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Abstract. A set of Doppler power spectrum processing methods for TJ-II, a vertical sensing 94 GHz millimeter-wave cloud

radar(MMCR), is proposed to distinguish clouds and enhance the data quality. The noise level is estimated by a modified seg-

ment method with 2-D segments. A two-step cloud signal mask method is proposed to distinguish clouds and noise. A Gaussian

filter with adaptive standard variance is used to improve detection performance at the boundary of clouds and noise. Square

signal blocks were constructed to test our method. Velocity dealiasing is carried out combined with a pre-dealiasing processing5

and the dual Pulse Repetition Frequency (PRF) technique to address a particular phenomenon called half-folded in MMCRs,

which can not be fixed by post-processing at the base datum stage. Some observations of TJ-II are used to demonstrate our

method. A comparison between our method as pre-processing and the method as post-processing proposed by Key Laboratory

for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, was

carried out using one-day observation. It was found that our method shows some advantages in cloud base detection.10

1 Introduction

Clouds cover almost two-thirds of the global surface. They are composed of water droplets, supercooled water droplets, ice

crystals, and their mixtures condensed from water vapor in the atmosphere. Clouds contribute to our lives in both direct and

indirect ways. Clouds are the most visible elements of the sky and the dominant contributors to the weather we experience

every day. Clouds play an important role in climate change, global radiation budget, and weather forecasting(Muller and15

Fischer, 2007; Rosenfeld, 2006; Arking, 1991). Clouds control Earth’s weather and regulate its climate(Solomon et al., 2007;

Collins et al., 2007). Clouds also play a critical role in the water cycle and shape the global distribution of water resources.

Despite the importance of clouds in the climate system, they are difficult to represent in climate models(Bony et al., 2015).

Clouds constitute the largest single source of uncertainty in climate prediction(Baker and Peter, 2008). Therefore, the study of

clouds is integral to meteorological and climate research.20

Cloud researches are complex and huge, from macroscopic cloud amount, cloud shape, cloud height, and cloud velocity

detection to microscopic cloud particle physics, chemistry, optics, radiation characteristics, etc. Cloud sensing is the founda-
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tion of cloud research. Clouds have been the subject of observation for centuries, but serious systematic investigations began

only a few decades ago(Lamb and Verlinde, 2011). The current common remote sensing devices for clouds include weather

radar, cloud lidar, and millimeter-wave cloud radar(MMCR)(Ran et al., 2021; McGill et al., 2002; Lhermitte, 1987a). These25

devices have different application scenarios. Weather radar mainly operates at S-band and C-band, such as WSR-88D, CIN-

RAD/CC, with low atmospheric propagation loss and extremely high peak transmit power, making it the most indispensable

tool for remote sensing of large-scale clouds and precipitation(Kumjian, 2018). Lidar is capable for boundary layer, Cloud-Top

Height(CTH), Cloud Base Height(CBH) and aerosol sensing with high resolution(Ansmann and Müller, 2005; Baars et al.,

2008; Müller et al., 2007; Kim et al., 2011; Stephens et al., 2002). On the opposite, Lidar is relatively poor at detecting thick30

clouds due to poor penetration.

Millimeter-wave radars(MMCR) are somewhere in between weather radar and lidar, with higher spatial and temporal resolu-

tion than weather radars and better penetration than lidar, making it the better tool for cloud vertical structure(CVS) sensing(Yan

et al., 2021). Not only the macro parameters such as cloud thickness, cloud-top height, cloud-bottom height, and cloud amount

but also the microphysics parameter such as cloud particle size, concentration, droplet spectrum distribution, etc. could be35

obtained by MMCRs(Kropfli et al., 1995; Kollias et al., 2007; Verlinde et al., 2013).

Because of its outstanding advantages for cloud research, MMCR has been deployed on various research platforms, including

Cloud-Sat with Cloud Profiling Radar(CPR, Atmospheric Radiation Program (ARM) with Ka-band Zenith Radar(KAZR)

.etc(Im et al., 2005; Chandra et al., 2015). The 94 GHz(W-band) and 35 GHz(Ka-band) are the common frequencies MMCRs

work at. Compared with the 35 GHz, 94 GHz MMCR has a shorter wavelength with a stronger cloud particle backscatter,40

leading to better detection performance. 94 GHz MMCR was first developed by Lhermitte (1987a, b). Nowdays, there are a

variety of 94 GHz MMCR(Takano et al., 2012; Huggard et al., 2008; Danne et al., 1999; Wu et al., 2014; Hogan et al., 2003;

Delanoë et al., 2016). They almost take one of the two systems. One is Pulse Doppler(PD) radar with a Traveling Wave Tube

Amplifier(TWTA) and one or two antennas. The other is Frequency Modulated Continuous Wave(FMCW) radar with a Solid-

State Power Amplifier(SSPA) and two antennas. The PD MMCR always used TWTA due to the insufficient peak power of45

W-band SSPA in the past, while FMCW MMCR always used two antennas due to insufficient isolation of the W-band circulator.

The PD MMCR with TWTA suffers from power supply requirements and lifetime. FMCW MMCR with two antennas suffers

in size and weight. Benefiting from the rise in power of the 94G SSPA in recent years, to address the deficiencies of these two

kinds of radars due to size, power demand, and reliability, Our team developed a PD MMCR called TianJian II(TJ-II) with

a single antenna and SSPA. Naturally, a set of Doppler power spectrum processing methods matching TJ-II characteristics is50

proposed.

The TJ-II MMCR is described in Sect.2. A noise level estimating method based on the segment method is described in

Sect.3. A cloud signal mask method with two-step is described in Sect.4. A velocity dealiasing method combined with the dual

pulse repetition frequency (PRF) technique is described in Sect.5. Examples of our method applied to TJ-II observations are

shown in Sect.655
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Figure 1. Photo of TJ-II MMCR

2 The TJ-II radar

TJ-II cloud radar, developed by Nanjing University of Information Science & Technology(NUIST), is a groud-base vertical

detection cloud radar. It works at about 94 GHz for dual-polarization measurements. It is a PD radar using SSPA and has only

a single antenna with two polarized ports(Wang et al., 2022). Segment detection and pulse compression technology are used

to overcome the less output power of SSPA than TWTA. Also, the dual PRF technique is used for velocity dealiasing with the60

dedicated algorithm. The primary purpose of the TJ-II is to provide a small mass and size, and low-cost 94 GHz MMCR. It can

provide reflectivity, mean Doppler velocity and spectral width, and linear depolarization ratio(LDR). The performance metrics

of the TJ-II are shown in Tab.1. The peak power of the transmitter is 6 W. The pulse length differs from 1 us to 20 us according

to the detection altitude. The detection altitude ranges from 300 m to 15 km, covered by three pulse lengths with an 18.75 m

range gate. The pulse repetition time is between 100us and 150us to balance the unambiguous range and Nyquist velocity.65

3 Noise level estimation

Similar to other PD radars, after pulse compression and slow-time FFT processing, we can get the Doppler power spectrum of

the cloud signal. The Doppler power spectrum reflects the power distribution corresponding to particles with different Doppler

velocities. Power spectrum data is related to cloud microphysics and dynamics, which can be obtained by some inversion

methods. Also, the Doppler power spectrum is the base of reflectivity, mean Doppler velocity, and spectral width. So power70

spectrum processing method will directly affect the data quality based on it.

The first is to estimate the noise level. Noise level is the mean noise power in the power spectrum, which is essential for

distinguishing signal and noise. The accuracy of the noise level will directly affect the performance of cloud signal detection

3
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Table 1. Performance metrics of the TJ-II MMCR

Frequency 94 GHz

Transmitter type Solid-state power amplifier

Peak transmitter power 6 W

Antenna type Singal Cassegrain antenna

Antenna gain 50.8 dBi

Antenna beamwidth 0.45◦

Vertical sampling 18.5 m

Pulse width 1.5/5/20 us

Pulse repetition time 100/150 us

FFT points 128/512

Sensitivity -30 dBZ

and then affect the calculation of the spectral moment. In the early days, the noise level was set to a fixed value(Battan,

1964; Sekhon and Srivastava, 1971). However, the power spectrum will change, and the performance will be poor in different75

atmospheric backgrounds. In wind profile radar, it is common to treat the mean of the farthest range gate spectrum as the noise

level, assuming there is only noise and no signal(Feng et al., 2021). However, in our application, the maximum detection range

of TJ-II is 15 km, and some kinds of high clouds exist at this height. So this method is not suitable for TJ-II. Hildebrand and

Sekhon (1974) proposed an objective determination method for noise level based on the physical properties of white noise.

This method was wildly used in many weather radars. Objective determination starts from the high-power position, searches80

downwards, and gradually strips the cloud signal until the signal and noise are entirely separated. This method is based on

rigorous theory. But in practical application, the amount of calculation is significant, and it is not easy to meet the judgment

condition of loop termination. Liu et al. (2014) proposed a method assuming that there is only noise in the power spectrum

at a velocity over 8 ms−1, and the mean of these points is the estimated noise level. This method was applied on a Ka-band

MMCR with a Nyquist velocity of over 8 ms−1. When it comes to W-band MMCRs, the Nyquist velocity is about one-third85

of Ka MMCRs with the same Pulse Repetition Time (PRT). For example, in TJ-II, the maximum detection range is 15 km, and

the corresponding minimum PRT is 100 us, leading to only about 8 ms−1 Nyquist velocity. So LIU’s method is incapable of

TJ-II because of the narrow Nyquist velocity interval. The velocity dealiasing processing will be discussed in Sect5. Petitdidier

et al. (1997) proposed a segment method that divides the power spectrum into multi segments and chooses the minimum mean

of these segments as the noise level based on the assumption that cloud signals will not fill the entire power spectrum.90

The noise level estimation method in TJ-II is based on the segment method. The following shows the principle of the segment

method.

According to the central limit theorem(CLT), the properly normalized sum of independent random variables tends toward

a normal distribution. The mean of N random samples with overall mean µ and variance σ2 follows a normal distribution

N(µ,σ2/N). Meanwhile, the cumulative distribution function(CDF) of the minimum value of M random variables X can be95
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Figure 2. Statistics of noise. (a) linear normalized fit result (b) logarithmic normalized fit result (c) mean noise level of each range gate

given by

1− [1−F (x)]M (1)

where F (x) is CDF of X . So CDF of noise level estimated by the segment method can be given by

1− [1− 1
2
erfc(

√
N

µ−x√
2σ

)]M (2)

From Eq.2, we can find that more points in segment and less segments will result in lower CDF value at the same x value,100

such as 0.8µ(−1dBc).

Most segment methods divide the spectrum within one range gate. There is a trade-off problem. With a fixed product(FFT

points), fewer segments (more points) could decrease the CDF value at a certain threshold but increase the likelihood that cloud

signals are present in all segments, leading to an overestimated noise level, especially for signals with wide spectrum width.

The narrow Nyquist velocity interval of W-band MMCRs further exacerbates this problem.105

Based on the existing observations of TJ-II, we found that the noise in the power spectrum follows an exponential distribu-

tion. As shown in Fig.2, a fitting result of linear normalized noise data made by the Matlab Distribution Fitter tool showed a

high agreement to an exponential distribution with rate parameter 1. The logarithmic normalized one fitted the extreme value

distribution matching the fact that the logarithm of the exponential distribution is the extreme value distribution. So, when it

comes to the usual segment method, the noise level with 512 points in a range gate, estimated by eight segments with 64 points,110

will have about 36% probability of lower than 0.8µ, which we think is a reasonable lower bound of the threshold for noise level

estimates. 36% is not acceptable. Even four segments will result in about a 4% probability of lower 0.8µ and may significantly

increase the likelihood of cloud signals mixed in all segments in practice due to the narrow Nyquist velocity interval.

A 2-D segment method is proposed to solve the trade-off problem with a single range gate. First, we find the noise in each

gate shares almost the same noise level. Fig.2c shows the deviation of the mean noise of each range gate compared with the115

whole power spectrum mean noise. The deviation of the mean noise is below 1 dB, which allows us to assume that the noise

5
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Figure 3. Segments pick example diagram

across the power spectrum shares the same distribution. This assumption makes the 2-D segment method reasonable. Noise

from multiple range gates can be used together to estimate the noise level. Points N in the segment can be increased. Second,

the number of segments M needs to be limited. If we use the whole power spectrum to divide the segments, the large number of

segments M will increase CDF and computation. So we pick some separated segments from the power spectrum. The picking120

method is shown in Fig.3. We pick the segments from different velocities and ranges instead of the fixed velocity and range.

For example, picking the segments only at the farthest range gate will result in an overestimation of the noise level in the case

of the cloud occurring at the farthest distance, which is possible as the maximum detection range of TJ-II is only 15 km.

Here is the current setting of TJ-II, points in a segment are 961 within a 31 × 31 window, and the number of segments is 23.

So CDF of -1 dBc is about 6.5×10−9. Because the segment method uses the minimum mean of segments, inevitably, the noise125

level will be underestimated. Compensation is necessary. The compensation factor is determined by the maximum gradient

position of CDF given by Eq.2, which means that the estimated noise level is most likely to fall at this position. The maximum

gradient position is about 0.94µ. So the compensation factor Fc is about 1.06.

4 Cloud signal mask method

After getting the noise level, it is time to distinguish between noise and signal. A common method is to use the continuity130

of velocity spectral width of cloud signals(Shupe et al., 2004; Yuan et al., 2022). Only spectral segment with N = 2Nh + 1

continuous bins all over the threshold Ns can be masked as cloud signal. It can be given by Eq.3.

M1c(x,y) =





1,

Nh∑

i=−Nh

sign(S(x + i,y)−Ns) = N

0, else

(3)
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Figure 4. 1-D continuum points method performance with the increasing of N based on actual observation. (a) is the raw Doppler power

spectrum; (b), (c), (d) shows the mask result with N = 3,5,7, respectively. White represents cloud signal, and black represents noise.

M1c(x,y) is the mask result. Si,j is the SNR of power spectrum bins normalized by the noise level, where i and j represent

the velocity Dimension and range Dimension, respectively. There is a trade-off on the choice of N between false alarm rate135

(FAR, noise masked as cloud signal) and missed detection rate (MDR, cloud signal masked as noise). The FAR and MDR of

the continuum points method can be given by Eq.4. Fnoise(x) and Fsignal(x) represent CDF of noise and signal, respectively.




PcFAR = [1−Fnoise(Ns)]N

PcMDR = 1− [1−Fsignal(Ns)]
N

(4)

The continuum points method shows poor performance for weak cloud signals. As shown in Fig.4 with a threshold Ns =

µn + 2σn = 3. This is due to the one-vote veto mechanism of the continuum point method. As long as one value is lower140

than the threshold, it will be judged as noise and then affect its neighboring signals bins also judged as noise. For weak cloud

signals, MDR increases rapidly.

A two-step with 2-D window mask method is proposed benefiting from the high range resolution of TJ-II. The mean of

cloud thickness is over 1km, and most are over 0.1 km (Poore et al., 1995; Sun-Mack et al., 2007). The thin cloud usually has

very low reflectivity and is, therefore, difficult to be detected. So in TJ-II, the detectable cloud should occupy several range145

gates, which makes the 2-D window mask method reasonable. Fig.5 shows the schematic flow of our method. First, a pre-mask

processing is done based on a central-pixel weighting scheme, as shown in Eq.5. It can also be thought of as smoothing to

suppress the noise.

M2w(x,y) =





1,

Nh∑

i=−Nh

Nh∑

j=−Nh

S(x + i,y + j) · k(i, j)≥ Ts

0, else

(5)

k(i, j) is a normalized kernel. It is well known that a larger kernel is more effective in suppressing the noise but blurs the150

boundary. In TJ-II, a 7 × 7 kernel is used. The type of kernel is also important to better reserve the boundary. The Gaussian

7
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Figure 5. Schematic flow diagram for cloud signal mask method. S(x,y) is the SNR, σg(x,y) is the standard variance of Gaussian kernel.

kernel, which outputs a “weighted average” of each bin and its neighborhood with the average weighted more towards the

value of the central bin, is one of the most common kernels of the noise reduction filter. A 2-D Gaussian distribution kernel

can be expressed as

G(i, j) =
1

2πσ2
exp(− i2 + j2

2σ2
) (6)155

where i and j are the indexes in a kernel window and are 0 for the central bin. σ is the standard deviation of the Gaussian

distribution for the window size of the kernel. A Gaussian kernel with variable standard deviation is used in our method.

The standard deviation of the Gaussian kernel is determined by the mean value of power spectrum bins in the same window,

expressed as

σg(x,y) = σ0 ·max(
Ts

µ(x,y)
,
µ(x,y)

Ts
) (7)160

where µ(x,y) is the mean of the bins in the same window with the central bin at x, y position. σ0 is the base standard variance.

It can represent the deviation from the boundary. The farther from the boundary, the greater the standard variance is used.

A half boundary case was used to evaluate the performance, as shown in Fig.6. Offset is the deviation from the boundary.

For the FAR evaluating case shown in Fig.6a, offset 0 means that the central bin is noise and falls at the boundary. The offset

8
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Figure 7. Statistics of manually selected signals. (a) signals picked from the red rectangle area. (b) linear normalized fit result (c) logarithmic

normalized fit result

direction is towards the noise area. For the MDR evaluating case shown in Fig.6b, offset 0 means that the central bin is signal165

and falls at the boundary. The offset direction is towards the signal area.

In our simulation, noise obeyed an exponential distribution with rate parameter 1. The Signal obeyed an exponential dis-

tribution with rate parameter 3, which is obtained from µn + 2σn. The assumption of signal distribution was based on our

observations. We found the cloud signal manually picked from the TJ-II power spectrum also fitted an exponential distribution,

as shown in Fig.7. The performance of our kernel compared with other edge-preserving smoothing filter are shown in Tab.2.170

The base standard variance σ0 used in Gaussian, bilateral, and our kernel was 1. The threshold Ts was set to 1.8, a bit lower

than 2, the mean of noise and signal mean, which preferred a lower MDR instead of FAR. MDR and FAR of Ts = 2 are also

shown in Tab.2.

Bilateral, median, Kuwahara, and guided filters all showed unacceptable performance for MDR, even at offset 3, which

means there are only signals. Our kernel, Gaussian, and box kernel showed a good balance on both FAR and MDR. Compared175

with the box kernel, our kernel performed worse for MDR but better FAR at the boundary area. Taking 10 % as the judgment

of whether it is easy to blur, our kernel only had two bins, at signal offset 0 and noise offset 0, while the box kernel had three

bins, at signal offset 0 and noise offset 0, 1. Compared with the standard Gaussian kernel, our kernel performed better for both

MDR and FAR, only except FAR at offset 0.
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Table 2. Summary of FAR and MDR using different kernels or filters

Filter

type
Performance

OFFSET

0 1 2 3

Our kernel
FAR 32.90% 2.11% 0.32% 0.13%

MDR 19.34% 5.00% 2.37% 1.12%

Gaussian
FAR 29.36% 2.20% 0.91% 1.13%

MDR 22.14% 7.19% 5.28% 4.60%

Box
FAR 55.20% 18.17% 1.27% 0.00%

MDR 15.38% 3.36% 0.51% 0.10%

Bilateral
FAR 16.62% 16.33% 16.26% 16.28%

MDR 44.62% 45.10% 45.17% 44.30%

Median
FAR 0.35% 0.02% 0.00% 0.00%

MDR 96.24% 81.88% 53.30% 24.53%

Kuwahara
FAR 0.26% 0.14% 0.05% 0.03%

MDR 87.91% 52.58% 24.51% 10.78%

Guided
FAR 16.63% 16.32% 16.16% 16.02%

MDR 44.62% 45.06% 45.14% 44.25%

Our kernel

Ts=2

FAR 18.70% 0.64% 0.05% 0.01%

MDR 32.79% 10.81% 6.26% 4.30%

After pre-mask processing, signal blocks are properly masked. There may still be some false detected noise or clutters in180

the noise area. Moreover, there will be an excessive underestimation of the noise level in a few cases, resulting in much poorer

denoising performance. For example, although we have made compensation to the estimated noise level based on the maximum

possible interval of 0.94, there is still about a 2 % possibility that the estimated noise level falls at the 0.85 (0.8 to 0.9) interval,

leading to increase of SNR based on it. In other words, it lowers the threshold by a scale factor of about 0.9. The FAR of

pre-mask processing in the noise area then increases from 0.0009 to 0.005. To further decrease FAR, another mask processing185

is carried out based on the pre-mask result M2w with a box filter, as shown in Eq.8. It means that if there are over KsN
2

masked bins in the window, then the center bin is masked as a signal bin. The final mask Mf is the logical conjunction of M2n

and M2n, or their product, as shown in Eq.9. Ks is set to 0.35, considering that the round corner case is more common than

the square corner. The window size used in this processing can be larger than the one used in pre-mask processing, but KsN
2

should not exceed the minimum area size wanted to detect. In TJ-II, we want to detect the cloud over 150 m, and the minimum190

area is about 9 × 9. So the window size should not exceed 15 × 15, calculated by
√

81/Ks. Despite a larger window will

increase FAR in the boundary area, these increased false signal bins will not work because the final mask needs both true for

10
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M2w and M2n.

M2n(x,y) =





1,

Nh∑

i=−Nh

Nh∑

j=−Nh

M2w(x + i,y + j)≥KsN
2

0, else

(8)

Mf (x,y) = M2w(x,y) ·M2n(x,y) (9)195

To test the performance of our mask method, we created several signal blocks with size of 50 × 50, 15 × 15, 9 × 9, 7 ×
7, 50 × 7 and 50 × 3. The noise was given by an exponential distribution with rate parameter 1. The Signal was given by an

exponential distribution with rate parameter 3. Fig.8 shows the result after pre-mask and final mask processing. For pre-mask

processing, it could properly mask out signal blocks larger than the pre-mask window. For signal blocks like 50 × 3 with

one dimension too small, there was a large MDR. For final mask processing, the false detected noises in the full noise area200

by pre-mask processing were all removed. For the signal blocks larger than the second mask window, the final mask had few

effects on them. For the small signal block between the second mask processing and pre-mask processing window, like the 9

× 9 block, its boundary was narrowed. For the 7 × 7 signal block, which is lower than the set minimum detectable size 9 ×
9, it was completely erased. 50 × 7 signal block was well reserved because of the expansion of one dimension, while 50 × 3

signal block was removed because of the much smaller size of one dimension.205

There is a trade-off in both window size and threshold selection. For weaker cloud detection, the threshold of pre-mask

processing needs to be lower, and the window size of second mask processing needs to be increased to account for increased

FAR. But the sensitivity to small signal blocks will be decreased. These parameters need to be fine-tuned based on demands

and long-term observations.

5 Velocity dealiasing with dual PRF technique210

Before calculating the base datum from the power spectrum data, one more processing is necessary for MMCR. That is the

velocity dealiasing. Velocity aliasing, also called velocity folding, is a common phenomenon for cloud radar, especially for

MMCRs whose short wavelength λ leads to narrow Nyquist velocity interval according to Eq.10. So velocity dealiasing is

critical for cloud radar data quality control.

Vm =
λPRF

4
(10)215

For most weather radar, velocity dealiasing is done at the base datum stage. There are many studies on dealiasing the velocity

at the base datum stage(Ray and Ziegler, 1977; Merritt, 1984; Gong et al., 2003; James and Houze, 2001). The dealiased

velocity Vf is equal to Vi± 2nVmax, where the correctness of the initial velocity Vi is the key. Unlike common weather radar,

velocity dealiasing of vertical sensing MMCRs must be done at the power spectrum stage to ensure the accuracy of Vi.
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Figure 8. Cloud signal mask processing simulation with different block sizes. (a) signals with noise (b) pre-mask processing result (c) final

mask processing result

As shown in Fig.10(c1), there is a clear half-folded state that signal bins fall at both maximum positive and negative veloci-220

ties. If velocity dealiasing is not done at the power spectrum stage, then Vi will have a significant error and affect the dealiased

velocity Vf obtained by Vi± 2nVmax. Zheng et al. (2016) takes an iterative algorithm that assumes no velocity aliasing at

the cloud top and then iterates down to the bottom. It may fail in extreme weather conditions where the assumption does not

hold. Also, if a dealiasing error or outlier occurs at one range gate, the error will be propagated to all subsequent range gates.

In TJ-II, a dual PRF technique was used to extend the actual Nyquist velocity interval. By using a high and a low PRF with225

Nyquist velocities of and Vmh and Vml, respectively, the new extended Nyquist velocity becomes (Dazhang et al. 1984)

Vmn =
VmhVml

Vmh−Vml
(11)

A common practice for choosing the high and low PRFs is the following way:

Vmh

Vml
=

PRFh

PRFl
=

PRTl

PRTh
=

N + 1
N

(12)

For a fixed value of the high PRF, the choice of N involves a trade-off between the maximum extension of the Nyquist velocity230

Vmn and ∆Vmax. Dual PRF dealiasing errors will occur if the difference between the true velocities, caused by noise, etc.,

exceeds ∆Vmax (Joe and May, 2003; Altube et al., 2017).

∆Vmax =
Vmn

N(N + 1)
=

Vmh

N + 1
(13)

In TJ-II, the high PRF is limited to 10kHz (equivalent to 100us PRT) due to the maximum detection range of 15km. So the

Vmh is no more than about 8m/s. N = 2 is used considering the vertical velocity of the cloud will not be so large and for a235

larger ∆Vmax.

The common dual PRF velocity estimate method in Eq.14 shows a poor accuracy that its standard deviation will be ampli-

fied(Holleman and Beekhuis, 2003). So it is merely used to indicate to which Nyquist interval the original (folded) velocity
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Figure 9. Some cases of half-folded state. (a)normal case (b)case with ultra-wide spectral width (c)case with sub peak

estimates belong.

Vlh = (N + 1)Vl−NVh (14)240

where Vl and Vh are the original raw velocity estimate using the low and high PRF, respectively. When Vlh falls out of the

primary Nyquist velocity interval ±Vmn, it needs to be folded back into the primary interval by ±2Vmn.

A correct raw velocity estimate is the base of dealiasing. For some weather radars, the velocity spectral width is much smaller

than the velocity, which can be handled like a point target. But for vertical sensing MMCRs, the spectral width and velocity are

similar. For a full-folded case, it has no effect. But the case called half-folded or partial folded, shown in Fig.9, will severely245

affect the correctness of the raw velocity estimate because of crossing 2 Nyquist velocity interval. For example, in Fig.9a case,

velocity without processing is 0± 2nVm while the true velocity is Vm± 2nVm. There must be a preliminary dealiasing before

applying the dual PRF technique. Both five bins closed to the maximum positive and negative velocity are used to distinguish

folded type. If there are at least three masked bins on both sides, then it is considered as half-folded, otherwise full-folded(or

non-folded). Multi bins are used to exclude the effect of false detected noise bins.250

For half-folded, the dividing line of two parts needs to be determined. The easiest way is to use the zero point as a dividing

line. But it will fail for the case shown in Fig.9b. The median of noise bins is taken as the dividing line instead of the middle

point of signal bins endpoints used by Zheng et al. (2016) to avoid the case shown in Fig.9c, that there is a sub-peak and

the four endpoints complicating endpoints selection. Then we need to fold one part back into another. There is no difference

between folding negative to positive and positive to negative by the following processing. In TJ-II, the negative part is folded255

back into the positive part, and the new defolded mean velocity is calculated. If the new defolded mean velocity is over the

primary Nyquist velocity Vm, it needs to be folded back into the primary Nyquist interval by −2Vm as the final raw velocity

estimate. Now we can use the dual PRF technique.

To estimate the final Nyquist interval, considering the N in TJ-II is only two, the exhaustive method is used instead of Eq.14,

where occasionally the deviation of the primary dual PRF velocity estimate will be so large that the original folded velocity260

will be assigned to an incorrect Nyquist interval(Holleman and Beekhuis, 2003). By exhausting all interval combinations, the
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Table 3. Interval combination

Nyquist interval Velocity interval Nyquist interval

PRF h PRF l

1 (8,24) (5.33,16) 1

0 (-8,8)

(5.33,16) 1

(-5.33,5.33) 0

(-16,-5.33) -1

-1 (-24,-8) (-16,-5.33) -1

interval combination with the minimum difference is taken as the estimated interval. Considering the coverage of each interval,

the combination can be simplified as shown in Tab.3

6 Application to TJ-II observations

Our Doppler power spectrum processing method was applied to the TJ-II raw power spectrum data. Fig.10 shows three typical265

case. For Fig.10a case, the cloud signal block was well detected, and the noise was removed. There were some miss detections

at the top of the signal block. For Fig.10b case, there were already some miss detections at the pre-mask stage and more after

final mask processing. The mean SNR of detected signals was about 2.3, which is lower than our preset threshold. For Fig.10c,

there were significantly more mismarked noises by pre-mask processing. Because the estimated noise level, which was already

compensated, was about 0.84 of the manually picked noise level by calculating the mean of the top 50 range gates with over270

2.5 ×104 points. The underestimated noise level led to an equivalent drop in the threshold Ts used in pre-mask processing,

resulting in a larger increase of FAR. But the final mask processing removed all these noises benefiting from a larger window

than the one used in pre-marking processing.

One example of velocity dealiasing is shown in Fig.11 to demonstrate the necessity of pre-defolding processing in MMCRs.

This example was observed just before rain. There was a clear velocity aliasing in Fig.11a1 with a half-folded state. There was275

a sudden bend when the half-folded state occurred. In the distance segment with a half-folded state, the raw mean velocity line

without pre-defolding processing had obvious larger burrs, as shown in Fig.11b1. There were some jumps in the mean velocity

line with pre-defolding processing because the velocity exceeding the primary Nyquist interval was folded back to the primary

Nyquist interval in the processing for the convenience of dual PRF processing. The final dealiased result is shown in Fig.11b2.

Of course, the incorrect raw mean velocity led to the incorrect final mean velocity.280

Our method was compared to the Jinming Ge’s method(Ge et al., 2017) to assess the cloud mask performance by applied

to the one-day example of TJ-II observed on 17 November 2021 at Nanjing, as shown in Fig.12. Jinming Ge’s method masks

the cloud at the base datum stage, which means post-processing, while our method masks the cloud at the Doppler power

spectrum stage. Fig.11a is the raw reflectivity without any processing. The unit is dBm because the calibration of the TJ-II has
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Figure 10. Three cases of power spectrum from TJ-II observation. (a) is the common case, (b) is the case with weak signals, and (c) is the

case with an underestimated noise level. (1) is the raw power spectrum, (2) is the pre-mask result and (3) is the final mask result
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respectively. (b1) is the raw mean velocity of (a1) with and without pre-defolding processing. (b2) is the final dealiased velocity with and

without pre-defolding processing

not been completed. Fig.11b is the mask by our method processing at the Doppler power spectrum stage as pre-processing,285

and Fig.11c is the mask by Jinming Ge’s method processing at the base datum stage as post-processing. Fig.11d shows the

comparison between the two methods. Yellow represents only masked by our method. Blue represents only masked by Jinming

Ge’s method. Gray represents both or neither masked by both methods. Yellow tended to surround blue, especially for the cloud

base, which means that our method performs better for cloud base detection. For the cloud top, although yellow still showed a

tendency to wrap blue, there was a marked increase in blue. These missed masks, by our method, meant a drop in performance290

at the cloud top. For the area around about 9 km and 10 o’clock, both our method and Jinming Ge’s method showed poor

performance for these extremely weak signals. For the free space, there was much less yellow than blue. Our method offered a

better FAR than Jinming Ge’s method.
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Figure 12. One-day example of TJ-II observed on 17 November 2021. (a) raw reflectivity; (b) cloud derived by our method; (c) cloud

derived from raw reflectivity by Jinming Ge’s method; (d) comparison of cloud mask results between the two methods. Yellow represents

only masked by our method, blue represents only masked by Jinming Ge’s method, and gray represents both or neither masked by both

methods.

17

https://doi.org/10.5194/amt-2022-302
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



7 Summary and dicussion

MMCR is an excellent tool for cloud sensing. Vertical sensing MMCR has unique characteristics, which makes its signal295

processing method different from traditional weather radar. A new MMCR called TJ-II with a single antenna and SSPA was

developed. A set of Doppler power spectrum processing methods for this MMCR is proposed based on its characteristics.

It includes three aspects: noise level estimation, cloud signal mask, and velocity dealiasing. Noise level is estimated by an

improved segment method to cope with the relatively narrow detection range and Nyquist velocity interval of the TJ-II. A

2-D segment is used to increase the points and a small number of separated segments to reduce the total number of segments300

while reducing the risk of including signals. A two-step cloud signal mask method was proposed benefiting from the high

spatial and temporal resolution. A standard variance adaptive 2-D Gaussian weighting kernel is used in pre-mask processing

to ensure high performance in identifying cloud signals and their edges, and the following step uses a 2-D box filter to remove

the noise. The dual PRF technique is used in TJ-II to expand the actual Nyquist velocity interval. A pre-dealiasing processing

is performed to the masked power spectrum before the raw velocity is used in dual PRF processing. The example shown305

in Fig.11 demonstrated its necessity. These methods are proposed for better data quality, benefiting from or limited by the

characteristics of vertical sensing MMCRs. In particular, some small probability cases have been considered. Our method

exhibits comparable performance compared to Jinming Ge’s method, which represents a post-processing method for MMCR.

Considering the particular half-folded velocity aliasing case in vertical sensing MMCRs, pre-processing at the Doppler power

spectrum stage will be preferred. With long-term observations in the future, the parameters used in our method have room for310

optimization. Along with the development of TJ-II, some matching post-processing methods are also under study for better

total performance. The above signal processing methods are proposed for better data quality, benefiting from or limited by

the characteristics of vertical sensing MMCRs. In particular, some small probability cases have been considered. High-quality

cloud data will be of great help to cloud research.
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