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Abstract. Instrumentation packages for eddy covariance (EC) measurements have been developed for unmanned aerial vehicle 19 

(UAV) to measure the turbulent fluxes of latent heat (LE), sensible heat (H), and CO2 (Fc) in the atmospheric boundary layer. 20 

This study aims to evaluate the performance of this UAV-based EC system. First, the measurement precision (1𝜎) of geo-21 

referenced wind was estimated at 0.07 m s-1. Then, the effect of calibration parameter and aerodynamic characteristics of the 22 

UAV on wind measurement was examined by conducting a set of calibration flights. The results shown that the calibration 23 

improved the quality of measured wind field, and the influence of upwash and leverage effect can be ignored in wind 24 

measurement by the UAV. Third, for measurement of turbulent flux, the error caused by instrumental noise was estimated at 25 

0.03 µmol m-2 s-1 for Fc, 0.02 W m-2 for H, and 0.08 W m-2 for LE. Fourth, data from the standard operational flights are used 26 

to assess the influence of resonance on the measurements and to test the sensitivity of the measurement under the variation 27 

(±30 %) of the calibration parameters around their optimum value. Results shown that the effect of resonance mainly affect 28 

the measurement of CO2 (~5 %). The pitch offset angle (𝜀𝜃) significantly affected the measurement of vertical wind (~30 %) 29 

and turbulent fluxes (~15 %). The heading offset angle (𝜀𝜓) mainly affected the measurement of horizontal wind (~15 %), 30 

and other calibration parameters had no significant effect on the measurements. The results lend confidence to use the UAV-31 

based EC system, and suggest future improvements for optimization of the next generation system.  32 
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1 Introduction 33 

In environmental, hydrological and climate change sciences, flux measurement at the regional scale (level of several to tens of 34 

kilometers) is a pressing problem (Mayer et al., 2022; Chandra et al., 2022). Process-based or remote sensing (RS)-based 35 

models are often used to estimate land surface fluxes of matter and energy at continental to global scales with typical spatial 36 

resolution from 1-10 km (Hu and Jia, 2015; Mohan et al., 2020; Liu et al., 1999). However, observational data, especially at 37 

similar scales to models’ estimates, is often lacking, which presents a significant challenge for the validation and evaluation 38 

of the surface flux products from these models’ estimates (Li et al., 2018; Li et al., 2017). On the ground, in the past decades, 39 

extensive eddy-covariance (EC) flux sites with their composed networks and optical-microwave scintillometer (OMS) sites 40 

have been built to provide temporally continuous monitoring of surface flux at local (hundreds of meters around the 41 

measurement site of ground EC) and path (a distance of a few hundred meters to near 10 kilometers between transmitter and 42 

receiver terminal of OMS) scales (Yang et al., 2017; Liu et al., 2018; Zhang et al., 2021; Zheng et al., 2023). However, flux 43 

from ground measurements need to be scaled up to kilometers-scale to provide comparable surface “relative-truth” flux data 44 

for the process- or RS-based models at larger spatial scales (Liu et al., 2016). But the spatial density of these flux measurements 45 

sites is still low compared to the heterogeneity of surface fluxes, which means that major scaling bias may exist in the upscaled 46 

flux data (Wang et al., 2016; Li et al., 2021). Therefore, regional-scaled oriented flux measurement techniques need to be 47 

developed to complement the missing scale between these ground- and models-based approaches (Chu et al., 2021).  48 

Aircraft-based EC flux measurement method, which has been developed for turbulence measurements for more than 40 49 

years (Lenschow et al., 1980; Desjardins et al., 1982), is considered as the optimum method to measure turbulent flux at 50 

regional scale (several hundred square kilometers) (Gioli et al., 2004; Garman et al., 2006). To date, several types of aircrafts, 51 

including manned or unmanned fixed-wing aircrafts, delta-wing aircrafts, and helicopters, have been used for measurements 52 

of turbulent flux by equipping them with the EC sensors to measure three-dimensional (3D) wind, air temperature, and gas 53 

concentrations at a high frequency (Gioli et al., 2006; Metzger et al., 2012; Wolfe et al., 2018; Sun et al., 2021a; Reuter et al., 54 

2021). Among them, fixed-wing aircrafts and delta-wing aircrafts are better airborne platforms for EC measurements compared 55 

to helicopters due to their tightly coupled structure with the wind sensor and because their flow distortion around the fuselage 56 

can be more easily avoided or modeled (Prudden et al., 2018; Garman et al., 2008). A wide range of manned aircrafts has been 57 

developed to measure turbulent flux, including single-engine light aircrafts (e.g., Sky Arrow 650, Long-EC, WSMA) (Gioli et 58 

al., 2006; Crawford and Dobosy, 1992; Metzger et al., 2012), twin-engine aircrafts (e.g., Twin Otter, NASA CARAFE) 59 

(Desjardins et al., 2016; Wolfe et al., 2018) and larger quad-engine utility aircrafts (e.g., NOAA WP-3D) (Khelif et al., 1999). 60 

These airborne flux measurements, in combination with ground EC measurements, provide an excellent opportunity to produce 61 

regional-scaled, spatio-temporal continuous surface flux datasets that can improve our understanding of the processes of land-62 

atmosphere interactions in regional and global change (Chen et al., 1999; Prueger et al., 2005; Calmer et al., 2019; Tadić et al., 63 

2021). However, manned aircrafts are expensive to operate and maintain. Aviation safety and operational regulations require 64 

that manned aircrafts must fly above a minimum altitude (400 m above the highest elevation within 25 km on each side of the 65 



3 

 

center line of the air route in China) and must avoid hazardous conditions such as icing or severe turbulence. The flow distortion 66 

induced by the aircraft itself (from the wings, fuselage, and the propellers) complicates the wind vector measurement from 67 

aircraft platform, which means that sophisticated correction procedures should be applied to correct for the flow distortion 68 

effects (Elston et al., 2015; Williams and Marcotte, 2000; Drüe and Heinemann, 2013). 69 

In recent years, interesting in unmanned aerial vehicle (UAV) platforms for atmospheric research have been fast growing, 70 

especially because of their lower construction, operation, and maintenance costs compared with manned platforms. High-71 

performance fixed-wing UAVs offer a high payload capacity (5-10 kg) and similar endurance (2-3 h) and operating altitude 72 

(to 3500 m or higher above the sea level) to manned aircrafts, but with much less turbulence disturbance due to their small 73 

fuselage size (Reineman et al., 2013). More importantly, the advancements in small, fast, and powerful sensors and 74 

microprocessors make it possible to use of UAVs for comprehensive atmospheric measurements (Sun et al., 2021a). Several 75 

types of UAVs with different atmospheric measurement objectives have been developed and deployed, ranging from small 76 

size (e.g., 140 g SUMO) to medium (e.g., 1.5 kg M2AV, 1.0 kg MASC) and large (e.g., 6.8 kg Manta, 5.6 kg ScanEagle) 77 

(Reuder et al., 2016; Båserud et al., 2016; Reineman et al., 2013; Zappa et al., 2020). A comprehensive overview of these 78 

UAVs for atmospheric measurement can be found in Elston et al. (2015) and Sun et al. (2021a). For turbulence measurement, 79 

the UAVs were equipped with a commercial or custom multi-hole (5- or 9-hole) probe paired with an integrated navigation 80 

system (INS) to obtain the wind vector. Small and medium UAVs typically could only measure fast 3D wind vector and air 81 

temperature fluctuations for measurements of momentum and sensible heat flux, whereas, large UAVs were equipped with 82 

more types (e.g., radiation, optics, or gas concentration) and more accurate sensors for measurement of more types of 83 

meteorological properties including sensible and latent heat fluxes, CO2 flux, radiation fluxes as well as surface properties 84 

(Reineman et al., 2013; Sun et al., 2021a). UAVs can be deployed in a variety of application environments and complex 85 

conditions, which offer distinct advantages over manned aircraft in their ability to safely perform measurements in low-altitude 86 

conditions (below 100 m above the ground level) and greatly reduce operational costs (Witte et al., 2017). Anderson and 87 

Gaston (2013) predict that UAVs will revolutionize the spatial data collection in ecology and meteorology. 88 

EC method is a well-developed technology for directly measuring vertical turbulent flux (flux of sensible heat, latent heat 89 

and CO2) within the atmospheric boundary layers (ABL) (Peltola et al., 2021). It requires accurate time (for ground tower) or 90 

spatial (for mobile platform) series of both the transported scalar quantity and the transporting turbulent wind. Each should be 91 

measured at sufficient frequency to resolve the flux contribution from small eddies (Vellinga et al., 2013). However, the 92 

measurement of the geo-referenced 3D wind vector, which is the prerequisite for EC measurements, is challenging for airborne 93 

platform. The geo-referenced 3D wind measured by airborne is the vector sum between the aircraft velocity relative to the 94 

earth (inertial velocity) and the velocity relative to the air (relative wind vector, or true airspeed). Therefore, accurate 95 

measurements of the relative wind as well as the motion and attitude of the platform are essential to accurately measure the 96 

geo-referenced wind vector and the turbulent flux (Metzger et al., 2011). Garman et al. (2006) estimated the measurement 97 

precision (1𝜎) of the vertical wind measurements of a commercial 9-hole turbulence probe (known as “Best Air Turbulence 98 

Probe”, often abbreviated as the “BAT Probe”) to be 0.03 m s-1 by combining the precision of the BAT Probe and the integrated 99 
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navigation system. A light delta-wing EC flux measurement aircraft developed by Metzger et al. (2011) reported a 1𝜎 precision 100 

of wind measurement of 0.09 m s-1 for horizontal wind and 0.04 m s-1 for vertical wind using a specially customized five-hole 101 

probe (5HP). On this basis, in combination with a commercial infrared gas analyzer, the 1𝜎 precision of flux measurement 102 

was 0.003 m s-1 for friction velocity, 0.9 W m-2 for sensible heat flux, and 0.5 W m-2 for latent heat flux (Metzger et al., 2012). 103 

The EC flux measurement from a UAV platform can now be achieved with a similar reliability to a manned platform. The 104 

Manta and ScanEagle UAV-based EC measurements developed by Reineman et al. (2013) achieved precise wind 105 

measurements (0.05 m s-1 for horizontal and 0.02 m s-1 for vertical wind) using a custom nine-hole probe and a commercial 106 

high precision integrated navigation system (INS). However, the onboard instrument packages for Manta and ScanEagle UAV 107 

are independent of each other in their measurements of turbulent and radiation flux, and the CO2 flux measurement is lacking.  108 

Inspired by these studies, Sun et al. (2021a) used a high-performance fuel-powered vertical take-off and landing (VTOL) 109 

fixed-wing UAV platform to integrate the scientific payloads for EC and radiation measurements to obtain a comprehensive 110 

measurement of turbulent and radiation flux. This UAV-based EC system could measure turbulent fluxes of sensible heat, 111 

latent heat, and CO2, as well as radiation fluxes including net radiation and upward- and downward-looking photosynthetically 112 

active radiation (PAR). This system was successfully tested in the Inner Mongolia of China and applied to measure the regional 113 

sensible and latent heat fluxes in the Yancheng coastal wetland in Jiangsu, China (Sun et al., 2021a; 2021b). During these field 114 

studies, the UAV-based EC measurements achieved a near consistent observational result compared with ground EC 115 

measurements (Sun et al., 2021b). However, some shortcomings in the developed UAV-based EC system were also identified. 116 

In particular, the noise effects from the engine and propeller were not fully isolated, resulting in high frequency noise in the 117 

measured scalars (air temperature, H2O, and CO2 concentration). This UAV-based EC system is being continuously improved 118 

(in Section 2.1). However, no quantitative evaluation of the measurement precision of the wind field and turbulent flux as well 119 

as of the influence of the resonance noise from the UAV operation have been made yet. Previous work using ground EC as a 120 

benchmark to assess the measurement performance of the UAV-based EC system has been disputed, due to difference in EC 121 

sensors, platforms, measurement height, and source areas (i.e., footprint), as well as the influence of surface heterogeneity, 122 

flux divergence, inversion layer and the stochastic nature of turbulence (Sun et al., 2021b; Wolfe et al., 2018; Hannun et al., 123 

2020). 124 

This study attempts to evaluate the performance of the UAV-based EC system developed by Sun et al. (2021a) in the 125 

measurement of wind field and turbulent flux. For these purposes, data from two field measurement campaigns, including a 126 

set of calibration flights and some standard operation flights, were used in this study. First, the current study investigated the 127 

quality of the measurement of geo-referenced wind vector including measurement error (1𝜎) and the improvements for wind 128 

measurement after system calibration. Second, using the measured data from standard operation flights, flux measurement 129 

error related to instrumental noise was estimated with a method proposed by Billesbach (2011). Errors propagated through the 130 

correction terms [i.e., Webb-Pearman-Leuning (WPL) correction for latent heat and CO2 flux] were also included in our 131 

analysis (Webb et al., 1980; Kowalski et al., 2021). Then, the impacts of resonance noise on the measured scalar variance and 132 

the flux covariance were also estimated by comparing the real (co)spectra curve with the theoretical reference curve from 133 
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Massman and Clement (2005). Lastly, the sensitivity of the measured geo-referenced wind vector and turbulent flux to the 134 

errors in the calibration parameters (determined by the calibration flight) were assessed by adding an error of ±30 % to their 135 

calibrated value.  136 

2 Materials and Methods 137 

2.1 The UAV-based EC system 138 

The VTOL fixed-wing UAV platform used for EC measurement has minimal requirements for the takeoff location and offers 139 

a high payload capacity of up to 10 kg. This UAV has a wing-span of 3.7 m, a fuselage length of 2.85 m, and a maximum take-140 

off weight of 60 kg. The UAV engine is mounted in a pusher configuration, allowing for the turbulence probe to be installed 141 

directly on the nose of the UAV, minimizing or eliminating airflow contamination due to upwash and sidewash generated by 142 

the wings (Crawford et al., 1996). Control of the UAV is totally autonomous, and the pilots have the option to enable manual 143 

control in emergency conditions. The UAV has a cruise flight speed of 28 to 31 m s-1 with an endurance of almost 3 h, and it 144 

has a flight ceiling of up to 3800 m above the sea level. Detailed information about this UAV could be found in Sun et al. 145 

(2021a). 146 

The flux payloads of the UAV-based EC system include a precision-engineered 5-hole pressure probe (5HP) for 147 

measurement of the true airspeed and the attack (𝛼) and sideslip (𝛽) angles of the incoming flow relative to the UAV, a dual-148 

antenna integrated navigation system (INS) for high accuracy measurement of UAV ground speed and attitude, an open path 149 

infrared gas analyzer (IRGA) for recording the gas concentrations of CO2 and water vapor, a fast temperature sensor for 150 

measurement of the fast temperature fluctuations, and a slow-response temperature probe for providing a mean air temperature 151 

reference. The sensor modules and their 1𝜎 precision of the measured variables related to EC measurement were listed in 152 

Table 1. For the 5HP, the 1𝜎 measurement precision was acquired from the wind tunnel test after wind tunnel calibration (Sun 153 

et al., 2021a). 154 

Table 1: Summary of the sensor modules, measured variables, and their measurement precision used to determine the geo-155 

referenced wind velocity and turbulent flux. 156 

Sensor 

(Module, company, country) 
Variables Precision (𝟏𝝈) 

GNSS/INS 

(BD992-INS, Trimble, USA) 

Roll, Pitch, Heading 0.1º 

Horizontal velocity 0.007 m s-1 

Vertical velocity 0.02 m s-1 

5HP 

(ADP-55, Simtec AG, Switzerland) 

Attack angle 0.02º# 

Sideslip angle 0.04º# 

True airspeed 0.05 m s-1# 

Static pressure 1.1 hPa 

Dynamic pressure 0.003 hPa 

IRGA CO2 density 0.2 mg m-3 
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(EC150, Campbell, USA) H2O density 0.004 g m-3 

Thermistor  

(100K6A1IA, Campbell, USA) 

Temperature (slow) 
0.2 ℃ 

Thermocouple 

(T-type COCO-003, Omega, USA) 

Temperature (fast) 
0.5 ℃ 

# Results from the wind tunnel test. 157 

The sample rate of EC measurement is 50 Hz except for the slow-response temperature probe (1 Hz), yielding a turbulence 158 

horizontal resolution of approximately 1.2 m at a cruising speed of 30 m s-1. The system was improved according to deficiencies 159 

identified after several field measurements with the following adjustments: 1) a laser distance measurement unit was mounted 160 

for measuring the distance between the UAV and the ground level, 2) the platinum resistance thermometer was replaced by a 161 

thermocouple (Omega T-type COCO-003; ∅0.075 mm) for improving the resistance of the high-frequency temperature 162 

measurements to vibration noise from the engine, 3) the vibration isolator structure of the IRGA was improved, and 4) the 163 

original datalogger (CR1000X, Campbell, USA) was replaced with a lighter one (CR6, Campbell, USA). All the digital and 164 

analog signals from the sensor modules are stored and synchronized by the on-board datalogger, and the on-board scientific 165 

payloads are designed to be isolated from the electronic components of the UAV to ensure that any problems occurring would 166 

not jeopardize the safety of flying (Sun et al., 2021a).  167 

2.2 Field campaign 168 

2.2.1 In-flight calibration campaign 169 

In order to calibrate the mounting error in 5HP of the UAV-based EC system, an in-flight calibration campaign was carried 170 

out on 4 September 2022 at the Caofeidian Shoal Harbor in the Bohai Sea of northern China. At low tide, a large area of the 171 

tidal flat is exposed; while at high tide, only the barrier islands are visible (Xu et al., 2021). The assumption conditions should 172 

be satisfied for calibration flight including 1) low turbulent transport condition (i.e., no disturbance), 2) a constant mean 173 

horizontal wind, and 3) mean vertical wind near zero (Drüe and Heinemann, 2013; Vellinga et al., 2013; Van Den Kroonenberg 174 

et al., 2008). This allows identical wind components for several consecutive straights in opposite or vertical flight directions. 175 

These assumptions are usually well satisfied above the ABL or under stable atmospheric conditions (Drüe and Heinemann, 176 

2013). Over the sea surface, due to its uniform and cool surface property, the turbulence fluctuations are weaker than that over 177 

the land surface (Mathez and Smerdon, 2018), making where a more ideal environment to conduct calibration flight.  178 

The in-flight calibration campaign in this study included three flight maneuvers: ‘box’ maneuver, ‘racetrack’ maneuver, and 179 

‘acceleration-deceleration’ maneuver. The trajectories of these flight maneuver are shown in Figure 1. The calibration flight 180 

was executed between 7:28 a.m. and 7:48 a.m. (Beijing time), and the averaged flight altitude was 400 m (𝜎 = ±0.78 m) 181 

above the sea level. Considering the uniform and cool underlying surface and the stable atmospheric conditions of the early 182 

morning, we assume no disturbance from the underlying surface during the calibration flight and the assumptions for 183 

calibration flight are satisfied.  184 
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 185 

Figure 1. Flight trajectories of the calibration flight campaign carried out on 4 September 2022 at the Caofeidian Shoal Harbor in 186 
the Bohai Sea of northern China. The land surface image is from Sentinel-2A satellite image with true color combination acquired 187 
on 1 September 2022.  188 

The ‘box’ maneuver (gray line in Fig. 1) is used to determine the mounting misalignment angle in the heading (𝜖𝜓) and 189 

pitch (𝜖𝜃) between the 5HP and the center of gravity (CG) of the UAV. The flight path is a box in which the four straight legs 190 

are flown at constant cruising speed, flight altitude, and heading continuous for 2 minutes. The ‘racetrack’ maneuver (yellow 191 

line in Fig. 1) is used to evaluate the quality of the calibration parameters acquired from the previous ‘box’ maneuver. The 192 

flight path consists of two parallel straight flight tracks connected by one 180º turns. Each straight flight section lasts 2 minutes 193 

at constant speed and flight altitude. Lastly, the ‘acceleration-deceleration’ maneuver (purple line in Fig. 1) is used to check 194 

the influence of lift-induced upwash from the wing to the measured attack angle by the 5HP. During this maneuver, the aircraft 195 

is kept straight and level at constant pressure altitude. When beginning this maneuver, the aircraft accelerates to its maximum 196 

airspeed (35 m s-1). Then, the airspeed reduces gradually to near its minimum airspeed (25 m s-1) and back up to its maximum 197 

airspeed. The pressure-altitude of the aircraft is maintained throughout this maneuver, and the entire maneuver lasts one minute. 198 

This maneuver creates a series continuous changed pitch (𝜃) and attack (𝛼) angle. If a relationship between the measured 199 

incident flow attack angles (𝛼) by the 5HP and the measured pitch angle by the INS close to 1:1, then it indicates that the effect 200 

from the fuselage-induced flow distortion on the wind measurements is negligible (Garman et al., 2006). 201 

2.2.2 Standard operation flight campaign 202 

The reliability of the EC measurement from UAV is susceptible to several factors, mainly including instrumental noise, 203 

resonance noise, and the quality of the calibration parameter, etc. In order to evaluate the flux measurement error related to 204 
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instrumental noise, the effects of resonance on the measured scalar and to investigate the sensitivity of the measured geo-205 

referenced wind vector and turbulent flux to uncertainty in the calibration parameter, we used data from 7 flights in the Dagang 206 

district in Tianjin, China between 8 and 16 August 2022. This area is located on the west coast of the Bohai Sea and is a coastal 207 

alluvial plain with altitudes between 1-3 m (Chen et al., 2017). The flight path, shown in Figure 2, includes three parallel 208 

transect lines of approximately 4 km in length each and at 1-2 km intervals. All flights occurred during the daytime, and were 209 

performed in the same trajectory at a low altitude about 90 m above sea level. The flight area covered three different underlying 210 

surface types: land, coastal zone, and water surfaces, that can represent typical flux intensity characteristics over different 211 

surface conditions.  212 

 213 

Figure 2. Flight trajectories of the standard operation flight campaign carried out between 8 and 16 August 2022 at Dagang district, 214 
Tianjin, China. The land surface image is from Sentinel-2A satellite image with true color combination acquired on 27 August 2022. 215 

During the standard operation flight campaign, the atmospheric stability changed from the stable (Monin-Obukhov stability 216 

parameter, 𝑧/𝐿 = 1.93) to very unstable (𝑧/𝐿 = −10.28) conditions as measured by the UAV, where 𝑧 is the flight height 217 

above the ground level, 𝐿 is the Obukhov length. The stable condition mostly occurred on flight path located over the sea 218 

surface, while the unstable condition mostly occurred on flight path located over the land surface. These flight data provided 219 

various measurement conditions for us to evaluate the performance of the developed UAV-based EC system.  220 

2.3 Data processing 221 

The raw data collected with the on-board datalogger (CR6, Campbell, USA) is subsequently saved in Network Common Data 222 

Form (netCDF) format. It includes dynamic and static pressure, attack, and sideslip angle of incoming flow; slow (1 Hz) and 223 

fast (50 Hz) air temperature; mass concentration of H2O and CO2; as well as the full navigation data (including 3D location, 224 
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ground speed, angular velocity, and attitude, etc.) of the UAV. The subsequent data processing includes three stages in order 225 

to calculate flux data from raw measured data.  226 

    In the first stage, a moving average filter was used to detect outliers in each variable. Detected outliers were removed and 227 

replaced by values obtained by linear interpolation. Outliers tend to be rare. However, if outliers constitute more than 20 % of 228 

the data points, the corresponding flight data should be discarded.  229 

In the second stage, geo-referenced 3D wind vector is calculated. The full form of the equations for calculating the geo-230 

referenced wind vector by the UAV-based EC system is described in detailed in Supplement Part A. From the airborne platform, 231 

geo-referenced wind vector is measured in two independent reference coordinate systems: the relative true airspeed (�̂�𝑎) 232 

measurement in the aircraft coordinate system and the ground speed of the aircraft (𝑈𝑝) in the geo-referenced coordinate 233 

system. The geo-referenced wind (𝑈) is the vector sum of the relative true airspeed (�̂�𝑎), the UAV’s motion (𝑈𝑝) and the 234 

tangential velocity due to the rotational motion of the aircraft (“lever arm” effect), which is described in Eq. (S2). In this stage, 235 

the acquired calibration parameters (𝜖𝜓 and 𝜖𝜃) from the calibration flight are substituted into the Eq. (S8) to correct the 236 

mounting angle offset errors between the 5HP and the CG of the UAV. The final equations for geo-referenced wind vector 237 

calculation (Eqs. S15 to S17) revealed that the lever arm effects due to the spatial separation between the tip of the wind probe 238 

and the CG of UAV may influence the wind measurements. Typically, the separation distance (L) is small, and the influence 239 

of the lever arm effects can be ignored when the L is less than about 10 m (Lenschow, 1986). In the current UAV-based EC 240 

system, the displacements of the 5HP tip with respect to the CG of the UAV along the three axes of UAB body coordinate are: 241 

𝑥𝑏 = 1.459 m, 𝑦𝑏 = 0 m, and 𝑧𝑏 = 0.173 m (in Supplement Part A). Therefore, in practice, the influence of leverage effects 242 

in geo-referenced wind calculation was also ignored in this study. This was also confirmed by assessing the difference in the 243 

geo-referenced wind vector with and without the leverage effect correction term in this study (in Section 3.1).  244 

In the final stage, based on the EC technology and spatial averaging, turbulent fluxes are calculated using the covariances 245 

of vertical wind (𝑤) with air temperature (𝑇𝑎) for sensible heat flux (H), with water vapor density (q) for latent heat flux (LE), 246 

and with CO2 density (c) for CO2 flux (𝐹𝑐), and with the necessary correction (Webb et al., 1980). The time lag due to the 247 

separation between the 5HP tip, the adjacent temperature probe, and the open-path gas analysis did not need to be corrected 248 

because the time delay was very small at the cruise airspeed of 30 m s-1 and sensor separation less than 20 cm. Only the 249 

measurement data from the straight-line portion of the flight path was used in flux calculation. Detailed calculation procedure 250 

and formulas for calculating H, LE, and 𝐹𝑐 used by the current UAV-based EC system are provided in Supplement Part B, 251 

including spatially averaging, coordinate rotation, and necessary correction (i.e., WPL correction for LE and 𝐹𝑐). In this study, 252 

the entire measured data of each straight and level flight leg (each with length about 4 km) from the standard operational flight 253 

campaign was used to calculate turbulent flux, regardless of the uncertainty in fluxes associated with spatial averaging.  254 



10 

 

2.4 Evaluation scheme 255 

2.4.1 Wind measurement evaluation 256 

The key to successful aircraft EC measurements lies in the translation of accurately measured, aircraft-orientated, wind vector 257 

to geo-referenced orthogonal wind vector (Thomas et al., 2012). Determining the geo-referenced wind vector requires a 258 

sequence of thermodynamic and trigonometric equations (Metzger et al., 2012), these equations propagate various sources of 259 

error to the measured geo-referenced wind vector. To estimate the measurement errors in the geo-referenced wind vector, we 260 

used the linearized Taylor series expansions of Eqs. (S15) to (S17) derived by Enriquez and Friehe (1995) (Eqs. S18 to S20 in 261 

Supplement Part A) to determine the sensitivities of each of the geo-referenced wind vector components with respect to the 262 

relevant variables. Then, these sensitivity terms can be combined to compute the overall measurement error (1𝜎) in the geo-263 

referenced 3D wind vector (Eqs. S21 to S23 in Supplement Part A).  264 

The above wind measurement error analysis gives the nominal measurement precision of the geo-referenced wind, but does 265 

not consider the influence of environmental changes. Following the methods of Lenschow and Sun (2007), we assess whether 266 

the accuracy of wind measurements from the UAV in satisfying the minimum signal level needed for resolving the mesoscale 267 

variations of the three wind components in the encountered atmospheric conditions. Firstly, the minimum required signal level 268 

for measurement of vertical air speed (𝜔) under the encountered atmospheric conditions could be estimated as (Lenschow and 269 

Sun, 2007): 270 

𝜕𝑤

𝜕𝑡
< 0.2√2𝜎𝑤2𝜋𝑘𝑈𝑎                                                                                                                                                                          (1) 271 

with the true airspeed (𝑈𝑎) set to mean cruise speed 30 m s-1, 𝜎𝑤 is the peak signal magnitude  of the power spectra, and 𝑘 is 272 

the corresponding wavenumber (Thomas et al., 2012). The measurement error in the vertical wind component can be calculated 273 

as (Lenschow and Sun, 2007): 274 

𝜕𝑤

𝜕𝑡
≅ 𝛩

𝜕𝑈𝑎

𝜕𝑡
+ 𝑈𝑎

𝜕𝛩

𝜕𝑡
+

𝜕𝑤𝑈𝐴𝑉

𝜕𝑡
                                                                                                                                                             (2) 275 

with Θ = 𝛼 − 𝜃, where 𝛼 is the attack angle, 𝜃 is the pitch angle, 𝑤𝑈𝐴𝑉 is the UAV’s vertical velocity. According to Lenschow 276 

and Sun (2007), the signal level and mesoscale fluctuation of horizontal wind components (𝑢 and 𝑣) are considerably larger 277 

than that of vertical wind, so the accuracy criteria are not nearly as stringent. The measurement error of the horizontal wind 278 

component could be calculated as (Lenschow and Sun, 2007): 279 

𝜕𝑢

𝜕𝑡
≅ −

𝜕𝑈𝑎

𝜕𝑡
+

𝜕𝑢𝑈𝐴𝑉

𝜕𝑡
                                                                                                                                                                               (3) 280 

𝜕𝑣

𝜕𝑡
≅ 𝛹

𝜕𝑈𝑎

𝜕𝑡
+ 𝑣𝑡𝑎𝑠

𝜕𝛹

𝜕𝑡
+

𝜕𝑣𝑈𝐴𝑉

𝜕𝑡
                                                                                                                                                             (4) 281 

and, 282 

𝛹 ≡ 𝜓′ + 𝛽                                                                                                                                                                                             (5) 283 
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where 𝑢𝑈𝐴𝑉, 𝑣𝑈𝐴𝑉 are the UAV’s horizontal velocity measured from INS, 𝜓′ is the departure of the measured true heading 284 

from the average true heading, and 𝛽 is the sideslip angle of airflow. If the measurement error of the 3D wind vector from Eqs. 285 

(2) to (4) is smaller than the required minimum signal level of the vertical and horizontal wind components, it can be confirmed 286 

that the measurement accuracy of the geo-referenced 3D wind vector from UAV is sufficient to resolve the mesoscale 287 

variations of the three wind components in the encountered atmospheric conditions. 288 

In addition, accurate measurements of geo-referenced wind vector typically not only depend on the measurement precision 289 

of the sensors (i.e., 5HP and INS), but also related to the quality of the calibration parameters and the geometry structure of 290 

the UAV (i.e., flow distortion and leverage effect). For evaluation of the effect of the latter two, a calibration flight campaign 291 

(Section 2.2.1) was performed to determine the calibration parameter (𝜖𝜓, 𝜖𝜃), check its quality, as well as to ascertain the 292 

effects of the lever arm and up-wash by the wings. The methods for acquiring the calibration parameter were given by Vellinga 293 

et al. (2013) and Sun et al. (2021a), and the results are reported in Supplement Part C (Figs. S2 and S3). During the in-flight 294 

calibration campaign, a ‘racetrack’ maneuver was performed to check the quality of the calibration parameters determined 295 

from the ‘box’ flight maneuver. The initial (𝜖𝜓 = 0°, 𝜖𝜃 = 0°) and calibrated (𝜖𝜃 = −0.183°, 𝜖𝜓 = 2°, in Supplement Part C) 296 

set of parameters were used to calculate the geo-referenced wind vector. By comparing the mean and standard deviation of the 297 

horizontal and vertical wind vector between the initial and calibrated set, the quality of the geo-referenced wind vector 298 

measurement in real environment conditions can be verified. 299 

The relative wind vector (�̂�𝑎) measured by the aircraft is susceptible to flow distortion because the airplane must distort the 300 

flow to generate lift and thrust. The aircraft’s propellers, fuselage, and wings are the main sources of flow distortion as flow 301 

barriers (Metzger et al., 2011). For fixed-wing aircrafts, the wind probe mounted on the nose of the UAV and extended as far 302 

forward of the fuselage as possible could avoid the flow distortion induced by the fuselage and propellers. Effects from the 303 

induced upwash by the wings can also influence the correspondence between the measured and free-stream flow variables 304 

(Garman et al., 2008). The induced upwash modifies the local angle of attack, causing the measured attack angle (𝛼) to be 305 

larger than the free-stream attack angle (𝛼∞)(Garman et al., 2008). Therefore, for wind measurements by large-scale manned 306 

fixed-wing aircrafts, the upwash effects must be corrected (Garman et al., 2008; Kalogiros and Wang, 2002). However, UAV 307 

seldom need this correction due to the fuselage size and the airspeed is very low compared to a manned aircraft.  308 

In this study, in order to access whether the lift-induced upwash could be safety ignored by the current UAV-based EC 309 

system, an ‘acceleration-deceleration’ flight maneuver was performed. According to Crawford et al. (1996), the pitch angle 310 

(𝜃) by the INS instrument can be utilized as an estimate of the free-stream attack angle (𝛼∞) if the aircraft’s vertical velocity 311 

is zero, since it is unaffected by lift-induced upwash and varies directly with 𝛼∞ when the ambient vertical wind is zero. Under 312 

ideal conditions (zero aircraft vertical velocity and zero ambient vertical wind), the approximation relationship of 𝜃 ≅ 𝛼∞ is 313 

valid when 𝜃 < 6° (Crawford et al., 1996; Vellinga et al., 2013). Departures from the 1:1 relationship can be caused by airflow 314 

distortion around the airplane behind the 5HP. The ‘acceleration-deceleration’ maneuver produced various pitch and attack 315 

angles measured under various airspeeds, which allowed a direct comparison between the pitch angle (𝜃) and the attack angle 316 
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(𝛼). If the slope between 𝛼 and 𝜃 is close to unity, it indicates that the influence of lift-induced upwash can be ignored; 317 

otherwise, its influence should be corrected (Garman et al., 2006). Meanwhile, the influence of leverage effects was also 318 

evaluated based on the measurement data from the ‘acceleration-deceleration’ maneuver by considering or ignoring the 319 

leverage effect correction term in Eqs. (S15) to (S17). 320 

2.4.2 Flux measurement error caused by instrumental noise 321 

Flux measurement error from UAV can be attributed to several sources, mainly including instrumental noise, data handing, 322 

atmospheric conditions, spatial averaging length, and bumpy flight environment (Mahrt, 1998; Finkelstein and Sims, 2001; 323 

Mauder et al., 2013). They can be systematic or random. Determination of the flux measurement error caused by instrument 324 

noise is very useful, as it is related not only to the system performance, but also to the minimum resolvable capability for the 325 

flux to be measured. In the current study, uncertainty related to instrumental noise (listed in Table 1) was estimated using the 326 

directly method proposed by Billesbach (2011). This method can be called as “random shuffle” (denoted as the RS) method 327 

and was “designed to only be sensitive to random instrument noise”. According to Billesbach (2011), the uncertainty of the 328 

flux covariance can be expressed as: 329 

𝜎𝑤′𝑥′̅̅ ̅̅ ̅̅ ̅ =
1

𝑁
∑ 𝑤′(𝑡𝑖)𝑥′(𝑡𝑗)𝑁

𝑖,𝑗=1                                                                                                                                              (6) 330 

where 𝑥 is the target entity of the covariance, N is the number of measurements contained in the block averaging period, 𝑗 ∈331 

[1 … 𝑁] but the values are in the random order. The idea behind the RS method was that the randomly shuffled will remove 332 

the covariance between biophysical (source/sink) and transport mechanisms, leaving only the random “accidental” correlations 333 

attributed mostly to instrument noise (Billesbach, 2011). It means that the shuffled component 𝑥 makes it uncorrelated in 334 

time/space and decorrelates 𝑥 from 𝑤, resulting in two independent variables (i.e., 𝑤′𝑥′̅̅ ̅̅ ̅̅ ~0), and any residual value (i.e., 335 

𝑤′𝑥′̅̅ ̅̅ ̅̅ ≠ 0) of the covariance is attributed to random instrument noise.  336 

   In this study, in order to obtain a robust estimate of the instrumental noise, 𝜎𝑤′𝑥′̅̅ ̅̅ ̅̅ ̅ was repeatedly calculated 20 times for every 337 

straight and level flight leg in operation flight (Fig. 2), and the mean of the absolute values of these repeated estimated 𝜎𝑤′𝑥′̅̅ ̅̅ ̅̅ ̅ 338 

were used to estimate the random uncertainty related to instrumental noise.  According to Rannik et al. (2016), RS method 339 

tends to overestimate the covariance uncertainty. Then, the uncertainty in the flux covariance of sensible heat (𝜎𝑤′𝑇′̅̅ ̅̅ ̅̅ ̅), latent 340 

heat (𝜎𝑤′𝜌′𝑣̅̅ ̅̅ ̅̅ ̅̅ ), and CO2 (𝜎𝑤′𝜌′𝑐̅̅ ̅̅ ̅̅ ̅̅ ) were estimated using RS method, respectively.  341 

  It should be noted that the measurement error of EC flux is influenced not only by the uncertainty in the raw covariance but 342 

also by the propagated errors form the correction terms (i.e., WPL correction) or any lens contamination (Serrano-Ortiz et al., 343 

2008). The signal quality of the IRGA was checked before each flight measurement to ensure that the measurement of gas 344 

concentration is not affected by lens contamination. The relative uncertainty of flux measurement was estimated using the 345 

partial derivatives of the flux calculation equation derived by Liu et al. (2006) (Eqs. S28 to S30 in Supplement Part B). These 346 

equations ignored the perturbations terms from the errors in the individual scalar (i.e., 𝜌𝑣, 𝜌𝑐, T) which were proved very small 347 
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(Serrano-Ortiz et al., 2008). At last, after several repetitive calculation of the Eq. (6), their averaged value then be combined 348 

to Eqs. (S28) to (S30) for estimating the flux measurement error caused by instrumental noise.  349 

2.4.3 Resonance effects 350 

Previous work found that the measurement of the atmospheric scalars (e.g., air temperature, H2O, and CO2 concentration) by 351 

the current UAV-based EC system were susceptible to resonance effects caused by the operation of the engine and propeller 352 

(Sun et al., 2021b). In order to further reduce the noise influence from resonance effects, the vibration damping structure was 353 

further optimized. Then, the reference (co)spectra curve of Massman and Clement (2005) was used to quantify the influence 354 

of the resonance effects remaining after vibration isolation optimization. Massman and Clement (2005) gave the generalization 355 

mathematical expression of the models of spectra and co-spectra: 356 

𝐶𝑜(𝑓) =  𝐴0
1/𝑓𝑥

[1+𝑚(𝑓/𝑓𝑥)2𝜇]
1

2𝜇(
𝑚+1

𝑚 )
                                                                                                                                                          (7) 357 

where 𝑓 is frequency (Hz), 𝑓𝑥 is the frequency at where 𝑓𝐶𝑜(𝑓) reaches its maximum value, 𝐴0 is a normalization parameter, 358 

𝑚 is the (inertial subrange) slope parameter, and 𝜇 is the broadness parameter. To describe co-spectra, 𝑚 should be 3/4; to 359 

describe spectra, m should be 3/2. According to Massman and Clement (2005), 𝜇 was set to 7/6 under stable atmospheric 360 

condition and  was set to 1/2 under unstable atmospheric condition. Fast Fourier transform (FFT) method was used to calculate 361 

the spectra and co-spectra of the measured turbulent variables. Before calculating the turbulence (co)spectra, condition of the 362 

raw turbulence data was performed, including linear detrend and tapering using the Hamming window to reduce the spectral 363 

leakage (sharp edge) according to Kaimal et al. (1989). 364 

The noise influence from resonance mainly appears in the high frequency domain. According to the feature of spectral curve, 365 

the frequency range of the noise region was artificially designated to 𝑓 > 8 Hz for air temperature, 𝑓 = 1~5 Hz for water 366 

vapor, and 𝑓 = 1~8 Hz for CO2. The normalized spectra and co-spectra curve were adopted and the area difference of the 367 

designated frequency range beneath the (co)spectra curve between the measured and reference (co)spectra curve was calculated 368 

to quantify the influence of resonance noise in the variance and flux covariance of the measurement atmosphere scalars. An 369 

example is shown in Figure 3,  and also shown the reference (co)spectra curve of Massman and Clement (2005), with the 370 

(co)spectral maximum at 𝑓𝑥 = 0.1. The red region in Fig. 3 represented the impact extent of the resonance noise in the variance 371 

(Figs. 3a to 3c) and flux covariance (Figs. 3d to 3f) of the measured scalars.  372 
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 373 

Figure 3. Influence of the resonance noise on the spectra (top row) and co-spectra (bottom row) curve of the measured scalars based 374 
on the measured data from one standard operation flight carried out on 8 August 2022 at Dagang district, Tianjin, China. The red 375 
region is the area difference of the designated frequency range (vertical black dashed-dotted line) beneath the (co)spectral curve 376 
between the measured and reference (co)spectral curve. 377 

2.4.4 Sensitivity analysis 378 

To understand the relevance of the calibration parameters for the measurement of geo-referenced wind vector and turbulent 379 

flux, two sensitivity tests were conducted. The magnitude of the perturbation in the wind vector and turbulent flux was 380 

investigated as a function of the uncertainties in the four calibration parameters, including three mounting misalignment angles 381 

(𝜖𝜓, 𝜖𝜃, 𝜖𝜙) between the 5HP and the CG of the UAV and one temperature recover factor (𝜖𝑟 = 0.82) used to calculate the 382 

ambient temperature (Eq. 3 in Sun et al. 2021a). 383 

First, the sensitivity of the geo-referenced wind vector and turbulent flux to the uncertainties in the individual calibration 384 

parameter was investigated. The geo-referenced wind vector and turbulent flux were calculated based on the straight leg (about 385 

4 km) of the standard operational flight by adding an error of ±30 % to the calibrated value of each calibration parameter 386 

alternately; except for 𝜖𝜙, for which the typical range of ±0.9° was taken for sensitivity analysis (Vellinga et al., 2013). 387 

Then, in order to test the overall interaction between the parameters, a second sensitivity test was performed to calculate the 388 

geo-referenced wind vector and turbulent fluxes by adding  ±30 % error to all calibration parameters simultaneously. Lastly, 389 

their relative errors (RE) with respect to the original value were calculated to evaluate the perturbation of the wind vector and 390 

turbulent flux under the variation of each calibration parameter as well as under simultaneous variation of all calibration 391 

parameters. In the sensitivity analysis, the calculated geo-referenced wind and turbulent flux whose absolute value was less 392 

than their least resolvable magnitude were filtered out to avoid the influence of the errors contained in the measurements 393 

themselves on the results.  394 
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2.4.5 Relative error 395 

In this study, relative error (RE) was used to evaluate the influence of different factors on the measurements of geo-referenced 396 

wind vector and turbulent flux. It is defined as: 397 

𝑅𝐸 =
|𝑥0|−|𝑥|

|𝑥|
× 100 %                                                                                                                                                                              (7) 398 

where ‘| |’ means the absolute value, 𝑥 is the ‘true’ value, 𝑥0 is the influenced value. RE > 0 means the exerted influence will 399 

cause the measurement value to be larger than ‘true’ value and vice versa. 400 

3 Results 401 

3.1 Wind measurement evaluation 402 

Wind measurement evaluation for the UAV-based EC system includes three contents: (1) measurement precision and its ability 403 

to resolve the mesoscale variations of the wind, (2) checking the quality of the acquired calibration parameters, and (3) 404 

checking whether the measured wind vector is affected by upwash flow and leverage effects.  405 

First, according to the equations described in Supplement Part A (Eqs. S18 to S23), the measurement precision of horizontal 406 

wind components is a function of true airspeed and true heading, while, the measurement precision of vertical wind component 407 

is largely decided by the true airspeed. The typical values of true airspeed ranging from 25 m s-1 to 35 m s-1 (interval of 1 m s-408 

1) and the true heading values ranging from 0° to 180° (interval of 30°) were used in the evaluation of wind measurement 409 

error. Then, the measurement precision (1𝜎) of the geo-reference 3D wind vector from aircraft was estimated using the 410 

measurement precision of the related parameters from Table 1. The results are shown in Figure 4 for the measurement precision 411 

of horizontal wind (𝜎𝑢 and 𝜎𝑣 in Figs. 4a and 4b) and vertical wind (𝜎𝑤 in Fig 4c), respectively. The typical values of the 412 

measurement precision are ranging from 0.05 m s-1 to 0.07 m s-1 for horizontal wind component 𝑢, ranging from 0.02 m s-1 to 413 

0.08 m s-1 for horizontal wind component 𝑣, and ranging from 0.05 m s-1 to 0.07 m s-1 for vertical wind component 𝑤.  414 

 415 

Figure 4. Estimated measurement precision (𝟏𝝈) of the horizontal wind (a, b) and vertical wind (c) according to the equations 416 
described in Supplement Part A (Eqs. S18 to S23).  417 

Generally speaking, an autopiloted UAV can maintain a near-constant true airspeed during the cruise flight phase. At a true 418 

airspeed of 30 m s-1 for the current UAV during the cruising, the maximum measurement error in the northward, eastward, and 419 
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vertical velocities of the geo-referenced wind components were calculated as approximately 0.06, 0.07, and 0.06 m s-1, 420 

respectively. Then, we assume that a minimum signal-to-noise ratio of 10:1 is required to measure the wind components with 421 

sufficient precision for EC measurement (Metzger et al., 2012). Accordingly, in the real environments, horizontal and vertical 422 

wind speed greater than 0.7 m s-1 and 0.6 m s-1 can be reliably measured, respectively (Table 2).  423 

Table 2: The maximum measurement error in the northward (u), eastward (v), and vertical (w) velocities of the geo-referenced 424 

wind components at the true airspeed of 30 m s-1, and the least resolvable magnitude assuming the minimum required signal-425 

to-noise ratio of 10:1. 426 

Measurements Measurement precision (1σ) Least resolvable magnitude 

u-windspeed (m s-1) 0.06 0.6 

v-windspeed (m s-1) 0.07 0.7 

w-windspeed (m s-1) 0.06 0.6 

The above results gave the nominal precision for wind measurement that does not consider the influence of environmental 427 

conditions. Changes in the environment will lead to sensor drift, increasingly deteriorating the measurement with flight 428 

duration (Metzger et al., 2012; Lenschow and Sun, 2007). Following the methods of Lenschow and Sun (2007), the ability of 429 

wind measurements from UAV to resolve the mesoscale variations of the 3D wind components in the encountered atmospheric 430 

conditions was assessed. For the vertical wind, the mesoscale variability was defined as the peak signal magnitude of the power 431 

spectra curve. The corresponding average wavenumber was determined as 0.09 m-1 based on the straight flight leg (about 4 432 

km, lasting about 120 s) of the standard operational flight. Then, according to Eq. (1), the minimum required signal level for 433 

the vertical wind measurement was estimated as 𝜕𝑤/𝜕𝑡 ≃ 0.14 m s−2. The accuracy of the vertical wind measurement using 434 

Eq. (2) is estimated as follows. The first term on the right-hand side of Eq. (2) is dominated by the drift in the differential 435 

pressure transducer, the value of 𝜕𝑈𝑎 = 0.05 m s−1 acquired from the wind tunnel test was used (Table 1). The histogram of 436 

Θ derived from the standard operational flights is shown in Figure 5. The 99 % confidence interval indicates that the value of 437 

Θ seldom exceeds ±3°, i.e., ±0.053 radians. Thus, the value of the first term was estimated as 2.2 × 10−5 m s−2. 438 
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 439 

Figure 5. Histogram of 𝚯 derived from the standard operational flights. Component density is scaled so that the histogram has a 440 
total area of one. Red vertical lines indicate distribution average (solid) and 99% confidence interval (dashed). The black dashed 441 
bell curve displays a reference fitted normal distribution. 442 

The second term in Eq. (2) is a combination of INS pitch accuracy and 5HP attack angle accuracy. The combined accuracy 443 

of these two sensors were applied to derive 𝜕Θ = 0.0024  radians. Thus, the second term in Eq. (2) was estimated as 444 

6 × 10−4 m s−2. Finally, the third term in Eq. (2) was estimated as 1.7 × 10−4 m s−2, according to the stated accuracy of the 445 

vertical velocity from the INS. The overall performance of the vertical wind measurement (7.9 × 10−4 m s−2) was accurate 446 

enough to resolve the mesoscale variations in vertical air velocity. 447 

The required accuracy of horizontal wind for mesoscale measurement was estimated as 10 times larger than that of vertical 448 

wind, i.e., 𝜕𝑢/𝜕𝑡 ≃ 𝜕𝑣/𝜕𝑡 ≃ 1.4 m s−2. The measurement accuracy of the horizontal wind component 𝑢 was estimated as 449 

4.8 × 10−4 m s−2 according to Eq. (3). Like the first term in Eq. (2), with the value of Ψ rarely exceeding ±0.18 radians, the 450 

measurement accuracy of the horizontal wind component 𝑣 was estimated as 2.7 × 10−2 m s−2according to Eq. (4). Thus, the 451 

measurement accuracy of the horizontal wind components was accurate enough to resolve the mesoscale variations in the 452 

horizontal air velocity as well.  453 

Second, before checking the quality of the acquired calibration parameters, the calibration results of the offset in pitch (𝜖𝜃) 454 

and heading (𝜖𝜓) angles based on the ‘box’ maneuver are provided in Supplement Part C (Figs. S2 and S3). The final calibration 455 

values are 𝜖𝜃 = −0.183° and 𝜖𝜓 = 2°. In order to verify the quality of these calibration parameters, a ‘racetrack’ maneuver 456 

was performed. Figure 6 shows the validation results by plotting wind vector and calculating summary statistics for the 457 

‘racetrack’ maneuver (including turns), using the initial (𝜖𝜃 = 𝜖𝜓 = 0°, Fig. 6a) and calibrated (Fig. 6b) set of parameters, 458 

respectively. Introduction of the calibration parameter effectively improved the quality of geo-referenced wind vector 459 

measurement. The standard deviation for wind direction, 𝜎𝑈𝑑𝑖𝑟
, is 4.9º for the calibrated set compared to 8.7º for the initial 460 

set, and the standard deviation of wind speed, 𝜎𝑈, is 0.52 m s-1 for the calibrated set compared to 1.12 m s-1 for the initial set. 461 
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The averaged vertical wind speed is much closer to zero (�̅� = −0.006 m s−1) for the calibrated set than for the initial set (�̅� =462 

0.1 m s−1). For the horizontal wind, it is evident from Fig. 6 that the measurement of wind direction and velocity are little 463 

affected by sharp turns. On the contrary, the measurement of the vertical wind component is obviously affected by turns in 464 

flight, as shown by the large fluctuations in the vertical wind speed around the scan value of 150 (bottom panels in Fig. 6). It 465 

should be noted that the influence of upwash flow and the leverage effect are not considered in the calculated geo-referenced 466 

wind vector.  467 

 468 

Figure 6. Quality check of the calibration parameter by plotting wind vector and calculating summary statistics for the ‘racetrack’ 469 
maneuver, using the initial (a) and calibrated (b) set of parameters, respectively. The calibration flight was carried out on 4 470 
September 2022 at the Caofeidian Shoal Harbor in the Bohai Sea of northern China.  471 

Third, in order to check the influence of the lift-induced upwash on the measured attack angle from the 5HP, an ‘acceleration-472 

deceleration’ flight maneuver was performed. During the ‘acceleration-deceleration’ maneuver, INS data shown a vertical 473 

velocity of the UAV at 0.05±0.2 m s-1, the altitude of UAV at 392±0.6 m, the heading of UAV at 199±2.4º. We assumed that 474 

the flight conditions meet the requirements of the ‘acceleration-deceleration’ maneuver (Vellinga et al., 2013). The relationship 475 

between the pitch angle (𝜃) measured by the INS and the attack angle (𝛼) measured by the 5HP is plotted in Figure 7, where 476 

the attack angle was not corrected for lift-induced upwash. The slope (0.94) between 𝜃 and 𝛼 is close to its theoretical value 477 

of 1, and the intercept (0.16) is close to zero. It indicates that the lift-induced upwash has only a very small effect on the attack 478 

angle, and the influence of upwash could be ignored. 479 
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 480 

Figure 7. Relationship between the pitch angle (𝜽) measured by the integrated navigation system (INS) and the attack angle (𝜶) 481 
measured by the 5-hole probe (5HP). The fitted linear equation is also shown.  482 

Finally, the geo-referenced wind vector was calculated with and without the correction for the leverage effect based on the 483 

measurement data from the ‘acceleration-deceleration’ flight maneuver. The averaged relative differences between the 484 

corrected and uncorrected horizontal and vertical wind speeds are 0.1 % and 0.2 %, respectively. The standard deviation for 485 

horizontal wind speed is 0.307 m s-1 without the level arm term compared to 0.306 m s-1 when the level arm term is introduced. 486 

The standard deviation of vertical wind speed is 0.254 m s-1 without the level arm term compared to 0.253 m s-1 with the level 487 

arm term. The correction of leverage effect had minimal effect on improving the geo-referenced wind vector measurement; 488 

therefore, this correction term can be ignored.  489 

3.2 Flux measurement error caused by instrumental noise 490 

Flux measurement error caused by the instrumental noise gives the lowest limit of the value that the UAV-based EC system is 491 

able to measure. It was assessed by combining the covariance uncertainty estimated by RS method and the propagation of 492 

errors in flux correction terms. Before estimating the flux covariance uncertainty using RS method, using the measured data 493 

from each straight and level flight leg of the standard operational flight (Fig. 2), the normalized integrated cospectra (ogives) 494 

curves of sensible heat (Fig. 8a), latent heat (Fig. 8b), and CO2 (Fig. 8c) flux are formed as a function of wavenumber (𝑘), 495 

where 𝑘 = 2𝜋𝑓 𝑈𝑎⁄ . As shown in Figure 8, although the heterogeneous turbulence (or mesoscale turbulence) interfered the 496 

shape of ogive curves, most curves converged at the high and low frequency ends, which indicated that these segmented data 497 

were sufficiently long to represent the lowest significant frequencies contributing to the covariance (Sun et al., 2018).  498 
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 499 

Figure 8. Normalized ogive curves as a function of wavenumber for the flux covariance of sensible heat (a), latent heat (b), and CO2 500 
(c) from each straight and level flight leg of the standard operational flights in Section 2.2.2.  501 

The results of instrumental noise related relative flux measurement error compared to the magnitude of the flux are shown 502 

in Figure 9. It can be seen that the flux measurement error caused by instrumental noise significantly decreases when the flux 503 

magnitude increases. It is not surprising since, in theory, instrumental noise is usually close to a constant and the relative flux 504 

measurement error caused by instrumental noise will decreases with increasing measurement magnitude. Overall, instrumental 505 

noise has the least effect on latent heat flux (ranging from 0.02% to 2.42% in this study) measurements, followed by sensible 506 

heat flux (ranging from 0.05% to 8.6% in this study), and has the greatest effect on the measurement of CO2 flux (ranging 507 

from 0.22% to 75.6% in this study). Then, a simple rational function relationship between the relative measurement error and 508 

the flux magnitude is fitted according to the measured data, where the constant term in the denominator is set to 0. The fitted 509 

coefficient in the numerator can be considered as the flux measurement error caused by instrumental noises, which are 0.03 510 

µmol m-2 s-1, 0.02 W m-2, and 0.08 W m-2 for the measurement of CO2 flux, sensible and latent heat flux, respectively. At last, 511 

using the signal-to-noise ratio of 10:1, the minimum magnitudes for reliably resolving the CO2 flux, sensible and latent heat 512 

fluxes were estimated as 0.3 µmol m-2 s-1, 0.2 W m-2, and 0.8 W m-2, respectively.  513 

 514 

Figure 9. Relative flux measurement error caused by the instrumental noise plotted against the magnitude of the flux. Also shown 515 
the fitted error curves. Measured data was from the standard operation flights in Section 2.2.2.  516 

3.3 Resonance noise 517 

The resonance noise from the engine and propeller can lead to systematic overestimation of the variance and covariance of the 518 

observed atmospheric scalars. The noise mainly appears in the high frequency domain of the (co)spectra, and the reference 519 

(co)spectral curve of Massman and Clement (2005) was used to quantify the systematically bias caused by the resonance noise. 520 
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All spectra curves of the variance of the measured scalars (including air temperature, H2O, and CO2 concentration) 521 

approximately followed the reference spectra curve and the reference -2/3 slope in the inertial subrange (Figs. 3a to 3c). The 522 

largest scatter occurred in the spectra of CO2 (Fig. 3c). When comparing the spectra curve with the reference spectra, the 523 

resonance noise led to a systematic deviation in the variance of air temperature, H2O, and CO2 concentration of 0.1±0.1 %, 524 

1.0±0.79 %, and 4.4±0.66 %, respectively. For the flux covariance of sensible, latent heat and CO2, all the co-spectra curves 525 

approximately follow the reference co-spectra curve and the reference -4/3 slope in the inertial subrange (Figs. 3d to 3f). 526 

Compared with the reference co-spectra, the resonance noise led to a systematic deviation in the flux of sensible, latent heat, 527 

and CO2 of 0.07±0.004 %,0.3±0.25 %, and 2.9±1.62 %, respectively. 528 

The results show that the resonance noise has a very little impact on the measured variance and flux covariance. The 529 

measurements of CO2 concentration and flux are most susceptible to the resonance noise, but the impact of this noise is limited 530 

to around 5 % of the observed value.  531 

3.4 Sensitivity analysis 532 

In order to investigate the relevance of the calibration parameters for the measurement of the geo-referenced wind vector and 533 

turbulent flux, two sensitivity tests were conducted by adding an error of ±30 %  to the used calibrated parameters 534 

(𝜖𝜓, 𝜖𝜃, 𝜖𝜙, 𝜖𝑟). We assumed that the maximum uncertainties contained in the calibration parameter is not more than 30 % of 535 

its own value.  536 

First, the sensitivity of the geo-referenced 3D wind and turbulent flux to the uncertainty in the individual calibration 537 

parameter was tested. The RE value is used to quantify the sensitivity, and the results are summarized in Tables 3 and 4. For 538 

the measurement of the geo-referenced wind vector, Table 3 shows that the uncertainties in the temperature recovery factor 539 

(𝜀𝑟 ) and 5HP mounting misalignment error in the roll (𝜖𝜙 ) angle do not contribute significantly to errors in the wind 540 

measurements, which were typically smaller than 4% of the observed value in this study. Parameter 𝜀𝜃 had the largest effect 541 

on the vertical wind component (up to 30 %), whereas 𝜀𝜓 had the largest effect on the horizontal wind component. For the 542 

measurement of turbulent fluxes, Table 4 shows that the errors in 𝜀𝑟  and 𝜖𝜙  does not significantly influence the flux 543 

measurements, typically small than 5% of the observed value in this study. Uncertainties in calibration parameter 𝜀𝜃 and 𝜀𝜓 544 

had significant effects on the measurement of turbulent fluxes. Errors in 𝜀𝜃 result in significant perturbation (large RE variance) 545 

in the measured turbulent fluxes including sensible heat, latent heat and CO2. While, errors in 𝜀𝜓 to some extent mainly affect 546 

the measurement of latent heat flux (RE may up to 15 %).   547 

Table 3: RE from the sensitivity test for the geo-referenced 3D wind vector (𝑢, 𝑣, 𝑤). An error factor of ±30 % was added to 548 

each calibrated parameter. The geo-referenced 3D wind vector was calculated based on the straight leg of the standard 549 

operational flight. 550 

Parameter Error (%) 
RE of geo-referenced 3D wind vector 

mean ± std 
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𝑢 (%) 𝑣 (%) 𝑤 (%) 

𝜺𝒓 
-30 0.04±0.41 -0.004±2 0±0 

30 0.06±0.43 0.27±1.1 -0.07±0.23 

𝜺𝝋* 
-30 0.41±2.51 -0.09±2.05 1.15±2.43 

30 -0.43±2.61 0.09±1.79 -1.1±2.66 

𝜺𝜽 
-30 0.03±0.41 -0.35±2.54 -30.51±6.42 

30 0.05±0.45 0.42±1.82 30.37±6.61 

𝜺𝝍 
-30 2.98±25.06 -2.04±16.3 0±0 

30 -2.97±24.96 2.42±16.63 0±0 

* The optimum calibration value is set to 0, 𝜀𝜑 was varied over ±0.9°, which is 30 % of its typical range. 551 

Table 4: RE from the sensitivity test for the turbulent fluxes. An error factor of ±30 % was added to each calibrated parameter. 552 

The turbulent fluxes were calculated based on the straight leg of the standard operational flight. 553 

Parameter Error (%) 

RE of turbulent flux 

mean ± std 

Fc (%) H (%) LE (%) u* (%) 

𝜺𝒓 
-30 1.04±3.04 -0.76±4.82 0.1±0.29 0±0 

30 -1.0±3.3 0.74±4.8 -0.1±0.29 0.2±1.07 

𝜺𝝋* 
-30 0.07±1.2 0.03±0.7 0.15±1.51 0.54±1.71 

30 -0.14±0.89 -0.06±0.7 -0.16±1.46 0.12±1.61 

𝜺𝜽 
-30 -3.27±11.18 -0.8±9.48 0.19±11.91 -4.08±5.61 

30 2.34±10.52 -0.44±8.24 -1.27±9.92 3.73±4.53 

𝜺𝝍 
-30 1.78±5.18 -0.73±4.87 1.89±13.42 0.63±5.75 

30 -0.99±3.96 -0.57±3.26 2.66±11.76 -0.59±4.42 

* See Table 3. 554 

The second sensitivity test was performed to evaluate the overall interaction between calibration parameters and the 555 

calculation of geo-referenced wind vector and turbulent flux by adding an error of ±30 % to all the calibration members 556 

simultaneously. Tables 5 and 6 provided a summary of the RE from the second sensitivity test. For the measurement of geo-557 

referenced wind vector (Table 5), adding an error of ±30 % to all the calibration parameters at the same time resulted in great 558 

perturbations to both the horizontal (low RE with high variance) and vertical wind components (high RE with low variance). 559 

For the measurement of turbulent fluxes, adding 30% error in all of the calibration parameters can result in errors in the 560 

measured fluxes more than 10%. In addition, Table 6 also reveals that the latent heat flux is more sensitivity to the errors in 561 

the calibration parameter than other measured fluxes (higher mean and variance of the RE compared to other measurements).  562 

Table 5: RE from the sensitivity test for the geo-referenced 3D wind vector (𝑢, 𝑣, 𝑤) calculated by adding an error of ±30 % 563 

to all the calibrated parameter simultaneously. The geo-referenced 3D wind vector was calculated based on the straight leg of 564 

the standard operational flight. 565 

Parameter Error (%) 

RE of geo-referenced 3D wind vector 

mean ± std 

𝑢 (%) 𝑣 (%) 𝑤 (%) 
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All  
-30 4.24±27.89 -3.2±21.1 -29.35±4.63 

30 -4.15±27.46 3.55±21.91 29.16±4.86 

Table 6: RE from the sensitivity test for the turbulent flux calculated by adding an error of ±30 % to all the calibrated 566 

parameter simultaneously. The turbulent flux was calculated based on the straight flight leg of the standard operational flight. 567 

Parameter Error (%) 

RE of turbulent flux 

mean ± std 

Fc (%) H (%) LE (%) u* (%) 

All 
-30 -1.19±10.51 -0.9±8.06 2.71±13.91 -2.92±8.19 

30 -0.49±10.01 -1.66±5.4 -6.07±13.24 1.74±6.55 

4 Discussions 568 

The current study aimed to evaluate the performance of the UAV-based EC system developed by Sun et al. (2021a) in the 569 

measurement of wind vector and turbulent flux.  570 

First, the wind measurement precision (nominal precision) of the UAV-based EC system was estimated by propagating the 571 

sensor errors to the geo-referenced wind vector using the linearized Taylor series expansions from Enriquez and Friehe (1995) . 572 

The 1𝜎 precision for geo-referenced wind measurement was estimated to be ±0.07 m s-1, and the least resolvable magnitude 573 

for wind measurement was estimated at 0.7 m s-1 by assuming the minimum signal-to-noise ratio of 10:1. The derived wind 574 

measurement minimum resolvable magnitude can be used as a basic reference for wind measurement capability of the UAV-575 

based EC system, and the measured values of wind vector smaller than the minimum resolvable values should be considered 576 

unreliable. The accuracy of the sensors was also assessed by examining the collected data in the real environment. Our results 577 

revealed that the overall performance of geo-referenced wind measurement is sufficient accuracy for resolving the mesoscale 578 

variations of the 3D wind components under the encountered atmospheric conditions. Therefore, it is possible to capture the 579 

mesoscale variability of the atmospheric boundary layer (ABL) over a wide range of spatial scales by performing long flight 580 

paths. 581 

Second, based on the measurement data from the in-flight calibration campaign, several key factors affecting the accuracy 582 

of geo-referenced wind measurement were analysed. The UAV-based EC system was calibrated (in Supplement Part C) using 583 

measured data from the ‘box’ flight maneuver to correct the mounting misalignment between the 5HP and the CG of the UAV 584 

in the heading (𝜖𝜃 = −0.183°) and pitch (𝜖𝜓 = 2°) angles. The quality of the acquired calibration parameters was verified 585 

using the measured data from ‘racetrack’ flight maneuver, and the acquired calibration value effectively improved the observed 586 

wind field with smaller variance compared with the wind calculated using their initial value. At the same time, the measurement 587 

of the vertical wind component was significantly affected by the in-flight turn (maintaining about 20º roll). Therefore, it is 588 

necessary to avoid using the measured data from the turn section for turbulent flux calculation. Compared to other studies 589 

(Vellinga et al., 2013; Reineman et al., 2013), the relatively large variance in the horizontal wind and wind direction after 590 
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calibrated in this study may be caused by the nonstationary condition of the turbulence. This was caused by the reason that the 591 

flight altitude of 400 m was not high enough to totally avoid interaction from the underlying surface. 592 

The current calibration procedure did not include methods to determine the offset angle in roll (𝜀𝜑) and the temperature 593 

recovery factor (𝜀𝑟) because of the small vertical separation (27.3 cm) between the 5HP and the roll axis of the UAV and the 594 

small Mach number (<0.1) during operational flight. The default (𝜀𝜑 = 0°) and empirical (𝜀𝑟 = 0.82) value were adopted for 595 

these two calibration parameters. The sensitivity analysis shown these two parameters have no large effect on the wind vector 596 

and turbulent flux. 597 

It should be noted that wind measurement from the airborne platform may be susceptible to flow distortion and rigid-body 598 

rotation (leverage effects). Generally, the influence of these two factors were ignored by UAV platform. To confirm that these 599 

effects could be safely ignored, data from ‘acceleration-deceleration’ flight maneuver was used to analyse the effects of lift-600 

induced upwash and the leverage effect on the wind measurements. Our results demonstrated that the upwash has almost no 601 

effect on the wind measurement, which was indicated by the near 1:1 relationship (0.94 in Fig. 7) between the measured attack 602 

angles and pitch angle. The slight departures from the ideal 1:1 relationship may have been caused by the nonstationary 603 

condition during the flight. For the influence of the leverage effects, the differences in 3D wind vector between corrected and 604 

uncorrected for the leverage effect is very small as well. Ignoring the influence of the leverage effect has almost no effect on 605 

the measurement of wind. Therefore, we concluded that the geo-referenced 3D wind vector can be measured reliably by the 606 

current UAV-based EC system without considering the interference from the lift-induced upwash and leverage effects. 607 

Third, instrumental noise related flux measurement error was estimated by combining the covariance uncertainty estimated 608 

by RS method and the propagation of errors in flux correction terms. By assuming that the instrumental noise was close to a 609 

constant, we fitted a simple rational function relationship between the relative measurement error and the flux magnitude 610 

according to measured data (Fig. 9), and the fitted coefficient in the numerator can be considered as the flux measurement 611 

error caused by instrumental noises. The estimated instrumental noise related flux measurement error of CO2, sensible and 612 

latent heat flux were 0.03 µmol m-2 s-1, 0.02 W m-2, and 0.08 W m-2, respectively. Since the RS method directly uses the 613 

shuffled raw measurement data to calculate the instrumental noise in the flux covariance, its estimates inevitably included the 614 

effects of resonance noise from the UAV. Using the signal-to-noise ratio of 10:1, the least resolvable magnitude for turbulent 615 

flux measurement was estimated to be 0.3 µmol m-2 s-1 for the CO2 flux, 0.2 W m-2 for the sensible heat flux, 0.8 W m-2 for 616 

the latent heat flux, respectively.  617 

Fourth, because that the UAV-based EC system has not completely insulated the noise from the operation of the engine and 618 

propeller and its effect on the measured scalars, the reference (co)spectra of Massman and Clement (2005) was used to quantify 619 

the effect of the resonance noise on the variance and flux covariance of the measured scalars. Due to the influence of resonance 620 

noise mainly appeared in the high frequency domain, we artificially designated the frequency range of noise region for air 621 

temperature, water vapor and CO2 (Section 2.4.3). By calculating the area difference between the measured and reference 622 

(co)spectral curves for the designated frequency range, the resonance effect could be quantified. The results shown that, overall, 623 

resonance noise has little impact on the variance and flux covariance of the measured scalars. The measurements of CO2 624 
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concentration and its flux covariance were the most susceptible to resonance noise, but the maximum effect was less than 5 %. 625 

It should be noted that this method may overestimate the deviation caused by the resonance noise due to the reference 626 

(co)spectra curve and the measured (co)spectra not fully overlapping in the inertial subrange (shown in Fig. 3).  627 

Fifth, two sensitivity tests were conducted to assess the perturbation of the geo-referenced wind velocity and turbulent flux 628 

under variation (±30 %) of each calibration parameter around its calibrated value (𝜖𝜓 = 2°, 𝜖𝜃 = −0.183°, 𝜖𝜙 = 0°, 𝜖𝑟 =629 

0.82) as well as under simultaneous variation (±30 %) of all calibration parameters. Their RE was used to evaluate the 630 

sensitivity, and values of wind and flux less than their least resolvable magnitude were removed from this analysis. The results 631 

revealed that uncertainties in the temperature recovery factor (𝜀𝑟) and mounting offset in roll angle (𝜀𝜑) do not significantly 632 

contribute to an error in the measurement of wind vector (RE < 4%) and turbulent fluxes (RE < 5%). Calibration parameters 633 

that had the largest effect on the measurement of geo-referenced wind vector and turbulent flux are the mounting offset angle 634 

in pitch (𝜀𝜃) and heading (𝜀𝜓). Uncertainties in 𝜀𝜃 had a direct effect on the measurement of vertical wind component, and 635 

then these errors propagate to the measured fluxes, resulting in a large error contained in the measured fluxes (~15 %). A 636 

negative error in 𝜀𝜃  will lead to an underestimation of the vertical wind and vice versa. Errors in 𝜀𝜓  directly affect the 637 

measurement of the horizontal wind, and to some extent, the measurement of turbulent flux. By checking the relationship 638 

between the magnitude of the horizontal wind (𝑢, 𝑣) and RE, a near rational function relationship was seen, as shown in Figure 639 

10. The influence of the error in the 𝜀𝜓 decreased significantly with the increase in the magnitude of the horizontal wind 640 

velocity. Additionally, the measurement of latent heat flux may be greatly affected by the error in 𝜀𝜓, which is reflected by the 641 

relatively large deviancy (~14 %) of the RE. Therefore, the parameter 𝜀𝜃 and 𝜀𝜓 need to be carefully calibrated. 642 

 643 

Figure 10. Relationship between the magnitude of the horizontal wind velocity (𝒖, 𝒗) and the relative error (RE) from the sensitivity 644 
test.  645 
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Lastly, it should be noted that the accuracy of the measured geo-referenced wind field and turbulent flux from the UAV-646 

based EC system is subject to the combination of many factors, mainly including sensor accuracy, UAV powerplant, UAV 647 

fluctuation (e.g., variation of the UAV attitude and flight height), and the atmospheric conditions during the measurements, 648 

etc. This study mainly focused on assessing the effects of sensor precision and UAV powerplant on the measurement errors of 649 

geo-referenced wind vector and turbulent flux. Evaluation results gave the lowest limit of the wind field and turbulent flux that 650 

the UAV-based EC system can measure reliably. Direct comparison of flux measurements between aircraft and traditional 651 

ground tower is still challenging due to the difference in the measurement height, mechanism (time series for ground EC and 652 

space series for aircraft), and instruments (e.g., wind sensor). Previous studies have extensively compared the measurement of 653 

fluxes and wind vector between airborne and ground-based EC methods and found consistent results (Gioli et al., 2004; 654 

Metzger et al., 2012; Sun et al., 2021b). At the same time, substantial and consistent over- or under- estimation of the measured 655 

wind and fluxes by aircraft compared to ground measurements were observed and reported. These differences may be due to 656 

several factors such as vertical flux divergence (the measurement height of UAV is higher than ground-tower), surface 657 

heterogeneity (induced by the larger footprint region of the UAV compared to the ground tower), measurement errors (e.g., 658 

window length, resonance noise, etc.) as well as their difference in platform and sensors. Therefore, in order to evaluate the 659 

measurement performance of the UAV-based EC system realistically, it is necessary to conduct a comparison test on the same 660 

platform and under the same environment to exclude the influence of these factors.  661 

5 Conclusions and further works 662 

The main objective of this study was to quantitatively evaluate the performance of the developed UAV-based EC system in 663 

the measurement of geo-referenced wind field and turbulent flux. In terms of measuring precision, magnitudes larger than 0.7 664 

m s-1 for wind velocity, 0.3 µmol m-2 s-1 for CO2 flux, 0.2 W m-2 for sensible heat flux, and 0.8 W m-2 for latent heat flux could 665 

be reliably measured by the UAV-based EC system. Carefully calibrated offset angle in pitch (𝜖𝜃) and heading (𝜖𝜓) were 666 

shown to effectively improve the quality of wind field measurements, and the influences of flow distortion and the leverage 667 

effect on the wind measurement were minimal and could be ignored. The influence of resonance noise was small on the 668 

measurement of air temperature and water vapor (typically < 1 % for their variance and flux covariance), but relatively large 669 

on the measurement of CO2 (around 5 % for variance and flux covariance). 670 

The relevance of the calibration parameters (𝜀𝑟 , 𝜖𝜙, 𝜀𝜓, 𝜀𝜃) for the measurement of the geo-referenced wind vector and 671 

turbulent flux was also assessed based on two sensitivity tests. The measurements of the geo-referenced wind vector and 672 

turbulent flux were insensitive to the errors in the 𝜀𝑟 and 𝜖𝜙. While uncertainties in the calibration parameters 𝜀𝜃 and 𝜀𝜓 had 673 

the strongest effects on the measurements. Because of 𝜀𝜃 determining the magnitude of the vertical wind, its error will directly 674 

lead to uncertainties in vertical wind measurement and then propagate the uncertainties to the measured turbulent flux. Errors 675 

in 𝜀𝜓 have a direct effect on the measurement of horizontal wind, and to some extent, the measurement of turbulent flux. 676 

Therefore, these two calibration parameters need to be carefully calibrated. Conducting the UAV-based EC measurement when 677 
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wind velocity is larger than 3 m s-1 can led to more stable and reliable (RE < 10%) results of the wind speed measurement 678 

compared to a relatively windless environmental.  679 

Finally, we concluded that the developed UAV-based EC system measured the geo-referenced wind field and turbulent flux 680 

with sufficient precision. The lift-induced upwash and leverage effect had almost no effect on the measurement of geo-681 

referenced wind vector. The resonance effect caused by the operation of engine and propeller mainly affected the measurement 682 

of CO2, and its effect on variance and flux covariance was around 5 %. The quality of calibration parameters 𝜀𝜓 and 𝜀𝜃 has a 683 

significant effect on the measurements of the geo-referenced wind vector and turbulent flux, which underscores the importance 684 

of careful calibration. The UAV-based EC system has several advantages over manned aircraft, including less turbulence 685 

disturbance in wind measurement, lower measurement altitude (above the ground level), simpler operation, and lower 686 

operating costs, etc. However, there are still some shortcomings need to be overcome, such as resonance noise, how large the 687 

difference compared to the tower-based EC under the same conditions, and how to interpret the instantaneous flux results for 688 

the flight scenario (e.g., influence from surface heterogeneity, flux divergence, etc.). Future researches may include the 689 

development of a new UAV-based EC system with the following improvements: 1) a new electro-powered UAV platform 690 

with the advantages of being quieter (low noise), having a low cruising speed; 2) a ground-vehicle-based validation platform 691 

to enable direct comparative evaluation of the UAV-based EC system with traditional ground EC methods under near-identical 692 

environmental conditions; 3) a graphics based real-time monitoring system to make it possible to change the flight pattern 693 

according to real-time data; and 4) conducting a number of integrated field observation experiments that combining tower-694 

based EC networks, OMS, and multi-source satellite RS to further prompt the development of theory and methodology for 695 

airborne flux measurements. Ultimately, the versatility of the UAV-based EC system as a low cost and widely applicable 696 

environmental research aircraft will further improve our understanding of the energy and matter cycling processes at the 697 

regional scales.  698 
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