


147 2.1. Radiance matching

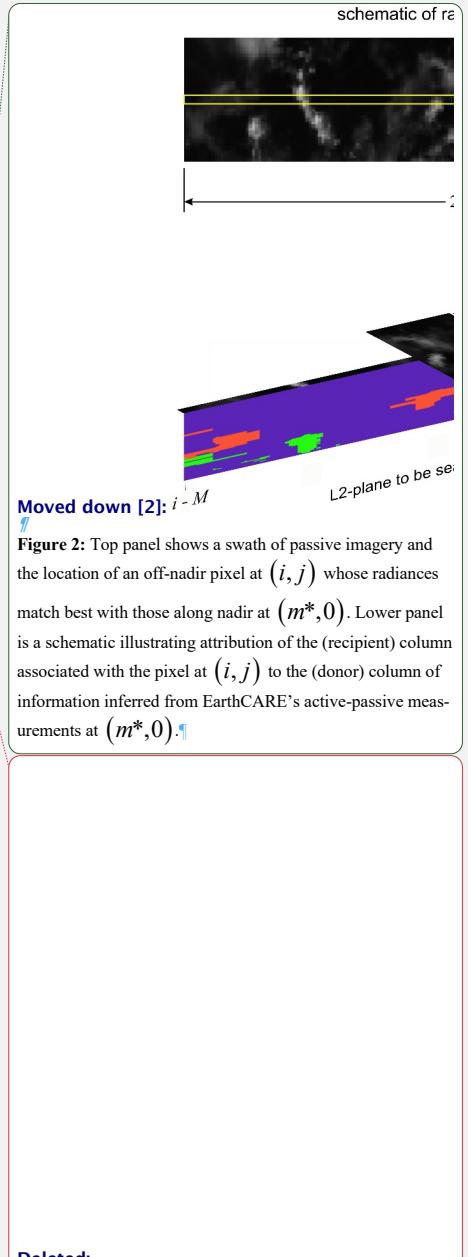
148 The core of the SCA, and thus the ACM-3D processor, is passive narrowband radiance-matching
149 of an off-nadir MSI pixel's spectral radiances with their nadir counterparts along the L2-plane
150 (Barker et al. 2011). As this methodology has been described and used elsewhere (Barker et al.
151 2011; 2012; 2014; Sun et al. 2016), it is recapped briefly here, with details reiterated in Appendix
152 A. Note that all independent variables referred to here are available to the ACM-3D processor from
153 other EarthCARE processors; all of which are reported on in this special issue.

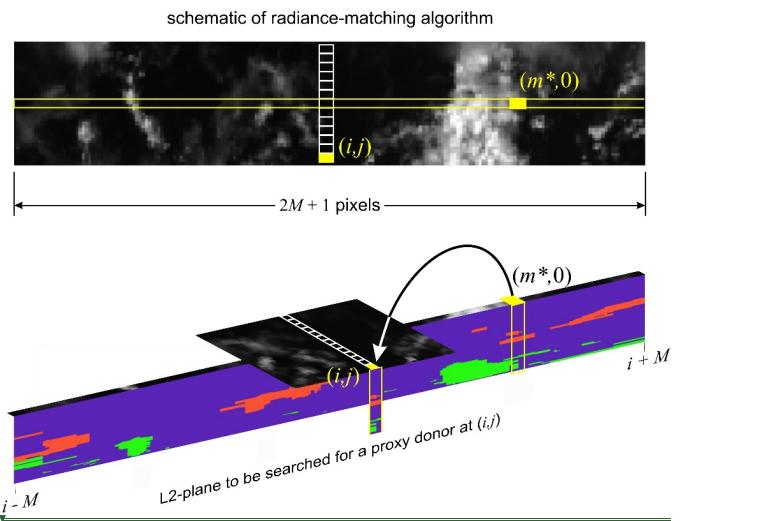
154 Let $r_k(i, j)$ be MSI radiances, for the k^{th} channel, where values at position $(i, j = 0)$ align along the
155 L2-plane and have geophysical profiles associated with them. When seeking to populate an off-nadir
156 recipient column at $(i, j \neq 0)$ with a suitable *donor* from the L2-plane, the algorithm quantifies

Moved (insertion) [1]

Formatted: Indent: First line: 0.5 cm

Moved up [1]:


Figure 1: Schematic showing solar zenith angle θ_0 , solar azimuth angle relative to north ϕ_0 , satellite-tracking vectors relative to north ϕ_s , solar azimuth angle relative to satellite-tracking direction ϕ_r , and the BBR's two off-nadir zenith angles θ_v .


Deleted:

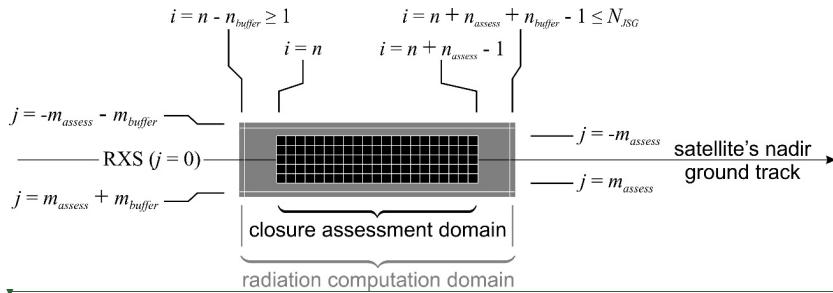
165 how well $r_k(i, j \neq 0)$ match $r_k(m, j = 0)$ for all $m \in [i - M, i + M]$; M being the number of JSG
 166 pixels, forward and backward, along the L2-plane one is prepared to allow the algorithm to search.
 167 While M could depend on a host of variables, a default value of 200 has been used thus far. As
 168 explained in Appendix A, for a nadir pixel to be a potential donor, the recipient's and donor's
 169 surface types (land, sea, and snow/ice) must match, and cosine of solar zenith angles μ_0 and azi-
 170 muth angles between Sun and satellite tracking direction φ_r must differ by less than specified
 171 amounts. [Figure 1](#) shows a schematic of solar-satellite geometry. While the recipient and L2-donor
 172 pixels could be required to have the same cloud phase, the intention all along has been for the
 173 algorithm to rely just on radiances, not other algorithms.

174 Of those L2-plane pixels whose MSI radiances best resemble those at $(i, j \neq 0)$, the one lying
 175 physically closest to $(i, j \neq 0)$ becomes the donor, and its profiles of geophysical information get
 176 replicated at $(i, j \neq 0)$. This procedure is performed for all $(i, j \neq 0)$ across the MSI's swath; pixels
 177 at $(i, 0)$ donate to themselves. The result is *construction* of a 3D atmosphere-surface domain made-
 178 up of profiles from the L2-plane. Correspondingly, MSI imagery are *reconstructed*, too. [Figure 2](#)
 179 shows a schematic of the radiance-matching procedure. Hereinafter, values at (i, j) that are based
 180 on the SCA are indexed as $(m^*(i, j), 0)$, which ties them back to the $m^*(i, j)^{\text{th}}$ column/pixel along
 181 the L2-plane.

182

Moved (insertion) [2]

203


204

205 **Figure 2:** Top panel shows a swath of passive imagery and the location of an off-nadir pixel at
 206 (i, j) whose radiances match best with those along nadir at $(m^*, 0)$. Lower panel is a schematic
 207 illustrating attribution of the (recipient) column associated with the pixel at (i, j) to the (donor)
 208 column of information inferred from EarthCARE's active-passive measurements at $(m^*, 0)$.
 209

210 2.2. Assessment domains and their buffer-zones

211 The 3D RT models used for EarthCARE employ cyclic horizontal boundary conditions. Real
 212 cloudy domains and those produced by the SCA are, however, non-cyclical and so when 3D RT
 213 models operate on them, adverse effects near the perimeter of D are affected by photon paths
 214 crossing discontinuous optical properties. One way to deal with this is to add atmosphere and sur-
 215 face to all edges of D so as to, not eliminate but rather, displace away from D any adverse effects

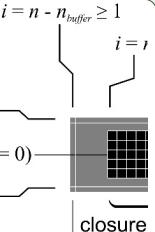
216 set-up by the assumed cyclic boundary conditions. Hereinafter, the domain resulting from the com-
 217 bination of D and its buffer-zones is denoted as D^+ .

218

219 **Figure 3:** Schematic showing the radiative closure assessment domain $D(i)$ (black) and the radi-
 220 ation computation domain $D^+(i)$; the union of $D(i)$ and the buffer-zone (shaded). See the text
 221 for definitions of indices.

222

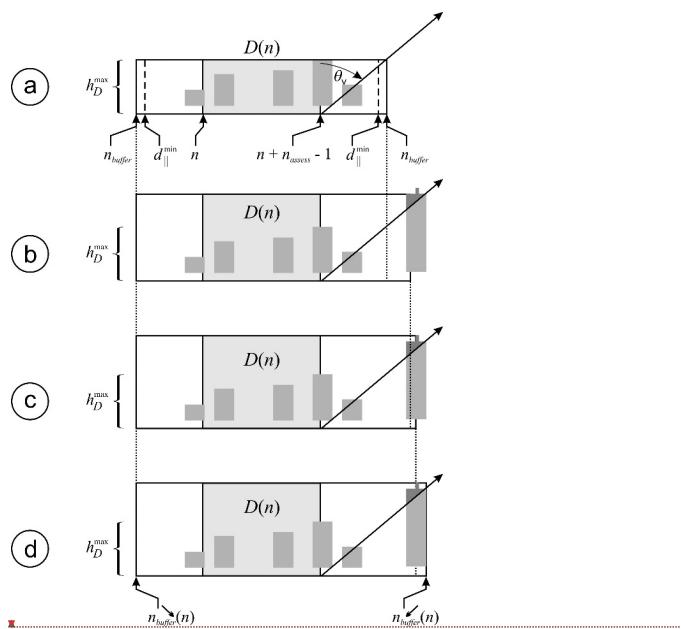
223 Buffer-zones also accommodate the fact that the BBR's oblique radiances associated with D
 224 consist partly of photons that were scattered by the atmosphere and surface outside of D . Barker
 225 et al. (2015) described an adjustment to 3D RT Monte Carlo models that approximates fractional
 226 contributions to a BBR radiance from photons whose last scattering event, by any particular scat-
 227 tering species, took place in D . Their algorithm, however, is too time-consuming for EarthCARE's
 228 official data processing system. Nevertheless, the buffer-zone should adequately capture contribu-
 229 tions to BBR radiances that come from beyond D .


230 **Setting the along- and across-track dimensions of buffer-zones is described in detail in Appendix**
 231 **B.** **Figure 3** shows D , its associated D^+ , and the indices that locate them on the JSG. The number
 232 of pixels in the along-track that are out in front $n_{\text{buffer}}^>$ and trailing $n_{\text{buffer}}^<$ D can vary and depend on
 233 the minimum along-track buffer length $d_{\parallel}^{\text{min}}$, assumed to be ~ 5 km, BBR viewing zenith angle θ_v

Moved (insertion) [3]

Formatted: English (CAN)

Formatted: Body text Justified, Indent: First line: 0 cm, Space Before: 6 pt, Line spacing: Double


Deleted: zone

Moved up [3]:
Figure 3: Schematic showing the radiative closure assessment domain $D(i)$ (black) and the radiation computation domain $D^+(i)$; the union of $D(i)$ and the buffer-zone (shaded). See the text for definitions of indices.

Deleted:

Formatted: English (CAN)

242 , and nearby cloudtop altitudes $h(m^*(i,j), 0)$ as defined by the radiance-matching algorithm. Figure 243 4 is a schematic of this process which is detailed in Appendix B.

244

245 **Figure 4:** Schematic showing the procedure for finding along-track buffer-zone size; in this case
 246 $n_{\text{buffer}}^{\checkmark}$. (a) h_D^{\max} is maximum cloudtop altitude in assessment domain D , and d_{\parallel}^{\min} is the smallest
 247 size buffer-zone allowed. (b) As the algorithm searches out in front of D , a cloud is encountered;
 248 part of which lies between D and the satellite, and so the buffer-zone increases. (c) Continuing
 249 the search, still a higher cloud is encountered between D and the satellite, thus increasing the
 250 buffer-zone further. (d) There is still more cloud between D and the satellite so the buffer-zone
 251 increases again, this time to its final value of $n_{\text{buffer}}^{\checkmark}$, despite the possibility of cloudtops further
 252 out being higher yet still. See text and Appendix B for details.

Moved down [4]: Note that $n_{\text{buffer}}^{\checkmark}$ and $n_{\text{buffer}}^{\swarrow}$ are independent of θ_0 .

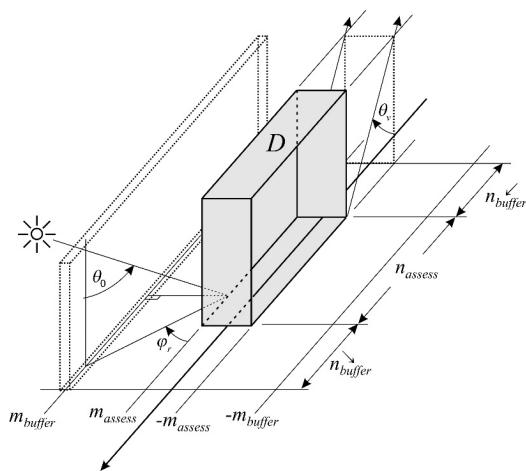
Deleted: This is because for EarthCARE's orbit; over 80% of observations with $\theta_0 < 90^\circ$ have $30^\circ < \varphi_r < 150^\circ$ implying that, for most cases, projection of direct-beam (and hence cloud shadows) into the along-track walls of D will be small. Exceptions are for very large θ_0 with $\varphi_r < 30^\circ$ or $\varphi_r > 150^\circ$; but these cases are usually avoided because the RT models rely on the plane-parallel approximation.

253 Formatted: Space Before: 6 pt

254 **Moved (insertion) [4]**

255 **Field Code Changed**

Field Code Changed


266 of direct-beam (and hence cloud shadows) into the along-track walls of D will be small. Excep-
 267 tions are for very large θ_0 with $\varphi_r < 30^\circ$ or $\varphi_r > 150^\circ$, but these cases are usually avoided because
 268 the RT models rely on the plane-parallel approximation.

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

269
 270 **Figure 5:** Schematic showing the procedure for finding the size of the cross-track buffer-zone
 271 size m_{buffer} . See text and Appendix B for details.
 272

Moved (insertion) [5]

Field Code Changed

Formatted: Space Before: 6 pt

273 Determination of the size of cross-track buffer-zones m_{buffer} depends on $h(m^*(i,j), 0)$ adjacent
 274 to the sunlit side of D and minimum size for the across-track buffer-zone d_{\perp}^{\min} . If a cloud to the
 275 side of D casts a shadow that falls onto the region formed by D and its along-track buffer-zones,
 276 then the cross-track buffer-zone extends to include the cloud doing the shadowing. Unlike the
 277 along-track, m_{buffer} gets applied to both sides of D . Figure 5 summarizes definition of m_{buffer} .

278 2.3. Screening radiative closure assessment domains

279 Due to computational limitations and time constraints on product production, it is anticipated that
 280 only a small number of D per frame will participate in the 3D RT radiative closure exercise (i.e.,
 281 processor ACMB-DF). Hence, D that emerge from the SCA must be “screened and ranked” to
 282 ensure that an adequate range of cases, from “simple” to “complex”, be assessed in order to: i)
 283 provide well-rounded pictures of algorithmic performances; ii) gauge whether mission objectives
 284 are being met; and iii) provide guidance to data users who wish to focus on select conditions. At
 285 the same time, screening and ranking should be flexible enough to be changed during the mission.
 286 For instance, “simple” scenarios are likely to be of particular interest during the commissioning
 287 phase (e.g., mono-phase, single-layer, overcast clouds).

288 The screening process eliminates D that are likely to yield uninformative assessments. It has
 289 three stages as described in the following subsections. Each frame has two sets of surviving assess-
 290 ment domains: D_{1D} contains domains that 1D RT results are averaged over; D_{3D} contains domains
 291 that 3D RT models get applied to. Domains in D_{1D} and D_{3D} consist, respectively, of *radiative*
 292 *assessment domains* D and *radiative computation domains* D^+ (see [Figure 3](#)).

293 2.3.1. Screening Stage 1: Failed retrievals and corrupt data

294 If there are corrupt data or failed retrievals for any column in either D or D^+ , the domain will not
 295 be forwarded to subsequent processes. This is because they simply cannot be used by 3D RT mod-
 296 els. Examples of failed retrievals include algorithms that did not converge to a solution or con-
 297 verged to values that are out of bounds. Corrupt data, on the other hand, includes failure at the L1
 298 level and data corrupted during transmission.

Moved up [5]: . See text and Appendix B for details.

Deleted:

Figure 5: Schematic showing the procedure for finding the size of the cross-track buffer-zone

Deleted: that survive screening. The first set

Deleted: , while the second set

307 *2.3.2. Screening Stage 2: Geophysical conditions*308 *a) Solar zenith angle*309 Generally speaking, solar RT becomes increasingly complicated as solar zenith angle θ_0 increases.310 This is because: i) radiances and fluxes for EarthCARE-sized domains will depend increasingly on
311 conditions outside D and D^+ ; and ii) Earth's sphericity becomes increasingly important; Earth-
312 CARE's RT codes are plane-parallel models. Not only do large θ_0 impact the SCA directly, they313 stress retrieval algorithms that use MSI data. Hence, when the Sun is up, D or D^+ must have

314
$$\max\{\theta_0(i,j)\} < \theta_0^* \quad \forall (i,j) \in D \text{ or } D^+, \quad (1)$$

315 where θ_0^* is the maximum allowed value of θ_0 , in order for solar radiances to be considered by the316 SCA. Initially, $\theta_0^* = 75^\circ$. When the Sun is down, however, data from solar channels are simply not317 used; as shown by Barker et al. (2011), this diminishes the SCA's performance.

Deleted: $\min\{\theta_0(i,j)\} < \theta_0^* \quad \forall (i,j) \in D \text{ or } D^+$

Field Code Changed

Deleted: θ_0 . Initially, $\theta_0^* = 75^\circ$.

Field Code Changed

Field Code Changed

318 *b) Single surface type*319 To focus closure assessments on retrieved cloud and aerosol properties, and reduce potential com-
320 plications due to boundary conditions that are outside the purview of EarthCARE's retrievals, D
321 and D^+ must have at least 90% of its area occupied by a single broad class of surface type. These
322 types are: water (oceans and lakes), land, and ice.323 *c) Homogeneous land surfaces*324 Each JSG pixel has a land-type designation obtained from the International Geosphere–Biosphere
325 Programme (USGS 2018). Let f_ℓ be the fraction of JSG pixels in either D or D^+ that corresponds

329 to the ℓ^{th} surface-type. For reasons listed above, if D and D^+ is a “land” domain, then for them to
 330 be included in D_{1D} and D_{3D} , they must have

331
$$\max \{f_\ell\} > f^*, \quad (2)$$

332 where f^* is set initially to 0.9.

333 *d) Surface elevation*

334 Uncertainties in spectral bidirectional reflectance and emittance functions as well as albedos and
 335 emissivities are complicated by variations in surface elevation. In an attempt to limit uncertainties
 336 associated with the setting of these lower boundary conditions in the RT models, only very flat
 337 assessment domains are allowed. Hence, if σ_{srf} is standard deviation of surface elevation for D or
 338 D^+ , then for them to be included in D_{1D} and D_{3D} , they must have

339
$$\sigma_{\text{srf}} < \sigma_{\text{sfc}}^*, \quad (3)$$

340 where σ_{sfc}^* is set initially to 0.1 km.

341 *2.3.3. Screening Stage 3: Quality of radiance matching*

342 Where SCA reconstructed MSI radiances are poor, it is reasonable to assume that corresponding
 343 constructed 3D domains are, too. Thus, the final screening stage addresses the quality of recon-
 344 structed MSI imagery, but it also provides bias-correction estimates for modelled TOA quantities.

345 For an assessment domain D of n_{assess} JSG pixels along-track and $j \in [-m_{\text{assess}}, m_{\text{assess}}]$ across-
 346 track, the n^{th} moment of r_k over D , excluding the L2-line along $j = 0$, is

347
$$\langle r_k^n \rangle = \frac{1}{2m_{\text{assess}} n_{\text{assess}}} \sum_{i=i_1}^{i_1+n_{\text{assess}}-1} \sum_{j \in [-m_{\text{assess}}, -1] \cup [1, m_{\text{assess}}]} r_k^n(i, j). \quad (4)$$

348 where i_1 is along-track JSG index at the edge of D . Corresponding reconstructed values are

349
$$\langle \hat{r}_k^n \rangle = \frac{1}{2m_{\text{assess}} n_{\text{assess}}} \sum_{i=i_1}^{i_1+n_{\text{assess}}-1} \sum_{j \in [-m_{\text{assess}}, -1] \cup [1, m_{\text{assess}}]} r_k^n(m^*(i, j), 0). \quad (5)$$

350 Therefore, errors stemming from the radiance-matching algorithm, for the k^{th} MSI channel, are

351
$$\Delta \langle \hat{r}_k^n \rangle = \langle \hat{r}_k^n \rangle - \langle r_k^n \rangle. \quad (6)$$

352 Let $\langle F_{\text{SW}} \rangle$ and $\langle F_{\text{LW}} \rangle$ be TOA shortwave (SW) and longwave (LW) fluxes, averaged over D ,
 353 as estimated by angular direction models in the BMA-FLX processor (Velázquez-Blázquez et al.
 354 2023). Since MSI radiances r_1 (0.67 μm) and r_6 (10.80 μm) often correlate well with $\langle F_{\text{SW}} \rangle$
 355 and $\langle F_{\text{LW}} \rangle$ (Barker et al. 2014), TOA flux bias errors due to the radiance-matching algorithm can
 356 be approximated as

357
$$\Delta \langle \hat{F}_{\text{SW}} \rangle \approx \langle F_{\text{SW}} \rangle \frac{\langle r_1 \rangle - \langle \hat{r}_1 \rangle}{\langle \hat{r}_1 \rangle} \quad \text{and} \quad \Delta \langle \hat{F}_{\text{LW}} \rangle \approx \langle F_{\text{LW}} \rangle \frac{\langle r_6 \rangle - \langle \hat{r}_6 \rangle}{\langle \hat{r}_6 \rangle}. \quad (7)$$

358 If these values satisfy

359
$$|\Delta \langle \hat{F}_{\text{SW}} \rangle| > \Delta F_{\text{SW}}^* \mu_0 \quad \text{and} \quad |\Delta \langle \hat{F}_{\text{LW}} \rangle| > \Delta F_{\text{LW}}^*, \quad (8)$$

360 where ΔF_{SW}^* and ΔF_{LW}^* are tolerable broadband TOA flux errors arising from the radiance-match-
 361 ing algorithm, D is *not* included in either D_{1D} nor D_{3D} . Both $\Delta \langle \hat{F}_{\text{SW}} \rangle$ and $\Delta \langle \hat{F}_{\text{LW}} \rangle$ get passed to
 362 ACMB-DF and used to bias-correct estimated TOA fluxes made by both 1D and 3D RT models.

Deleted: μm

Deleted: μm

Field Code Changed

Field Code Changed

Deleted: stemming from

366 This completes the screening processes leaving D_{1D} and D_{3D} with m_{1D} and m_{3D} assessment do-
367 mains, respectively.

368 *Table 1* provides a glimpse into success rates of D and D^+ , in all three frames, for the screenings
369 just described using conditions as summarized in the table. Of course, overall success rate for
370 $\theta_0 < 75^\circ$ will be much smaller than most reported here owing to these being “descending” frames.

Field Code Changed

371 Note also the tendency for success rates for D^+ to be less than those for D . This is because the areal
372 extents of D^+ are always larger than that for D .

373 **Table 1.** Success rates of D and D^+ for the three frames that meet the conditions as listed.

screening variable	condition	Halifax		Baja		Hawaii	
		D	D^+	D	D^+	D	D^+
cloud retrieval quality	more than 10% of columns have valid retrievals	97	98	96	97	97	99
flux reconstruction	both $\Delta F_{SW}^* \mu_0$ and $\Delta F_{LW}^* = 5 \text{ W m}^{-2}$ (see (8))	100	94	100	93	100	82
solar zenith angle	$\theta_0 < 75^\circ$ or $\theta_0 > 90^\circ$	63	59	100	100	100	100
land-sea/water	single type of land/water for at least 90% of a domain	90	90	84	80	100	100
surface type*	surface type for at least 90% of a domain; sunglint occurs for at most 20% of a domain	94	92	84	81	52	49
land surface elevation	standard deviation < 100 m	95	97	79	70	100	100

374

375 2.4. Ranking radiative assessment domains

376 As noted above, the EarthCARE mission will provide near-real time products with limited compu-
377 tational resources. The portion of the processing chain constrained most by this involves 3D SW

378 RT models. For them to achieve adequate signal-to-noise ratios, just a small fraction of the thou-
 379 sands of potential D^+ per frame can be assessed. Thus, to enhance efficacy of the radiative assess-
 380 ment process, an algorithm was developed that ranks D^+ in D_{3D} . At any time, ranking can be
 381 overruled manually, such as when testing during commissioning phase. The ranking algorithm that
 382 was decided upon samples cloud scenarios in proportion to relative frequencies of occurrence.

383 For the initial version of the algorithm, 1 km resolution MODIS-retrieved values (MYD06_L2)
 384 of cloud optical depth τ_{cld} and cloudtop pressure p_{cld} , ~~inferred from measurements made during~~
 385 2020, ~~were~~ grouped into 5×21 km arrays, to match EarthCARE's planned 5×21 km domains D ,
 386 and for each array, $\langle \tau_{cld} \rangle$ and $\langle p_{cld} \rangle$ were computed along with total cloud fraction
 387 A_c (Platnick et al. 2015). They were then assigned to bins defined by 10° ranges of latitude and
 388 longitude, and ranges for $\langle \tau_{cld} \rangle$, $\langle p_{cld} \rangle$, A_c , and time of observation of

$$\begin{aligned}
 \langle \tau_{cld} \rangle &: (0,4];(4,23];(23,150] \\
 \langle p_{cld} \rangle &: (0,440];(440,680];(680,\infty) \\
 A_c &: (0,0.25];(0.25,0.75];(0.75,0.99];(0.99,1] \\
 \text{time} &: \text{DJF;MAM;JJA;SON}
 \end{aligned} \tag{9}$$

390 Since only cloud-bearing domains need be ranked, the number of applicable bins is 23,328, of
 391 which the n^{th} has N_n domains. When $\theta_0 \geq 90^\circ$, $\langle \tau_{cld} \rangle$ is not retrieved, so the same ranking proce-
 392 dure uses the remaining three variables only. Radiative closure assessments ~~for SW fluxes~~ are not
 393 done when $75^\circ < \theta_0 < 90^\circ$ on account of too many overwhelming uncertainties with retrievals and
 394 plane-parallel RT modelling. Thus, domains in this range are not ranked.

395 For EarthCARE frames with 6,400 1-km L2 columns in the L2-plane there is the potential for
 396 $6,400 - 21 + 1 = 6,380$ (over-sampled) assessment domains, each of which falls into one of the

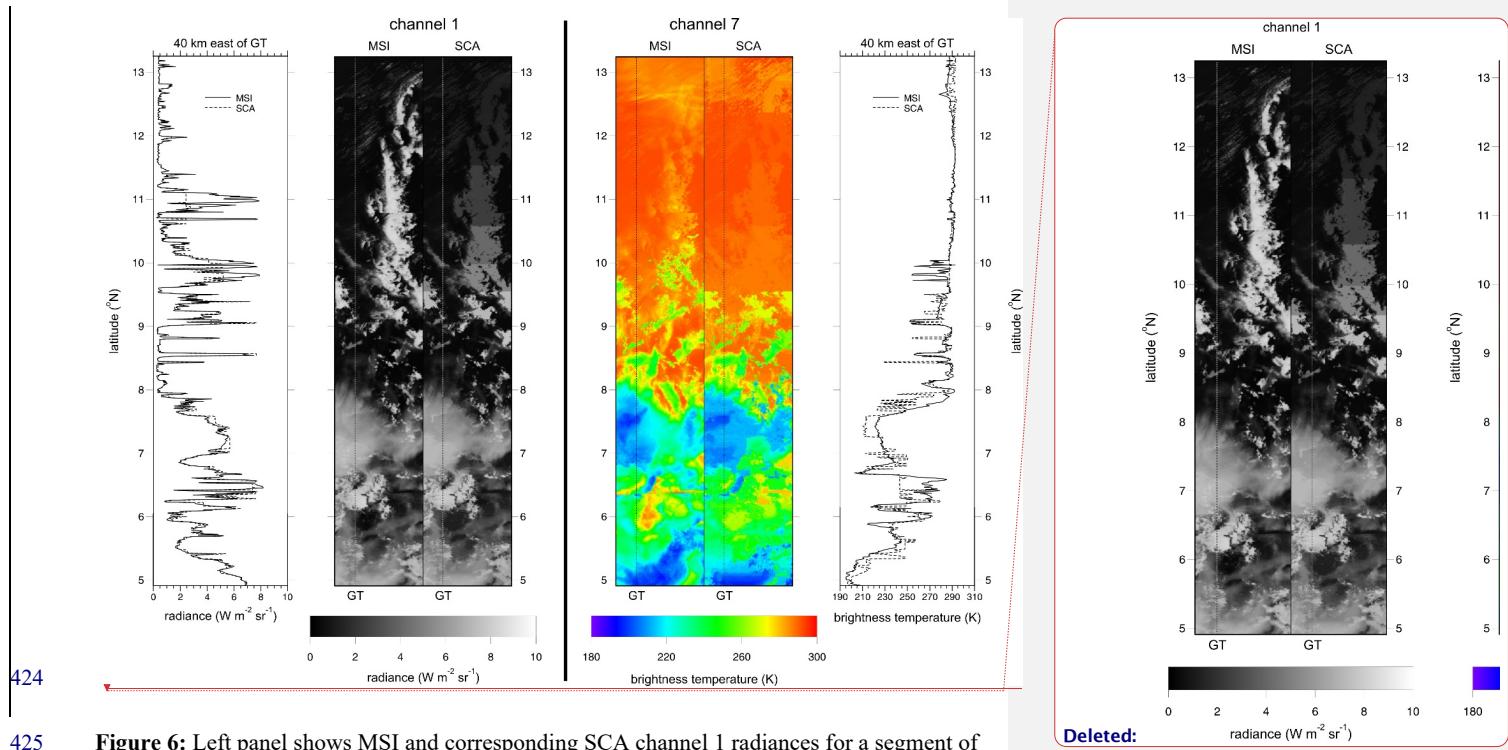
Deleted: for

Deleted: where

399 MODIS bins. Now, using only domains with $A_c > 0.01$, form the frame-specific cumulative fre-
 400 quency such that the i^{th} domain has a value

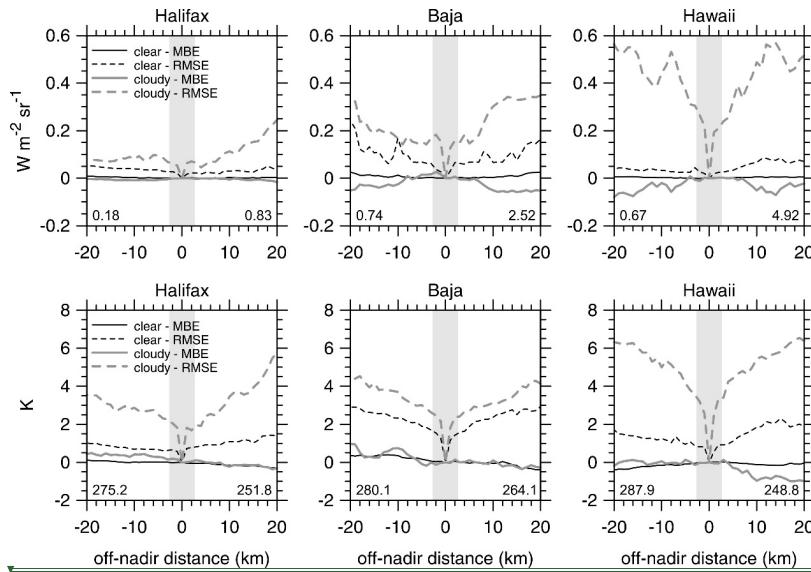
$$401 \quad \mathsf{N}(i) = \frac{1}{\mathsf{N}(6,380)} \sum_{j=1}^i \mathsf{N}_n(j) \quad ; \quad i = 1, \dots, \mathsf{N}_{cl} \leq 6,380. \quad (10)$$

402 Then, generate a uniform pseudo-random number $R \in (0,1]$ and find the closest $N(i)$; this iden-
403 tifies the top-ranked D^+ . This is repeated, without replacement, until (possibly all) the domains are
404 ranked. The resulting lists are passed on to ACM-RT.


405 3. Results

406 The SCA's sub-algorithms are discussed in series in this section. The only part not evaluated here
407 is the ranking algorithm (see section 2.4). Its performance is demonstrated in Cole et al. (2023; in
408 this issue) where radiative transfer models act on the highest ranked assessment domains.

409 3.1. Reconstruction of passive radiances


410 Radiance matching is the essence of the SCA, and a sampling of results is provided here. More
 411 details are in Barker et al. (2011; 2012; 2014) and Sun et al. (2016). [All results presented here, and](#)
 412 when $\theta_0 < 90^\circ$, come from using MSI channels: 1 (0.67 μm), 4 (2.21 μm), 5 (8.80 μm), and 7
 413 (12.00 μm); i.e., $K_s = 4$ in (11). Obviously, when $\theta_0 \geq 75^\circ$ the SW channels are not used. The
 414 largest impediment facing this algorithm is when conditions off the ground-track (GT) differ much
 415 from the relatively few samples along the GT (Barker et al. 2011). Figure 6 shows a full-width
 416 segment of the *Hawaii* frame that contains both catastrophic failure due to inadequate conditions
 417 along the GT and excellent performance for the opposite reason. Approximately 50 - 100 km east

418 of the GT, between 9.5°N and 13°N , radiances, especially channel 1's, that are associated with
 419 much cloud are severely short-changed on account of a long stretch of near-cloudless conditions at
 420 nadir. To partially remedy this, the algorithm would have to be permitted to search the GT much
 421 further than 200 km, as in this example, but in so doing it would run the risk of identifying donor
 422 columns associated with increasingly different meteorological conditions. On the other hand, be-
 423 tween 5°N and 8°N performance is extremely good across the entire 150 km wide frame.

424
 425 **Figure 6:** Left panel shows MSI and corresponding SCA channel 1 radiances for a segment of
 426 the Hawaii frame measuring 150 km wide and 900 km long. Right panel is corresponding bright-
 427 ness temperatures from channel 7 radiances. Dashed lines marked GT indicate the ground-track
 428 at nadir, which coincides with the L2-plane. Line graphs show MSI and SCA values along the
 429 centres of the domains, which are 40 km east of GT.

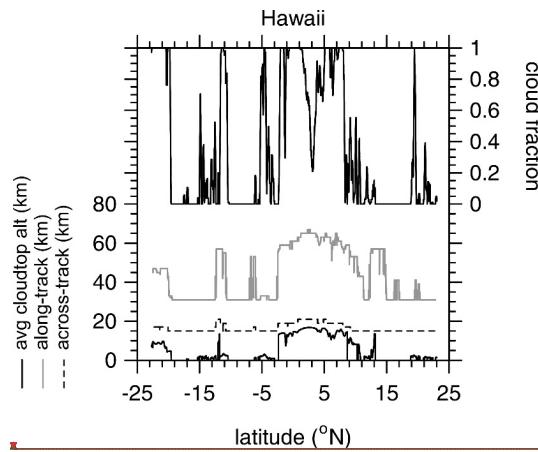
Deleted: 4

433

434 **Figure 7:** Full-frame mean bias errors (MBE) and root mean square errors (RMSE) for SCA re-
 435 reconstructed radiances as functions of distance (-ve values are W) from the ground-track (GT in
 436 Figure 6). Upper and lower rows are for MSI channel 1 radiances and 7 brightness temperatures.
 437 Full-frame mean values are listed on the base of each plot: clear-sky on the left, cloudy-sky on
 438 the right. Grey bands indicate EarthCARE's default assessment domains.

Moved (insertion) [6]
 Formatted: Centered

439


440 **Figure 7** shows mean bias errors (MBE) and root mean square errors (RMSE) for reconstructed
 441 MSI channels 1 and 7 as functions of distance, east and west, of GT for the full lengths of the three
 442 test frames (see Qu et al. 2023). By definition, MBE and RMSE along GT are zero. For channel
 443 1's reconstructions, MBEs out to ± 20 km are generally smaller than $0.05 \text{ W m}^{-2} \text{ sr}^{-1}$, with smaller
 444 errors for cloudless pixels. The negative biases for *Baja* and *Hawaii* frames out past ~ 5 km from
 445 GT stem from clouds along the GT being slightly darker than those elsewhere over the frames (see
 446 Figure 6). Likewise, MBEs for channel 7 are generally smaller than 0.5 K . Over the 5 km wide

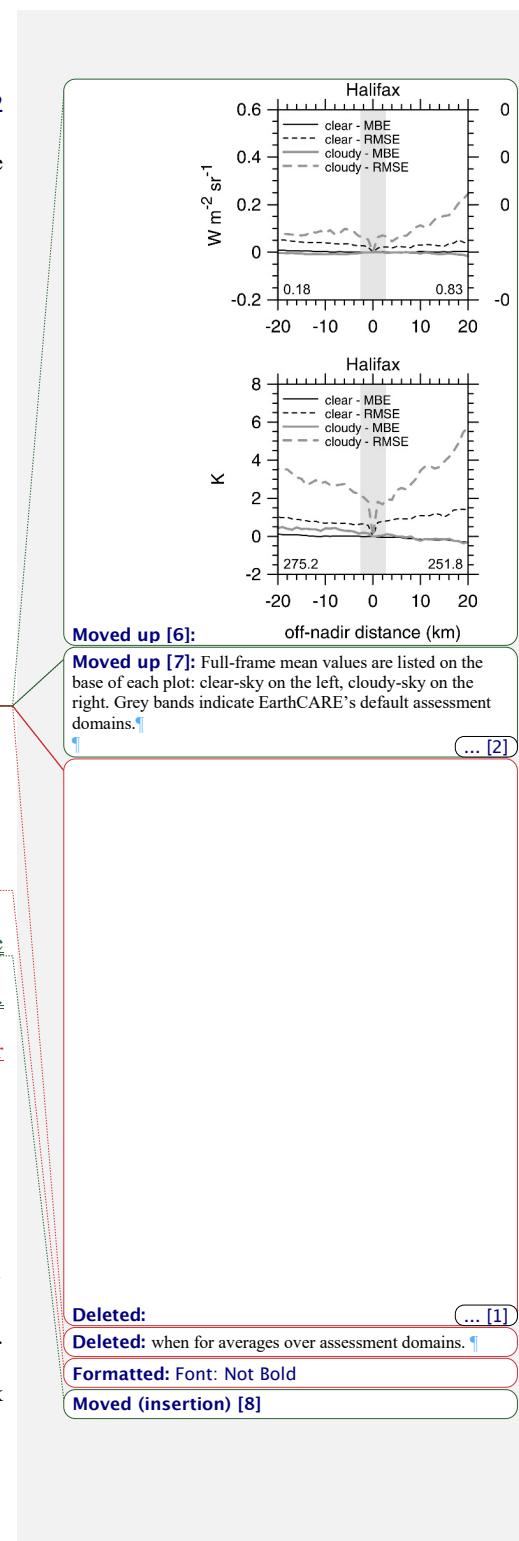
Moved (insertion) [7]

Deleted: 4

Deleted: 4

449 assessment domains centred on GT, MBEs for both channels are almost negligible relative to the
 450 frame-wide average values that are listed along the base of each plot.

451

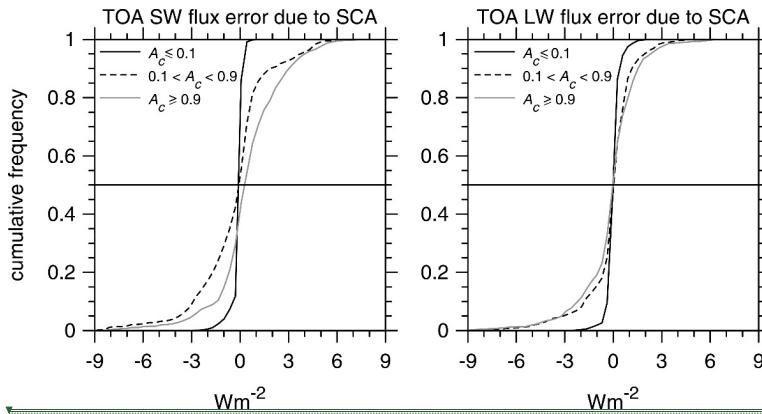

452 **Figure 8:** Along-track and across-track length of assessment domain plus buffer-zones as
 453 functions of latitude for the *Hawaii* frame. All assessment domains are 5 km across-track by 21 km
 454 along-track. Minimum size for all buffer-zones is 5 km. Also shown are corresponding values of
 455 mean cloudtop altitude and cloud fraction for 5 x 21 km assessment domains.

456

457 Unlike MBEs, however, RMSE values jump immediately off the GT. In general, they continue
 458 to increase with distance from GT, but it is difficult to say at what distance they become unusable.
 459 It is important to note that RMSE values plotted here get reduced by at least a factor of 10 for
 460 averages over assessment domains.

461 3.2. Definition of assessment domain buffer-zones

462 The planned initial default values for both d_{\parallel}^{\min} and d_{\perp}^{\min} is 5 km. Thus, for D measuring 5 x 21
 463 km, 3D RT will be applied to D^+ that measure at least ~15 km across-track by ~31 km along-track.
 464 Figure 8 shows sizes of D^+ along the *Hawaii* frame. The most notable feature is that along-track

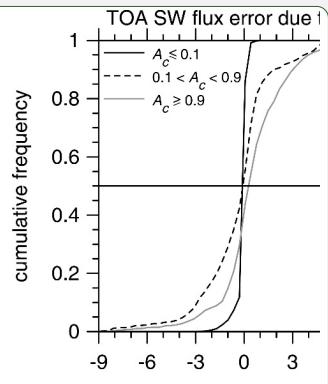


507 lengths vary much more than across-track lengths. This is driven by the fixed along-track off-nadir
 508 views of the BBR; whenever cloud occurs, especially high cloud, values of n_{buffer}^{\searrow} and n_{buffer}^{\swarrow} exceed
 509 0. Lengths of D^+ maximize between about 3°N and 6°N where mean cloudtop altitudes h reach
 510 ~ 17 km; this despite cloud fractions for D^+ being substantially less than 1.

511 While across-track buffer sizes m_{buffer} depend on h , too, they also depend on φ_r and θ_0 . Near
 512 latitude 10°N , while $\varphi_r \approx 107^{\circ}$ (Sun is shining in almost perpendicular to GT), $\theta_0 \approx 30^{\circ}$ and so
 513 lengths of cloud shadows cast perpendicular to GT are small. As such, there is little need to expand
 514 the domain across-track, and so $m_{buffer} = 0$ and cross-track size of D^+ equal the default 15 km.
 515 Near latitude 21°S , however, where mean h are the same as near 10°N , clouds are more overcast,
 516 but equally important, $\varphi_r \approx 130^{\circ}$, which is still not far off shining in perpendicular to GT, and
 517 $\theta_0 \approx 50^{\circ}$. Together these conspire to cast cloud shadows well beyond D resulting in D^+ that are
 518 slightly larger than the default.

519 **3.3. Estimation of SCA-related bias errors for TOA broadband fluxes**

520 In a manner similar to cloud radiative effects, estimation of errors for TOA broadband radiative
 521 fluxes that arise from the SCA process provide a simple, integrated indication of SCA performance.
 522 [Figure 9](#) shows cumulative frequency distributions of $\Delta\langle\hat{F}_{\text{SW}}\rangle$ and $\Delta\langle\hat{F}_{\text{LW}}\rangle$ (see (7)), for the *Ha-*
 523 *waii* frame. Errors for this frame are the largest of the three. As is often the case, errors tend to be
 524 largest for SW fluxes, and increase slightly as assessment domain A_c increases. The latter point
 525 basically indicates that the SCA does extremely well in clear-sky conditions; even for the *Baja*
 526 frame that was mostly over variable land.


527 **Figure 9:** Cumulative frequency distributions of estimated errors in broadband TOA upwelling
 528 SW and LW fluxes stemming from the SCA for all 5 x 21 km assessment domains in the *Hawaii*
 529 frame. Distributions are partitioned for three ranges of assessment domain total cloud fraction A_c .
 530

531
 532 It is encouraging to see that median errors for both bands are negligible for all conditions. More-
 533 over, as [Figure 9](#) shows, with $\sim 90\%$ of errors being within $\pm 3 \text{ W m}^{-2}$, and slightly better for the
 534 other frames, errors imparted on TOA flux estimates by the SCA will not hinder assessment of
 535 EarthCARE's objective of retrieving cloud-aerosol properties well enough as to be able to model,
 536 on average, TOA fluxes to within $\pm 10 \text{ W m}^{-2}$.

537 4. Summary and discussion

538 The EarthCARE satellite mission has set itself a very high bar with its plan to infer cloud and
 539 aerosol properties, from its observations, well enough that when used to initialize radiative transfer
 540 (RT) models, their estimates of TOA fluxes will differ from observed values by, typically, less than
 541 $\pm 10 \text{ W m}^{-2}$. To realize, and gauge the success of, this *radiative closure assessment* it will be nec-
 542 essary to employ, operationally, 3D atmospheric RT models. This by itself will set EarthCARE
 543 apart from its predecessors, which have relied entirely on 1D RT models. The immediate issue

Moved (insertion) [9]

Moved up [9]:

Figure 9: Cumulative frequency distributions of estimated errors in broadband TOA upwelling SW and LW fluxes stemming from the SCA for all 5 x 21 km assessment domains in the *Hawaii* frame. Distributions are partitioned for three ranges of assessment domain total cloud fraction A_c .

Deleted:

552 facing this plan is that L2-retrievals at nadir are just \sim 1 km wide, and at this scale net fluxes of
553 lateral flowing radiation, not accounted for by 1D RT models, can be substantial (e.g., Marshak et
554 al. 1998). To justifiably use 3D RT models, however, the atmosphere-surface system has to be
555 defined on both sides of the narrow L2-plane. The point of this paper was to demonstrate Earth-
556 CARE’s method of expanding its L2-retrievals perpendicular to the L2-plane. At the core of this
557 *3D scene construction algorithm* (SCA) is a radiance-matching (RM) scheme that uses Earth-
558 CARE’s MSI passive imagery (cf. Barker et al. 2011; 2012; 2014). There are, however, other as-
559 pects of this process that have been documented here for the first time.

560 Synthetic radiances measured virtually by EarthCARE’s MSI for three test frames, which were
561 produced for *end-to-end simulation* of EarthCARE’s measurement-processing chain (see Qu et al.
562 2023), were used here to demonstrate the performance of the SCA. “Reconstruction” of measured
563 MSI radiances forms the foundation of the SCA. Basically, off-nadir pixels are paired with a nadir
564 pixel whose spectral radiances best match theirs. The 3D domains to be used by the 3D RT models
565 are “constructed” by taking columns of geophysical information associated with matching nadir
566 pixels and inserting them at the off-nadir pixels.

567 Comparing reconstructed radiances to their observed counterparts provides a straightforward
568 indication of the success of the SCA. If observed radiances are reconstructed poorly, one has to
569 also assume that correspondingly constructed 3D surface-atmosphere domains are unfit for both
570 3D RT models and radiative closure assessment. SCA errors flare-up when conditions needed at
571 off-nadir locations are lacking from the nearby the L2-plane. Typical performances of the SCA
572 were shown in Section 3.1, and as expected, generally erode the further recipient pixels are from
573 their donors. This is not much of an issue for radiative assessment domains themselves, for they
574 extend just 2 km from the L2-plane. Their buffer-zones, however, which were described in section

575 2.2, can be as much as 10 km from the L2-plane (see [Figure 3](#)). The reason why assessment do-
 576 mains are so small is because EarthCARE's radiative closure assessment seeks to verify the narrow
 577 L2 retrievals, not the SCA; the SCA should help achieve this as invisibly as possible.

578 Once defined, assessment domains and their buffer-zones get screened (see section 2.3) in an
 579 attempt to identify those most likely to realize useful closure assessments. Furthermore, the inter-
 580 section of EarthCARE's data processing limitations with the computational [demand](#) of the 3D solar
 581 RT model (Cole et al. 2023) [forces the need to rank](#) assessment domains to ensure that the few that
 582 [get](#) assessed per frame [lead](#) to good [samplings](#), over the mission's life, of conditions [that](#) occur over
 583 the globe and the year. This process was described in section 2.4.

584 The simple method of estimating TOA flux bias errors that are likely to arise from the SCA
 585 (Barker et al. 2014) was assessed using test frame synthetic observations. Reassuringly, it was
 586 shown in Section 3.3 that most TOA flux errors due to the SCA's imperfect atmospheres, for as-
 587 sessment domains measuring 5 x 21 km, can be expected to be much smaller, and rarely larger,
 588 than EarthCARE's stated goal of $\pm 10 \text{ W m}^{-2}$.

589 To conclude, it is tempting to view the SCA as a very cost-[effective](#) (i.e., almost free) [scanning](#)
 590 [active sensor system](#) (cf. Illingworth et al. 2018). But one almost always gets what one pays for,
 591 and the SCA is, when pushed, no exception. Its performance, especially well-removed from the
 592 L2-plane, cannot be expected to rival that of an authentic scanning active sensor system (Barker et
 593 al. 2021); to use it as a full-up replacement would be cavalier. In its current role, however, as
 594 purveyor of approximate, ancillary information that both facilitates use of 3D RT models and
 595 strengthens verification of L2 retrievals, it appears as though its shortcomings will be tolerable and
 596 outweighed by its benefits.

597 **Acknowledgements**

Deleted: needs

Deleted:),

Deleted: must be ranked

Deleted: can be

Deleted: amount

Deleted: a

Deleted: sampling

Deleted: as they

Deleted: effect

Deleted:Page Break.....

Formatted: Font: 12 pt, Not Bold

608 Work reported on in this paper was funded by the European Space Agency and in-kind support
609 from ECCC. This paper, and studies leading to it, benefited much from numerous discussions with
610 Dr. Tobias Wehr who passed away on 1-Feb-2023.

Deleted: In the short-term, data used for this study can be obtained from the corresponding author. By the time of publication, ECCC will have an official data repository from which data used here will be downloadable. ¶

611

612 **Data availability**

613 Data used in this report, and in other EarthCARE reports in this issue, can be obtained at van Za-
614 delhoff et al. (2022).

615

622

APPENDIX A

623

Radiance-matching algorithm

624 Let $r_k(i, j)$ be MSI radiance, for the k^{th} MSI channel, at (i, j) on the joint standard grid (JSG) in which
 625 $j = 0$ is along the L2-plane. Following Barker et al. (2011), when seeking to populate a column at
 626 $(i, j \neq 0)$ with a suitable proxy from $(i, j = 0)$, begin by computing, for K_s channels,

$$627 \quad F(i, j; m) = \Lambda(i, j; m) \sum_{k=1}^{K_s} a_k \left[\frac{r_k(i, j) - r_k(m, 0)}{\max[r_k(i, j), r_k(m, 0)]} \right]^2 ; \quad m \in [i - M, i + M]; j \neq 0, \quad (11)$$

628 where $(m, 0)$ holds potential *donor* profiles for the *recipient* at $(i, j \neq 0)$, a_k are weights that could
 629 depend on channel but were assumed to equal 1, and M is number of pixels, forward and backward,
 630 along the L2-plane to be searched for a donor. The function $\Lambda(i, j; m)$ is defined as

$$631 \quad \Lambda(i, j; m) = \begin{cases} -1 & ; \quad \chi = \text{.false.} \\ 1 & ; \quad \chi = \text{.true.} \end{cases} \quad (12)$$

632 By requiring

$$633 \quad \chi = \begin{cases} \text{surface at } (i, j) = \text{surface at } (m, 0) \\ \text{.and.} \\ |\mu_0(i, j) - \mu_0(m, 0)| < \Delta\mu_0 \\ \text{.and.} \\ \mu_0(i, j) \cdot \mu_0(m, 0) > 0 \\ \text{.and.} \\ |\varphi_r(i, j) - \varphi_r(m, 0)| < \Delta\varphi_r \\ \text{.and.} \\ m \in [1, N_{\text{JSG}}], \end{cases} \quad (13)$$

Deleted: \rightarrow

$$F(i, j; m) = \sum_{k=1}^{K_s} a_k \Lambda(i, j; m) \left[\frac{r_k(i, j) - r_k(m, 0)}{\max[r_k(i, j), r_k(m, 0)]} \right]^2$$

Field Code Changed

Deleted: \rightarrow $\Lambda(i, j; m) = \begin{cases} 0 & ; \quad \chi = \text{.false.} \\ 1 & ; \quad \chi = \text{.true.} \end{cases}$

Field Code Changed

637 it controls whether or not a pixel at $(m, 0)$ is to be considered as a potential donor (see section 2.3).

(i, j)

638 The upper condition means that surface types (land, sea, and snow/ice) must be the same at

$(m, 0)$ and (i, j) .

639 and μ_0 . The next two conditions mean that at $(m, 0)$ and (i, j) cosine of solar zenith angles

μ_0 and $\Delta\mu_0 = 0.005$

640 must differ by less than $\Delta\mu_0 = 0.005$, and the Sun must be up or down at both locations. Next,

φ_r

641 the difference between solar azimuth angles relative to the satellite's tracking direction φ_r must be

$\Delta\varphi_r = 5^\circ$

642 less than $\Delta\varphi_r = 5^\circ$. The final condition simply means that the search cannot go past the ends of a

$(m, 0)$

Field Code Changed

643 frame. It almost goes without saying, but when the Sun is down at $(m, 0)$, SW radiances are simply

644 not used in (11).

645 For the $1 \leq M' \leq 2M + 1$ values of $F(i, j; m) \geq 0$ that get computed, define Euclidean distances

Deleted: $F(i, j; m)$

646 between the centres of (i, j) and $(m, 0)$ as

Field Code Changed

647

$$L(i, j; m) = \Delta L \left[(i - m)^2 + j^2 \right]^{1/2}, \quad (14)$$

648 where ΔL is horizontal resolution, which for EarthCARE is ~ 1 km, and sort $F(i, j; m)$ from small-

649 est to largest (i.e., best to worst radiance match), with $L(i, j; m)$ going along passively. Denote the

650 reordered sequences as $\{\hat{F}(i, j; m)\}_{m=1}^{M'}$ and $\{\hat{L}(i, j; m)\}_{m=1}^{M'}$. Finally, the donor for location $(i, j \neq 0)$

651 is deemed to reside at

652

$$m^*(i, j) = \arg \min_{m \in [1, M']} \{\hat{L}(i, j; m)\} \quad (15)$$

654 which reads: find m that corresponds to the smallest distance between the recipient at (i, j) and those
655 pixels that constitute the smallest $100f\%$ of $\hat{F}(i, j; m)$. The tuneable parameter f will be set initially to
656 0.05, but this could change (see Barker et al 2011). The procedure outlined here is performed for all
657 $(i, j \neq 0)$ across the MSI's swath, with pixels at $(i, 0)$ donating to themselves.

658

659

APPENDIX B

660

Calculation of buffer-zone sizes661 *a. Along-track length*

662 Let $h(i^*(i, j), 0)$ be cloudtop altitude at JSG cell (i, j) using the SCA's field. Using these values,
 663 define for each i in a frame the highest cloudtop in across-track swaths of JSG pixels spanning the
 664 assessment domains as

$$665 \quad h_{\perp}^{\max}(i) = \max\{h(i^*(i, j), 0) : j \in [-m_{\text{assess}}, m_{\text{assess}}]\}. \quad (16)$$

666 The symbols \perp and \parallel indicate across- and along-tracks, respectively. Thus, maximum cloudtop
 667 altitude in an assessment domain $D(n)$ is

$$668 \quad h_D^{\max}(n) = \max\{h_{\perp}^{\max}(i) : i \in [n, n + n_{\text{assess}} - 1]\}. \quad (17)$$

669 Consider first the buffer-zone out in front of $D(n)$; applicable most to the BBR's backward
 670 view. The minimum number of JSG pixels that one need be concerned about searching to see if
 671 clouds outside of $D(n)$ obscure part of $D(n)$ is

$$672 \quad n_{\text{buffer}} = \text{nint}\left(\frac{\max\{d_{\parallel}^{\min}, h_D^{\max}(n) \tan \theta_v\}}{\langle \Delta x \rangle}\right), \quad (18)$$

673 where d_{\parallel}^{\min} is the absolute minimum along-track buffer length, assumed for EarthCARE to be ~ 5
 674 km, θ_v is BBR viewing zenith angle, and $\langle \Delta x \rangle$ is mean length of JSG pixels in the along-track

675 direction. For EarthCARE, $\langle \Delta x \rangle \approx 1$ km. If maximum cloudtop altitude across the entire useable
 676 part of the 6,000 km frame is

677
$$h_F^{\max} = \max \{h(i, j) : i \in [m_1 + 1, N_{JSG} - m_2 + 1], j \in [-m_{\text{assess}}, m_{\text{assess}}]\}, \quad (19)$$

678 then the absolute maximum number of JSG pixels one need search for outside of $D(n)$ that might
 679 obscure part of $D(n)$ is

680
$$n_{\text{buffer}}^{\max} \approx \text{nint} \left(\frac{h_F^{\max} \tan \theta_v}{\langle \Delta x \rangle} \right). \quad (20)$$

681 This can be reduced by knowing the location of the along-track JSG pixel that houses the highest
 682 cloud between the last pixel of $D(n)$ and n_{buffer}^{\max} pixels out in front of it. This is expressed as

683
$$n_{\text{buffer}}^{\max}(n) = \arg \max_{i \in [n + n_{\text{assess}} + n_{\text{buffer}}(n), n + n_{\text{assess}} + n_{\text{buffer}}(n) + n_{\text{buffer}}^{\max}]} h_{\perp}^{\max}(i). \quad (21)$$

684 Proceed then to search

685
$$h_{\perp}^{\max}(i) \geq \frac{[i - (n + n_{\text{assess}})] \langle \Delta x \rangle}{\tan \theta_v} : i = n + n_{\text{assess}} + n_{\text{buffer}}, \dots, n + n_{\text{assess}} + n_{\text{buffer}}^{\max}(n), \quad (22)$$

686 where n_{buffer} comes from (18). Let values of i for which the condition in (22) is met form the set
 687 $\{i'\}$. Therefore, the size of the buffer-zone for the back-looking view associated with $D(n)$ is

688
$$n_{\text{buffer}}^{\leftarrow}(n) = \begin{cases} n_{\text{buffer}} & ; \text{ if (22) is never met} \\ \max\{i'\} & ; \text{ if (22) is met.} \end{cases} \quad (23)$$

689 To set the size of the buffer-zone for the fore-looking view $n_{\text{buffer}}^{\swarrow}(n)$, (21) through (23) are reap-
 690 plied reversing indices. Figure 4 is a schematic of this process.

691 Note that determination of $n_{\text{buffer}}^{\swarrow}(n)$ and $n_{\text{buffer}}^{\searrow}(n)$ are independent of θ_0 . This is because for
 692 EarthCARE's orbit over 80% of observations with $\theta_0 < 90^\circ$ have $30^\circ < \varphi_r < 150^\circ$ implying that,
 693 for most cases, projection of direct-beam (and hence cloud shadows) into the along-track ends of
 694 $D(n)$ will be small. The exceptions are for very large θ_0 with $150^\circ < \varphi_r < 30^\circ$; but most of these
 695 cases will be avoided via the screening process as discussed in section 2.3.2.

696 *b. Across-track length*

697 Next, determine the size of across-track buffer-zones m_{buffer} . They are set using cloud information
 698 on the sunlit side of $D(n)$. Here the idea is that if a cloud anywhere to the side of D casts a shadow
 699 that falls onto the region formed by D and its along-track buffer-zones, then the across-track buffer-
 700 zone extends to include the cloud doing the shadowing. Once m_{buffer} is established, it is applied to
 701 the opposing side of $D(n)$, too.

702 Begin by setting a minimum size for the buffer-zone of d_{\perp}^{\min} , so that searching starts at cross-
 703 track JSG pixel $\pm m_{\text{assess}} \pm m_{\text{buffer}}$, where $m_{\text{buffer}} = \text{nint}(d_{\perp}^{\min} / \langle \Delta y \rangle)$ is the minimum buffer size in
 704 JSG pixels; choice of using + or - depends on which side of D the Sun is on. For EarthCARE,
 705 $d_{\perp}^{\min} = 5$ km. One then determines the highest cloud in the row of JSG pixels at distance j pixels
 706 from L2-plane as

707
$$h_{\parallel}(n, j) = \max\{h(i, j) : i \in [n - n_{\text{buffer}}^{\leftarrow}(n), n + n_{\text{assess}} + n_{\text{buffer}}^{\rightarrow}(n)]\}. \quad (24)$$

708 If it happens that

709
$$h_{\parallel}(n, j) \geq \frac{\text{abs}(j - m_{\text{assess}}) \langle \Delta y \rangle}{\tan \theta_0 \sin \varphi_r}, \quad (25)$$

710 is satisfied at j , the across-track buffer gets reset to $m_{\text{buffer}} \leftarrow \text{abs}(j - m_{\text{assess}})$. This process is con-
 711 tinued out to the edge of the MSI's swath. *Figure 5* is a schematic of this procedure. The aggrega-
 712 tion of an assessment domain D and its buffer-zones is denoted as D^+ .

713

714 **References**

715 Barker, H. W. and Z. Li, 1997: Interpreting shortwave albedo-transmittance plots: True or apparent anom-
 716 alous absorption? *Geophys. Res. Lett.*, **24**, 2023-2026.

717 —, M. P. Jerg, T. Wehr, S. Kato, D. Donovan, and R. Hogan, 2011: A 3D Cloud Construction Algorithm
 718 for the EarthCARE satellite mission. *Q. J. R. Meteorol. Soc.*, **137**, 1042–1058 DOI:10.1002/qj.824

719 —, S. Kato, and T. Wehr, 2012: Computation of Solar Radiative Fluxes by 1D and 3D Methods using
 720 Cloudy Atmospheres Inferred from A-train Satellite Data. *Surveys in Geophys.* **33**, 657-676.

721 —, J. N. S. Cole, and M. Shephard, 2014: Estimation of Errors associated with the EarthCARE 3D Scene
 722 Construction Algorithm. *Q. J. R. Meteorol. Soc.*, **140**, 2260–2271, DOI:10.1002/qj.2294.

723 —, —, C. Domenech, M. Shephard, C. Sioris, F. Tornow, and T. Wehr, 2015: Assessing the Quality of
 724 Active-Passive Satellite Retrievals using Broadband Radiances. *Q. J. R. Meteorol. Soc.*, **141**, 1294–
 725 1305, DOI:10.1002/qj.2438.

726 —, P. M. Gabriel, Z. Qu, and S. Kato, 2021: Representativity of Cloud-Proiling Radar Observations for
 727 Data Assimilation in Numerical Weather Prediction. *Q. J. R. Meteorol. Soc.*, **147**, 1801–1822.
 728 <https://doi.org/10.1002/qj.3996>.

729 —, J. N. S. Cole, Z. Qu, N. Villefranque, and M. W. Shephard, 2023: Radiative Closure Assessment
 730 of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACMB-DF Product.
 731 *Atmos. Meas. Tech.*, to be submitted.

732 Cole, J. N. S. H. W. Barker, Z. Qu, N. Villefranque, and M. W. Shephard, 2023: Broadband Radi-
 733 ative Quantities for the EarthCARE Mission: The ACM-COM and ACM-RT Products. *At-*
 734 *mos. Meas. Tech.*, to be submitted.

735 Donovan, D. P., P. Kollias, and G-J van Zadelhoff, 2023: The Generation of EarthCARE L1 Test
 736 Data sets Using Atmospheric Model Data Sets. *Atmos. Meas. Tech.*, to be submitted

737 Eisinger, M., T. Wehr, T., Kubota, D., Bernaerts, and K. Wallace, 2023: The EarthCARE production model
 738 and auxiliary products. *Atmospheric Measurement Techniques*, to be submitted.

739 ESA., 2001: *The Five Candidate Earth Explorer Missions: EarthCARE –Earth Clouds, Aerosols and Radi-*
 740 *ation Explorer*, ESA SP-1257(1), September 2001. ESA Publications Division: Noordwijk, The Neth-
 741 erlands.

742 Illingworth, A. + others, 2015: THE EARTHCARE SATELLITE: The next step forward in global meas-
 743 urements of clouds, aerosols, precipitation and radiation. *Bull. Am. Met. Soc.*, **96**, 1311-1332.
 744 DOI:10.1175/BAMS-D-12-00227.1.

745 — + others, 2018: WIVERN: A New Satellite Concept to Provide Global In-Cloud Winds, Precipitation,
 746 and Cloud Properties. *Bull. Am. Met. Soc.*, **99**, 1669–1687. <https://doi.org/10.1175/BAMS-D-16-0047.1>

748 Marshak, A., A. Davis, W. Wiscombe, W. Ridgeway, R. Cahalan, 1998: Biases in Shortwave Column Ab-
 749 sorption in the Presence of Fractal Clouds. *J. Climate*, **11**, 431-446.

750 Platnick, S., Ackerman, S., King, M., et al., 2015: MODIS Atmosphere L2 Cloud Product (06_L2). NASA
 751 MODIS Adaptive Processing System, Goddard Space Flight Center, USA:
 752 http://dx.doi.org/10.5067/MODIS/MOD06_L2.006.

753 Qu, Z., D. P. Donovan, H. W. Barker, Cole, J. N. S, M. W. Shephard, and V. Huijnen, 2023: Numerical
 754 Model Generation of Test Frames for Pre-launch Studies of EarthCARE's Retrieval Algorithms and
 755 Data Management System. *Atmos. Meas. Tech.*, to be submitted

756 Sun, X. J., H. R. Lia, H. W. Barker, R. W. Zhang, Y. B. Zhou and L. Liu, 2016: Estimation of cloud base
 757 heights based on the matching of multiple cloud characteristics. *Q. J. R. Meteorol. Soc.*, **142**, 224-
 758 232, DOI:10.1002/qj.2647.

759 Tornow, F., H. W. Barker, and C. Domenech, 2015: On the use of Simulated Photon Paths to Co-register
 760 TOA radiances in EarthCARE Radiative Closure Experiments. *Q. J. R. Meteorol. Soc.*, **141**, 3239-
 761 3251. DOI:10.1002/qj.2606.

762 USGS Earth Resources Observation and Science (EROS) Center, 2018: USGS EROS Archive - Land Cover
 763 Products - Global Land Cover Characterization (GLCC) Background, <https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-0#overview> (last access: April 5, 2022).

766 van Zadelhoff, G.-J., H. W., Barker, E., Baudrez, S., Bley, N., Clerbaux, J. N. S., Cole, J., de Kloe, N.,
 767 Docter, C., Domenech, D. P., Donovan, J.-L. Dufresne, M., Eisinger, J., Fischer, R., Garcia-Marañón,
 768 M., Haarig, R. J., Hogan, A., Hünerbein, P., Kollas, R., Koopman, T., Wehr, 2022: EarthCARE level-
 769 2 demonstration products from simulated scenes (09.01) [Data set]. Zenodo.
 770 <https://doi.org/10.5281/zenodo.7117116>

771 Velázquez-Blázquez, A., E. Baudrez, N., Clerbaux, C., Domenech, R. G., Marañón, and N. Madenach,
 772 2023: Towards instantaneous top-of-atmosphere fluxes from EarthCARE: The BMA-FLX product.
 773 *Atmospheric Measurement Techniques*, to be submitted.

774

775

Page 22: [1] Deleted Howard 2/9/23 1:47:00 PM

▼.....

Page 22: [1] Deleted Howard 2/9/23 1:47:00 PM

▼.....

Page 22: [1] Deleted Howard 2/9/23 1:47:00 PM

▼.....

Page 22: [2] Moved to page 21 (Move #7) Howard 2/9/23 1:47:00 PM

Page 22: [2] Moved to page 21 (Move #7) Howard 2/9/23 1:47:00 PM

▼.....