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Abstract. Instrumentation packages of eddy covariance (EC) have been developed for a small unmanned aerial vehicle (UAV) 18 

to measure the turbulent fluxes of latent heat (LE), sensible heat (H), and CO2 (Fc) in the atmospheric boundary layer. This 19 

study evaluates the measurement performance of this UAV-based EC system. First, the precision (1𝜎) of geo-referenced wind 20 

measurement was estimated at 0.07 m s-1. Then, the effect of calibration parameter and aerodynamic characteristics of the 21 

UAV on the quality of the measured wind was examined by conducting a set of calibration flights. The results shown that the 22 

calibration improved the quality of measured wind field, and the influence of upwash and leverage effect can be ignored in the 23 

wind measurement. Third, for the measurement of turbulent fluxes, the measurement error caused by instrumental noise was 24 

estimated at 0.03 µmol m-2 s-1 for Fc, 0.02 W m-2 for H, and 0.08 W m-2 for LE. Fourth, data from the standard operational 25 

flights are used to assess the influence of resonance on the measurements and to test the sensitivity of the measurement under 26 

the variation (±30 %) of the calibration parameters around their optimum values. Results shown that the effect of resonance 27 

mainly affect the measurement of CO2 (~5 %). The pitch offset angle (𝜀𝜃) significantly affected the measurement of vertical 28 

wind (~30 %) and turbulent fluxes (~15 %). The heading offset angle (𝜀𝜓) mainly affected the measurement of horizontal 29 

wind (~15 %), and other calibration parameters had no significant effect on the measurements. The results lend confidence to 30 

use the UAV-based EC system, and suggest future directions for optimization and development of the next generation system. 31 
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1 Introduction 32 

In environmental, hydrological and climate change sciences, the measurement of surface fluxes at the regional scale (level of 33 

several to tens of kilometers) has attracted great interest despite often being considered a gordian knot (Mayer et al., 2022; 34 

Chandra et al., 2022). Process-based or remote sensing (RS)-based models are often used to estimate land surface fluxes of 35 

matter and energy at continental to global scales with typical spatial resolution from 1-10 km (Hu and Jia, 2015; Mohan et al., 36 

2020; Liu et al., 1999). However, observational data, especially at similar scales to models’ estimates, is often lacking, which 37 

presents a significant challenge for the validation and evaluation of the surface flux products from these models’ estimates (Li 38 

et al., 2018; Li et al., 2017). On the ground, in the past decades, extensive eddy-covariance (EC) flux sites with their composed 39 

networks and optical-microwave scintillometer (OMS) sites have been built to provide temporally continuous monitoring of 40 

surface flux at local (hundreds of meters around the measurement site of ground EC) and path (a distance of a few hundred 41 

meters to near 10 kilometers between transmitter and receiver terminal of OMS) scales (Yang et al., 2017; Liu et al., 2018; 42 

Zhang et al., 2021; Zheng et al., 2023). Generally speaking, flux from ground measurements need to be scaled up to kilometers-43 

scale to provide comparable spatial surface “relative-truth” flux data for the process- or RS-based models at larger spatial 44 

scales (Liu et al., 2016). However, the spatial density of these flux measurements sites is still low compared to the heterogeneity 45 

of surface fluxes, which means that major scaling bias may exist in the upscaled flux data (Wang et al., 2016; Li et al., 2021). 46 

Therefore, regional-scaled flux measurement techniques need to be developed to complement the ground- and models-based 47 

approaches (Vellinga et al., 2010).  48 

Aircraft-based EC flux measurement method, which has been developed for turbulence measurements for more than 40 49 

years (Lenschow et al., 1980; Desjardins et al., 1982), is considered as the optimum method to measure turbulent flux at 50 

regional scale (several hundred square kilometers), thus bridging the scale gap between ground and model-derived methods 51 

(Gioli et al., 2004; Garman et al., 2006). To date, several types of aircrafts, including manned or unmanned fixed-wing aircrafts, 52 

delta-wing aircrafts, and helicopters, have been used for measurements of turbulent flux by equipping them with the EC sensors 53 

to measure three-dimensional (3D) wind, air temperature, and gas concentrations at a frequency of 50 Hz (Gioli et al., 2006; 54 

Metzger et al., 2012; Thomas et al., 2012; Bange and Roth, 1999). Among them, fixed-wing aircrafts and delta-wing aircrafts 55 

are better airborne platforms for EC measurements compared to helicopters due to their tightly coupled structure with the wind 56 

sensor and because their flow distortion around the fuselage can be more easily avoided or modeled (Prudden et al., 2018; 57 

Garman et al., 2008). A wide range of manned aircrafts has been developed to measure turbulent flux, including single-engine 58 

light aircrafts (e.g., Sky Arrow 650, Long-EC, WSMA) (Gioli et al., 2006; Crawford and Dobosy, 1992; Metzger et al., 2012), 59 

twin-engine aircrafts (e.g., Twin Otter, NASA CARAFE) (Desjardins et al., 2016; Wolfe et al., 2018) and larger quad-engine 60 

utility aircrafts (e.g., NOAA WP-3D) (Khelif et al., 1999). These airborne flux measurements, in combination with ground 61 

measurements, provide an excellent opportunity to produce regional-scaled, spatio-temporal continuous surface flux datasets 62 

that can improve our understanding of the processes of land-atmosphere interactions in regional and global change (Chen et 63 

al., 1999; Liu et al., 1999; Prueger et al., 2005). However, manned aircrafts are expensive to operate and maintain. Aviation 64 
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safety and operational regulations require that manned aircrafts must fly above a minimum altitude (400 m above the highest 65 

elevation within 25 km on each side of the center line of the air route) and must avoid hazardous conditions such as icing or 66 

severe turbulence (Elston et al., 2015). The flow distortion induced by the aircraft itself (from the wings, fuselage, and the 67 

propellers) complicates the wind vector measurement from aircraft platform, which means that sophisticated correction 68 

procedures should be applied to compensate for the flow distortion effects (Elston et al., 2015; Williams and Marcotte, 2000; 69 

Drüe and Heinemann, 2013). 70 

In recent years, interesting in unmanned aerial vehicle (UAV) platforms for atmospheric studies have been fast growing, 71 

especially because of their lower construction, operation, and maintenance costs compared with manned platforms. High-72 

performance fixed-wing UAVs offer a high payload capacity (5-10 kg) and similar endurance (2-3 h) and operating altitude 73 

(up to 3500 m above the sea level) to manned aircrafts, but with much less turbulence disturbance due to their small fuselage 74 

size (Reineman et al., 2013). More importantly, the advancements in small, fast, and powerful sensors and microprocessors 75 

make it possible to use of UAVs for comprehensive atmospheric measurements (Sun et al., 2021a). Several types of UAVs 76 

with different turbulence measurement objectives have been developed and deployed, ranging from small payload capacity 77 

(e.g., 140 g SUMO) to medium (e.g., 1.5 kg M2AV, 1.0 kg MASC) and large (e.g., 6.8 kg Manta, 5.6 kg ScanEagle) (Reuder 78 

et al., 2016; Båserud et al., 2016; Van Den Kroonenberg et al., 2012; Reineman et al., 2013). A comprehensive overview of 79 

the use of these UAVs for turbulence sampling can be found in Elston et al. (2015) and Sun et al. (2021a). For turbulence 80 

measurements, the UAVs were equipped with a commercial or custom multi-hole (5- or 9-hole) probe paired with an integrated 81 

navigation system (INS) to obtain the wind vector. Small and medium UAVs typically could only measure fast 3D wind vector 82 

and air temperature fluctuations for measurements of momentum and sensible heat flux, whereas, large UAVs were equipped 83 

with more types (e.g., radiation, optics, or gas concentration) and more accurate sensors for measurement of a larger range of 84 

meteorological properties including sensible and latent heat fluxes, CO2 flux, radiation fluxes as well as surface properties 85 

(Reineman et al., 2013; Sun et al., 2021a). UAVs equipped with scientific instruments can be deployed in a variety of 86 

application environments and conditions. UAVs offer distinct advantages over manned aircraft in their ability to safely perform 87 

measurements and greatly reduce operational costs especially in low-altitude conditions (below 100 m above the ground level), 88 

which are optimal for measuring turbulent flux (Witte et al., 2017). Anderson and Gaston (2013) predict that UAVs will 89 

revolutionize the spatial data collection in ecology and meteorology. 90 

EC method is a well-developed technology for directly measuring vertical turbulent flux (flux of sensible heat, latent heat 91 

and CO2) within the atmospheric boundary layers (ABL) (Peltola et al., 2021). It requires accurate time (for ground tower) or 92 

spatial (for mobile platform) series of both the transported scalar quantity and the transporting turbulent wind. Each should be 93 

measured at sufficient frequency to resolve the flux contribution from small eddies (Vellinga et al., 2013). The measurement 94 

of the geo-referenced 3D wind vector, which is the prerequisite for EC measurements, is challenging for airborne platform. 95 

Airborne measurement of geo-referenced 3D wind is the vector sum between the aircraft velocity relative to the earth (inertial 96 

velocity) and the velocity relative to the air (relative wind vector, or true airspeed). Therefore, accurate measurements of the 97 

relative wind as well as the motion and attitude of the platform are essential to accurately measure the geo-referenced wind 98 
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vector and turbulent flux (Metzger et al., 2011). Garman et al. (2006) estimated the measurement precision (1𝜎) of the vertical 99 

wind measurements of a commercial 9-hole turbulence probe (known as “Best Air Turbulence Probe”, often abbreviated as 100 

the “BAT Probe”) to be 0.03 m s-1 by combining the precision of the BAT Probe and the integrated navigation device. The 101 

BAT Probe is widely used on manned fixed-wing aircrafts, such as Sky Arrow 650 ERA (Environmental research aircraft), 102 

Beechcraft Duchess, and Diamond DA42, for turbulent flux measurement (Gioli et al., 2006; Garman et al., 2008; Sayres et 103 

al., 2017). A light delta-wing EC flux measurement aircraft developed by Metzger et al. (2011) reported a 1𝜎 precision of 104 

wind measurement of 0.09 m s-1 for horizontal wind and 0.04 m s-1 for vertical wind using a specially customized five-hole 105 

probe (5HP). On this basis, in combination with a commercial infrared gas analyzer, the 1𝜎 precision of flux measurement 106 

was 0.003 m s-1 for friction velocity, 0.9 W m-2 for sensible heat flux, and 0.5 W m-2 for latent heat flux (Metzger et al., 2012). 107 

The EC flux measurement from a UAV platform can now be achieved with a similar reliability to a manned platform. The 108 

Manta and ScanEagle UAV-based EC measurements developed by Reineman et al. (2013) achieved precise wind 109 

measurements (0.05 m s-1 for horizontal and 0.02 m s-1 for vertical wind) using a custom nine-hole probe and a commercial 110 

high precision  integrated navigation system (INS), at a lower price and lighter weight than the commercial BAT probe. 111 

However, the onboard instrument packages for Manta and ScanEagle UAV are independent of each other in their 112 

measurements of turbulent and radiation flux, and the CO2 flux measurement is lacking.  113 

Inspired by these studies, Sun et al. (2021a) used a high-performance fuel-powered vertical take-off and landing (VTOL), 114 

fixed-wing platform to integrate the scientific payloads for EC and radiation measurements to obtain a comprehensive 115 

measurement of turbulent and radiation flux using an UAV. This UAV-based EC system measured turbulent fluxes of sensible 116 

heat, latent heat, and CO2, as well as radiation including net radiation and upward- and downward-looking photosynthetically 117 

active radiation (PAR). This system was successfully tested in the Inner Mongolia of China and applied to measure the regional 118 

sensible and latent heat fluxes in the Yancheng coastal wetland in Jiangsu, China (Sun et al., 2021a; 2021b). During these field 119 

studies, the UAV-based EC measurements achieved a near consistent observational result compared with ground EC 120 

measurements (Sun et al., 2021b). However, some shortcomings in the developed UAV-based EC system were also identified. 121 

In particular, the noise effects from the engine and propeller were not fully isolated, resulting in high frequency noise in the 122 

measured scalars (air temperature, H2O, and CO2 concentration). This UAV-based EC system is being continuously improved 123 

(in Section 2.1) based on field measurements. However, there is no quantitative evaluation of the measurement precision of 124 

the wind field and turbulent flux as well as of the influence of the resonance noise from the UAV operation yet. Previous work 125 

using ground EC as a benchmark to assess the measurement performance of the UAV-based EC system has been disputed, 126 

due to difference in EC sensors, platforms, measurement height, and source areas (i.e., footprint), as well as the influence of 127 

surface heterogeneity, flux divergence, inversion layer and the stochastic nature of turbulence (Sun et al., 2021b; Wolfe et al., 128 

2018; Hannun et al., 2020). 129 

This study attempts to evaluate the performance of the UAV-based EC system developed by Sun et al. (2021a) in the 130 

measurement of wind field and turbulent flux. For these purposes, data from two field measurement campaigns, including a 131 

set of calibration flights and some standard operation flights, were used in this study. First, the current study investigated the 132 



5 

 

quality of the measurement of geo-referenced wind vector including measurement error (1𝜎) and the improvements for wind 133 

measurement after system calibration. Second, using the measured data from standard operation flights, flux measurement 134 

error related to instrumental noise was estimated with a method proposed by Billesbach (2011). Errors propagated through the 135 

correction terms [i.e., Webb-Pearman-Leuning (WPL) correction for latent heat and CO2 flux] were also included in our 136 

analysis (Webb et al., 1980; Kowalski et al., 2021). Then, the impacts of resonance noise on the measured scalar variance and 137 

the flux covariance were also estimated by comparing the real (co)spectra curve with the theoretical reference curve from 138 

Massman and Clement (2005). Lastly, the sensitivity of the measured geo-referenced wind vector and turbulent flux to the 139 

errors in the calibration parameters (determined by the calibration flight) were assessed by adding an error of ±30 % to their 140 

optimum calibration value.  141 

2 Materials and Methods 142 

2.1 The UAV-based EC system 143 

The UAV platform used for EC measurement is a high-performance, fuel-powered VTOL, fixed-wing UAV, which has 144 

minimal requirements for the takeoff location and offers a high payload capacity of up to 10 kg. The UAV has a wing-span of 145 

3.7 m, a fuselage length of 2.85 m, and a maximum take-off weight of 60 kg. The UAV engine is mounted in a pusher 146 

configuration, allowing for the turbulence probe to be installed directly on the nose of the UAV, minimizing or eliminating 147 

airflow contamination due to upwash and sidewash generated by the wings (Crawford et al., 1996). Control of the UAV is 148 

totally autonomous, and the pilots have the option to enable manual and semi-manual control in emergency conditions. The 149 

UAV has a cruise flight speed of 28 to 31 m s-1 with an endurance of almost 3 h, and it has a flight ceiling of up to 3800 m 150 

above the sea level. Detailed information on this UAV could be found in Sun et al. (2021a). 151 

The flux payloads of the UAV-based EC system include a precision-engineered 5-hole pressure probe (5HP) for 152 

measurement of the true airspeed and the attack (𝛼) and sideslip (𝛽) angles of incoming flow relative to the UAV, a dual-153 

antenna integrated navigation system (INS) for high accuracy measurement of UAV ground speed and attitude, an open path 154 

infrared gas analyzer (IRGA) for recording the atmospheric densities of CO2 and water vapor, a fast temperature sensor for 155 

measurement of the fast temperature fluctuations, and a slow-response temperature probe for providing a mean air temperature 156 

reference. The sample rate is 50 Hz except for the slow-response temperature probe (1 Hz), yielding a turbulence horizontal 157 

resolution of approximately 1.2 m at a cruising speed of 30 m s-1. The system was improved according to deficiencies identified 158 

after several field measurements with the following adjustments: 1) a laser distance measurement unit was mounted for 159 

measuring the distance between the UAV and the ground level, 2) the platinum resistance thermometer was replaced by a 160 

thermocouple (Omega T-type COCO-003; ∅0.075 mm) for improving the resistance of the high-frequency temperature 161 

measurements to vibration noise from the engine, 3) the vibration isolator structure of the IRGA was improved, and 4) the 162 

original datalogger (CR1000X, Campbell, USA) was replaced with a lighter one (CR6, Campbell, USA). All the digital and 163 

analog signals from the sensor modules are stored and synchronized by the on-board datalogger, and the on-board scientific 164 
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payloads are designed to be isolated from the electronic components of the UAV to ensure that any problems occurring would 165 

not jeopardize the safety of the UAV (Sun et al., 2021a). 166 

In the present study, to estimate the measurement precision of the geo-referenced wind and turbulent flux, the sensor 167 

modules and their 1𝜎 precision of the measured variables related to EC measurement were used, as presented in Table 1. For 168 

the 5HP, the 1𝜎 measurement precision was acquired from the wind tunnel test after wind tunnel calibration (Sun et al., 2021a). 169 

Table 1: Summary of the sensor modules, measured variables, and their measurement precision used to determine the geo-170 

referenced wind velocity and turbulent flux. 171 

Sensor 

(Module, company, country) 
Variables Precision (𝟏𝝈) 

GNSS/INS 

(BD992-INS, Trimble, USA) 

Roll, Pitch, Heading 0.1º 

Horizontal velocity 0.007 m s-1 

Vertical velocity 0.02 m s-1 

5HP 

(ADP-55, Simtec AG, Switzerland) 

Attack angle 0.02º# 

Sideslip angle 0.04º# 

True airspeed 0.05 m s-1# 

Static pressure 1.1 hPa 

Dynamic pressure 0.003 hPa 

IRGA 

(EC150, Campbell, USA) 

CO2 density 0.2 mg m-3 

H2O density 0.004 g m-3 

Thermistor  

(100K6A1IA, Campbell, USA) 

Temperature (slow) 
0.2 ℃ 

Thermocouple 

(T-type COCO-003, Omega, USA) 

Temperature (fast) 
0.5 ℃ 

# Results from the wind tunnel test. 172 

2.2 Field campaign 173 

2.2.1 In-flight calibration campaign 174 

In order to calibrate the wind measurement component of the UAV-based EC system, an in-flight calibration campaign was 175 

carried out on 4 September 2022 at the Caofeidian Shoal Harbor in the Bohai Sea of northern China. The average water depth 176 

of this area is approximately 0-5 m, with a maximum water depth of 22 m. At low tide, a large area of the tidal flat is exposed; 177 

while at high tide, only the barrier islands are visible (Xu et al., 2021). The assumptions for calibration flight include 1) low 178 

turbulent transport condition (i.e., no disturbance), 2) a constant mean horizontal wind, and 3) mean vertical wind near zero 179 

(Drüe and Heinemann, 2013; Vellinga et al., 2013; Van Den Kroonenberg et al., 2008). This allows identical wind components 180 

for several consecutive straights in opposite or vertical flight directions. These assumptions are usually well satisfied above 181 

the ABL or under stable atmospheric conditions (Drüe and Heinemann, 2013). Over the sea surface, due to its uniform and 182 

cool surface property, the turbulence fluctuations are weaker than that over the land surface (Mathez and Smerdon, 2018), 183 

making where a more ideal environment to conduct calibration flight.  184 
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The in-flight calibration campaign included three flight maneuvers, including a ‘box’ maneuver, ‘racetrack’ maneuver, and 185 

‘acceleration-deceleration’ maneuver. The trajectory of the calibration flight is shown in Figure 1, with different color 186 

corresponding to different flight maneuver. The calibration flight was executed between 7:28-7:48 a.m. (China Standard Time, 187 

CST) to coincide with the ebb tide stage. During this time, the average water depth was approximately 1.1 m, and the average 188 

flight altitude was 400 m (𝜎 = ±0.78 m) above the sea level. Considering the uniform and cool underlying surface and the 189 

stable atmospheric conditions in the early morning, we assume no disturbance from underlying surface was present during the 190 

calibration flight. 191 

 192 

Figure 1. Flight trajectory of the calibration campaign on 4 September 2022 at the Caofeidian Shoal Harbor in the Bohai Sea of 193 
northern China. The land surface image is from Sentinel-2A satellite image with true color combination acquired on 1 September 194 
2022.  195 

In this study, the ‘box’ maneuver is used to determine the mounting misalignment angle in the heading (𝜖𝜓) and pitch (𝜖𝜃) 196 

between the 5HP and the center of gravity (CG) of the UAV. The flight path is a box in which the four straight legs are flown 197 

at constant cruising speed, flight altitude, and heading for 2 minutes. The ‘racetrack’ maneuver is used to evaluate the quality 198 

of the calibration parameters acquired from the previous ‘box’ maneuver. The flight path consists of two parallel straight flight 199 

tracks connected by two 180º turns. Each straight flight section lasts 2 minutes at constant speed and flight altitude. Lastly, 200 

the ‘acceleration-deceleration’ maneuver is used to check the influence of lift-induced upwash from the wing to the measured 201 

attack angle by the 5HP. During this maneuver, the aircraft is kept straight and level at constant pressure altitude. When 202 

beginning this maneuver, the aircraft accelerates to its maximum airspeed (35 m s-1). Then, the airspeed reduces gradually to 203 

near its minimum airspeed (25 m s-1) and back up to its maximum airspeed. The pressure-altitude of the aircraft is maintained 204 

throughout this maneuver, and the entire maneuver lasts one minute. This maneuver creates a series continuous changed pitch 205 
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(𝜃) and attack (𝛼) angle. A relationship between the measured incident flow attack angles (𝛼) by the 5HP and the measured 206 

pitch angle by the INS of close to 1:1, indicates that the effect from the fuselage-induced flow distortion on the wind 207 

measurements is negligible (Garman et al., 2006).  208 

2.2.2 Standard operation flight campaign 209 

The reliability of the EC measurement from UAV is susceptible to several factors, mainly including instrumental noise, 210 

resonance noise, and the quality of the calibration parameter. In order to evaluate the flux measurement error related to 211 

instrumental noise, the effects of resonance on the measured scalar and to investigate the sensitivity of the measured geo-212 

referenced wind and turbulent flux to uncertainty in the calibration parameter, we used data from 7 flights in the Dagang 213 

district in Tianjin, China between 8 and 16 August 2022. This area is located on the west coast of the Bohai Sea and is a coastal 214 

alluvial plain with altitudes between 1-3 m (Chen et al., 2017). The flight path, shown in Figure 2, includes three parallel 215 

transect lines of approximately 4 km in length each and at 1-2 km intervals. All flights occurred during the daytime, and were 216 

performed in the same trajectory at low altitude about 90 m above sea level. The flight area covered three different underlying 217 

surfaces: land, coastal zone, and water surfaces, that can represent typical flux intensity characteristics for different surface 218 

conditions.  219 

 220 

Figure 2. Flight trajectory of the standard operation flight campaign, 8-16 August 2022, at Dagang district, Tianjin, China. The land 221 
surface image is from Sentinel-2A satellite image with true color combination acquired on 27 August 2022. 222 

During the operation flight campaign, the atmospheric stability conditions changed from stable (Monin-Obukhov stability 223 

parameter, 𝑧/𝐿 = 1.93) to very unstable (𝑧/𝐿 = −10.28) as measured by the UAV, where 𝑧 is the flight height above the 224 

ground level, 𝐿 is the Obukhov length. The stable condition mostly occurred on flight path located over the sea surface, while 225 
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the unstable condition mostly occurred on flight path located over the land surface. These flight data provide various 226 

measurement conditions for us to evaluate the performance of the UAV-based EC system. 227 

2.3 Data processing 228 

The raw data collected with the on-board datalogger (CR6, Campbell, USA) is subsequently saved in Network Common Data 229 

Form (netCDF) format. It includes dynamic and static pressure, attack, and sideslip angle of incoming flow; slow (1 Hz) and 230 

fast (50 Hz) air temperature; mass concentration of H2O and CO2; as well as the full navigation data (including 3D location, 231 

ground speed, angular velocity, and attitude, etc.) of the UAV. The subsequent data processing includes three basic processing 232 

stages in order to calculate flux data from raw measured data.  233 

    In the first stage, a moving average filter was used to detect outliers in each variable. Detected outliers were removed and 234 

replaced by values obtained by linear interpolation. Outliers tend to be rare. However, if outliers constitute more than 20 % of 235 

the data points, the corresponding flight data should be discarded. The cleaned raw data was then used to calculate the geo-236 

referenced wind vector, (co)spectra, and turbulent fluxes. 237 

In the second stage, geo-referenced 3D wind vector is calculated. The full form of the equations of motion for calculating 238 

the geo-referenced wind vector by the UAV-based EC system is described in detailed in Supplement Part A. From the aircraft 239 

platform, geo-referenced wind vector is measured in two independent reference coordinate systems: the relative true airspeed 240 

(𝑈̂𝑎) measurement in the aircraft coordinate system and the ground speed of the aircraft (𝑈𝑝) in the geo-referenced coordinate 241 

system. The geo-referenced wind (𝑈) is the vector sum of the relative true airspeed (𝑈̂𝑎), the UAV’s motion (𝑈𝑝) and the 242 

tangential velocity due to the rotational motion of the aircraft (“lever arm” effect), which is described in Eq. (S2). In this stage, 243 

the acquired calibration parameters (𝜖𝜓 and 𝜖𝜃) from the calibration flight are substituted into the Eq. (S8) to correct the 244 

mounting angle offset errors between the 5HP and the CG of the UAV. The final equations for geo-referenced wind vector 245 

calculation (Eqs. S15 to S17) revealed that the lever arm effects due to the spatial separation between the tip of the wind probe 246 

and the CG of UAV can influence the wind measurements. Typically, the separation distance (L) is small, and the influence 247 

of the lever arm effects can be ignored when the L is less than about 10 m (Lenschow, 1986). In the current UAV-based EC 248 

system, the displacements of the 5HP tip with respect to the CG of the UAV along the three axes of UAB body coordinate are: 249 

𝑥𝑏 = 1.459 m, 𝑦𝑏 = 0 m, and 𝑥𝑏 = 0.173 m (in Supplement Part A). Therefore, in practice, the influence of leverage effects 250 

in geo-referenced wind calculation was also ignored in this study. This was confirmed by assessing the difference in the geo-251 

referenced wind vector with and without the leverage effect correction term (in Section 3.1).  252 

In the final stage, based on the EC technology and spatial averaging, the turbulent flux is calculated using the covariances 253 

of vertical wind (𝑤) with air temperature (𝑇𝑎) for sensible heat flux (H), with water vapor density (q) for latent heat flux (LE), 254 

and with CO2 density (c) for CO2 flux (𝐹𝑐), and with the necessary correction (Webb et al., 1980). The time lag due to the 255 

separation between the 5HP tip, the adjacent temperature probe, and the open-path gas analysis did not need to be corrected 256 

because the time delay was less than 1 second at the cruise airspeed of 30 m s-1 and sensor separation less than 20 cm. Only 257 
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the measurement data from the straight-line portion of the flight path can be used in flux calculation. Detailed calculation 258 

procedure and formulas of H, LE, and 𝐹𝑐 used by the present UAV-based EC system are provided in Supplement Part B, 259 

including spatially averaging, coordinate rotation, and necessary correction (i.e., WPL correction for LE and 𝐹𝑐).  260 

One important aspect for airborne EC measurement is the definition of a proper spatial averaging length to calculate 261 

turbulent flux (Sun et al., 2018). Such spatial averaging length depends on the flying altitude, surface characteristics, and 262 

atmospheric stability, and could be determined using Ogive analysis (Gioli et al., 2004; Kirby et al., 2008). In this study, the 263 

entire measured data of each straight and level flight leg (each with length about 4 km) from the standard operational flight 264 

campaign was used to calculate turbulent flux, regardless of the uncertainty in fluxes associated with spatial averaging. 265 

2.4 Evaluation scheme 266 

2.4.1 Wind measurement evaluation 267 

The key to successful aircraft EC measurements lies in the translation of accurately measured, aircraft-orientated, wind vector 268 

to geo-referenced orthogonal wind vector (Thomas et al., 2012). Determining the geo-referenced wind vector requires a 269 

sequence of thermodynamic and trigonometric equations (Metzger et al., 2012), these equations propagate various sources of 270 

error to the measured geo-referenced wind vector. To estimate the measurement errors in the geo-referenced wind vector, we 271 

used the linearized Taylor series expansions of Eqs. (S15) to (S17) derived by Enriquez and Friehe (1995) (in Supplement Part 272 

A) to determine the sensitivities of each of the geo-referenced wind vector components with respect to the relevant variables. 273 

Then, these sensitivity terms can be combined to compute the overall measurement error (1𝜎) in the geo-referenced 3D wind 274 

vector (Eqs. S21 to S23 in Supplement Part A).  275 

The above wind measurement error analysis gives the nominal measurement precision of the geo-referenced wind, but does 276 

not consider the influence of environmental changes. Following the methods of Lenschow and Sun (2007), we assess whether 277 

the accuracy of wind measurements from the UAV in satisfying the minimum signal level needed for resolving the mesoscale 278 

variations of the three wind components in the encountered atmospheric conditions. Firstly, the minimum required signal level 279 

for measurement of vertical air speed (𝜔) under the encountered atmospheric conditions could be estimated as (Lenschow and 280 

Sun, 2007): 281 

𝜕𝑤

𝜕𝑡
< 0.2√2𝜎𝑤2𝜋𝑘𝑈𝑎                                                                                                                                                                          (1) 282 

with the true airspeed (𝑈𝑎) set to mean cruise speed 30 m s-1, the peak signal magnitude (𝜎𝑤) of the power spectra, and the 283 

corresponding wavenumber (𝑘) (Thomas et al., 2012). The measurement error of the system in the vertical wind component 284 

can be calculated as (Lenschow and Sun, 2007): 285 

𝜕𝑤

𝜕𝑡
≅ 𝛩

𝜕𝑈𝑎

𝜕𝑡
+ 𝑈𝑎

𝜕𝛩

𝜕𝑡
+

𝜕𝑤𝑈𝐴𝑉

𝜕𝑡
                                                                                                                                                           (2) 286 
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with Θ = 𝛼 − 𝜃, where 𝛼 is the attack angle, 𝜃 is the pitch angle, 𝑤𝑈𝐴𝑉 is the UAV’s vertical velocity. According to Lenschow 287 

and Sun (2007), the signal level and mesoscale fluctuation of horizontal wind components (𝑢 and 𝑣) are considerably larger 288 

than that of vertical wind, so the accuracy criteria are not nearly as stringent. The measurement error of the horizontal wind 289 

component could be calculated as (Lenschow and Sun, 2007): 290 

𝜕𝑢

𝜕𝑡
≅ −

𝜕𝑈𝑎

𝜕𝑡
+

𝜕𝑢𝑈𝐴𝑉

𝜕𝑡
                                                                                                                                                                             (3) 291 

𝜕𝑣

𝜕𝑡
≅ 𝛹

𝜕𝑈𝑎

𝜕𝑡
+ 𝑣𝑡𝑎𝑠

𝜕𝛹

𝜕𝑡
+

𝜕𝑣𝑈𝐴𝑉

𝜕𝑡
                                                                                                                                                           (4) 292 

and, 293 

𝛹 ≡ 𝜓′ + 𝛽                                                                                                                                                                                             (5) 294 

where 𝑢𝑈𝐴𝑉, 𝑣𝑈𝐴𝑉 are the UAV’s horizontal velocity measured from INS, 𝜓′ is the departure of the measured true heading 295 

from the average true heading, and 𝛽 is the sideslip angle of airflow. If the measurement error of the 3D wind vector from Eqs. 296 

(2) to (4) is smaller than the required minimum signal level of the vertical and horizontal wind components, it can be confirmed 297 

that the measurement accuracy of the geo-referenced 3D wind vector from UAV is sufficient to resolve the mesoscale 298 

variations of the three wind components in the encountered atmospheric conditions. 299 

In addition, accurate measurements of geo-referenced wind vector typically not only depend on the measurement precision 300 

of the sensors (i.e., 5HP and INS), but also related to the quality of the calibration parameters and the geometry structure of 301 

the UAV EC system (i.e., flow distortion and leverage effect). For evaluation of the effect of the latter two aspects, a calibration 302 

flight campaign (Section 2.2.1) was performed to determine the calibration parameter (𝜖𝜓, 𝜖𝜃), check its quality, as well as to 303 

ascertain the effects of the lever arm and up-wash by the wings. The methods for acquiring the calibration parameter were 304 

given by Vellinga et al. (2013) and Sun et al. (2021a), and the results are reported in Supplement Part C (Figs. S2 and S3). 305 

During the in-flight calibration campaign, a ‘racetrack’ maneuver was performed to check the quality of the calibration 306 

parameters determined from the ‘box’ flight maneuver. The initial (𝜖𝜓 = 0°, 𝜖𝜃 = 0°) and calibrated (𝜖𝜃 = −0.183°, 𝜖𝜓 = 2°, 307 

in Supplement Part C) set of parameters were used to calculate the geo-referenced wind vector. By comparing the mean and 308 

standard deviation of the horizontal and vertical wind vector between the initial and calibrated set, the quality of the geo-309 

referenced wind vector measurement in real environment conditions can be verified. 310 

The relative wind vector (𝑈̂𝑎) measured by the aircraft is susceptible to flow distortion because the airplane must distort the 311 

flow to generate lift and thrust, and the aircraft’s propellers, fuselage, and wings are the main sources of flow distortion as 312 

flow barriers (Metzger et al., 2011). For fixed-wing aircrafts, the wind probe mounted on the nose of the UAV and extended 313 

as far forward of the fuselage as possible could avoid significant influence from flow distortion from the fuselage and propellers. 314 

Nevertheless, effects from the induced upwash by the wings can also significantly influence the correspondence between 315 

measured and free-stream flow variables (Garman et al., 2008). The induced upwash by the wings modifies the local angle of 316 

attack, causing the measured attack angle (𝛼) to be larger than the free-stream attack angle (𝛼∞). The magnitude of upwash 317 
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influence generally increases with airplane size and airspeed, typically ranging from 0.5 to 2.5 m s-1 as reported by the manned 318 

fixed-wing aircraft (Garman et al., 2008). Therefore, for wind measurements by manned fixed-wing aircrafts, the upwash 319 

effects must be corrected (Garman et al., 2008; Kalogiros and Wang, 2002). However, wind measurements using a multi-hole 320 

probe on the UAV seldom need this correction due to the fuselage size and because the airspeed is very low compared to a 321 

manned aircraft.  322 

In order to access whether the lift-induced upwash could be safety ignored by the current UAV-based EC system, the 323 

‘acceleration-deceleration’ flight maneuver was performed. According to Crawford et al. (1996), the pitch angle (𝜃) by the 324 

INS instrument can be utilized as an estimate of the free-stream attack angle (𝛼∞) if the aircraft’s vertical velocity is zero, 325 

since it is unaffected by lift-induced upwash and varies directly with 𝛼∞ when the ambient vertical wind is zero. Under ideal 326 

conditions (zero aircraft vertical velocity and zero ambient vertical wind), the approximation relationship of 𝜃 ≅ 𝛼∞ is valid 327 

when 𝜃 < 6° (Crawford et al., 1996; Vellinga et al., 2013). Departures from the 1:1 relationship can be caused by airflow 328 

distortion around the airplane behind the 5HP. The ‘acceleration-deceleration’ maneuver produced various pitch and attack 329 

angles measured under various airspeeds, which allowed a direct comparison between the pitch angle (𝜃) and the attack angle 330 

(𝛼). If the slope between 𝛼 and 𝜃 is close to unity, it indicates that the influence of lift-induced upwash can be ignored; 331 

otherwise, its influence should be corrected using upwash models (Garman et al., 2006). Meanwhile, the influence of leverage 332 

effects was also evaluated based on the measurement data from the ‘acceleration-deceleration’ maneuver  by considering or 333 

ignoring the leverage effect correction term in Eqs. (S15) to (S17). 334 

2.4.2 Flux measurement error caused by instrumental noise 335 

Errors or uncertainties in EC measurements can be systematic or random. Measurement from UAV, they can be attributed to 336 

several sources, mainly including instrumental noise, data handing, atmospheric conditions, insufficient flux calculation length, 337 

and bumpy flight environment (Mahrt, 1998; Finkelstein and Sims, 2001; Mauder et al., 2013). Knowledge of the measurement 338 

precision is of great importance for interpretation of EC measurements especially when detecting small fluxes in terms of 339 

turbulent exchange or signal-to-noise (SNR) of the instrumentation. Determination of the flux measurement error from 340 

instrument noise is very useful, as it is related not only to the system performance, but also to the minimum resolvable 341 

capability for the flux to be measured. In the current study, uncertainty related to instrumental noise (listed in Table 1) was 342 

estimated with a directly method proposed by Billesbach (2011). This method can be called as “random shuffle” (denoted as 343 

the RS) method and was “designed to only be sensitive to random instrument noise”. According to Billesbach (2011), the 344 

uncertainty of the flux covariance can be expressed as: 345 

𝜎𝑤′𝑥′̅̅ ̅̅ ̅̅ ̅ =
1

𝑁
∑ 𝑤′(𝑡𝑖)𝑥′(𝑡𝑗)𝑁

𝑖,𝑗=1                                                                                                                                              (6) 346 

where 𝑥 is the target entity of the covariance, N is the number of measurements contained in the block averaging period, 𝑗 ∈347 

[1 … 𝑁] but the values are in the random order. The idea behind the RS method was that the randomly shuffled will remove 348 

the covariance between biophysical (source/sink) and transport mechanisms, leaving only the random “accidental” correlations 349 
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attributed mostly to instrument noise (Billesbach, 2011). It means that the shuffled component 𝑥 makes it uncorrelated in 350 

time/space and decorrelates 𝑥 from 𝑤, resulting in two independent variables (i.e., 𝑤′𝑥′̅̅ ̅̅ ̅̅ ~0), and any residual value of the 351 

covariance is attributed to random instrument noise. In addition to the basic assumptions made in EC flux calculation, one 352 

additional assumption in RS method is that the block averaging period should be sufficiently long to accurately represent the 353 

lowest significant frequencies contributing to the covariance which could be verified by forming Ogive plots of the covariance 354 

(Billesbach, 2011).  355 

   In this study, in order to obtain robust estimates of the instrumental noise, 𝜎𝑤′𝑥′̅̅ ̅̅ ̅̅ ̅ was repeatedly calculated 20 times for every 356 

straight and level flight leg in operation flight (Fig. 2), and the mean of the absolute values of these 20 replicated estimates for 357 

𝜎𝑤′𝑥′̅̅ ̅̅ ̅̅ ̅ were used to estimate the random uncertainty related to instrumental noise.  According to Rannik et al. (2016), RS method 358 

tends to overestimate the covariance uncertainty due to instrumental noise only. Then, the uncertainty in the flux covariance 359 

of sensible heat (𝜎𝑤′𝑇′̅̅ ̅̅ ̅̅ ̅), latent heat (𝜎𝑤′𝜌′𝑣̅̅ ̅̅ ̅̅ ̅̅ ), and CO2 (𝜎𝑤′𝜌′𝑐̅̅ ̅̅ ̅̅ ̅̅ ) were estimated using RS method, respectively.  360 

  It should be noted that the measurement error of EC flux measurement is influenced not only by the uncertainty in the raw 361 

covariance but also by the propagated errors form correction terms (i.e., WPL correction) or any lens contamination (Serrano-362 

Ortiz et al., 2008).  For EC measurement from our UAV, the signal quality of the IRGA is checked before each flight 363 

measurement to ensure that the measurement of gas concentration is not affected by lens contamination. The final uncertainty 364 

of flux measurement was evaluated using the partial derivatives of the full flux calculation equation with respect to their flux 365 

value derived by Liu et al. (2006) (Eqs. S29 to S31 in Supplement Part B). These equations (Eqs. S29 to S31) ignored the 366 

perturbations terms from the errors in the individual scalar (i.e., 𝜌𝑣, 𝜌𝑐, T) which were proved negligible small (Serrano-Ortiz 367 

et al., 2008). At last, after several repetitive calculation of the Eq. (6), their averaged value then be combined to Eqs. (S29) to 368 

(S31) for estimating the final flux measurement error due to instrumental noise.  369 

2.4.3 Resonance effects 370 

Previous work found that the measurement of the atmospheric scalars (e.g., air temperature, H2O, and CO2 concentration) is 371 

susceptible to resonance effects caused by the operation of the engine and propeller (Sun et al., 2021b). In order to further 372 

reduce the resonance effects, the vibration damping structure of the developed UAV-based EC system was further optimized. 373 

The reference (co)spectra curve of Massman and Clement (2005) was used to quantify the influence of the resonance effects 374 

remaining after vibration isolation optimization. Massman and Clement (2005) gave the generalization mathematical 375 

expression of the models of spectra and co-spectra: 376 

𝐶𝑜(𝑓) =  𝐴0
1/𝑓𝑥

[1+𝑚(𝑓/𝑓𝑥)2𝜇]
1

2𝜇(
𝑚+1

𝑚 )
                                                                                                                                                          (6) 377 

where 𝑓 is frequency (Hz), 𝑓𝑥 is the frequency at which 𝑓𝐶𝑜(𝑓) reaches its maximum value, 𝐴0 is a normalization parameter, 378 

𝑚 is the (inertial subrange) slope parameter, and 𝜇 is the broadness parameter. To describe co-spectra, 𝑚 should be 3/4; to 379 

describe spectra, m should be 3/2. According to Massman and Clement (2005), 𝜇 = 7/6 under stable atmospheric condition 380 
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and 𝜇 = 1/2 under unstable atmospheric condition. Fast Fourier transform (FFT) method was used to calculate the spectra 381 

and co-spectra of the measured turbulent variables. Before calculating the turbulence (co)spectra, condition of the raw 382 

turbulence data was performed, including a linear detrend and tapering using the Hamming window to reduce the spectral 383 

leakage (sharp edge) according to Kaimal et al. (1989). 384 

According to Sun et al. (2021b), the noise influence from resonance mainly appears in the high frequency domain. According 385 

to the feature of spectral curve, the frequency range of the noise region was artificially designated to 𝑓 > 8 Hz for air 386 

temperature, 𝑓 = 1~5 Hz for water vapor, and 𝑓 = 1~8 Hz for CO2. The normalized spectra and co-spectra curve were 387 

adopted and the area difference of the designated frequency range beneath the (co)spectra curve between the measured and 388 

reference (co)spectra curve was calculated to quantify the influence of resonance noise in the variance and flux covariance of 389 

the measurement atmosphere scalars. An example is shown in Figure 3,  and also shown is the reference (co)spectra curve of 390 

Massman and Clement (2005), with the (co)spectral maximum at 𝑓𝑥 = 0.1. The red region in Fig. 3 represents the impact 391 

extent of the resonance noise in the variance (Figs. 3a to 3c) and flux covariance (Figs. 3d to 3f) of the measured scalars. The 392 

systematic noise deviation in the fluxes of sensible, latent heat and CO2 could be derived relative to the entire frequency range. 393 

 394 

Figure 3. The influence of resonance noise on the spectra (top row) and co-spectra (bottom row) curve of the measured scalars based 395 
on the measurement from the standard operation flight campaign on 8 August 2022 at Dagang district, Tianjin, China. The red 396 
region is the area difference of the designated frequency range (vertical black dashed-dotted line) beneath the (co)spectral curve 397 
between the measured and reference (co)spectral curve. 398 

2.4.4 Sensitivity analysis 399 

To understand the relevance of the calibration parameters for the measurement of geo-referenced wind vector and turbulent 400 

flux, two sensitivity tests were conducted. The magnitude of the perturbation in the wind vector and turbulent flux was 401 

investigated as a function of the uncertainties in the four calibration parameters, including three mounting misalignment angles 402 
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(𝜖𝜓, 𝜖𝜃, 𝜖𝜙) between the 5HP and the CG of the UAV and one temperature recover factor (𝜖𝑟 = 0.82) used to calculate the 403 

ambient temperature (Eq. 3 in Sun et al. 2021a). 404 

First, the sensitivity of the geo-referenced 3D wind vector and turbulent flux to the uncertainties of the individual parameter 405 

was investigated. The geo-referenced 3D wind vector and turbulent flux was calculated based on the straight leg (about 4 km) 406 

of the standard operational flight by adding an error of ±30 % to the optimum value of each calibration parameter alternately; 407 

except for 𝜖𝜙, for which the typical range of ±0.9° was taken for sensitivity analysis (Vellinga et al., 2013). 408 

Then, in order to test the overall interaction between the parameters, a second sensitivity test was performed to calculate the 409 

geo-referenced 3D wind vector and turbulent fluxes by adding  ±30 % error to all calibration parameters simultaneously. 410 

Lastly, their relative errors (RE) with respect to the original value were calculated to evaluate the perturbation of the wind 411 

vector and turbulent flux under the variation of each calibration parameter as well as under simultaneous variation of all 412 

calibration parameters. During the sensitivity analysis, the calculated geo-referenced wind and turbulent flux results whose 413 

absolute value was less than their least resolvable magnitude were filtered out to avoid the influence of the errors contained in 414 

the measurements themselves on the results.  415 

2.4.5 Relative error 416 

In this study, relative error (RE) was used to evaluate the influence of different factors on the measurements of geo-referenced 417 

wind vector and turbulent flux by the UAV-based EC system. It is defined as: 418 

𝑅𝐸 =
|𝑥0|−|𝑥|

|𝑥|
× 100 %                                                                                                                                                                              (7) 419 

where ‘| |’ means the absolute value, 𝑥 is the ‘true’ value, 𝑥0 is the influenced value. RE > 0 means the exerted influence will 420 

cause the measurement value to be larger than ‘true’ value and vice versa. 421 

3 Results 422 

3.1 Wind measurement evaluation 423 

Evaluation of the wind measurement performance from the UAV-based EC system includes three contents: (1) measurement 424 

precision and its ability to resolve the mesoscale variations of the wind, (2) checking the quality of the acquired calibration 425 

parameters, and (3) checking whether the measured wind vector is affected by upwash flow and leverage effects.  426 

First, according to the equations described in Supplement Part A (Eqs. S18 to S23), the measurement precision for horizontal 427 

wind components is a function of true airspeed and true heading, while, the measurement precision for vertical wind component 428 

is largely decided by the true airspeed. The typical values of true airspeed ranging from 25 m s-1 to 35 m s-1 (interval of 1 m s-429 

1) and the true heading values ranging from 0° to 180° (interval of 30°) were used in the evaluation of wind measurement 430 

error. Then, the measurement precision (1𝜎) of the geo-reference 3D wind vector from aircraft was estimated using the 431 
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measurement precision of the related parameters from Table 1. The results are shown in Figure 4 for the measurement precision 432 

of horizontal wind (𝜎𝑢 and 𝜎𝑣 in Figs. 4a and 4b) and vertical wind (𝜎𝑤 in Fig 4c), respectively. The typical values of the 433 

measurement precision are ranging from 0.05 m s-1 to 0.07 m s-1 for horizontal wind component 𝑢, ranging from 0.02 m s-1 to 434 

0.08 m s-1 for horizontal wind component 𝑣, and ranging from 0.05 m s-1 to 0.07 m s-1 for vertical wind component 𝑤. When 435 

the flight direction is towards due east or due west, the horizontal wind (𝑢 and 𝑣) has the smallest measurement error.  436 

 437 

Figure 4. Estimated measurement precision (𝟏𝝈) of the horizontal wind (a, b) and vertical wind (c) according to the equations 438 
described in Supplement Part A (Eqs. S18 to S23).  439 

Generally speaking, an autopiloted UAV can maintain a near-constant true airspeed during the cruise flight phase. For a true 440 

airspeed of 30 m s-1 for the current UAV-based EC system during the cruising, the maximum measurement error in the 441 

northward, eastward, and vertical velocities of the geo-referenced wind components were calculated as approximately 0.06, 442 

0.07, and 0.06 m s-1, respectively. Then, we assume that a minimum signal-to-noise ratio of 10:1 is required to measure the 443 

wind components with sufficient precision for EC measurements (Metzger et al., 2012). Accordingly, in the real environments, 444 

horizontal and vertical wind speed greater than 0.7 m s-1 and 0.6 m s-1 can be reliably measured, respectively (Table 2).  445 

Table 2: The maximum measurement error in the northward (u), eastward (v), and vertical (w) velocities of the geo-referenced 446 

wind components at the true airspeed of 30 m s-1, and the least resolvable magnitude assuming the minimum required signal-447 

to-noise ratio of 10:1. 448 

Measurements Measurement precision (1σ) Least resolvable magnitude 

u-windspeed (m s-1) 0.06 0.6 

v-windspeed (m s-1) 0.07 0.7 

w-windspeed (m s-1) 0.06 0.6 

The above results gave the nominal precision for wind measurements that does not consider the influence of environmental 449 

conditions. Changes in the environment will lead to sensor drift, increasingly deteriorating the measurement with flight 450 

duration (Metzger et al., 2012; Lenschow and Sun, 2007). Following the methods of Lenschow and Sun (2007), the ability of 451 

the limitations of the accuracy of wind field measurements from UAV to resolve the mesoscale variations of the 3D wind 452 

components in the encountered atmospheric conditions was assessed. For the vertical wind, the mesoscale variability was 453 

defined as the peak signal magnitude of the power spectra curve. The corresponding average wavenumber was determined as 454 

0.09 m-1 based on the straight flight leg (about 4 km, lasting about 120 s) of the standard operational flight. Then, the minimum 455 
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required signal level for the vertical wind measurement was estimated as 𝜕𝑤/𝜕𝑡 ≃ 0.14 m s−2. The accuracy of the vertical 456 

wind measurement using Eq. (2) is estimated as follows. The first term on the right-hand side of Eq. (2) is dominated by the 457 

drift in the differential pressure transducer, the value of 𝜕𝑈𝑎 = 0.05 m s−1 acquired from the wind tunnel test was applied 458 

(Table 1). The histogram of Θ derived from the standard operational flights is shown in Figure 5. The 99 % confidence interval 459 

indicates that the value of Θ seldom exceeds ±3°, i.e., ±0.053 radians. Thus, the value of the first term was estimated as 460 

2.2 × 10−5 m s−2. 461 

 462 

Figure 5. Histogram of 𝚯 derived from the standard operational flight. Component density is scaled so that the histogram has a total 463 
area of one. Red vertical lines indicate distribution average (solid) and 99% confidence interval (dashed). The black dashed bell 464 
curve displays a reference fitted normal distribution. 465 

The second term in Eq. (2) is a combination of INS pitch accuracy and drift in the measured attack angles. The combined 466 

accuracies of these two sensors were applied to derive 𝜕Θ = 0.0024 radians. Thus, the second term in Eq. (2) was estimated 467 

as 6 × 10−4 m s−2. Finally, the third term in Eq. (2) was estimated as 1.7 × 10−4 m s−2, according to the stated accuracy of 468 

the vertical velocity from the INS. The overall performance of the vertical wind measurement (7.9 × 10−4 m s−2) was accurate 469 

enough to resolve the mesoscale variations in vertical air velocity. 470 

The required accuracy of horizontal wind for mesoscale measurement was estimated as 10 times larger than that of vertical 471 

wind, i.e., 𝜕𝑢/𝜕𝑡 ≃ 𝜕𝑣/𝜕𝑡 ≃ 1.4 m s−2. The measurement accuracy of the horizontal wind component 𝑢 was estimated as 472 

4.8 × 10−4 m s−2 according to Eq. (3). Like the first term in Eq. (2), with the value of Ψ rarely exceeding ±0.18 radians, the 473 

measurement accuracy of the horizontal wind component 𝑣 was estimated as 2.7 × 10−2 m s−2according to Eq. (4). Thus, the 474 

measurement accuracy of the horizontal wind components was accurate enough to resolve the mesoscale variations in the 475 

horizontal air velocity as well.  476 

Second, before checking the quality of the acquired calibration parameters, the calibration results of the offset in pitch (𝜖𝜃) 477 

and heading (𝜖𝜓) angles based on the ‘box’ maneuver are provided in Supplement Part C (Figs. S2 and S3). The final calibration 478 

values are 𝜖𝜃 = −0.183° and 𝜖𝜓 = 2°. In order to verify the quality of these calibration parameters, a ‘racetrack’ maneuver 479 
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was performed. Figure 6 shows the verification results by plotting wind vector and calculating summary statistics for the 480 

‘racetrack’ maneuver (including turns), using the initial (𝜖𝜃 = 𝜖𝜓 = 0°, Fig. 6a) and calibrated (Fig. 6b) set of parameters. The 481 

introduction of the calibration parameter effectively improved the quality of geo-referenced wind vector measurement. The 482 

standard deviation for wind direction, 𝜎𝑈𝑑𝑖𝑟
, is 4.9º for the calibrated set compared to 8.7º for the initial set, and the standard 483 

deviation of wind speed, 𝜎𝑈, is 0.52 m s-1 for the calibrated set compared to 1.12 m s-1 for the initial set. The average vertical 484 

wind speed is much closer to zero (𝑤̅ = −0.006 m s−1) for the calibrated set than for the initial set (𝑤̅ = 0.1 m s−1). For the 485 

horizontal wind, it is evident from Fig. 6 that the wind direction and velocity are little affected by sharp turns. On the contrary, 486 

the measurement of the vertical wind component is obviously affected by turns in flight, as shown by the large ripple in the 487 

vertical wind speed around the scan value of 150 (Fig. 6). It should be noted that the influence of upwash flow and the leverage 488 

effect are not considered in the calculated of geo-referenced wind vector. 489 

 490 

Figure 6. Quality check of the calibration parameter by plotting wind vector and calculating summary statistics for the ‘racetrack’ 491 
maneuver, using the initial (a) and calibrated (b) set of parameters. The calibration flight was carried out on 4 September 2022 at 492 
the Caofeidian Shoal Harbor. 493 

Third, in order to check the influence of the lift-induced upwash on the attack angle measurement from the 5HP, an 494 

‘acceleration-deceleration’ flight maneuver was performed. During the ‘acceleration-deceleration’ maneuver, INS data shown 495 

a vertical velocity of the UAV at 0.05±0.2 m s-1, the altitude of UAV at 392±0.6 m, the heading of UAV at 199±2.4º. The 496 

flight conditions met the requirements of the ‘acceleration-deceleration’ maneuver (Vellinga et al., 2013). The relationship 497 

between the pitch angle (𝜃) measured by INS and the attack angle (𝛼) measured by 5HP is plotted in Figure 7, where the attack 498 

angle was not corrected for lift-induced upwash. The slope (0.94) between 𝜃 and 𝛼 is close to its theoretical value of 1, and 499 
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the intercept (0.16) is close to zero. This result indicates that the lift-induced upwash has only a very small effect on the attack 500 

angle, and the influence of upwash could be ignored. 501 

 502 

Figure 7. Relationship between the pitch angle (𝜽) measured by INS and the attack angle (𝜶) measured by 5HP. The fitted linear 503 
equation is also shown.  504 

Finally, the geo-referenced wind vector was calculated with and without the correction for the leverage effect based on the 505 

measurement data from the ‘acceleration-deceleration’ flight maneuver. The average relative differences between the corrected 506 

and uncorrected horizontal and vertical wind speeds are 0.1 % and 0.2 %, respectively. The standard deviation for horizontal 507 

wind speed is 0.307 m s-1 without the level arm term compared to 0.306 m s-1 when the level arm term is introduced. The 508 

standard deviation of vertical wind speed is 0.254 m s-1 without the level arm term compared to 0.253 m s-1 with the level arm 509 

term. The correction of leverage effect had minimal effect on improving the geo-referenced wind vector measurement; 510 

therefore, this correction term can be ignored.   511 

3.2 Flux measurement error caused by instrumental noise 512 

Flux measurement error caused by the instrumental noise gives the lowest limit of the flux that the UAV-based EC system is 513 

able to measure. Such measurement error was assessed by combining the covariance uncertainty estimated by RS method and 514 

the propagation of errors in flux correction terms. Before estimating the flux covariance uncertainty using RS method, using 515 

the measured data from each straight and level flight leg of the standard operational flight (Fig. 2), the normalized integrated 516 

cospectra (ogives) curves of sensible heat (Fig. 8a), latent heat (Fig. 8b), and CO2 (Fig. 8c) flux are formed as a function of 517 

wavenumber (𝑘), where 𝑘 = 2𝜋𝑓 𝑈𝑎⁄ . As shown in Figure 8, although the heterogeneous turbulence (or mesoscale turbulence) 518 
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interfered the shape of ogive curves, most curves converged at the high and low frequency ends, which indicated that these 519 

segmented data were sufficiently long to represent the lowest significant frequencies contributing to the covariance.  520 

 521 

Figure 8. Normalized ogive curves as a function of wavenumber for the flux covariance of sensible heat (a), latent heat (b), and CO2 522 
(c) from each straight and level flight leg of the standard operational flight in Section 2.2.2.  523 

Then, the results of instrumental noise related relative flux measurement error compared to the magnitude of the flux are 524 

shown in Figure 9. It can be seen that the flux measurement error caused by instrumental noise significantly decreases when 525 

the flux magnitude increases. It is not surprising since, in theory, instrumental noise is usually close to a constant and the 526 

relative flux measurement error caused by instrumental noise will decreases with increasing measurement magnitude. Overall, 527 

instrumental noise has the least effect on latent heat flux (ranging from 0.02% to 2.42% in this study) measurements, followed 528 

by sensible heat flux (ranging from 0.05% to 8.6% in this study), and has the greatest effect on the measurement of CO2 flux 529 

(ranging from 0.22% to 75.6% in this study). Then, a simple rational function relationship between the relative measurement 530 

error and the flux magnitude is fitted according to the measured data, where the constant term in the denominator is set to 0. 531 

The fitted coefficient in the numerator can be considered as the flux measurement error caused by instrumental noises, which 532 

are 0.03 µmol m-2 s-1, 0.02 W m-2, and 0.08 W m-2 for the measurement of CO2 flux, sensible and latent heat flux, respectively. 533 

At last, using the signal-to-noise ratio of 10:1, the minimum magnitudes for reliably resolving the CO2 flux, sensible and latent 534 

heat fluxes were estimated as 0.3 µmol m-2 s-1, 0.2 W m-2, and 0.8 W m-2, respectively.  535 

 536 

Figure 9. Relative flux measurement error caused by instrumental noise plotted against the magnitude of the flux. Also shown the 537 
fitted error curves. Measured data was from the standard operation flights in Section 2.2.2.  538 
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3.3 Resonance noise 539 

The resonance noise from the engine and propeller can lead to systematic overestimation of the variance and covariance of the 540 

observed atmospheric scalars. Since the noise mainly appears in the high frequency domain of the (co)spectra, the reference 541 

(co)spectral curve of Massman and Clement (2005) was used to quantify the systematically bias caused by the resonance noise. 542 

All spectra curves of the variance of measured scalars (including air temperature, H2O, and CO2 concentration) 543 

approximately followed the reference spectra curve and the reference -2/3 slope in the inertial subrange (Figs. 3a to 3c). The 544 

largest scatter occurred in the spectra of CO2 (Fig. 3c). When comparing the spectra curve with the reference spectra, the 545 

resonance noise led to a systematic deviation in the variance of air temperature, H2O, and CO2 concentration of 0.1±0.1 %, 546 

1.0±0.79 %, and 4.4±0.66 %, respectively, relative to the entire frequency range. For the flux covariance of sensible, latent 547 

heat and CO2, all the co-spectra curves approximately follow the reference co-spectra curve and the reference -4/3 slope in the 548 

inertial subrange (Figs. 3d to 3f). Compared with the reference co-spectra, the resonance noise led to a systematic deviation in 549 

the flux of sensible, latent heat, and CO2 of 0.07±0.004 %,0.3±0.25 %, and 2.9±1.62 %, respectively, relative to the entire 550 

frequency range. 551 

The results show that the resonance noise has a very little impact on the measured variance and flux covariance. Among 552 

them, the measurements of CO2 concentration and flux are most susceptible to the resonance noise, but the impact of this noise 553 

is limited to around 5 % of the observed value. 554 

3.4 Sensitivity analysis 555 

In this study, in order to investigate the relevance of the calibration parameters for the measurement of the geo-referenced 556 

wind vector and turbulent flux, two sensitivity tests were conducted by adding an error of ±30 % to the used optimum 557 

parameters (𝜖𝜓, 𝜖𝜃, 𝜖𝜙, 𝜖𝑟). We assumed that the maximum uncertainties contained in the calibration parameter is not more 558 

than 30 % of its own value.  559 

First, the sensitivity of the geo-referenced 3D wind and turbulent flux to the uncertainty in the individual parameter was 560 

tested. The RE value is used to quantify the sensitivity, and the results are summarized in Tables 3 and 4. For the measurement 561 

of the geo-referenced wind vector, Table 3 shows that the uncertainties in the temperature recovery factor (𝜀𝑟) and 5HP 562 

mounting misalignment error in the roll (𝜖𝜙) angle do not contribute significantly to errors in the wind measurements, which 563 

were typically smaller than 4% of the observed value in this study. Parameter 𝜀𝜃 had the largest effect on the vertical wind 564 

component (up to 30 %), whereas 𝜀𝜓 had the largest effect on the horizontal wind component. For the measurement of turbulent 565 

fluxes, Table 4 shows that the errors in 𝜀𝑟 and 𝜖𝜙 does not significantly influence the flux measurements, typically small than 566 

5% of the observed value in this study. The uncertainties in calibration parameter 𝜀𝜃 and 𝜀𝜓 had significant effects on the 567 

measurement of turbulent flux. Adding an error of ±30 % to 𝜀𝜃 result in significant perturbation (large RE variance) in the 568 

measured turbulent fluxes including sensible heat, latent heat and CO2. While, errors in 𝜀𝜓 to some extent mainly affect the 569 

measurement of latent heat flux (RE may up to 15 %).   570 
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Table 3: RE of the sensitivity test for the geo-referenced 3D wind vector (𝑢, 𝑣, 𝑤). An error factor of ±30 % was added to 571 

each calibrated parameter. The geo-referenced 3D wind vector was calculated based on the straight leg of the standard 572 

operational flight. 573 

Parameter Error (%) 

RE of geo-referenced 3D wind vector 

mean ± std 

𝑢 (%) 𝑣 (%) 𝑤 (%) 

𝜺𝒓 
-30 0.04±0.41 -0.004±2 0±0 

30 0.06±0.43 0.27±1.1 -0.07±0.23 

𝜺𝝋* 
-30 0.41±2.51 -0.09±2.05 1.15±2.43 

30 -0.43±2.61 0.09±1.79 -1.1±2.66 

𝜺𝜽 
-30 0.03±0.41 -0.35±2.54 -30.51±6.42 

30 0.05±0.45 0.42±1.82 30.37±6.61 

𝜺𝝍 
-30 2.98±25.06 -2.04±16.3 0±0 

30 -2.97±24.96 2.42±16.63 0±0 

* The optimum calibration value is set to 0, 𝜀𝜑 was varied over ±0.9°, which is 30 % of its typical range. 574 

Table 4: RE of the sensitivity test for the turbulent fluxes. An error factor of ±30 % was added to each calibrated parameter. 575 

The turbulent fluxes were calculated based on the straight leg of the standard operational flight. 576 

Parameter Error (%) 

RE of turbulent flux 

mean ± std 

Fc (%) H (%) LE (%) u* (%) 

𝜺𝒓 
-30 1.04±3.04 -0.76±4.82 0.1±0.29 0±0 

30 -1.0±3.3 0.74±4.8 -0.1±0.29 0.2±1.07 

𝜺𝝋* 
-30 0.07±1.2 0.03±0.7 0.15±1.51 0.54±1.71 

30 -0.14±0.89 -0.06±0.7 -0.16±1.46 0.12±1.61 

𝜺𝜽 
-30 -3.27±11.18 -0.8±9.48 0.19±11.91 -4.08±5.61 

30 2.34±10.52 -0.44±8.24 -1.27±9.92 3.73±4.53 

𝜺𝝍 
-30 1.78±5.18 -0.73±4.87 1.89±13.42 0.63±5.75 

30 -0.99±3.96 -0.57±3.26 2.66±11.76 -0.59±4.42 

* See Table 3. 577 

The second sensitivity test was performed to evaluate the overall interaction between calibration parameters and the 578 

calculation of geo-referenced wind vector and turbulent flux by adding an error of ±30 % to all the calibration members 579 

simultaneously. Tables 5 and 6 provided a summary of the RE results from the second sensitivity test. For the measurement of 580 

geo-referenced wind vector (Table 5), adding an error of ±30 % to all the calibration parameters at the same time resulted in 581 

great perturbations to both the horizontal (low RE with high variance) and vertical wind components (high RE with low 582 

variance). For the measurement of turbulent fluxes, 30% error in the calibration parameters can result in errors in measured 583 

fluxes more than 10%. In addition, Table 6 reveals that the latent heat flux is more sensitivity to the errors in the calibration 584 

parameter than other flux measurement (higher mean and variance of the RE compared to other measurements).  585 
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Table 5: RE of the sensitivity test for the geo-referenced 3D wind vector (𝑢, 𝑣, 𝑤) calculated by adding an error of ±30 % to 586 

all the calibrated parameter simultaneously. The geo-referenced 3D wind vector was calculated based on the straight leg of the 587 

standard operational flight. 588 

Parameter Error (%) 

RE of geo-referenced 3D wind vector 

mean ± std 

𝑢 (%) 𝑣 (%) 𝑤 (%) 

All  
-30 4.24±27.89 -3.2±21.1 -29.35±4.63 

30 -4.15±27.46 3.55±21.91 29.16±4.86 

Table 6: RE of the sensitivity test for the turbulent flux calculated by adding an error of ±30 % to all the calibrated parameter 589 

simultaneously. The turbulent flux was calculated based on the straight flight leg of the standard operational flight. 590 

Parameter Error (%) 

RE of turbulent flux 

mean ± std 

Fc (%) H (%) LE (%) u* (%) 

All 
-30 -1.19±10.51 -0.9±8.06 2.71±13.91 -2.92±8.19 

30 -0.49±10.01 -1.66±5.4 -6.07±13.24 1.74±6.55 

4 Discussions 591 

As one in a new generation of airborne flux measurement platforms, the UAV-based EC system can significantly reduce the 592 

cost of implementing airborne flux measurement campaigns and greatly promote their wide application at regional scales. The 593 

current study aimed to evaluate the basic performance of the UAV-based EC system developed by Sun et al. (2021a) in the 594 

measurement of wind vector and turbulent flux.  595 

First, the wind measurement precision (nominal precision) of the UAV-based EC system was estimated by propagating the 596 

sensor errors to the geo-referenced wind vector using the linearized Taylor series expansions from Enriquez and Friehe (1995) . 597 

The 1𝜎 precision of geo-referenced wind measurement was estimated to be ±0.07 m s-1, and the least resolvable magnitude 598 

for wind measurement was estimated at 0.7 m s-1 by assuming the minimum signal-to-noise ratio of 10:1. The derived wind 599 

measurement minimum resolvable magnitude can be used as a basic reference for wind measurement capability of the UAV-600 

based EC system, and the measured values of wind vector smaller than the minimum resolvable values should be considered 601 

unreliable. The accuracy of the sensors was also assessed by examining the collected data in the real environment (Lenschow 602 

and Sun, 2007; Thomas et al., 2012). Our results revealed that the overall performance of geo-referenced wind measurement 603 

is sufficient accuracy for resolving the mesoscale variations of the 3D wind components under the encountered atmospheric 604 

conditions. Therefore, it is possible to capture the mesoscale variability of the atmospheric boundary layer (ABL) over a wide 605 

range of spatial scales by performing longer flight paths. 606 

Second, based on the measurement data from the in-flight calibration campaign, several key factors affecting the accuracy 607 

of geo-referenced wind measurement were analysed. First, the UAV-based EC system was calibrated (in Supplement Part C) 608 

using measured data from the ‘box’ flight maneuver to correct the mounting misalignment between the 5HP and the CG of the 609 
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UAV in the heading (𝜖𝜃 = −0.183°) and pitch (𝜖𝜓 = 2°) angles. The quality of the acquired calibration parameters was 610 

verified using the ‘racetrack’ flight maneuver, and the acquired calibration value effectively improved the observed wind field 611 

with smaller variance compared with the wind calculated using their initial value. At the same time, the measurement of the 612 

vertical wind component was significantly affected by the in-flight turn (maintaining about 20º roll). Therefore, it is necessary 613 

to avoid using the measured data from the turn section for turbulent flux calculation. Compared to other studies (Vellinga et 614 

al., 2013; Reineman et al., 2013), the relatively large variance in the horizontal wind and wind direction after calibrated in this 615 

study may be caused by the nonstationary condition of the turbulence. This was caused by the reason that the flight altitude of 616 

400 m was not high enough to totally avoid interaction from the underlying surface. 617 

The current calibration procedure did not include methods to determine the offset angle in roll (𝜀𝜑) and the temperature 618 

recovery factor (𝜀𝑟) because of the small vertical separation (27.3 cm) between the 5HP and the roll axis of the UAV and the 619 

small Mach number (<0.1) during operational flight. The default (𝜀𝜑 = 0°) and empirical (𝜀𝑟 = 0.82) value were adopted for 620 

these two calibration parameters. The sensitivity analysis shown these two parameters have no large effect on the wind vector 621 

and turbulent flux. 622 

It should be noted that wind measurements from the airborne platform may be susceptible to flow distortion and rigid-body 623 

rotation (leverage effects). Generally, the influence of these two factors were ignored by UAV platform when calculating the 624 

geo-referenced wind vector. To confirm that these effects could be safely ignored, data from ‘acceleration-deceleration’ flight 625 

maneuver was used to analyse the effects of lift-induced upwash and the leverage effect on the wind measurements. Our results 626 

demonstrate that the upwash has almost no effect on the wind measurement, which was indicated by the near 1:1 relationship 627 

(0.94 in Fig. 7) between the measured attack angles and pitch angle. The slight departures from the ideal 1:1 relationship may 628 

have been caused by the nonstationary condition during the flight. For the influence from the leverage effects, the differences 629 

in 3D wind vector between corrected and uncorrected for the leverage effect is very small. Thus, ignoring the influence of the 630 

leverage effect has almost no effect on the measurement of wind. Therefore, we concluded that the geo-referenced 3D wind 631 

vector can be measured reliably by the current UAV-based EC system without considering the interference from the lift-632 

induced upwash and leverage effects. 633 

Third, instrumental noise related relative flux measurement error was estimated by combining the covariance uncertainty 634 

estimated by RS method and the propagation of errors in flux correction terms. By assuming that the instrumental noise is 635 

close to a constant, we fitted a simple rational function relationship between the relative measurement error and the flux 636 

magnitude according to measured data (Fig. 9), and the fitted coefficient in the numerator can be considered as the flux 637 

measurement error caused by instrumental noises. The estimated flux measurement error of CO2, sensible and latent heat flux 638 

are 0.03 µmol m-2 s-1, 0.02 W m-2, and 0.08 W m-2, respectively. Since the RS method directly uses the shuffled raw 639 

measurement data to calculate the instrumental noise induced flux measurement error, its estimated results inevitably included 640 

the effects of resonance noise from the UAV. Using the signal-to-noise ratio of 10:1, the least resolvable magnitude for 641 
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turbulent flux measurement was estimated to be 0.3 µmol m-2 s-1 for the CO2 flux, 0.2 W m-2 for the sensible heat flux, 0.8 W 642 

m-2 for the latent heat flux, respectively.  643 

Fourth, because the UAV-based EC system has not completely insulated the noise from the operation of the engine and 644 

propeller and its effect on the measured scalars, the reference (co)spectra of Massman and Clement (2005) was used to quantify 645 

the effect of the resonance noise on the variance and flux of the measured scalars. Previous studies found that the influence of 646 

resonance noise mainly appears in the high frequency domain of the power spectra of the measured atmospheric scalars (e.g., 647 

air temperature, H2O, and CO2 concentration). The frequency range of the noise region was artificially designated for air 648 

temperature, water vapor and CO2. By calculating the area difference of the designated frequency range beneath the 649 

(co)spectral curve between the measured and reference (co)spectral curves, the resonance effect could be quantified. The 650 

results shown that, overall, resonance noise has little impact on the variance and flux covariance of the measured scalars. The 651 

measurements of CO2 concentration and its flux covariance were the most susceptible to resonance noise, but the maximum 652 

effect was less than 5 %. It should be noted that this method may overestimate the deviation caused by resonance noise as 653 

indicated by the reference (co)spectra curve and the measured (co)spectra not fully overlapping in the inertial subrange (shown 654 

in Fig. 3).  655 

In general, gas detection based on optical absorption methods can achieve fast and high precision gas concentration 656 

measurements, but they are extremely sensitive to vibration noise. However, due to the limited space inside the UAV, it is 657 

difficult to install all the hardware needed for a complex vibration isolation structure to effectively isolate the impact of 658 

vibration on the gas analyser. The weight and the aerodynamic shape of the UAV also present challenges. In the future, a new 659 

UAV-based EC system based on a pure electric UAV will be developed. The electro-powered UAV has similar performance 660 

to the current fuel-powered UAV but can minimize the impact of vibration noise from the engine and propeller rotation, which 661 

makes it possible to completely isolate the resonance effect using a simple vibration isolation structure. Electro-powered UAVs 662 

also have other advantages including larger wingspan (lower cruising speed), a constant CG position, and lower operational 663 

complexity compared to the current system.  664 

Fifth, two sensitivity tests were conducted to assess the perturbation of the geo-referenced wind velocity and turbulent flux 665 

under variation (±30 %) of each calibration parameter around its optimum value (𝜖𝜓 = 2°, 𝜖𝜃 = −0.183°, 𝜖𝜙 = 0°, 𝜖𝑟 = 0.82) 666 

as well as under simultaneous variation (±30 %) of all calibration parameters. Their RE was used to evaluate the sensitivity, 667 

and values of wind and flux less than their least resolvable magnitude were removed from the calculation. The results revealed 668 

that uncertainties in the temperature recovery factor (𝜀𝑟) and mounting offset in roll angle (𝜀𝜑) do not significantly contribute 669 

to an error in the measurement of wind vector and turbulent fluxes. The typical RE for the geo-referenced wind measurements 670 

is less than 1.2 % with variance less than 3 %, and the typical RE for turbulent flux is less than 1.1 % with variance less than 671 

5 %. Calibration parameters that had the largest effect on the measurement of geo-referenced wind vector and turbulent flux 672 

are the mounting offset angle in pitch (𝜀𝜃) and heading (𝜀𝜓). Uncertainties in 𝜀𝜃 had a direct effect on the measurement of 673 

vertical wind component, and then these errors propagate to the measured fluxes, resulting in a large error contains in the 674 
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measured fluxes (~15 %). A negative error in 𝜀𝜃 will lead to an underestimation of the vertical wind and vice versa. Errors in 675 

𝜀𝜓  directly affect the measurement of the horizontal wind, and to some extent, the measurement of turbulent flux. The 676 

difference is that the added error in 𝜀𝜓 lead to a great variability (up to 25 %) in the RE of horizontal wind. By checking the 677 

relationship between the magnitude of the horizontal wind (𝑢, 𝑣) and RE, a near exponential relationships was seen, as shown 678 

in Figure 10. The influence of the error in the 𝜀𝜓 decreased significantly with the increase in the magnitude of the horizontal 679 

wind velocity. Additionally, the measurement of latent heat flux may be greatly affected by the error in 𝜀𝜓, which is reflected 680 

by the relatively large deviancy (~14 %) of the RE. Therefore, calibration parameter 𝜀𝜃 and 𝜀𝜓 need to be carefully calibrated. 681 

 682 

Figure 10. Relationship between the magnitude of the horizontal wind velocity (𝒖, 𝒗) and RE from the sensitivity test.  683 

Lastly, it should be noted that the accuracy of the measured geo-referenced wind vector and turbulent flux from the UAV-684 

based EC system is subject to the combination of many factors, mainly including sensor accuracy, UAV powerplant, UAV 685 

fluctuation (e.g., variation of the UAV attitude and flight height), and the atmospheric conditions during the measurements, 686 

etc. This study mainly focused on assessing the effects of sensor precision and UAV powerplant on the measurement errors of 687 

geo-referenced wind vector and turbulent flux. Evaluation results gave the lowest limit of the wind vector and turbulent flux 688 

that the UAV-based EC system can measure. Another effective way to evaluate the measurement accuracy of this new 689 

technique is by comparing measured values with those from the traditionally recognized measurement. However, the direct 690 

comparison of flux measurements between aircraft and traditional ground tower is still challenging due to the difference in the 691 

measurement height, mechanism (time series for ground EC and space series for aircraft), and instruments (e.g., wind sensor). 692 

Previous studies have extensively compared the measurement of fluxes and wind vector between airborne and ground-based 693 

EC methods and found consistent results (Gioli et al., 2004; Metzger et al., 2012; Sun et al., 2021b). At the same time, 694 

substantial and consistent over- or underestimation of the measured wind and fluxes by UAV compared to ground 695 

measurements were observed and reported. These differences may be due to several factors such as vertical flux divergence 696 

(the measurement height of UAV is higher than ground-tower), surface heterogeneity (induced by the larger footprint region 697 

of the UAV compared to the ground tower), measurement errors (e.g., window length, resonance noise, etc.) as well as their 698 

difference in platform and sensors. Therefore, it is necessary to conduct a comparison test on the same platform and under the 699 
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same environment to exclude the influence of these factors. Inspired by Reineman et al. (2013), future work can include 700 

developing a ground-vehicle-based UAV flux validation platform. This platform could carry both the UAV-based and 701 

traditional ground EC system to assess the measurement accuracy of the UAV-based EC system with the measurement of 702 

ground EC as the benchmark in a flight-like scenario. 703 

5 Conclusions and further works 704 

The main objective of this study was to quantitatively evaluate the performance of the developed UAV-based EC system in 705 

the measurement of geo-referenced wind vector and turbulent flux. In terms of measuring precision, turbulence measurements 706 

from the UAV-based EC system were achieved with sufficient precision to enable reliable measurement of geo-referenced 707 

wind and EC flux. Magnitudes larger than 0.7 m s-1 for wind velocity, 0.3 µmol m-2 s-1 for CO2 flux, 0.2 W m-2 for sensible 708 

heat flux, and 0.8 W m-2 for latent heat flux could be reliably measured by the UAV-based EC system by assuming the 709 

minimum required signal-to-noise ratio of 10:1 for EC application. Based on the data from the calibration flight, the carefully 710 

calibrated offset angle in pitch (𝜖𝜃) and heading (𝜖𝜓) were shown to effectively improve the quality of wind field measurements, 711 

and the influences of flow distortion and the leverage effect on the wind measurement were minimal and could be ignored. 712 

The influence of resonance noise was small on the measurement of air temperature and water vapor (typically < 1 % for their 713 

variance and flux covariance), but relatively large on the measurement of CO2 (around 5 % for variance and flux covariance). 714 

The relevance of the calibration parameters (𝜀𝑟 , 𝜖𝜙, 𝜀𝜓, 𝜀𝜃) for the measurement of the geo-referenced wind vector and 715 

turbulent flux was also assessed based on two sensitivity tests. The measurements of the geo-referenced wind vector and 716 

turbulent flux were insensitive to the errors in the 𝜀𝑟 and 𝜖𝜙. Uncertainties in the calibration parameter 𝜀𝜃 and 𝜀𝜓 had the 717 

strongest effects on the measurements. Because of 𝜀𝜃 directly determining the magnitude of the vertical wind, its error will 718 

lead to uncertainties in vertical wind measurement and then propagate the uncertainties to the measurement of turbulent flux. 719 

The uncertainties in 𝜀𝜓 have a direct effect on the measurement of horizontal wind, and to some extent, the measurement of 720 

turbulent flux. Therefore, these two calibration parameters need to be carefully calibrated. Conducting the UAV-based EC 721 

measurement when wind velocity is larger than 2 m s-1 can led to more stable and reliable (RE < 20%) results of the wind 722 

speed measurement compared to a relatively windless environmental.  723 

Finally, we concluded that the developed UAV-based EC system measured the geo-referenced wind vector and turbulent 724 

flux with sufficient precision. The lift-induced upwash and leverage effect had almost no effect on the measurement of geo-725 

referenced wind vector. The resonance effect caused by the operation of engine and propeller mainly affected the measurement 726 

of CO2, and its effect on variance and flux covariance was around 5 %. The quality of calibration parameters 𝜀𝜓 and 𝜀𝜃 has a 727 

significant effect on the measurement of the geo-referenced wind vector and turbulent flux, underscoring the importance of 728 

careful calibration. Although UAV-based EC measurements have many advantages over manned aircraft and tower-based EC 729 

measurements, airborne EC measurements themselves have some shortcomings, such as flux results hard to interpret (e.g., 730 

influence from surface heterogeneity, flux divergence, etc.), the measurements are restricted to short periods of time, and the 731 
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interaction between the UAV and turbulence. Future researches may include the development of a new generation UAV-based 732 

EC system with the following improvements: 1) a new electro-powered UAV platform with the advantages of being quieter 733 

(low noise), having a low cruising speed, and being easy to operate; 2) a ground-vehicle-based validation platform to enable 734 

direct comparative evaluation of the UAV-based EC system with traditional ground EC methods under near-identical 735 

environmental conditions; 3) a graphics based real-time monitoring system to make it possible to change the flight pattern 736 

according to real-time data; and 4) a number of integrated field observation experiments that combining ground-based EC 737 

networks, OMS, and multi-source satellite RS to further prompt the development of theory and methodology for scaling 738 

transformation. Ultimately, the versatility of the UAV-based EC system as a low cost and widely applicable environmental 739 

research aircraft facilitates further improving our understanding of the energy and matter cycling processes at regional scales.  740 
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