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Abstract 9 

Secondary organic aerosol (SOA) is a major fraction of the total organic aerosol (OA) 10 

in the atmosphere. SOA is formed by the partitioning onto pre-existent particles of low 11 

vapor pressure products of the oxidation of volatile, intermediate volatility, and 12 

semivolatile organic compounds. Oxidation of the precursor molecules results in a 13 

myriad of organic products making the detailed analysis of smog chamber experiments 14 

difficult and the incorporation of the corresponding results into chemical transport 15 

models (CTMs) challenging. The volatility basis set (VBS) is a framework that has 16 

been designed to help bridge the gap between laboratory measurements and CTMs. The 17 

parametrization of SOA formation for the VBS has been traditionally based on fitting 18 

yield measurements of smog chamber experiments. To reduce the uncertainty of this 19 

approach, we developed an algorithm to estimate the SOA product volatility 20 

distribution, effective vaporization enthalpy, and effective accommodation coefficient 21 

combining SOA yield measurements with thermograms (from thermodenuders) and 22 

areograms (from isothermal dilution chambers) from different experiments and 23 

laboratories. The algorithm is evaluated with “pseudo-data” produced from the 24 

simulation of the corresponding processes assuming SOA with known properties and 25 

introducing experimental error. One of the novel features of our approach is that the 26 

proposed algorithm estimates the uncertainty of the predicted yields for different 27 

atmospheric conditions (temperature, SOA concentration levels, etc.). The uncertainty 28 

of these predicted yields is significantly smaller than that of the estimated volatility 29 

distributions for all conditions tested.  30 

 31 

1. Introduction 32 

Submicrometer atmospheric particles are of great importance due to their negative 33 

effects on public health (Pope and Dockery, 2006; Lim et al., 2012) and their uncertain 34 
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influence on Earth’s climate (IPCC, 2021). Organic aerosol (OA) contributes 20–90 % 35 

to the submicron particulate mass (Zhang et al., 2007) and is emitted directly in the 36 

atmosphere as primary particles (POA) or formed as secondary organic aerosol (SOA). 37 

SOA constitutes a major fraction of the total OA in the atmosphere contributing more 38 

than 60 % on average (Kanakidou et al., 2005). SOA is formed by the condensation of 39 

low vapor pressure products of the oxidation of volatile (VOCs), intermediate volatility 40 

(IVOCs), and semi-volatile organic compounds (SVOCs). 41 

 Hundreds of mostly unknown products are formed during the oxidation of each 42 

SOA precursor making the detailed description of the corresponding reactions and 43 

eventual SOA formation extremely challenging. The volatility basis set (VBS) is one 44 

approach that has been proposed to simplify the system and to allow the SOA 45 

simulation in CTMs. The VBS describes the volatility distribution of OA using a set of 46 

surrogate species with effective saturation concentrations that vary by one order of 47 

magnitude (Donahue et al., 2006; Stanier et al., 2008). Volatility is one of the most 48 

important physical properties of SOA components as it determines to a large extent 49 

their gas-particle partitioning (Pankow, 1994a; 1994b). The parametrization of SOA 50 

formation for the VBS requires the determination of the yields of each volatility bin 51 

(volatility distribution of products) and the corresponding enthalpies of vaporization. 52 

 The SOA parametrizations for the VBS have been traditionally based on fitting 53 

yield measurements (Lane et al., 2008). The major weakness of this approach is that 54 

the resulting parametrization is limited to the range of OA concentrations and 55 

temperatures of the measurements. In most cases, the concentration range does not 56 

include the low concentrations relevant to the atmosphere and usually most of the 57 

experiments take place in a relatively narrow temperature range. Pathak et al. (2007a) 58 

needed 37 smog chamber experiments at different temperatures (0–45 oC) and 59 

atmospherically relevant concentrations to constrain the α-pinene SOA temperature 60 

sensitivity. 61 

 A number of approaches has been used to minimize the number of experiments 62 

needed to characterize the temperature dependence of the SOA formation. Stanier et al. 63 

(2007) developed an experimental technique with which the temperature-controlled 64 

smog chamber could be heated or cooled after the SOA formation moving the system 65 

to new equilibrium favoring evaporation or condensation respectively. However, 66 

interactions of the SOA with the walls of the system increased the uncertainties of the 67 

approach. Stanier et al. (2008) presented an algorithm to fit the smog chamber 68 
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experiments using several volatility bins. However, the number of experiments needed 69 

by the algorithm should cover a wide range of concentrations and temperatures to 70 

effectively constrain the stoichiometric mass yields and the effective vaporization 71 

enthalpy. 72 

 In an effort to cover a wider concentration and temperature range, 73 

thermodenuder measurements can be used. The thermodenuder (TD) is a common 74 

instrument developed to characterize the volatility of atmospheric aerosols by heating 75 

them and observing the resulting changes in size, mass, optical properties, etc. 76 

(Burtscher et al., 2001; Wehner et al., 2002, 2004; An et al., 2007). TDs consist of a 77 

heated tube in which the volatile particle components evaporate followed by a cooling 78 

section with activated carbon to avoid vapor recondensation. The mass changes in TDs 79 

depend on the initial SOA concentration, the residence time in the heating tube, the 80 

vaporization enthalpy, and the mass transfer resistances. The latter are described by the 81 

effective accommodation coefficient that has been traditionally used to account for 82 

resistances to mass transfer not only at the surface of the particle but also inside the 83 

particle. The evaporation rate for most particles is relatively insensitive to its value 84 

when this value is around one. A typical way of reporting the TD measurements is by 85 

calculating the aerosol mass fraction remaining (MFR) at a given temperature after 86 

passing through the TD. The MFRs in a range of TD temperatures constitute the 87 

thermogram. 88 

 In applications in the field (Cappa and Jimenez, 2010; Huffman et al., 2009; Lee 89 

et al., 2010; Louvaris et al., 2017a) and in the laboratory (Kalberer et al., 2004; 90 

Baltensperger et al., 2005; An et al., 2007; Lee et al., 2011; Cain et al., 2020) the 91 

particles do not reach equilibrium with the gas phase inside the TD. Therefore, dynamic 92 

aerosol evaporation models (Riipinen et al., 2010; Cappa, 2010; Fuentes and 93 

McFiggans, 2012) are needed for the interpretation of TD measurements. Karnezi et al. 94 

(2014) used the time-dependent evaporation model of Riipinen et al. (2010) to calculate 95 

the OA volatility distribution, vaporization enthalpy, and mass accommodation 96 

coefficient from TD measurements. The authors showed that a simple error 97 

minimization approach may not be appropriate for such systems as very similar 98 

thermograms can be obtained for multiple combinations of different parameters. For 99 

this reason, their approach estimates an ensemble of “good” solutions, from which the 100 

best estimate and the corresponding uncertainties are derived. 101 
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 Grieshop et al. (2009) suggested the combination of TD and isothermal dilution 102 

to constrain the volatility distribution of SOA. Karnezi et al. (2014) proposed an 103 

algorithm to include both types of measurements. The authors concluded that the 104 

combination of the two types of measurements can better constrain the OA volatility 105 

than each set separately. Louvaris et al. (2017b) and Cain et al. (2020) applied this 106 

algorithm to cooking OA (COA) and SOA, respectively. Louvaris et al. (2017b) showed 107 

that the use of only TD measurements led to overestimation of the SVOC fraction of 108 

COA, while the use of TD and isothermal dilution data reduces the uncertainty of the 109 

volatility distribution and the effective vaporization enthalpy. Cain et al. (2020) 110 

conducted TD and isothermal dilution experiments for α-pinene and cyclohexene 111 

ozonolysis SOA. The SOA in these two systems had similar thermograms, but different 112 

areograms. When only thermograms were used in the model, the volatility distributions 113 

were quite similar. However, the addition of areograms revealed that α-pinene 114 

ozonolysis SOA consists mostly of low-volatility organic compounds (LVOCs) and the 115 

cyclohexene ozonolysis SOA consists mostly of SVOCs. 116 

 To constrain the volatility product distribution of SOA and its effective 117 

vaporization enthalpy, we combine TD and isothermal dilution experiments with the 118 

SOA yield measurements. We extend here the algorithm of Karnezi et al. (2014) by 119 

introducing additional inputs (SOA yields) and by providing additional outputs 120 

(uncertainty of estimated yields in relevant atmospheric conditions). The algorithm is 121 

tested with “pseudo-experimental” data generated from the use of models simulating 122 

the corresponding measurement processes, therefore the true parameters are known. 123 

The results of the “pseudo-experiments” are corrupted so that they include experimental 124 

errors. 125 

 126 

2. Model Description 127 

2.1. SOA Formation 128 

Gas-phase oxidation of VOCs involves a large number of reactions and produces a large 129 

number of products that can condense in the particulate phase. Depending on their 130 

effective saturation concentration, they can be represented in the 1D-VBS framework 131 

by 132 

 1 1 2 2VOC oxidant ... volatile productsn nP P P  + → + + + +  (1) 133 
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where n is the number of the surrogate compounds (volatility bins in the VBS), Pi is the 134 

surrogate product in the i-th volatility bin and αi is the corresponding stoichiometric 135 

mass yield. The total SOA mass yield can be then calculated as: 136 
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where COA is the total SOA concentration, ΔVOC is the consumed concentration of the 138 

VOC and Ci 
* is the effective saturation concentration of compound i. This yield 139 

equation is an extension of the two-product model by Odum et al. (1996) replacing their 140 

semi-empirical partitioning coefficients with the assumption of a pseudo-ideal solution 141 

(Strader et al., 1999). This model assumes that the system has reached equilibrium when 142 

the yield was measured and that the differences in molecular weights are small. 143 

 The effective saturation concentrations at different temperatures are given by 144 

the Clausius-Clapeyron equation: 145 
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where Tref is the reference temperature in which the reference effective saturation 147 

concentration is defined (298 K in this work), and ΔHvap,i is the enthalpy of vaporization 148 

of surrogate compound i. 149 

 150 

2.2. Thermodenuder Model 151 

The time-dependent evaporation of SOA in the TD used in this work is described by 152 

the dynamic mass transfer model of Riipinen et al. (2010). The evolution of the total 153 

particle mass, mp, and the gas phase concentration of the compound i, Ci are given by: 154 
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where n is the number of surrogate compounds, Ntot is the total number concentration 157 

of particles (assuming monodisperse aerosol population) and Ii is the mass flux of 158 

compound i from the gas to the particulate phase for each particle calculated by 159 

(Seinfeld and Pandis, 2016): 160 
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where dp is the particle diameter, R is the ideal gas constant, Mi is the molecular weight 162 

of compound i, Di is the diffusion coefficient of compound i in the gas phase at 163 

temperature TTD, pi and pi
0 are the partial vapor pressures of i far away from the particle 164 

and at particle surface, respectively, and βmi is a factor for the correction of kinetic and 165 

transition regime effects (Fuchs and Sutugin, 1970): 166 
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 (7) 167 

where Kni is the Knudsen number of compound i, and αmi is the mass accommodation 168 

coefficient of compound i on the particles. The partial vapor pressure of compound i at 169 

the particle surface is given by: 170 
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where xmi is the mass fraction of compound i in the particulate phase, Ci
* is the effective 172 

saturation concentration, σ is the surface tension (assumed 0.05 N m-1 in our 173 

simulations), TTD is the particle temperature assumed to be the same as in the TD, and 174 

ρ is the particle density. The effective saturation concentrations at different TD 175 

temperatures are given by Eq. (3). 176 

 Processes other than organic aerosol evaporation may affect the TD 177 

measurements. For example, thermal decomposition may accelerate the transfer of 178 

organic compounds from the particulate to the gas phase and may lead to overestimation 179 

of the volatility of especially the least volatile components of the SOA (Epstein et al., 180 

2010; Saha and Grieshop, 2016; Stark et al., 2017). However, the corresponding 181 

parameters for the SVOCs and the more volatile LVOCs that are important for 182 

atmospheric SOA modeling should be a lot less uncertain given that they are measured 183 

in relatively low TD temperatures. The use of isothermal dilution measurements may 184 

also help identify cases in which the model does not include a process (e.g., thermal 185 

decomposition) that dominates the behavior of the aerosol during heating. In this case, 186 

one expects that the overall algorithm will have difficulties reproducing all 187 

measurements (yields, isothermal dilution, and evaporation in the TD).  188 

 189 
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2.3. Isothermal Dilution Model 190 

In isothermal dilution experiments, a SOA sample is injected in a reactor filled with 191 

clean air at room temperature. The concentrations of both the gas and particulate phase 192 

components are lowered due to dilution leading the system out of equilibrium. The 193 

evaporation of SOA as a result of isothermal dilution is also described by equations (3)-194 

(8) (Karnezi et al., 2014), but the temperature is equal to 298 K. Evaporation in a 195 

dilution chamber depends on the initial SOA mass, time, and the αm, but not on ΔHvap 196 

as the particles evaporate without a change in temperature. 197 

 The dilution ratio is an important parameter, varying typically from 10 to 20 in 198 

SOA experiments (Cain et al., 2020). Low dilution ratios result in little evaporation and 199 

little signal to be explored by the parameter estimation algorithm. High dilution ratios 200 

lead to very low initial concentrations in the dilution chamber and a lot of noise in the 201 

subsequent evaporation measurements. 202 

 203 

3. Algorithm for the Estimation of VBS Parameters 204 

The algorithm of Karnezi et al. (2014) was first extended to include an SOA partitioning 205 

model described by Equations (1) – (3) together with the TD and isothermal dilution 206 

models in order to estimate the volatility product distribution, vaporization enthalpy 207 

and accommodation coefficient. We discretized the domain of the parameters and 208 

simulated all combinations of stoichiometric mass yields (αi), ΔΗvap, and αm. The yields 209 

αi were allowed to vary from 0.0 to 0.8, with values of 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 210 

0.6, and 0.8. The user of the algorithm can specify an upper limit for the sum of the 211 

yields to reduce the number of the potential solutions that the algorithm will test. 212 

Combinations with sum of the yields exceeding 1.0 were excluded from the analysis 213 

originally. The sensitivity of our results to setting the upper limit of the sum of the 214 

yields equal to 2 is examined in Section 4.6. For a 4-product system there are 3,153 and 215 

for 6-product system 66,636 acceptable combinations. The values used for ΔΗvap were 216 

from 20 to 200 kJ mol-1 with a step of 20, and for αm, the values used were 0.001, 0.01, 217 

0.1, and 1. As a result 126,120 simulations are needed (computational time of about 15 218 

h in an office PC) for a 4-product VBS and 2,665,440 for a 6-product solution. 219 

 For each simulation and each type of measurement, we calculated the 220 

normalized mean square error (NMSE) defined as 221 



8 
 

 

( )
2

1

1

NMSE

O

O

N

i i

i

N

i

i

P O

O

=

=

−

=



 (9) 222 

where Oi represents the ith observed value (corresponding to a specific SOA 223 

concentration for yield measurements or temperature for TD, or time for isothermal 224 

dilution), Pi the corresponding model-predicted value, and NO is the total number of 225 

observations from each type of measurement. For each simulation (denoted as s), the 226 

overall error was calculated by assuming equal weight to the set of yield, TD, and 227 

dilution measurements and summing the corresponding errors: 228 

 
, TD, Dil,NMSE NMSE NMSEs Y s s sE = + +  (10) 229 

 The parameter combinations for which the overall error Es is less than 5% are 230 

identified. The best solution is then calculated by averaging these solutions using the 231 

inverse error Es as a weighting factor. The solutions that are closer to the measurements 232 

have higher weight. Therefore, for every combination of αi, ΔΗvap, and αm the algorithm 233 

calculates one overall NMSE following Eq. (10) and all data points for each solution 234 

get the same weighting factor.  More specifically the best estimate �̅� is given by: 235 
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where xk is the estimated value of a property (mass yield of a volatility bin, effective 237 

vaporization enthalpy, or effective accommodation coefficient) and N is the number of 238 

combinations with error below the threshold value. The uncertainty range of the 239 

parameters is estimated by calculating the standard deviation (σ): 240 
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following Karnezi et al. (2014). 242 

 243 
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4. Testing of the Algorithm 244 

4.1. Generation of Data for Evaluation 245 

In order to evaluate the algorithm, we generated data using the output of SOA 246 

formation, thermodenuder and isothermal dilution models described in Section 2 for 247 

systems with known volatility distribution of the products, and properties. Then, these 248 

data were “corrupted” with random errors to represent the “noise” observed in 249 

laboratory measurements for yields, thermograms, and areograms. As a result, there is 250 

no set of model parameters that can reproduce all the “measurements”. The yields were 251 

corrupted based on the variability of laboratory measurements of Pathak et al. (2007a), 252 

by assuming a normal distribution and standard deviation (σY) given by: 253 

 true0.1 0.02Y Y = +  (13) 254 

where Ytrue are the correct yields. 255 

 For TD, the errors were calculated by assuming a normal distribution and the 256 

standard deviation (σTD) suggested by Karnezi et al. (2014): 257 

 ( )
2

TD TD,true TD,true0.51 0.5MFR MFR = −  (14) 258 

where MFRTD,true are the correct MFR values for each TD temperature. 259 

 For dilution, the errors were calculated by assuming a uniform distribution and 260 

standard deviation (σDil) suggested by Karnezi et al. (2014): 261 

 
Dil Dil,true0.05 0.03MFR = +  (15) 262 

where MFRDil,true are the correct MFR values for isothermal dilution. 263 

 Based on the above methodology, we generated “pseudo-measurements” of 264 

yield, TD, and isothermal dilution for different SOA systems. The parameters used to 265 

produce the pseudo-experimental data are summarized in Table S1. The “experimental” 266 

conditions assumed for the TD and isothermal dilution measurements are shown in 267 

Table S2. 268 

 In “Experiment” A, we test the performance of the algorithm against -pinene 269 

ozonolysis data and examine the effect of TD and isothermal dilution data. For 270 

“Experiment” A, the “true” values were taken from the parameterization derived by 271 

Pathak et al. (2007b) for the ozonolysis of α-pinene at low NOx, dark and low RH 272 

conditions. Therefore, these results are good fits of the measurements analyzed in that 273 

study. The parametrization was derived assuming a 4-volatility bin system with 274 

saturation concentrations ranging from 1 to 103 μg m-3. The effective vaporization 275 

enthalpy estimated in that study was equal to 30 kJ mol-1. Because the effective 276 
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accommodation coefficient was not part of the Pathak et al. (2007b) parametrization, 277 

we assumed a value of 0.5 in this work. We used a small number of yield measurements 278 

at atmospherically relevant SOA concentrations of 1, 5, 10, 20 and 40 μg m-3 (Fig. 1). 279 

For this SOA system, the yield at 40 μg m-3 did not exceed 20%. The thermogram 280 

includes ten MFR data points in the temperature range of 20 to 200 oC. For the highest 281 

temperature, more than 70% of the SOA mass was evaporated. The areogram shows 282 

that the correspondent SOA evaporated almost by 70 % in the first 0.5 h and more than 283 

90% in less than 3 h. 284 

 For “Experiment” B, the “true” values were taken from the alternative 285 

parametrization proposed by Pathak et al. (2007b) for the same oxidation system as 286 

described before. This time, the authors used a 7-volatility bin system with saturation 287 

concentrations ranging from 10-2 to 104 μg m-3 in their parametrization. The effective 288 

vaporization enthalpy of the parametrization was 30 kJ mol-1, while for the 289 

accommodation coefficient we assumed again a value of 0.5. The yield, TD and 290 

isothermal dilution “measurements” of Experiment B are generated in the same SOA 291 

mass concentration, temperature, and dilution time range as in the previous pseudo-292 

experiment (Fig. 2). 293 

 For “Experiment” C, the “true” values were based on the parameterization of 294 

the SOA formed during α-humulene ozonolysis by Sippial et al. (2022). The authors 295 

measured high SOA yields for α-humulene in the main smog chamber (~70% at 60 μg 296 

m-3), and their corresponding thermogram suggested that the SOA particles fully 297 

evaporated at 150 oC, while the areogram showed modest (20%) evaporation in the 298 

dilution chamber after 3 hours. A 4-volatility bin set with saturation concentrations 299 

ranging from 10-2 to 10 μg m-3 was used in that study to fit the measurements. The 300 

stoichiometric coefficients of the three least volatile bins (10-2, 10-1 and 1 μg m-3) were 301 

around 0.1 and for the most volatile (10 μg m-3) 0.25. The vaporization enthalpy was 302 

115 kJ mol-1 and the accommodation coefficient was 0.01 (Table S1). We assumed five 303 

yield “measurements” in the SOA concentration range of 1 to 100 μg m-3 with yield 304 

values as high as 65 % at 100 μg m-3 (Fig. 3). The corresponding thermogram consisted 305 

of 10 data and the particles fully evaporated at TD temperatures higher than 150 oC. 306 

The areogram consisted of 17 data points and only 20 % of the SOA evaporated in the 307 

dilution chamber. 308 

 309 
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4.2. Parameter Estimation for “Experiments” A, B, and C 310 

We explored the performance of the algorithm for different choices of the number of 311 

volatility bins, the range of saturation concentrations, and the range of SOA mass 312 

concentration range in the yield measurements. For each test, the “true” and the 313 

estimated properties are summarized in Table 1. 314 

 We evaluated the performance of our parameter estimation algorithm 315 

comparing its predictions both against the “measurements” and the “truth” defined as 316 

the predictions of the original parameterization. In both comparisons, mean normalized 317 

error (MNE) (Emery et al., 2017) was used as the evaluation metric because it has a 318 

simpler physical meaning than NMSE. 319 

 For the evaluation against the “measurements”, the MNEM was defined as  320 
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=   (16) 321 

where ESTi is the estimated by the algorithm value and corresponds to a specific 322 

measured point Oi. 323 

 For the evaluation against the “truth”, which includes conditions (e.g., 324 

temperatures or concentrations) for which there are no available measurements, the 325 

MNET was defined as: 326 
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EST TR
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=   (17) 327 

where EST and TR are the estimated and the “true” values respectively. Nd is the total 328 

number of data points included in calculations and depends on the selected 329 

discretization of the corresponding dependent variable (e.g., SOA concentration, TD 330 

temperature, and dilution time). We used a linear discretization for the SOA 331 

concentrations (from 0.01 to 50 μg m-3 with a step of 0.01) and the TD temperatures 332 

(20 to 200 oC with a step of 5 oC but excluding zero MFR values to avoid the division 333 

by zero). For the dilution time, the sampling time step was not constant. We used a 334 

higher resolution for the first 0.5 hour (step of 2 min), in which the evaporation is 335 

usually faster, and a lower resolution afterwards (step of 10 min). 336 

 Finally, we used the average relative standard deviation (ARSD) as a metric to 337 

quantify the uncertainty of the estimates (range of good solutions) using the same 338 

discretization as in the MNET metric. The ARSD is given by: 339 
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where σj is the standard deviation for data point j. 341 

 342 

4.2.1 Parameter Estimation for “Experiment” A 343 

In Test A1, we applied the algorithm in the same range of saturation concentrations and 344 

with the same number of volatility bins as these used to produce the “experimental” 345 

data. The upper bin (103 μg m-3) exceeded the maximum SOA concentration (40 μg    346 

m-3) in the measurement range by one order of magnitude. 347 

 Figure 1 depicts the estimated and the range of the ensemble of best solutions 348 

for the three types of “measurements” for Test A1. There were 148 “good” solutions 349 

under the 5% threshold out of the 126,120 simulations (Table S3). The density 350 

distribution of the solutions is depicted in Figure S1. The performance of the model for 351 

the yields at 25 oC was quite encouraging with a small tendency of overprediction for 352 

SOA higher than 10 μg m-3. The MNEM of the model for the SOA yield “measurements” 353 

(given by Eq. 16) was equal to 25% (Table 2). The corresponding discrepancy between 354 

the true parameterization and the measurements (due to the measurement error that we 355 

introduced) was 21.2% (Table 2). This indicates that a significant part of the algorithm 356 

error can be explained by the uncertainty introduced in the measurements. 357 

 Our algorithm can be used to calculate the SOA yield at different concentrations 358 

and temperatures. The yields were calculated in the atmospherically relevant range of 359 

0–50 μg m-3 SOA concentration and at four temperatures (5, 15, 25, and 35 oC) using 360 

the true parameter values and the estimated parameters of Test A1 (Fig. 1a-d). At 25 oC 361 

(Fig. 1c), the estimated yield curve is in good agreement with the “true” yield curve for 362 

SOA concentrations lower than 6 μg m-3 (error of 8% at 6 μg m-3), but the discrepancies 363 

increase at higher concentrations (error of 23% at 50 μg m-3). The average MNET error 364 

between the true parametrization and the estimated values (given by Eq. 17) was equal 365 

to 17.3% for yields at 25 oC (Table 3). The uncertainties, as expected, are larger at lower 366 

temperatures. However, the MNET error (estimated yields compared to the true value) 367 

remains less than 25% (Table 3) even at 5 oC, quite far from the measurement 368 

temperature. Both MNET and MNEM were quite close to the introduced experimental 369 

error. Their difference can be explained by both the “noise” introduced to the 370 
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“measurements” that affects MNEM and the higher number of points used to calculate 371 

MNET. 372 

 The SOA model used in this work assumes that the stoichiometric coefficients 373 

(αi) are temperature independent. Therefore, processes, such as formation of highly 374 

oxygenated organic molecules (HOMs) and oligomerization which are expected to be 375 

temperature dependent (Quéléver et al., 2019; Gao et al., 2022), are not described by 376 

our algorithm. 377 

 The algorithm provides a range of “good” estimates in addition to the best 378 

estimate. The range can be defined by the lower and upper SOA yield limits of the 379 

ensemble of the good solutions at each point. At 25 oC, the yield range increased, as 380 

expected, at higher concentrations (yield range of 0.05 at 1 μg m-3 to 0.17 at 50 μg        381 

m-3). The average relative standard deviation (ARSD of the estimated yields defined by 382 

Eq. 18) was equal to 26% (Table 4) for the 25 oC case. For the rest of the temperatures, 383 

the ARSD increased for the lower temperatures, ranging from 24% at 35 oC to 35% at 384 

5 oC (Table 4) and including in all cases the true solution. 385 

 For the TD (Fig. 1e), the model reproduced well the correspondent thermogram 386 

with low errors compared to the “measurements” with an error MNEM of 7% (Table 2). 387 

The error MNET compared to the “true” values was 5.5% (Table 3). The error of the 388 

TD “measurements” compared to the true values was equal to 7.6% (Table 2). 389 

Therefore, the error of the proposed algorithm is quite similar to the experimental error. 390 

The error introduced into the “measurements” was transferred, as expected, to the error 391 

metrics of the algorithm.  392 

 For the isothermal dilution (Fig. 1f), the algorithm did reasonably well for the 393 

first 30 minutes and then the evaporation was slightly underpredicted leading to an error 394 

MNEM of 16.7% (Table 2). This MNEM value was roughly two times higher than the 395 

corresponding error between the dilution measurements and the true parametrization 396 

(Table 2). The error between the estimated and the “true” values MNET was 19%. The 397 

ARSD of 24% (Table 4) was sufficient to include the true solution. 398 

 The estimated volatility distribution of the products and the effective 399 

vaporization enthalpy and accommodation coefficient using the three types of 400 

measurements can be seen in Figure 4 and Table 1. The estimated volatility distribution 401 

of the products was in a good agreement with the “true” values (αi absolute difference 402 

of 0.01 at 1 μg m-3, 0.03 at 10 μg m-3, 0.07 at 102 μg m-3, and 0.04 at 103 μg m-3) and 403 

the estimated uncertainties contained the correct values. There is a large uncertainty 404 



14 
 

range for the two higher volatility bins (standard deviation higher than 0.13) indicating 405 

that yield values at higher SOA concentrations would be needed to better constrain 406 

these volatility bins. The relative error of the estimated ΔHvap is 10%. The estimated 407 

accommodation coefficient was 0.17 compared to a true value of 0.5. The estimated 408 

uncertainty for the effective accommodation was almost one order of magnitude (from 409 

0.06 to 0.51) indicating the difficulty of constraining this parameter when it is close to 410 

unity and thus the resistances to mass transfer are small. 411 

 412 

4.2.2 Parameter Estimation for “Experiment” B  413 

In this section, we analyze the pseudo-experimental data of Experiment B, which were 414 

obtained from the parametrization of the same smog chamber results used in 415 

Experiment A, but with more components and a much wider range of volatilities 416 

including LVOCs, SVOCs and IVOCs (10-2–104 μg m-3). In Test B1, the algorithm was 417 

applied using a 4-bin VBS with saturation concentrations ranging from 1 to 103 μg       418 

m-3.  In this test, we attempted to model the behavior of the system with a narrower 419 

volatility range than the real one. The upper limit of the saturation concentration range 420 

that we tested did not exceed the 103 μg m-3 because Experiment B took place in 421 

moderate SOA concentration levels (up to 40 μg m-3), which means that it is practically 422 

impossible to constrain the 104 μg m-3 or higher volatile bins. Figure 2 shows the results 423 

of the fitting for the three types of “measurements” in this experiment. There were 82 424 

“good” solutions under the 5% threshold out of 126,120 simulations (Table S3) and the 425 

density of the solutions are shown in Figure S2. At 25 oC, the model performance for 426 

the yields is encouraging (MNEM=20.6%). This is again pretty close to the measurement 427 

error (20.5%). Βy comparing the estimated and the “true” yield curves at 25 oC, the 428 

error MNET is now 14%. The error increases to 31% at 5 oC, far from the available 429 

measurements. This is reflected also in the increase of the uncertainty of our estimates 430 

with the ARSD increasing from 17% at 35 oC to 37% at 5 oC (Table 4). Once more the 431 

uncertainty range estimated by the algorithm includes the true values. 432 

 Both “measured” and “true” thermogram were well captured by the best 433 

estimate (MNEM of 6% and MNET of 4%) with an uncertainty ARSD of 20.5%. The 434 

evaporation in the dilution chamber was a little underestimated for the first 2 h, but then 435 

it was slightly overpredicted. The MNET for the areogram was 13.3% and the true values 436 

were included within the range of the estimates (ARSD of 18%).  437 
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 Figure 5 shows the results of Test B1 for the volatility distribution of the 438 

products. The “true” stoichiometric coefficient for the 1 μg m-3 bin was overestimated 439 

by 0.01 by the algorithm. This overestimation actually corresponds to the total material 440 

of the 10-2 and 10-1 μg m-3 bins of the “true” system. This indicates that the algorithm 441 

places the material of the two lowest bins that are not part of the solution to the bin with 442 

the lower volatility. For the 10 μg m-3 and 102 μg m-3 bins, the relative errors between 443 

the estimated and “true” were 58% and 277% respectively (Table S4), while for the 103 444 

μg m-3 bin, the relative error was 10 %. The ΔHvap was predicted accurately (error of 445 

only 4%), while αm was underpredicted (0.1 instead of 0.5). The model compensates 446 

for the missing volatility bins by increasing the material in the 102 μg m-3 bin and by 447 

decreasing the accommodation coefficient. 448 

 The results of Test B1 suggest that the mismatch between the actual SOA 449 

volatility distribution and the range used for the fits can introduce significant errors in 450 

the retrieved distribution for individual volatility bins. However, despite these 451 

problems, the yields predicted by the derived parameterizations have a much lower 452 

error than the volatility distribution. This is a valuable insight for the strengths and 453 

weaknesses of this and other similar SOA parameter estimation algorithms. 454 

 455 

4.2.3 Parameter Estimation for “Experiment” C 456 

In Test C1, we obtained the best fits for the pseudo-measurements of Experiment C by 457 

applying the algorithm in the same range of saturation concentrations and with the same 458 

number of volatility bins (4 volatility bins in the 10-2–101 μg m-3 saturation 459 

concentration range) as the true volatility distribution.  460 

 Figure 3 shows the results of the fitting for the three types of “measurements”. 461 

There were 3,479 “good” solutions under the 5% threshold out of the 126,120 462 

simulations (Table S3). The density distribution of the solutions is shown in Figure S3. 463 

The best estimate for the SOA yields at 25 oC was in a good agreement with the 464 

“measurements” (MNEM=6.3%) and the “true” values (MNET=9.6%). For the rest of 465 

the temperatures, there was a decreasing trend of the error as the temperature decreased 466 

varying from 15.5% at 35 oC to 6.2% at 5 oC. A similar decreasing trend was observed 467 

for the uncertainty ARSD of the estimates which varied from 23% at 35 oC to 15% at 5 468 

oC. This behavior is the opposite from what we observed in the previous tests, in which 469 

both errors and uncertainties increased at lower temperatures. However, the changes in 470 

both the error and the uncertainty are small (change of around 7% between the upper 471 
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and lower temperature for both metrics), indicating that this system is less temperature-472 

sensitive in this temperature range than the previous ones. 473 

 The performance of the algorithm was satisfactory compared to the TD 474 

“measurements” (MNEM=12.9%). The corresponding error of the algorithm for the true 475 

values (MNET) was 4.4% for temperatures up to 110 oC and equal to 10.6% for the 476 

lower values at higher temperatures. According to Figure 3, the evaporation due to 477 

dilution was initially overestimated for the first 30 min, but then underestimated 478 

(highest MFR discrepancy of 0.05) and there is a high uncertainty range of the 479 

corresponding estimates (MFR range of 0.46 at 3 h). However, the low dilution values 480 

resulted in low relative errors (MNEM of 3.5% and MNET of 2.7%). 481 

 Figure 6 shows that the highest relative errors were calculated for the 10-1 and 482 

100 μg m-3 bins (23% and 33% respectively), and smaller relative errors for the other 483 

two bins (less than 13%). The uncertainties were almost of the same magnitude for all 484 

bins with standard deviations ranging from 0.09 to 0.13. The performance of the model 485 

was good for the ΔHvap (relative error of 7%), but with high uncertainty for αm. 486 

 487 

4.3. Effect of the Volatility Range 488 

In in this section, we explore the performance of the algorithm for different choices of 489 

the number of volatility bins and the range of saturation concentrations. The analysis 490 

of the results of Test B1 has already quantified the effects of using a narrower volatility 491 

distribution in the parameter estimation algorithm than the one of the investigated SOA 492 

system. Additional sensitivity tests are performed here for all cases. 493 

 In Test A2, we used 3 volatility bins covering the 1–102 μg m-3 saturation 494 

concentration range instead of the 4 bins used in Test A1. The narrower assumed 495 

volatility range had a very small effect on the estimated yields at all temperatures (Table 496 

3 and Fig. S4) compared to Test A1. The change in MNET ranged from 3% at 5 oC to 497 

0.3% at 35 oC. Minor changes were detected in the predicted thermogram (change of 498 

0.8%) and areogram (change of 0.5%) as well. The uncertainty of the yield estimates 499 

increased by less than 2.5% at all temperatures. The estimated volatility distribution of 500 

the SOA products of Test A2 changed by less than 5% in the two lower bins. The 501 

material in the 102 μg m-3 increased by 15% to account for the SOA of higher volatility 502 

that could not be included otherwise in the estimated distribution. The estimated ΔHvap 503 

was in this case 32 kJ mol-1 (2.7% decrease) and the αm decreased by 12% with respect 504 

to Test A1. 505 
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 In Test A3, we shifted the assumed 4-bin volatility distribution by one order of 506 

magnitude to lower values (from 1–1000 μg m-3 in Test A1 to 0.1–100 μg m-3 in Test 507 

A3). In this case, the algorithm distributed exactly the same material to the 1, 10 and 508 

100 μg m-3 volatility bins as in Test A2, and it predicted correctly zero SOA in the 0.1 509 

μg m-3 bin (Table 1). The ΔHvap and αm estimated values were also unchanged with 510 

respect to Test A2. This in turn, led to the same estimated yields at different 511 

temperatures (no change in the error between the two tests). 512 

 In Test C2, we applied the algorithm against the Experiment C “measurements” 513 

using a 4-volatility bin system in the 1 to 103 μg m-3 range, that is two orders of 514 

magnitude higher than the actual range of the “true” values. Figure 7 shows the results 515 

of the fitting for the three types of “measurements”. Despite the significant mismatch 516 

of the volatility distributions the MNEM increased by only 2.3% for the estimated SOA 517 

yields. The error for the TD measurements increased by 20% while it actually decreased 518 

a little (1.2%) for the dilution data. The errors compared to the true values increased by 519 

less than 3% for the temperature range 15–35 oC while it increased by 12% at 5 oC. 520 

These results suggest that the estimated yields are quite robust in this case to the 521 

assumed volatility range. The major effect of the mismatch in volatility ranges was 522 

evident in the predicted thermogram with overestimation of the MFR for the 60–120 523 

oC temperature range and underprediction in higher temperatures. The increase in 524 

MNET for the TD MFR was 17.2% (Table 3). The change in the predicted areogram 525 

was marginal and led to a small increase of MNET (error increase by 0.7%) (Table 3). 526 

The algorithm underestimated again the αm (0.004 instead of 0.01) but also recognized 527 

the high uncertainty of the corresponding estimate. The algorithm distributed 528 

significant material to the 1 μg m-3 bin (3.6 times higher than the actual), in an effort to 529 

account for the absence of the 10-2 and 10-1 μg m-3 bins. The ΔHvap was underestimated 530 

with an error of 21%. 531 

 The results of the above tests indicate that a mismatch between the true and 532 

assumed volatility ranges of the SOA increases in general the estimation error but the 533 

increase is small to modest. This is reassuring for the robustness of the proposed 534 

algorithm.  535 

 536 

4.4. Effect of Measurements at Ηigh SOA Levels 537 

During the last decade there has been a significant shift of the performed SOA smog 538 

chamber towards lower SOA concentrations. This is needed to increase the accuracy at 539 
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the ambient concentration levels. The high SOA concentration experiments that once 540 

represented the majority of the performed experiments are becoming increasingly rare. 541 

In this paragraph we examine the value of these high concentration experiments for the 542 

estimation of SOA yields at ambient conditions. 543 

 To examine the effect of “measurements” at SOA levels much higher than the 544 

atmospheric ones, we included an extra yield measurement at 200 μg m-3 in the yield 545 

data of Experiments A and B. In Test A4 and B2, we applied the algorithm once again 546 

against the three types of “measurements” by using a 4-volatility bin system with 547 

saturation concentrations ranging from 1 to 103 μg m-3. 548 

 In Test A4, the additional experiment at high SOA concentration led to an MNET 549 

of 15.7% for the yields at 25 oC (Table 3 and Fig. S5), which is by 1.6% lower than that 550 

without this experiment in Test A1. The improvement was more significant at lower 551 

temperatures e.g., the MNET at 5 oC was reduced from 24.4% to 20.4%. The reduction 552 

in the ARSD for the SOA yields ranged from 3.8% at 5 oC to 0.9% at 35 oC (Table 4). 553 

Figure 8 depicts the results of the model for the yields and the volatility distribution of 554 

the products for Test A4. The accuracy of the predicted volatility distribution increased 555 

especially for the higher volatility material. For example, the error for the 102 μg m-3 556 

bin was reduced from 41% in Test A1 to 6% in this case (Table S3). Minor changes in 557 

the errors were detected for the ΔHvap and αm between the two tests (3% increase and 558 

6% decrease respectively). 559 

 Similar to Test A4, in Test B2 we added a yield measurement at 200 μg m-3 in 560 

the Experiment B set of “measurements”. Figure 9 depicts the results of the model for 561 

the SOA yields at 25 oC and the estimated volatility distribution of the products. The 562 

use of the additional data point led to a reduction of the NMET from 13.9% in Test B1 563 

to 9% in Test B2 at 25 oC (Table 3). Similar reductions in the NMET were observed for 564 

the other temperatures, with the highest one observed at 5 oC (lower error by 7%) 565 

(Figure 10). The reduction in the ARSD for the estimated yields ranged from 3.3% at 5 566 

oC to 1.2% at 35 oC (Table 4). Minor changes were observed for the estimated 567 

thermogram (Fig. S6) (change in the NMET of 1.5%) and the uncertainty of the 568 

estimates (change in the ARSD of 2.5%). The error in the estimated areogram was also 569 

small but in this case the error increased by 5%. The additional data point helped 570 

decrease the errors for the estimated mass of the more volatile SOA products (Fig. 9) 571 

and especially for the 102 μg m-3 bin. The ΔHvap and αm estimated values were only 572 

slightly affected by the additional measurement. 573 
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 By comparing the results Tests B1 and B2 with Case A, one would expect that 574 

the retrieved volatility distribution of the products will be quite similar. The differences 575 

present are due to a large extent to the different random experimental errors introduced 576 

in the two sets of “measurements” for Experiments A and B. A second reason for the 577 

differences is that parametrizations of the two “Experiments” by Pathak et al. (2007b) 578 

even if they were derived from the same smog chamber experiments have some 579 

differences. As a result, the “true” yields, thermogram, and areogram in Cases A and B 580 

are not exactly the same (Figs. 1 and 2). 581 

 These results suggest that an additional yield measurement at high SOA can 582 

lead to a substantial reduction of the error for the estimated yields at low temperatures 583 

(Fig. 10) and also a better estimation of the SOA products with higher volatility (102 584 

and 103 g m-3). These products may contribute little to the SOA concentration at 25 585 

oC, but their reactions (aging) could lead to significant additional SOA in later stages. 586 

 587 

4.5. Significance of Each Type of Measurement for the Parametrization 588 

To quantify the effect of each type of measurement for the parameter estimation and 589 

their subsequent effect on the estimated SOA yields, we repeated tests A1, B1, and C1 590 

withholding one set of measurements. More specifically, we used the algorithm 591 

providing it the following combination of measurements: TD and isothermal dilution, 592 

SOA yields and isothermal dilution, and finally SOA yields and TD. 593 

The use of only the TD and isothermal dilution data corresponds for all practical 594 

purposes to the previous algorithm of Karnezi et al. (2014) which has been the starting 595 

point of this work. In Test A1, the absence of the yield measurements led to a significant 596 

deterioration of the ability of the algorithm to estimate SOA yields at all temperatures 597 

and concentrations (Fig. S7). The SOA yield error of the algorithm in the 5–35 oC 598 

temperature range increased from 14-24% (when all measurements are provided) to 599 

approximately 100% (Table S5). The corresponding uncertainty range also increased 600 

by a factor of 4-6 (Table S6). Similar results were obtained in the other tests. 601 

Figure S8 shows the volatility distribution of the products, ΔHvap and αm in Test 602 

A1. High discrepancies and uncertainties were observed for the estimated 603 

stoichiometric coefficients (αi), with an increase in the relative error by a factor of 3-4 604 

for the 1 and 10 μg m-3 bins (Table S7) compared to the case when all three types of 605 

measurements are used. 606 
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 Figures S9 and S10 show the results of the algorithm for Test A1 when only the 607 

SOA yields and isothermal dilution measurements are provided as inputs to the 608 

algorithm. In this case the algorithm cannot constrain well the ΔHvap (relative error of 609 

almost 270% with respect to the true value) as a result of the missing TD measurements. 610 

This led to significant increase in the MNET for the estimated yields when moving far 611 

from the temperature of the measurements (MNE of 65% at 15 oC and 122% at 5 oC). 612 

 Figures S11 and S12 show the results of the algorithm for Test A1 when only 613 

yield and TD measurements are provided as inputs. In this case, there was a significant 614 

reduction in the error for the ΔHvap respect to the previous case (from 270% to 50%), 615 

but it was still much higher than the 10% error when all three types of measurements 616 

were used. This led to better agreement between the true and estimated yields at lower 617 

temperatures (MNET of 23% and ARSD of 44%). 618 

 When comparing TD/Dilution, Yields/Dilution, and Yields/TD results, the 619 

Yield/TD combination gave the best results out of the three pairs. The isothermal 620 

dilution measurements are the least valuable of the three because only a relatively small 621 

fraction of the SOA evaporates and therefore the information provided is relatively 622 

limited and focuses on the more volatile components of the particles. Also, TD 623 

measurements are important to constrain well ΔΗvap and allow the more accurate 624 

extrapolation of the results to other temperatures. also provides information for the 625 

volatility distribution of the OA. However, our results suggest that the combination of 626 

the three types of measurements does need to a major improvement over either the 627 

TD/Dilution approach or the Yield/TD approach. 628 

 629 

4.6. Sensitivity to the Upper Limit of the Sum of Product Yields 630 

The maximum sum of the VBS product yields is one of the parameters that the user of 631 

the algorithm chooses. In the analysis so far, a value of 1 had been selected to reduce 632 

the computational cost of the algorithm. Selected tests were repeated using a maximum 633 

sum of 2 to quantify the effects of this choice on the estimated parameters and more 634 

importantly on the SOA yields predicted by the parameterization. For a 4-product 635 

system there are 9,191 product yield combinations and considering the discretization of 636 

ΔΗvap and αm, this leads to a total of 367,120 simulations (Table S3). 637 

 The increase in the upper limit of the sum of the yields led to an increase in the 638 

“good” solutions in Tests A1, A4, B1, B2, and C2. The additional solutions had 639 

different yields mostly in the 103 μg m-3 bin. This led to an increase of the mass yield 640 
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of this bin by 37% in Test A1, 47% in Test B1, and 29% in Test C2 (Table S8). The 641 

uncertainties were even higher showing once again the difficulty to constrain the IVOC 642 

range where there are no SOA measurements at very high SOA concentrations. The 643 

new parametrizations had a minor effect on the estimated yields at different 644 

temperatures with maximum change in the MNET found at 5 oC (change of 1.8% in Test 645 

A1 and 1.2% in Test B2) and much smaller otherwise (Table S9). Therefore, the use of 646 

the higher upper limit has an effect on the estimate of the 103 μg m-3 bin which is quite 647 

uncertain in all cases, but has a minor effect on the predicted SOA yields at ambient 648 

conditions. 649 

 650 

5. Conclusions 651 

An algorithm was developed to estimate VBS parameters for SOA formation 652 

combining yield measurements from atmospheric simulation chambers with 653 

thermodenuder and isothermal dilution measurements chambers. Αn additional feature 654 

of this approach is that the algorithm estimates the uncertainty of the predicted SOA 655 

yields for different SOA concentrations and temperatures, assisting in this way in the 656 

design of future experiments. 657 

 The algorithm was evaluated against pseudo-experimental data for SOA 658 

systems with known properties. The algorithm performed quite well at reproducing the 659 

SOA yields at atmospherically relevant concentrations and temperatures with errors 660 

less than 20% for practically all cases. This was the case even at temperatures as low 661 

as 5 oC and also when the volatility range used for the parameter estimation was 662 

narrower than that of the simulated SOA system. One should note that this error was 663 

quite similar in most cases to the experimental error assumed in the construction of the 664 

“measurement” datasets. 665 

 The errors in the retrieved SOA volatility distributions were in general higher 666 

than those of the SOA yields. This is due to a large extent to the existence of multiple 667 

solutions that can result in similar yields. The accuracy of the estimated mass fractions 668 

of the more volatile SOA components improved when an additional yield measurement 669 

at high SOA (e.g., at 200 μg m-3). The addition of this measurement also improved the 670 

estimated yields at low temperatures. This therefore suggests that data points at high 671 

SOA concentrations should also be obtained experimentally, together with the data 672 

points at atmospherically relevant atmospheric SOA levels. 673 
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 In all cases the algorithm results in good estimates of the effective evaporation 674 

enthalpy. On the other hand, the estimates of the effective accommodation coefficient 675 

are usually quite uncertain. The effect of the mass accommodation coefficient on the 676 

measured quantities is relatively small compared to the other parameters (volatility 677 

distribution, effective evaporation enthalpy) making it difficult to constrain. This 678 

conclusion is consistent with the results of Karnezi et al. (2021). The addition of the 679 

SOA yields to the inputs does not make much of a difference, because these are not 680 

affected by the accommodation coefficient. 681 

 The approach combining yield, TD (thermograms), and isothermal dilution 682 

(areograms) measurements is recommended for future parametrizations of SOA 683 

formation. The use of the results of these experiments that have been designed for the 684 

measurement of SOA yields to other applications (e.g., new particle formation) should 685 

be performed with caution. Our results indicate that the derived parameterizations are 686 

able to predict the SOA yields under different atmospheric conditions with errors of 687 

around 20% or less, but the derived volatility distributions can be quite uncertain. These 688 

uncertainties are higher for the tails of the distribution (the low volatility and the 689 

intermediate volatility organic compounds). Different experiments should be probably 690 

performed for the derivation of the VBS distribution if for example on is interested in 691 

new particle formation and therefore the low volatility organics focusing on low SOA 692 

concentration levels and the least volatile SOA components. 693 

 694 
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Table 1: True and estimated volatility distribution of the products for 8 different tests. 

The uncertainty of the estimates (±σ) is also included. 

TEST 
ΔHvap 

(kJ mol-1) 
log(αm) 

Stoichiometric Coefficients (αi) 

at Ci
* (μg m-3) 

10-2 10-1 100 101 102 103 104 

True 

A 
30 -0.30 - - 0.070 0.038 0.179 0.300 - 

A1 32.9±9.6 -0.77±0.47 - - 
0.059 

±0.022 

0.071 

±0.052 

0.252 

±0.130 

0.255 

±0.191 
- 

A2 32.0±9.8 -0.72±0.45 - - 
0.062 

±0.021 

0.067 

±0.053 

0.286 

±0.132 
- - 

A3 32.0±9.8 -0.72±0.45 - 
0.000 

±0.000 

0.062 

±0.021 

0.067 

±0.053 

0.286 

±0.132 
- - 

A4 34.0±9.2 -0.70±0.46 - - 
0.062 

±0.021 

0.082 

±0.050 

0.191 

±0.084 

0.259 

±0.198 
- 

True 

B 
30 -0.30 0.001 0.012 0.037 0.088 0.099 0.250 0.800 

B1 33.8±9.2 -0.95±0.21 - - 
0.052 

±0.011 

0.037 

±0.039 

0.374 

±0.122 

0.226 

±0.176 
- 

B2 36.5±7.6 -0.93±0.26 - - 
0.050 

±0.000 

0.051 

±0.039 

0.292 

±0.103 

0.234 

±0.196 
- 

True 

C 
115 -2.02 0.118 0.094 0.116 0.247 - - - 

C1 104.6±24.0 -1.74±0.97 
0.126 

±0.086 

0.116 

±0.090 

0.154 

±0.116 

0.216 

±0.126 
- - - 

C2 91.2±19.2 -2.36±0.83 - - 
0.415 

±0.099 

0.143 

±0.117 

0.137 

±0.113 

0.115 

±0.095 
- 
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Table 2: The mean normilized error (MNE) between the “measurements” and “true” 

values, and between the “measurements” and the model estimated values for the 

different tests. 

Test 
“Measurements” vs “True” a 

“Measurements” vs Estimated 

MNEM b 

Yield TD Dilution Yield TD Dilution 

A1 21.2 7.6 9.4 25.0 7.0 16.69 

A2 21.2 7.6 9.4 25.1 7.1 16.71 

A3 21.2 7.6 9.4 25.1 7.1 16.71 

A4 17.8 7.6 9.4 22.4 7.1 19.7 

B1 20.5 6.9 5.6 20.6 6.0 14.7 

B2 18.1 6.9 5.6 19.1 7.8 18.1 

C1 8.4 11.6 1.8 6.3 12.9 3.5 

C2 8.4 11.6 1.8 8.6 32.4 2.3 

a Calculated by 
1

100 ON
i i

iO i

O TR

N O=

−
 . 

b Calculated by Eq. (16). 
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Table 3: The mean normilized error between the “true” and estimated values (MNET) 

for the different tests. 

Test 
Yield 

TD Dilution 
5 oC 15 oC 25 oC 35 oC 

A1 24.4 21.0 17.3 13.8 5.5 19.0 

A2 21.4 19.5 16.9 14.1 4.7 18.5 

A3 21.4 19.5 16.9 14.1 4.7 18.5 

A4 20.4 18.3 15.7 12.9 6.0 22.5 

B1 31.3 21.7 13.9 8.7 4.0 13.3 

B2 24.4 15.6 9.0 6.4 2.5 18.4 

C1 6.2 6.8 9.6 15.5 
4.4 (110 oC)* 

10.6 (140 oC)*  
2.7 

C2 18.1 9.6 7.2 11.5 
9.0 (110 oC)* 

27.8 (140 oC)* 
3.4 

*  The errors for TD were calculated up to the denoted temperature in the parenthesis. 

 

 

Table 4: The average relative standard deviation (ARSD) for the different tests. 

Test 
Yield 

TD Dilution 
5 oC 15 oC 25 oC 35 oC 

A1 34.6 29.7 26.0 24.2 21.0 23.6 

A2 32.1 28.5 25.2 23.3 21.1 23.2 

A3 32.1 28.5 25.2 23.3 21.1 23.2 

A4 30.8 27.2 24.5 23.3 21.0 22.1 

B1 37.1 27.2 20.0 16.9 20.5 18.0 

B2 33.8 25.0 18.5 15.7 18.0 15.9 

C1 15.0 14.9 16.2 22.9 20.7* 16.5 

C2 20.1 15.6 14.1 21.3 20.6* 9.8 

*  The ARSD for the TD MFR values were calculated in the 20–120 oC temperature 

range. 
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Figure 1: “Measurements” of Test A1 in Experiment A (red dots), true (red line) and 

estimated (blue line) yields at (a) 5 oC, (b) 15 oC, (c) 25 oC, and (d) 35 oC), (e) TD 

(thermogram), and (f) dilution (areogram) values. The grey area shows the range of 

good solutions obtained by our algorithm. 
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Figure 2: “Measurements” of Test B1 in Experiment B (red dots), true (red line) and 

estimated (blue line) yields at (a) 5 oC, (b) 15 oC, (c) 25 oC, and (d) 35 oC), (e) TD 

(thermogram), and (f) dilution (areogram) values. The grey area shows the range of 

good solutions. 
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Figure 3: “Measurements” of Test C1 in Experiment C (red dots), true (red line) and 

estimated (blue line) yields at (a) 5 oC, (b) 15 oC, (c) 25 oC, and (d) 35 oC), (e) TD 

(thermogram), and (f) dilution (areogram) values. The grey area shows the range of 

good solutions. 
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Figure 4. Estimated (bars) and true (red lines) parameter values of Experiment A in 

Test A1 combining yield, TD, and isothermal dilution measurements for: (a) the 

volatility distribution of the products, (b) ΔHvap, and (c) αm. The error bars represent 

the uncertainty of the estimated values. 
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Figure 5: Estimated (bars) and true (red lines) parameter values of Experiment B in 

Test B1 combining yield, TD, and isothermal dilution measurements for: (a) the 

volatility distribution of the products, (b) ΔHvap, and (c) αm. The error bars represent 

the uncertainty of the estimated values. 

(a) 

(b) (c) 
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Figure 6: Estimated (bars) and true (red lines) parameter values of Experiment C in 

Test C1 combining yield, TD, and isothermal dilution measurements for: (a) the 

volatility distribution of the products, (b) ΔHvap, and (c) αm. The error bars represent 

the uncertainty of the estimated values. 
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Figure 7: Yields calculated using the “true” parameters of Experiment C (red line) and 

the estimated (blue line) using the parameters of Test C2 for the following temperatures: 

(a) 5 oC, (b) 15 oC, (c) 25 oC, and (d) 35 oC. Also shown the (e) thermogram and (f) 

aerogram. The grey area shows the range of good solutions obtained by our algorithm. 
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Figure 8: (a) True (red line) and estimated (blue line) yields in Test A4, and the 

“measurements” of Experiment A (red dots) including an additional yield 

“measurement” at 200 μg m-3. The black dashed line corresponds to the estimated yields 

in Test A1. (b) Estimated volatility distribution of the products (bars) of Test A4 and 

the true (red lines) parameter values. The black dots correspond to the estimated 

volatility distribution of the products in Test A1. 

 

 

 

 

 

Figure 9: (a) Estimated yields (blue line) in Test B2 and “measurements” of 

Experiment B (red dots) including an additional yield “measurement” at 200 μg m-3. 

The black dashed line corresponds to the estimated yields in Test B1. (b) Estimated 

volatility distribution of the products (bars) of Test B2 and the true (red lines) parameter 

values. The black dots correspond to the estimated volatility distribution of the products 

in Test B1. 
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Figure 10: Yields calculated using the “true” parameters of Experiment B (red line) 

and the estimated (blue line) using the parameters of Test B2 for the following 

temperatures: 5 oC, 15 oC, 25 oC, and 35 oC. The blue area shows the range of good 

solutions obtained by our algorithm. The black dashed line corresponds to the estimated 

yields in Test B1. 

 

 

 

 

 

 

 

 

 


