We thank Anonymous Referee 1 for their careful reading of our manuscript and appreciate their thoughtful
feedback. We have edited the manuscript to incorporate their critiques, which we feel has improved the overall
quality of this work.

4

Below, Referee comments are presented in bold, and our responses are written in regular type. Line numbers in responses refer to the "track changes" version of the manuscript, which will be uploaded separately. For explicit clarity in text changes, added text will be in blue font, while deleted and/or moved text in red strikethrough for clarity. Changes to figures will only be outlined in the responses to the Referee.

9

## 10 Anonymous Referee 1

## 11 **Comments to the Author:**

The paper describes a commercial TILDAS instrument for measuring hydrogen chloride in ambient air 12 13 and demonstrate the ability of sampling methodology to minimize inlet artefacts. Due to the "sticky" 14 behavior of HCl gas, quantitative sampling remains a challenge for current approaches. To improve 15 instrument response to changes in HCl gas concentration, a custom-fabricated quartz virtual impactor is 16 used to replace particle filters to avoid excess surface-mediated interactions with filters, and the heating 17 and PFBS coating methods are employed to improve transmission. Its performance validates that the 18 sampling method is effective for reducing HCl "sticky" behavior. Overall, the paper is well written, with 19 detailed characterization in the lab as well as reliable performance in the field sampling. I recommend this 20 paper for publication in AMT after the following minor revisions.

## 21 General comments:

## 22 Section 2.2.1: The technique description of the TILDAS device is not clear, and more technical details

- 23 need to be added, such as measurement principle, structural schematic diagram, etc.
- As pointed out by Anonymous Referees 2 and 3, the TILDAS technique is now many years old. Further detail
- 25 is extensively given to these topics (including TILDAS measurement principle and structural schematic
- diagram) by McManus et al. (2011, 2015) for the TILDAS design used in this work:
- 27 McManus, J. B., Zahniser, M. S., and Nelson, D. D.: Dual quantum cascade laser trace gas instrument with
- astigmatic Herriott cell at high pass number, Appl. Opt., 50, A74, https://doi.org/10.1364/AO.50.000A74, 2011.
- 29
- 30 McManus, J. B., Zahniser, M. S., Nelson, D. D., Shorter, J. H., Herndon, S. C., Jervis, D., Agnese, M., McGovern,
- 31 R., Yacovitch, T. I., and Roscioli, J. R.: Recent progress in laser-based trace gas instruments: performance and
- 32 noise analysis, Appl. Phys. B, 119, 203–218, https://doi.org/10.1007/s00340-015-6033-0, 2015.

- 33 These publications are now properly cited, and the reader is now more clearly directed to these references for
- 34 additional detail (lines 138-140 in "track changes" manuscript). Additionally, we have included more details on
- 35 the HCl specific attributes for the instrument used in this publication in Sect. 2.2.1 (lines 150-165).

#### 36 Section 2.2.2: The custom-fabricated quartz virtual impactor can effectively remove the large particles (>

37 **300 nm diameter**) in the sampling line, which was approximately 13% of the total volumetric flow. Only

38 gas molecules and small particles (< 300 nm diameter) can flow into the TILDAS instrument. Please

- 39 explain how does the impactor work and how is the ratio of flow rate obtained?
- 40 The inertial inlet is interfaced with the instrument scroll pump, as seen in Fig. 1, which pulls air through the
- 41 inertial inlet via two paths: 1) through a waste flowpath that does not pass through the TILDAS, and 2) through
- 42 the TILDAS. Sample air that enters the inertial inlet is accelerated through a critical orifice into a low-pressure
- 43 region (< 100 torr). Once in the low-pressure region, particulate separation occurs as follows: large particles (>
- 44 300 nm diameter) have large forward momentum and maintain their forward flow into the waste flow path
- 45 (approximately 13% of the total volumetric flow, dictated by a separate critical orifice placed in the waste-flow
- 46 path). Meanwhile, gas molecules and particles with an approximate diameter < 300 nm have less inertia and
- 47 can make the  $180^{\circ}$  turn necessary to continue along the sample flow path through the TILDAS instrument
- 48 (approximately 87% of the total volumetric flow). The resulting flow rate through the instrument was
- 49 determined by the size of the critical orifice in the inertial inlet and cell pressure (set to approximately 40 torr).
- 50 We have revised this passage to clarify how particle separation occurs within the inertial inlet (lines 175 185).
- 51 We have also referred the reader to Fig. 1 to visualize sample flow paths (line 187). Additionally, we have
- 52 labeled the ambient pressure and low-pressure regions of the inertial inlet in Fig. 1.

53 Section 3.1: The performance of HCl TILDAS is evaluated in the lab with dry zero air as well as in the

54 field with HCl-scrubbed sample air, and its precision and LOD are superior to the previously reported

55 methods. More technical details need to be added to explain how does the instrument achieve better

- 56 performance? Did the authors perform long-term measurements of a fixed concentration of HCl gas?
- 57 This approach can better represent its real performance.
- 58 The better performance of the HCl TILDAS is achieved using a long pathlength (200 m), measuring absorptions
- 59 in the mid-infrared by probing the fundamental ro-vibrational absorption band (which have a much larger cross-
- section than in the near-IR), and reducing light and dark noise levels to  $<5 \times 10^{-6}$  equivalent absorbance in 1-
- 61 second. We now provide these details in lines 310-313.
- 62 Regarding long-term measurements of a fixed concentration of a fixed gas, we performed a series of permeation
- 63 source additions and removals across ~28 hours, resulting in 55, 10-min permeation source additions and
- 64 subsequent 20-min background measurement periods. We note the permeation source concentration over this
- period was  $4.1 \pm 0.3$  ppbv, and that permeation source concentration variability correlated closely with
- 66 laboratory air-conditioning. Nevertheless, the average standard deviation calculated for the last five minutes of
- 67 each permeation source additions was found to be  $8 \pm 2$  pptv, while the average standard deviation of the last

- five minutes of background periods was calculated as  $7 \pm 1$  pptv, demonstrating nearly identical precisions
- 69 while sampling blanks or fixed HCl concentrations. These details have been added to Sect. 3.2.1, lines 356-360.

# Section 3.3.2: There is an obvious offset about 0.07 ppbv (shown in Figure 8) before addition of nitric acid to the passivated sample inlet flow. Please explain the reason for the offset signal.

72 The data presented were not blank subtracted. Figure 8 has been revised to use blank subtracted data.

73 Section 3.4: The maximum concentration of HCl in field observation is about 0.1 ppbv shown in Figure

9(a). But the HNO<sub>3</sub> concentration of 4 ppbv may cause an increase of 0.08 ppbv of HCl. How to evaluate

75 the error of atmospheric HCl concentration caused by HNO<sub>3</sub>? And the influence of a potential leak on the

76 measurement of HCl gas concentrations during observation needs to be clearly evaluated.

77 The intention of the laboratory HNO<sub>3</sub> addition experiments (Sect. 3.3.2) was to demonstrate the potential of an

acid-displacement-induced interference, as ambient sampling will be further complicated by additional strong

acids, such as H<sub>2</sub>SO<sub>4</sub>, that may also cause rapid acid displacement reactions with HCl sorbed on inlet surfaces.

80 As discussed in Sect. 3.3.2, the magnitude of the resulting HCl plume will be a function of how much HCl is

taken up by instrument surfaces. This emphasizes the importance of reducing the amount of surface HCl

82 available for off-gassing, though this effect will likely be dampened for in situ sampling, in which ambient

strong acid concentrations change much more gradually. We have added a comment to emphasize the

84 importance of reducing HCl sorption (lines 491-492).

For the described field measurements (Sect. 3.4), the largest potential source of HCl for coating the inlet

86 surfaces will be the regular permeation source or standardized HCl cylinder additions for 10 minutes every 3

87 hours. Unfortunately, the absolute magnitude of sorbed HCl is difficult to quantify, as Fig. 7 demonstrates the

88 complex relationship between stickiness and humidity, although regular measurement of inlet response times

89 provides a metric by which it can be monitored, and the inlet subsequently cleaned if deemed an issue. As

90 discussed in Sect. 3.4, we do not see evidence of significant interference from HNO<sub>3</sub> (as estimated via NO<sub>2</sub>)

91 from our field results, given the differences in the diurnal profiles between HCl and  $NO_z$ . Further, a preliminary

92 comparison of data from the winter OSCA campaign shows virtually flat HCl signals while NO<sub>z</sub> maintains a

- 93 diurnal profile, suggesting our results are likely not affected to a detectable degree by, at least, HNO<sub>3</sub> (please
- 94 note that a 1 ppb offset has been added to the  $NO_z$  data, and that the  $NO_v$ ,  $NO_2$ , and NO data that were used to
- 95 calculate NO<sub>z</sub> have not been QC-checked at the time of this response):







- 98 dependence on inlet condition, however, means that we are able to estimate any additional uncertainty on the
- 99 reported HCl using the regularly measured inlet response Tau values. Further, we are currently testing the
- 100 implementation of temperature ramping the inlet to near 100 °C following additions of HCl standards to remove
- 101 potential surface HCl from the inlet caused by the HCl standard addition, although a full field assessment of the
- 102 impact of these temperature ramps has not yet been performed. We have added text to the Conclusions section
- about the potential improvements that this could have (lines 563-565).
- 104 Concerning the influence of a potential leak of HNO<sub>3</sub>, we do not employ HNO<sub>3</sub> permeation sources during
- ambient HCl sampling, and therefore are not susceptible to such a leak.

## 106 Specific comments:

## 107 Page 4, L137: The references could not be found in this manuscript.

- 108 This has now been corrected, and these references have been properly added to the Reference section.
- 109 McManus, J. B., Zahniser, M. S., and Nelson, D. D.: Dual quantum cascade laser trace gas instrument with
- astigmatic Herriott cell at high pass number, Appl. Opt., 50, A74, https://doi.org/10.1364/AO.50.000A74, 2011.
- 111
- 112 McManus, J. B., Zahniser, M. S., Nelson, D. D., Shorter, J. H., Herndon, S. C., Jervis, D., Agnese, M., McGovern,
- 113 R., Yacovitch, T. I., and Roscioli, J. R.: Recent progress in laser-based trace gas instruments: performance and
- 114 noise analysis, Appl. Phys. B, 119, 203–218, https://doi.org/10.1007/s00340-015-6033-0, 2015.

- 115 Page 14, L382-387: The influence of humidity on the measurement bias of HCl concentrations is only
- 116 reported at 60% RH. In fact, the relative humidity of atmosphere is often much higher than this value.
- 117 Therefore, the authors need to give the relationship between the measurement bias and the relative
- 118 humidity, so that the reader can clearly grasp it.
- 119 The pertinent passage in this comment refers to the effects of HCl standards being injected into the inlet under
- 120 ambient relative humidities during the OSCA campaign. To that end, the mean and standard deviation
- 121 presented were calculated for relative humidities between 60-93%, and compared with the mean and standard
- deviation of dry, compressed air at relative humidities below 20%. We have revised the sentence to clarify that
- 123 the statistics and data presented in Fig 7b include these humidity ranges, and that the values are not solely
- 124 obtained under an RH of 60% (lines 421-424).

## 125 Page 18, L490: The data should be modified to 20 June 2021.

126 The date has been modified (line 542).