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Abstract  25 
 

We describe an approach for determining limited information about the vertical distribution of 
carbon monoxide (CO) and carbon dioxide (CO2) from total column, ground-based TCCON 
observations. For CO and CO2, it has been difficult to retrieve information about their vertical 
distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric 30 
temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the 
challenge is especially difficult given that these variations are typically 2% or less. Nevertheless, if 
sufficient accuracy can be obtained, such information would be highly valuable for evaluation of 
retrievals from satellites and more generally for improving the estimate of surface sources and sinks of 
these trace gases.  35 

We present here the Temporal Atmospheric Retrieval Determining Information from Secondary 
Scaling (TARDISS) retrieval algorithm. TARDISS uses several, simultaneously-obtained total column 
observations of the same gas from different absorption bands with distinctly different vertical averaging 
kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach 
where the weights and temporal covariance applied to the different retrievals include additional 40 
constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-
surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for 
example) and the upper part of the column has a larger temporal covariance over the course of a day.  

Using measurements from the five North American TCCON sites, we find that the retrieved 
lower partial column (between the surface and ~800 hPa) of the CO and CO2 dry mole fractions (DMF) 45 
have slopes of 0.999 ±0.002 and 1.001±0.003 with respect to lower column DMF from integrated in situ 
data measured directly from aircraft and in AirCores. The average error for our lower column CO 
retrieval is 1.51 ppb (~2%) while the average error for our CO2 retrieval is 5.09 ppm (~1.25%). 
Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the 
influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and 50 
in the instrument line shape. In addition, because TARDISS uses the existing retrieved column 
abundances from TCCON (which themselves are computationally much less intensive than profile 
retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this 
approach will find broad application for use in carbon cycle science.  

1 Introduction  55 

Remote sensing retrievals of atmospheric gas abundances are used to diagnose the sources, 
sinks, and fluxes at the local, regional, and global scales (Connor et al., 2008, p.2; Deeter, 2004; 
Kerzenmacher et al., 2012; Wunch et al., 2011). Compared with in situ measurements, these retrievals, 
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which are used in carbon cycle science investigations, are less influenced by nearby point sources or 
sinks and rapidly changing meteorological conditions that would lead to erroneous flux calculations 60 
(Keppel-Aleks et al., 2012). Because the column represents the integral of a gas from the surface to the 
top of the atmosphere, flux estimates from column amounts are less sensitive to errors in the assumed 
vertical transport than those using surface measurements (Keppel-Aleks et al., 2011, 2012). In contrast, 
since signals of CO2 and CO fluxes at the surface are muted in the total column (due to the dilution of 
signals from the surface being integrated throughout an entire column), they are less useful in 65 
diagnosing local emissions than in situ measurements. For CO2, the total columns are strongly 
influenced by synoptic scale transport in the troposphere making it even more difficult to discern the 
influences of surface fluxes (Keppel-Aleks et al., 2011, 2012). For CO, its several-week lifetime in the 
free troposphere results in regional transport influences that can dampen the surface signals in the total 
column values (Deeter, 2004; Zhou et al., 2019). These issues limit the effectiveness of total column 70 
measurements in surface flux analysis – particularly for local sources.  

Profile retrievals can, in principle, ameliorate these issues and thereby enable more direct 
information on surface processes. Theoretical analysis shows that two to three vertical degrees of 
freedom (DoF) can be achieved in CO2 retrievals from near-IR (NIR) and mid-IR (MIR) spectra from 
high-resolution Fourier transform spectrometers (Connor et al., 2016; Kuai et al., 2012; Roche et al., 75 
2021; Shan et al., 2021). In practice, however, Connor et al. (2016) and Roche et al. (2021) showed that 
the precision of retrieved CO2 profiles using spectral windows in the NIR was much lower than the 
theoretical estimate due to uncertainty in the temperature profile and in the forward radiative transfer 
model. Likewise, Shan et al. (2021) retrieve CO2 profiles using spectral windows in the MIR. They use 
an a posteriori optimization method to improve the tropospheric CO2 signal and they report errors near 80 
2%. Although both of these methods retrieve profiles with sufficient degrees of freedom to observe 
some signals of the variation in the vertical distribution, they report errors sufficiently large enough to 
limit their use for carbon cycle studies.  

Several operational CO profile retrievals exist, but these products still face the issues of column 
dilution or larger sensitivity to the free troposphere compared to the surface. The Network for the 85 
Detection of Atmospheric Composition Change (NDACC) retrieves profiles of CO in the atmosphere 
(Buchholz et al., 2017) with ~2 degrees of freedom for the signal providing information of a lower 
(surface-8km) layer sensitive to the boundary layer and an upper (8-20 km) layer with ~1-3% 
uncertainty in the total column (Zhou et al., 2018, 2019). These ground-based measurements require 
higher spectral resolution than those typically available in the TCCON interferometers. The higher 90 
resolution also requires longer measurement time, resulting in fewer observations per day. This limits 
their ability to capture diurnal changes and makes the measurements more susceptible to variations in 
solar viewing during acquisition of the interferograms. These measurements also require highly accurate 
knowledge of the spectral line widths, their temperature dependence, the instrument line shape (ILS), 



4 
 

and the solar spectrum. These limitations motivate our work to develop a new product with better 95 
sensitivity to surface processes and higher temporal resolution from the existing TCCON retrievals. 

In our approach, we do not retrieve profile information directly from the spectra. Instead, we 
utilize the vertical and temporal domains to infer partial column dry mole fraction (DMF) values. We fit 
partial column scalar values to match TCCON retrieved total column DMF that are 1) quality controlled 
and 2) individually tied to World Meteorological Organization (WMO) trace gas standard scales which 100 
mitigates a number of errors in the forward radiative transfer model, including those arising from errors 
in the spectroscopy. We use the extant multiple total column measurements from spectral windows with 
different line intensities and hence different shapes of the column averaging kernel. We extract the 
vertical information from the diurnally-varying differences in these total column values and additional a 
priori information about the expected temporal covariance in the different partial columns based on 105 
known atmospheric behavior. This method allows us to extract information focused on the lower 
atmosphere where the trace gas DMF are most sensitive to surface exchange.  

The uncertainty of this new method for retrieving partial column values is evaluated using 
comparisons with in situ vertical profile measurements. Section 2 describes the theory and parameters 
chosen for our retrieval, and the data used for the retrieval, validation, and comparison. Sections 3.1 110 
through 3.3 present our validation data and a sensitivity study of the retrieval parameters. Section 3.4 
presents an error and information content analysis. Finally, Sect. 3.5 gives examples of the data 
retrieved using this approach.   

2 Methods 

2.1 Total Carbon Column Observing Network 115 

The Total Carbon Column Observing Network (TCCON) is a ground-based network of solar 
viewing Fourier transform spectrometers equipped with InGaAs and Si detectors that gather spectra for 
the 3900 to 15500 cm-1 spectral region (Wunch et al., 2011). Importantly for our work here on CO, 
some sites are now equipped with an InSb detector that simultaneously allows spectral measurement 
down to 2000 cm-1 at the expense of simultaneous observations using the Si detector. CO2 and CO are 120 
retrieved simultaneously over several spectral windows (independent spectral bands). These windows 
are chosen to provide high sensitivity to the gas of interest while limiting interference from other 
atmospheric absorbers.  

Column abundances of atmospheric species are computed from the measured spectra using a 
nonlinear least-squares fitting algorithm, GFIT, which minimizes the residuals between a measured 125 
spectrum and one calculated by uniformly scaling a priori vertical profiles for the fitted atmospheric 
species, yielding the optimal VMR (volume mixing ratio) scaling factors (VSF) of the fitted gases. The 
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a priori profiles scaled by the VSF are integrated to calculate the total column abundance of a species. 
The retrieved scaled column abundances are converted to column dry mole fraction (DMF) by 
multiplying by 0.2095 and dividing by the column of O2, retrieved from a different spectral window of 130 
the same spectrum. These retrievals are then quality-controlled and scaled to minimize both airmass 
dependence and the difference with simultaneously measured in situ profiles.  

For each window and for each spectrum fit by GFIT, an associated column averaging kernel is 
computed that describes the sensitivity of the total column to changes in species abundance at each 
altitude (shown in Fig.1). A perfect column averaging kernel would have values of one for all altitudes. 135 
More commonly, the kernels will vary slowly with altitude with a pressure weighted average value 
close to one. Values higher (lower) than 1 mean that the retrieval is more (less) sensitive to trace gas 
changes at that altitude. These sensitivities vary with solar zenith angle (SZA) as the spectral absorption 
deepens at higher SZA. The vertical sensitivity of each window is a result of its spectral properties. 
Optically thin spectral regions (windows) tend to be more sensitive to the upper troposphere and the 140 
stratosphere while optically thick windows tend to be more sensitive to the lower troposphere. Since 
information about the stratosphere comes only from near the line center as a result of diminished 
collisional broadening, if the absorption at the line center is saturated (nearly zero transmission), the 
spectrum will contain little information about the stratosphere and hence the kernel will be low there. 
The differences in column averaging kernel shapes are the main source of information used in the 145 
TARDISS algorithm. The outputs of the VSF values, a priori profiles, total column DMF values, and 
vertical averaging kernels from standard TCCON processing are used as input for the TARDISS 
algorithm. 

We will refer to the spectral retrievals as being the TCCON retrievals and the temporal partial 
column retrievals as the TARDISS fit. We also use the terms retrieval and fit interchangeably to refer to 150 
the TCCON or TARDISS methodology. 
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Figure 1. Vertical sensitivities of the total column retrievals from GFIT used in our algorithm for both 
CO2 (left column) and CO (right column) plotted against pressure normalized to the surface and color 155 
coded by the solar zenith angle (SZA). A column averaging kernel greater than 1 means that the total 
column is more sensitive to molecules at this pressure level than the average sensitivity. For example, if 
we move some of the CO2 molecules from 200 hPa to the surface in our a priori profile, the retrieved 
total column and scale factor (VSF) will decrease for the 6073 cm-1 window and increase for the 4852 
cm-1 window while the true and a priori total columns remain unchanged. The 6220 and 6339 cm-1 CO2 160 
and 2160 and 2111 cm-1 CO windows have near-identical kernels due to the CO2 bands being almost 
identical in their line strengths, separations, widths, and temperature dependences. The 6339 cm-1 CO2 
is represented by black dashed lines behind the dotted lines representing the 6220 cm-1 sensitivities and 
the 2111 cm-1 CO is represented by black dashed lines behind the dotted lines representing the 2160 cm-

1 sensitivities.  165 

2.2 The TARDISS Algorithm 

Traditional profile retrievals fit spectra by adjusting the abundance of the trace gases at multiple 
vertical levels to determine the vertical distribution of a specific atmospheric species (Pougatchev et al., 
1995; Roche et al., 2021). Here, we describe the Temporal Atmospheric Retrieval Determining 
Information from Secondary Scaling (TARDISS) algorithm that optimizes the scaling of the profile of 170 
our target gas separated into two layers, one near the surface and the other at and above the typical well-
mixed surface boundary layer. This is illustrated by the flowchart in Fig. 2. The algorithm minimizes 
the cost function (Equation 1) by finding the maximum a posteriori solution for a state vector containing 
upper and lower column scale factors for all TCCON observations in a given day. That is, if a day has 
𝑛! observations, the state vector will have 𝑛! lower column scale factors and 𝑛! upper column scale 175 
factors, for 2𝑛! elements total. These are constrained by TCCON column average mole fractions and an 
assumed temporal covariance. The Jacobian matrix for TARDISS combines the TCCON averaging 
kernels and the TCCON assumed vertical CO or CO2 profiles in an operator which maps the upper and 
lower scale factors back to column average mole fractions. We define our cost function as:  

𝜒" = $𝒚 − 𝑲(𝒙*# − 𝒙$,#),
&𝑺'()$𝒚 − 𝑲(𝒙*# − 𝒙$,#), + $𝒙*# − 𝒙$,#,𝑺*()$𝒙*# − 𝒙$,#, , (1) 180 

where y is the measurement vector, K is the Jacobian matrix, 𝒙*# is the retrieved state vector, 𝒙$,# is the 
a priori state vector, 𝑺𝝐 is the model covariance matrix, and 𝑺* is the prior covariance matrix. In the 
following sections, we will derive the necessary equations for the construction of the components of the 
cost function in detail. Table S1 lists all the variable names in this work and their descriptions. 

 185 
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Figure 2.  Flowchart illustrating the steps performed by of the TARDISS retrieval. The input to the 
TARDISS retrieval is the output of the spectral fitting done by the GGG2020 software suite represented 
by the green row. The setup of the components of the TARDISS algorithm from the output of the TCCON 
spectral fits is shown in Equations 11 through 14 and in the middle row. The TARDISS retrieval is 190 
performed using Equation 16, the output partial column DMF values are calculated using Equation 17, 
and the information content is calculated by Equation 18 and 19 as shown in the bottom row.  

2.2.1 Derivation of the TARDISS Jacobian Matrix Components 

We use the notation and concepts of Rodgers and Connor (2003) with vectors represented with 
bolded lower-case letters and matrices represented with bolded upper-case letters. We start in the vertical 195 
domain where Equations 3 through 9 are used for each spectral window, each TCCON measurement, and 
each species retrieved (CO and CO2 in this work) in the TCCON fit. These equations are used to calculate 
the weights in the Jacobian matrix and values in the measurement vector for the temporal calculations in 
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Equation 10 and beyond (represented by the middle and bottom row of Fig. 2). We will therefore keep 
Equations 3 through 9 agnostic of species and window for this description.  200 

To derive the values used in the Jacobian matrix, K, we start by relating the atmospheric profile 
of CO or CO2 to the column average mole fractions observed by TCCON. For TARDISS, we assume 
that the a posteriori atmospheric profile can be described as the profile output by the TCCON retrieval 
with the bottom q levels scaled separately from the top nl – q levels, where q is a chosen level index and 
nl is the number of vertical levels in the profile: 205 

𝐱,$-. =

⎣
⎢
⎢
⎢
⎢
⎡
𝛾/ ∙ 𝑥*,&0012,)

⋮
𝛾/ ∙ 𝑥*,&0012,3
𝛾4 ∙ 𝑥*,&0012,35)

⋮
𝛾4 ∙ 𝑥*,&0012,6! ⎦

⎥
⎥
⎥
⎥
⎤

       .  (2) 

Here, xa,TCCON is the TCCON a priori profile scaled by the median TCCON retrieved VSF across 
all the TCCON spectral windows for this gas, and the gL and gU values are the lower and upper column 
scale factors, respectively, which our algorithm retrieves. We relate this to the TCCON total column value 
using the standard equation from Rodgers and Connor (2003): 210 

𝑧&0012 = 𝑧*,&0012 +	𝒂&0012
𝝃𝑻 	(𝒙9*:; − 𝒙*,&0012)    ,  (3) 

 
where 𝑧&0012 is the total column DMF output of a chosen species in a particular window from the 
TCCON fit, za,TCCON is the original vertical column DMF calculated from the a priori profile scaled by 
the median VSF of the windows used, and 𝒂&0012

𝝃  is the vector of column averaging kernel values 215 
output from the TCCON processing weighted by the pressure thickness of each atmospheric layer. All 
components in Equation 3 are dry mole fractions except for the averaging kernel which is unitless. 
Equation 3 tells us how the retrieved DMF would change if the profile constructed from the two partial 
columns differed from xa,TCCON. 

The next step is to rearrange this equation so that our observed quantity is on the left-hand side, 220 
and the right-hand side is a linear combination of the two scaling factors. Subtracting Za,TCCON from both 
sides and focusing on the rightmost term of Equation 3, the averaging kernel is multiplied by the 
difference of the a priori and scaled DMF profiles summed for each of the nl levels of the atmosphere.  

𝑧&0012 − z$,<==>? 	= 𝐚<==>?
𝛏< 	$𝐱,$-. − 𝐱$,<==>?, = ∑ a<==>?,A(

B"
AC) x,$-.,A − x$,<==>?,A). (4) 

 225 
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Here, we assign 𝒙9*:; to be the TCCON a priori profile scaled by two independent values, one for the 
lower partial column and one for the upper partial column. To designate the partial columns, our 
method splits the total column at a specified altitude level index, q, and scales the a priori profile below 
and above the level q independently by the scalar values 𝛾/ and 𝛾4 such that:  
 230 
𝑧!""#$ − 𝑧%,!""#$ = ∑ 𝑎!""#$,'(

(
')* 𝛾+𝑥%,!""#$,' − 𝑥%,!""#$,') + ∑ 𝑎!""#$,'(

,!
')(-* 𝛾.𝑥%,!""#$,' − 𝑥%,!""#$,')  . (5) 

 
Since Equation 5 is linear, we then group terms reducing the right side of Equation 5 to: 
 
	𝑧#$$%& − 𝑧',#$$%& 	= (𝛾) − 1)∑ 𝑎#$$%&,*

+
*,- 𝑥',#$$%&,* + (𝛾. − 1)∑ 𝑎#$$%&,*

/!
*,+0- 𝑥',#$$%&,* . (6) 235 

 
Defining two new variables, 𝑘/ and	𝑘4, we can write this as: 
 
𝑧&0012 − 𝑧*,&0012 	= (𝛾/ − 1)	𝑘/ + (𝛾4 − 1)	𝑘4   ,   (7) 
 240 
where, 
 
𝑘/ = ∑ 𝑎&0012,D

3
DC) 𝑥*,&0012,D         (8) 

 
and  245 
 
𝑘4 = ∑ 𝑎&0012,D6

DC35) 𝑥*,&0012,D .       (9) 
 
and 𝑘/	and 𝑘4 are both scalar values.  
 250 
Equation 7 is applicable to all spectral windows for each spectrum measured. For example, for our CO2 
retrieval, we use four separate spectral windows per measured spectrum and often have a few hundred 
spectra measured per day. In the case of the CO2 retrieval, the left-hand side of Equation 7 and the 𝑘/ 
and 𝑘4 values will be calculated for each of the four spectral windows used for each spectrum fit by 
TCCON. These values are aggregated into the vectors and matrices described by Equations 10 - 14 in 255 
order to fit the spectra measured over an entire day at one time.  

2.2.2 Deriving the Maximum A Posteriori Equation and Solution 

While Equation 7 can be set up and solved for each spectrum using the total column value from each 
spectral window used in the TCCON fit, the TARDISS retrieval uses an entire day’s worth of TCCON 
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retrievals in order to increase the signal-to-noise and to utilize the information from the temporal 260 
variation in the kernels. Fitting over an entire day of TCCON retrievals reduces the retrieved partial 
column error values compared to fitting individual measurements using Equation 7. Section S1 shows 
the influence of including multiple observations on the retrieved partial column errors. Let nw denote the 
number of windows and ns the number of spectra over a day and wi and si denote the ith window and 
spectrum. We combine the above equations into a matrix form: 265 
 
𝒚 = 𝑲(𝒙E − 𝒙$,#) + 𝝐   .      (10) 
 
where, y is the measurement vector composed of values from the left side of Equation 7  
 270 

𝒚 =

⎣
⎢
⎢
⎢
⎡
𝑧&0012,),) − 𝑧*,&0012,)

⋮
𝑧&0012,F1,!1 − 𝑧*,&0012,!1

⋮
𝑧&0012,62,63 − 𝑧*,&0012,63⎦

⎥
⎥
⎥
⎤

 ,       (11) 

 
 K is the Jacobian matrix of the 𝑘/ and 𝑘4 values over a day,  
 

𝑲 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑘/,),) 0 𝑘4,),) 0

⋱ ⋱
0 𝑘/,),63 0 𝑘4,),63
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑘/,62,) 0 𝑘4,62,) 0
⋱ ⋱

0 𝑘/,62,63 0 𝑘4,62,63⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  ,   (12) 275 

 
𝒙E is our state vector of partial column scalars which are the same for all windows in each measured 
spectrum,  
 

𝒙𝛄 =	

⎣
⎢
⎢
⎢
⎢
⎡
(𝛾/ − 1))

⋮
(𝛾/ − 1)63
(𝛾4 − 1))

⋮
(𝛾4 − 1)63⎦

⎥
⎥
⎥
⎥
⎤

  ,        (13) 280 
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and 𝒙$,# is our vector of a priori partial column scalars, 
 

𝒙$,# =	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(𝛾*,/ − 1))

⋮
(𝛾*,/ − 1)63
(𝛾*,4 − 1))

⋮
(𝛾*,4 − 1)63⎦

⎥
⎥
⎥
⎥
⎥
⎤

  .        (14) 

 285 
With ns measurements made in a day, nw spectral windows, and two partial columns, the y vector is of 
the size 1 by nwns, the K matrix is of the size nwns by 2ns and the 𝒙E and 𝒙$,# vectors are of the size 2ns 
by 1. So, for each spectrum, there is one 𝛾/value and one 𝛾4 value, representing the partial column scale 
factors aggregated over the windows. 
 290 
Since Equation 10 is linear, we can apply a basic linear least-squares method to solve for the partial 
column scalars: 
 
𝒙/" = (𝑲&𝑲)()𝑲&𝒚   .       (15) 
 295 
While the linear least-squares method provides a useable solution to our retrieval, it also has partial 
column error values on the order of 10 ppm, due to the strong anti-correlation of the lower and upper 
partial columns, which render the solutions unsuitable for carbon cycle science. Including constraints 
through a Bayesian approach reduces the retrieved partial column error values as shown in Fig. S1. In 
addition, the least-squares method does not allow us to utilize additional a priori information in the 300 
covariance of the partial columns. 
 

We use the maximum a posteriori (MAP) approach (Rodgers, 2008) to calculate the most 
probable state vector from the given models and a priori information. In line with the assumptions of the 
MAP approach, we assume our problem is linear and follows a gaussian distribution.  The MAP 305 
solution can take a few equivalent forms. In this work we use: 
 
 
𝒙*E = 𝒙*,E + 𝑺*𝑲&(𝑲𝑺*𝑲& + 𝑺')()(𝒚 − 𝑲𝒙*,E) ,     (16) 
 310 
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where 𝒙*,E is the a priori partial column scalar values, 𝑺* is the a priori covariance matrix, K is the 
forward mapping matrix, 𝑺𝝐 is the model covariance matrix, y is the measurement vector, and 𝒙*E is the 
output solution vector. The input components (xa,y, Sa, and 𝑺𝝐) are described in Sect. 2.3.2.  
 Once we have calculated the most likely solution for the partial column scalars as a vector in 
temporal space, 𝒙*E, we reconstruct the partial column DMF values for the day for the lower and upper 315 
partial columns as: 
 

𝒛H0 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑧H0,/,)
⋮

𝑧H0,/,63
𝑧H0,4,)
⋮

𝑧H0,4,63⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(𝑥IE/,) + 1) ∙ 𝑧*,/,&0012,)

⋮
(𝑥IE/,63 + 1) ∙ 𝑧*,/,&0012,63
(𝑥IE4,) + 1) ∙ 𝑧*,4,&0012,)

⋮
(𝑥IE4,63 + 1) ∙ 𝑧*,4,&0012,63⎦

⎥
⎥
⎥
⎥
⎥
⎤

      (17) 

 
where 𝑧*,/,&0012 and 𝑧*,4,&0012 are the values of the a priori partial column DMFs calculated by 320 
integrating the median TCCON a posteriori profiles for the measurements in a day using the same 
method as the standard TCCON full column retrievals (Wunch et al., 2011).  

2.2.3 Calculating Informational Content 

The MAP retrieval allows us to calculate the information content of the retrieval. In particular, we 
compare the degrees of freedom for our retrieval calculated by taking the trace of the averaging kernel of 325 
the fit, calculated as the following: 

𝐷𝑜𝐹 = 𝑡𝑟(𝑨) = 𝑡𝑟((𝑲&𝑺'()𝑲+ 𝑺*())()𝑲&𝑺'()𝑲)   ,   (18) 
 
as well as the Shannon information content derived from the natural log of the determinant of the 
difference between the averaging kernel and an identity matrix:  330 
 
𝐻 = − )

"
ln	(|𝑰 − 𝑨|)     .     (19) 

Generally, profile retrieval averaging kernels represent the sensitivity of a specific level of a 
profile to the rest of the levels in the profile. The averaging kernel for the TARDISS inversion is a 
temporal averaging kernel relating how each partial column calculation relates to every other 335 
measurement during a day. The DoF value for a day of the retrieval represents how many individual 
pieces of partial column information we can infer over the day of measurements. We either report the 
number of degrees of freedom from the fit over a day or normalize the degrees of freedom by the number 
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of measurements in each day for a more comparative understanding of the TARDISS degrees of freedom 
with respect to a traditional profile retrieval as well as between days with a large variation in the number 340 
of measurements. 

2.2.4 In Situ Comparison Calculations 

To evaluate the accuracy of our partial column retrieval, we use the smoothing calculation 
shown in Equation 3 of Wunch et al. (2010), altered to use the terminology of this work, to determine 
the value of the partial columns of the TCCON total columns used as input: 345 

 
𝑧̂! = 𝑧*,&0012 + 𝒂&0012

I& $𝒙;:JK − 𝒙*,&0012,   ,    (20) 
 
where 𝑧̂! is the smoothed column averaged DMF, 𝑧*,&0012 is the column averaged DMF of the scaled a 
priori profile, 𝒂&0012

I  is the vertical averaging kernel for the specific spectral window dotted with an 350 
integration operator,	𝒙;:JK is the measured, in situ profile in DMF, and 𝒙*,&0012 is the scaled a priori 
profile. We use this equation to create the smoothed partial column TCCON DMF values by integrating 
to the same split point, q, as in Equation 5. These values serve as a sort of null hypothesis to compare to 
the TARDISS retrieval to determine if the fits are effective in inferring partial column information. 

In order to compare the partial column retrievals to in situ profiles for validation purposes, we 355 
calculate the vertical sensitivities of the TARDISS fit (shown in Fig. 8) using the gain matrix, G, from 
the TARDISS inversion and the averaging kernel profiles from the TCCON measurement windows as: 

𝑮 = (𝑲&𝑺'()𝑲+ 𝑺*())()𝑲&𝑺'()	 .       (21) 
 
𝑨LK:; = 𝑮	𝚵&0012   ,       (22) 360 

where 

𝚵&0012 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒂&0012,),)

⋮
𝒂&0012,),63
𝒂&0012,62,)

⋮
𝒂&0012,62,63⎦

⎥
⎥
⎥
⎥
⎤

  ,       (23) 

  
and 𝒂&0012 is the same vector of column averaging kernels from Equation 3 without the integration 
operator for each window used and 𝑨LK:; is the vertical sensitivity of the partial column related to the 365 
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profile. G has dimensions of 2ns by nwns, 𝚵&0012 has dimensions of nwns by 51, and 𝑨LK:; has 
dimensions of 2ns by 51. The gain matrix relates each measurement in a day to the upper and lower 
partial column calculation which is useful to calculate the temporal DoF but is not directly comparable 
to in situ vertical profiles. The 𝑨LK:; term converts the temporal sensitivities of the gain matrix to 
vertical sensitivities using the TCCON vertical averaging kernel allowing us to compare with the in situ 370 
validation profiles. We apply the average vertical sensitivities for the measurements used in comparison 
with in situ profile measurements. 
 
Since 𝒂&0012	represents the change in TCCON total column DMF (also called Xgas) per change in true 

DMF at each level (𝜹𝑿𝒈𝒂𝒔,𝑻𝑪𝑪𝑶𝑵
𝜹𝒙𝒕𝒓𝒖𝒆

) and the gain matrix represents the change in partial column scalar per 375 

change in TCCON total column DMF ( 𝜹𝜸
𝜹𝑿𝒈𝒂𝒔,𝑻𝑪𝑪𝑶𝑵

), 𝑨𝒗𝒆𝒓𝒕 has units of change in partial column scalar 

per change in level DMF value ( 𝜹𝜸
𝜹𝒙𝒕𝒓𝒖𝒆

) and relies on the difference between a ‘true’ in situ profile and 

the a priori profile used in the inversion.  
For our TARDISS comparisons, we use an adjusted version of Equation 20 to determine the 

value the inversion would return if it were using the true profile instead of the scaled TCCON priors:  380 
 

𝑧̂! = 𝑧*,&0012 + 𝑨LK:;$𝒙;:JK − 𝒙*,&0012, ,      (24) 
 

where 𝒙*,&0012 is the a priori profile used in Equation 3 and 𝒙;:JK is the measured in situ profile in 
DMF. The in situ profile is interpolated to the same vertical levels as the TCCON a priori profile as 385 
shown in Fig. 4. After calculating the smoothed in situ profile, we integrate the profile from the surface 
to the vertical level at which the partial columns are separated, q in Equation 5, for the lower column. 
For the upper partial column, we integrate from the level q+1 to the top of the atmosphere for the upper 
column using the method outlined in Wunch et al. (2010). We then compare the integrated, smoothed, 
in situ partial column DMFs directly with the reconstructed lower and upper partial columns calculated 390 
by Equation 17.  

2.2.5 Error Calculations  

Finally, the error for the retrieval is made up of model parameter error, smoothing error, and 
retrieval noise (Rodgers, 2008).  There are no model parameters in the state vector of the TARDISS 
retrieval, so the model parameter error is zero. The smoothing error is the diagonal of the following 395 
matrix:  
 
𝑺! = (𝑲&𝑺'()𝑲+ 𝑺*())()𝑺*()(𝑲&𝑺'()𝑲+ 𝑺*())()   ,   (25) 



16 
 

 
and the retrieval noise is the diagonal of the matrix calculated by: 400 
 
𝑺: = (𝑲&𝑺'()𝑲+ 𝑺*())()𝑲&𝑺'()𝑲(𝑲&𝑺'()𝑲+ 𝑺*())()  ,   (26) 
 
 and the sum of the two are the total error for the fit.  

In order to report an error for our retrieval that reflects the performance of the retrieval in the 405 
validation comparisons in Section 3.1, the retrieval output errors are multiplied by a scalar calculated 
from the 1-to-1 comparisons. Using the multiplier ensures that we are reporting a conservative estimate 
of the error in the retrieval. We use the 1-to-1 comparisons to scale our error values to the point where 
at least 50% of the comparison points are within the one standard deviation error range of the 1-to-1 
line. We calculate the scalar values as: 410 

 

𝑉𝐸𝑀 = 	𝑀𝑒𝑑𝑖𝑎𝑛(U𝒛W?@AB(	𝒛W3U
𝝈

)         (27) 
 
where 𝒛IZ[\9 is the comparison partial column values, 𝒛I!	is the integrated, smoothed, in situ partial 
column values, 𝝈 is the output retrieval errors, and VEM is the calculated validation error multiplier that 415 
is unitless. The VEM is calculated and applied to all retrieved errors for each site so that the retrieved 
dataset for a site reflects the best representative error values. If a calculated VEM is less than one, we 
use a VEM of one instead to avoid spuriously reducing error values. A complete discussion of the 
retrieval error is in Section 3.4.2.  
 420 

2.3 Algorithm Setup and Choices 

2.3.1 Pre-processing of the TCCON Data 

We begin by preprocessing the TCCON fits. We take the TCCON a priori profile and scale it by 
the median value of the TCCON output scalar values for each spectrum from the windows used so that 
our TARDISS fit is centered around the median TCCON a posteriori profile for each measurement 425 
point. The a posteriori errors from each window are not included in this calculation but are included in 
the formation of the measurement covariance matrix. This assumes that the true column-averaged VMR 
of a species is some linear combination of the VMRs calculated from the windows used in the 
TARDISS fit. Then, we calculate the a priori partial columns by integrating the scaled a priori profiles 
over the respective pressure levels for the upper and lower partial column. Finally, we assemble the 430 
necessary matrices for the fit described by Equation 16. 
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2.3.2 Maximum a Posteriori Components 

The different components of Equation 16 reflect where a priori information can be used in the 
algorithm and several additional choices can be made to improve the fit. The following describes our 
standard input for these components. We present tests of the retrieval’s sensitivity to these choices in 435 
Sect. 3.2. 

For the a priori covariance matrix, Sa, we use an identity matrix for the lower partial column 
scalar portion of the covariance matrix, and we use an exponential decay over the day of measurements 
from the diagonal for the upper partial column scalar portion of the covariance matrix. This requires that 
upper column scalar values shift in relation to one another and prevents the upper partial column scalars 440 
changing too rapidly in time. The off-diagonal values of the upper partial column portion of the a priori 
covariance matrix decay with respect to the measurements made before and after them over the course 
of one-third of a day of measurement. We assume no correlation between the upper and lower partial 
columns, although this is a place for future study. Since the a priori covariance matrix is inverted in the 
calculations, decreasing the magnitude of the a priori covariance matrix scalar increases the constraints 445 
imposed during the calculations so that a scalar of 10-5 is a more strict constraint than a scalar of 10-4. A 
discussion of the influence of the temporal covariance is in Sect. 3.4.1.  
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 450 
Figure 3.  Example of an a priori covariance matrix color coded by the magnitude of the value. The 
axes represent the relationship of the contribution of each measurement to each partial column and each 
other measurement. The upper right and lower left quadrants are dark blue and represents zero assumed 
correlation between the upper and lower partial columns over a day of measurements. The diagonal is 
scaled to constrain the fit and the lower right quadrant shows the assumed correlation between upper 455 
partial column scalar values over a day of measurement. The lower partial column has an a priori 
covariance that is a scaled identity matrix, the upper partial column has an a priori covariance that 
decays over one third of the measurement day, and the cross covariances between the upper and lower 
partial columns are assumed to be zero.  

 460 
The measurement error covariance matrix, 𝑺', is a diagonal matrix composed of the squares of 

the TCCON errors for each spectral window so that measurements with smaller errors are weighted 
more heavily than those with larger errors.  

CO2 and CO use different values for the a priori TARDISS scale factors (xa,g). For CO, we 
assume a uniform a priori scale factors of one for all observations. For CO2 we use the solution to the 465 
least-squares method, xL2 from Equation 15 as xa,g in Equation 16. We adopted different approaches for 
these two gases since using a static a priori partial column scalar of one for the CO2 retrievals worsened 
the comparison to in situ data but improved the validation comparison for the CO retrievals (shown in 
Sect. 3.2).     

2.3.3 Choosing Spectral Windows for the TARDISS Fit 470 

The primary information content used in our algorithm is derived from the fact that the total 
column abundances retrieved from different spectral windows of the same species will differ due to 
differences in their kernels unless the shape of the a priori profile is perfect. Accordingly, for this 
method to have sufficient information, windows with different vertical averaging kernels are needed, 
such as those shown in Fig. 1. Preferably, the TARDISS retrieval would use a window that is more 475 
sensitive to the lower atmosphere and a window that is more sensitive to the upper atmosphere so that a 
larger amount of information is contained between them. While it is imperative to use windows that 
have differing averaging kernel profiles, it is also necessary to use windows that have sufficiently low 
error in the TCCON fit.  

For the partial column CO2 calculations, we use four spectral windows in the TCCON process 480 
centered at 6339, 6220, 4852, and 6073 cm-1 which were suggested for profile retrieval exploration by 
Connor et al. (2016). The 6339 cm-1 and 6220 cm-1 windows are spectroscopically similar and have 
column averaging kernel profiles that vary with solar zenith angle providing some vertical information 
over the course of a day (see Fig. 1). The 4852 cm-1 window has an averaging kernel profile that is 
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largest at the surface and smallest at the upper troposphere and lower stratosphere and the 6073 cm-1 485 
window has an averaging kernel profile that is effectively the opposite of the 4852 cm-1 window. Both 
the 4852 cm-1 and 6073 cm-1 window averaging kernels are largely independent of solar zenith angle 
with the exception of the highest levels in the 6073 cm-1 window profile.  

For the partial column CO calculations, we use three spectral windows fit during the TCCON 
process. There is one window in the NIR region centered at 4233 cm-1 and two windows in the MIR 490 
region centered at 2111 and 2160 cm-1. The two MIR windows have similar averaging kernel profiles 
that maximize at the surface and drop to nearly zero at upper levels. The NIR window averaging kernel 
profile has a minimum at the surface and a maximum at the upper levels.  

Unlike the CO2 windows that are all observed by the InGaAs detector, the MIR CO windows are 
measured by a liquid nitrogen cooled InSb detector. For this reason, we only have results of the CO 495 
partial column fits at the Caltech, Lamont, and East Trout Lake TCCON sites and, due to the lack of in 
situ profiling data in Pasadena, we only have direct vertical profile comparison results from the Lamont 
and East Trout Lake TCCON site.  

Other windows output by TCCON retrievals were considered for the partial column calculations 
for both species. However, they had high levels of error in the TCCON fit or had fits that were 500 
particularly sensitive to changes in temperature.  

2.3.4 Choice of Partial Column Height 

We chose the lower partial column to integrate from the surface through the first five vertical 
layers of the GEOS meteorological fields. Using this criterion, a site at sea level has a lower partial 
column from sea level to 2 km and the upper partial column from 2 to 70 km. While somewhat 505 
arbitrary, the choice of 2 km was made to have the lower partial column encompass the surface mixed 
layer at most locations while minimizing the dilution of surface exchange signals that would result from 
integrating over a larger partial column. If there are known significant enhancements species 
enhancement near the 2 km level (such as CO during wildfire events), the retrieval performance may be 
degraded, and a different partial column height may be a more appropriate choice.   510 

2.4 Sites Used in this Work 

In this study, we use data from the five TCCON sites located across North America. The data 
record extends from as early as 2011 to as recent as 2021 (Table 1). These sites are located at Park 
Falls, Wisconsin; NASA Armstrong, Edwards Air Force Base, California; Lamont, Oklahoma (the 
Department of Energy Southern Great Plains Atmospheric Radiation Measurement site), the California 515 
Institute of Technology (Caltech), in Pasadena, California, and East Trout Lake, Saskatchewan.  
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Park Falls, WI hosts the first operational TCCON site (July 2004-present). The site is in a rural, 
heavily forested area and generally far from anthropogenic influence. The FTS does not have an InSb 
detector, so we are able to only retrieve partial column values for CO2. We focus on data obtained since 
2012, when the alignment of the instrument has been more consistent. The increased variance of the 520 
TARDISS retrieval for data before 2012 likely reflects the inconsistent alignment of the FTS. 

We use similar data from the TCCON site located at NASA’s Armstrong Flight Research Center 
(formerly the Dryden Flight Research Center) in California which has been operational since July 2013. 
We report CO2 partial column values for the 2013 to 2021 time period. The Armstrong site is on the 
northwest edge of Rogers Dry Lake within the Edwards Air Force Base in the Mojave Desert. 525 

The Lamont, OK TCCON site is surrounded by farmland. It has been operational since July 
2008, and an InSb detector was installed in October 2016. We focus on data from Lamont obtained after 
2011 after an issue with the instrument laser was resolved. We report CO2 partial column values from 
2011 to 2021 and CO partial column values from 2017 to 2021. 

The TCCON site on the Caltech campus in Pasadena, CA has been operational since July 2012 530 
with an InSb detector measuring since October 2016. We report CO2 partial column values from 2012 
to 2021 and CO partial column values from 2017 to 2021. 

The East Trout Lake, SK, TCCON site is located in a remote, heavily forested area in the middle 
of the Saskatchewan Province. The instrument uses an InSb detector allowing us to retrieve partial 
column CO values. It has been operational since October 2016, and we report partial column values for 535 
CO and CO2 from 2017 to 2021.  

 
 

Site Location Dates of 
Measurements Used 

Data DOI 

Park Falls, WI 45.945N, 
90.273W 

CO2: 2012 - 2021 10.14291/tccon.ggg2020.parkfalls01.R0 
 

NASA 
Armstrong, 
Edwards Air 

Force Base, CA 

34.958N, 
117.882W CO2: 2013 - 2021 10.14291/tccon.ggg2020.edwards01.R0 

Lamont, OK 36.604N, 
97.486W 

CO2: 2011 - 2021 
CO: 2017- 2021 

10.14291/tccon.ggg2020.lamont01.R0 
 

Caltech, 
Pasadena, CA 

34.1362N, 
118.126W 

CO2: 2012 - 2021 
CO: 2017 - 2021 

10.14291/tccon.ggg2020.pasadena01.R0 
 

East Trout Lake, 
SK 

54.354 N, 
104.987W 

CO2: 2017 – 2021 
CO: 2017 – 2021 

10.14291/tccon.ggg2020.easttroutlake01.R0 
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Table 1. Location, dates of measurement, and DOIs of the TCCON sites used in this work. CO 540 
measurements require an InSb detector to cover the 2160 and 2111 cm-1 windows, which has only been 
available since 2017 at Caltech, Lamont, and East Trout Lake. 

2.5 Comparison Data 

We use in situ data from multiple aircraft programs and AirCore flights between 2008 and 2020 
(Cooperative Global Atmospheric Data Integration Project; (2019), Baier et al., 2021) to evaluate our 545 
partial column retrieval.  

The aircraft CO2 measurements are from the NASA Studies of Emissions and Atmospheric 
Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign (Toon et al., 
2016) using an AVOCET instrument, from the 2016 Atmospheric Tomography Mission (ATom) 
(Wofsy et al., 2021; Thompson et al., 2022) using a Picarro cavity ringdown spectroscopy (CRDS) trace 550 
gas analyzer (Crosson, 2008), from the Korea-United States Air Quality Study (KORUS-AQ) campaign 
using a non-dispersive IR spectrometer, and from measurements made by the Goddard Space Flight 
Center using a Picarro CRDS trace gas analyzer.  

We use AirCore profiles from July and August of 2018 at the Armstrong, Lamont, and Park 
Falls sites (Baier et al., 2021). The AirCore sampling system is composed of coiled stainless-steel 555 
tubing that is open on one end while ascending on balloon to ~ 30 km, and passively samples ambient 
air as it descends to the ground on a parachute. This sample is then analyzed for CO2, CH4 and CO 
using a Picarro CRDS trace gas analyzer, and a fill dynamics model accounts for the effect of 
longitudinal mixing due to diffusion on vertical resolution (Karion et al., 2010; Tans, 2009; Tans, 
2022).  560 

Finally, we use CO and CO2 data measured at the Lamont site (site code SGP) and at the East 
Trout Lake site (site code ETL) as a part of the NOAA Global Greenhouse Gas Reference Network 
(GGGRN) aircraft network in North America (Sweeney et al., 2015). Since these datasets do not 
include much data within the upper partial column, we compare with these measurements only to our 
retrieved lower partial column values and exclude them from the validation discussion in Section 3.2. 565 
Table S2 provides a summary of the in situ data used in this work.  
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Figure 4. An example of the profiles used in the direct comparison calculations using data from the 
Park Falls site on July 27, 2018. The profile above 10 km is not shown. The solid black line is the 570 
TCCON a priori profile scaled by the median of the vertical scaling factors from the spectral windows 
used. The green dot-dashed line is the measured AirCore mole fraction. The red, dashed line is the 
AirCore measurements interpolated to the vertical spacing of the TCCON prior, and the blue, dotted 
line with circles is the smoothed, vertical sensitivity weighted profile that is integrated to calculate the 
partial column that the TARDISS retrieval would calculate if it had a ‘true,’ AirCore profile. The black 575 
dots within the blue circles represent the points of the profile that make up the lower partial column.  
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3 Results and Discussion  

The TARDISS algorithm is very quick – taking only a minute of processing time per year of 
data for each species – because it does not repeat the spectral fitting. This speed enables the validation 
comparisons to be performed using many different model choices. Thus, we evaluated the sensitivity of 580 
the TARDISS inversion by varying different forward model choices. The set of choices that we have 
designated as the operational setup for CO2 inversion are:  

• The covariance matrix, Sa, is scaled by 10-5 to better constrain the fit  
• The value of the a priori scalar for the lower and upper partial column scalar (𝒙*,E in 

Equation 16) is the least squares solution for the respective column (𝒙/" in Equation 15). 585 
 
For the CO inversion, the operational setup parameters are:  

• A covariance matrix, Sa, scaled by 10-4  
• An ideal a priori partial column scalar (𝒙*,E)	of one. 

 590 
We vary two aspects of the algorithm and observe the differences in the validation comparisons. The 
results of these tests are discussed in Sect. 3.2 and represented in Table 2 and Table 3. 

3.1 Validation Comparisons 

We compare retrieved partial column values from three of the five sites presented in this work 
using measurements from the same set of in situ data used to evaluate and derive the ‘in situ scaling 595 
factor’ of the TCCON retrievals (Wunch et al., 2011). For CO2, there are twenty-four points of 
comparison obtained between 2013 to 2018. Twelve of those comparisons are from the Armstrong 
TCCON site, four profiles are available above the Park Falls TCCON site, and the remaining eight 
profiles are from the Lamont TCCON site. As the Lamont site is the only site in this work with an InSb 
detector and overlapping in situ measurements, the eight profiles measured at the Lamont site serve as 600 
the totality of the CO comparison dataset.  

We also compare the partial columns calculated from the TCCON individual windows to further 
contextualize the performance of the TARDISS algorithm in Sect 3.3.1 and summarized in Table 4. The 
comparisons of the TCCON individual windows are performed in the same way as the TARDISS 
comparisons using Equation 20 to calculate the smoothed, in situ partial columns.  605 

The comparison profiles were measured by aircraft-based instruments or AirCore measurements 
as described in Sect. 2.5 and Table S2. We revert to the TCCON priors for parts of the profile not 
measured by in situ methods. For the errors associated with the aircraft measurements, we use the 
reported measurement error for the measured parts of the profile, and, for the unmeasured parts of the 
profile, we use the average reported measurement error and, to account for the errors involved with 610 
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estimating the parts of the profiles not measured by in situ methods, we add in quadrature twice the 
standard deviation of the measured profile in the respective partial column. For the errors associated 
with the AirCore measurements, we use the same approach as for the aircraft measurement and include 
an extra error term to conservatively account for atmospheric variability as captured by duplicate 
AirCores launched at approximately the same time. The error for AirCore from atmospheric variability 615 
is 0.6 ppm for CO2 and 8 ppb for CO compared to the analyzer error of 0.05 ppm and 3 ppb. The partial 
column error values are calculated by integrating a profile shifted by the error values and subtracting it 
from the integration of the original smoothed profile. The difference between these two integrated, 
smoothed partial columns provides a conservative error value that represents the unlikely occurrence 
that the profile at every altitude has 100% error.    620 

We compare the TARDISS retrievals from spectra obtained within one hour of the in situ profile 
to the integrated, smoothed, in situ partial columns calculated using Equation 24. We report linear fits 
between the partial column retrievals and the integrated, smoothed, in situ partial columns. Since our 
retrieval is designed to be linear, we use fits with y-intercepts forced through zero. As there are only 
scaling values in our retrieval, a non-zero y-intercept would introduce spurious error into our analysis. 625 
Since the reported coefficient of determination for this linear fit would be spuriously high, we take the 
ratio of our retrieved partial column to the integrated, smoothed, in situ measurement and subtract one 
to quantify how much they deviate from each other. We report the mean of the absolute value of the 
ratio as it deviates from one as the mean ratio deviation. For example, a one percent difference in values 
would give a mean ratio deviation of 0.01. This mean ratio deviation value gives a more direct 630 
understanding of how the partial column values compare.  

We use these validation comparisons to perform sensitivity tests of our algorithm parameters 
and determine an operational set of parameters. We then use these optimal parameters for the CO2 and 
CO retrievals to quantify the total error of our retrieval by calculating a validation error multiplier for 
each site. Validation error multipliers for each site and partial column are shown in Table 6.  635 

3.2 Choice of Operational Parameters from Validation Comparison 

 Several terms in our retrieval do not have unambiguously correct values. To evaluate the 
sensitivity our retrieval to the choices made for these parameters, we have run our retrieval with 
alternate values and report the degrees of freedom and comparison to in situ data (specifically, the 
retrieval comparison error, slope of the zero-forced linear fit, and the mean ratio deviation value of the 640 
linear fit) for each test. We tested changes to two terms: the TARDISS a priori scale factors and the a 
priori covariance matrix scaling. 

To test the sensitivity of the retrieval to the partial column scalar prior, we compare the changes in 
the validation when using 𝒙/" from Equation 15 as the a priori partial column scalar (our operational 
choice for CO2), the daily median of 𝒙/", as well as the idealized scalar of unity (our operational choice 645 
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for CO) to each other. In Tables 2 and 3, these are identified as “𝒙/",” “𝒙/" daily median,” and “static 
ideal prior,” respectively. 

We also test the sensitivity of the retrieval to how the a priori covariance matrix is scaled. This term 
changes how strongly the retrieval is constrained to the prior. In Table 2 (CO2) and Table 3 (CO), we 
illustrate the influence of choosing 1x10-4, 5x10-5, and 1x10-5 as an a priori covariance matrix scalar. 650 
While other scaling values were tested, the resulting errors were large enough or the resulting degrees of 
freedom were small enough, that the values were disregarded from further study.  
 

TARDISS 
a priori 
Choice 

A priori 
Covariance 

Matrix 
Scaling 

DoF per 
measurement 

(overall) 

Lower 
Column 

Error 
(ppm) 

Lower 
Column 

Validation 
Slope 

Lower 
Column 
Mean 
Ratio 

Deviation 

Upper 
Column 

Error 
(ppm) 

Upper 
Column 

Validation 
Slope 

Upper 
Column 
Mean 
Ratio 

Deviation 

 

 10-5 0.046 (2.12) 1.146 1.004 0.008 0.497 0.999 0.003  

𝒙/" daily 
median 

10-4 0.311 (15.1) 3.063 1.006 0.010 1.033 0.999 0.003  

 5x10-5 0.183 (8.48) 2.378 1.005 0.010 0.658 0.999 0.003  
 10-5* 0.046 (2.12) 1.146 1.001 0.011 0.497 0.999 0.002  

𝒙/" 10-4 0.311 (15.1) 3.063 1.004 0.011 1.033 1.000 0.002  
 5x10-5 0.183 (8.48) 2.378 1.003 0.009 0.658 1.000 0.002  
 10-5 0.046 (2.12) 1.146 1.012 0.014 0.497 0.997 0.003  

Static 
ideal prior 10-4 0.311 (15.1) 3.063 1.013 0.010 1.033 0.997 0.003  

 5x10-5 0.183 (8.48) 2.378 1.013 0.013 0.658 0.997 0.003  
 
Table 2. Variations in CO2 retrieval upper and lower column validation slopes, upper and lower column 655 
mean ratio deviations, upper and lower column comparison errors, and DoF for different TARDISS a 
priori choices and a priori covariance matrix scaling values. The asterisk in the fourth row indicates that 
this is the operational set of parameter choices for the CO2 retrieval.  

 
The agreement between the in situ and TARDISS retrievals for CO and CO2 change with both the a 660 

priori covariance matrix scaling and the a priori scalar choice. As we are trying to determine the 
parameters that give the best comparison results between the in situ and lower partial column retrieval 
data specifically, we chose the parameters that resulted in the validation slope closest to one for the 
lower partial column. For the lower partial column CO2, the best result (slope of 1.001) comes from 
using the 𝒙/" values as an a priori scalar and scaling the a priori covariance matrix by 10-5. The 665 
validation slope for the upper column comparison with these parameters (0.999) is similar to values 
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from other parameter choices. For the lower partial column CO, the best result for the lower column 
(slope of 0.999) results from the retrieval using a static a priori scalar of one and scaling the a priori 
covariance matrix by 10-4. Over the two hours of the comparison, the degrees of freedom are about 2.12 
for CO2 and 3.51 for CO – consistent with between one and two DoF per hour of measurements. Since 670 
the largest variation in validation slopes in either partial column and either species is driven by the 
change in the a priori partial column scalar, we posit that the a priori partial column scalar choice is the 
most significant parameter in the retrieval for determining validation slopes while the a priori 
covariance matrix scaling is the most significant parameter for determining the degrees of freedom of 
the fit and the retrieval errors.  675 

 

TARDISS 
A priori 
Choice 

A priori 
Covariance 

Matrix 
Scaling 

DoF per 
measurement 

(overall) 

Lower 
Column 

Error 
(ppb) 

Lower 
Column 

Validation 
Slope 

Lower 
Column 
Mean 
Ratio 

Deviation 

Upper 
Column 

Error 
(ppb) 

Upper 
Column 

Validation 
Slope 

Upper 
Column 
Mean 
Ratio 

Deviation 

 10-5 0.010 (0.402) 0.440 0.935 0.055 0.182 1.099 0.100 

𝒙/" daily 
median 

10-4 0.088 (3.51) 1.334 0.938 0.052 0.370 1.122 0.128 

 5x10-5 0.047 (1.88) 0.965 0.937 0.053 0.303 1.116 0.120 

 10-5 0.010 (0.402) 0.440 0.918 0.076 0.182 1.113 0.115 

𝒙/" 10-4 0.088 (3.51) 1.334 0.921 0.074 0.370 1.133 0.142 

 5x10-5 0.047 (1.88) 0.965 0.920 0.075 0.303 1.128 0.134 

 10-5 0.010 (0.402) 0.440 0.996 0.003 0.182 1.048 0.050 

Static 
ideal prior 

10-4* 0.088 (3.51) 1.334 0.999 0.005 0.370 1.081 0.081 

 5x10-5 0.047 (1.88) 0.965 0.998 0.004 0.303 1.073 0.075 

 
Table 3. Variations in CO retrieval upper and lower column validation slopes, upper and lower column 
mean ratio values, upper and lower column comparison errors, and DoF for different TARDISS a priori 
choices and a priori covariance matrix scaling values. The asterisk in the second to last row indicates 680 
that this is the operational set of parameter choices for the CO retrieval.      
 
3.3 TARDISS Performance Using Operational Parameters 
3.3.1 Comparisons with Calculated TCCON Partial Columns 
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We compare the validation performance of the TARDISS partial column retrievals to the partial 685 
column validations of the TCCON individual windows used in the retrieval to demonstrate that 
TARDISS provides addition information about vertical distribution compared to the TCCON retrieval. 
We compute a partial column from the TCCON output by integrating the posterior TCCON CO or CO2 
profile (i.e. the prior profile times the retrieved TCCON VSF) over the same pressure levels as the 
partial columns are calculated over for TARDISS. We compare the TCCON partial columns to the 690 
integrated, averaging kernel-smoothed, in situ partial columns calculated using Equation 20. The 
comparisons are shown in Table 4 and the slopes of the TCCON window partial column comparisons 
are shown as dotted lines in Fig. 5.  

The comparisons show that the TARDISS retrieved partial columns for CO2 have lower and 
upper partial columns slopes closer to one than the TCCON input windows. The mean ratio deviation 695 
for the lower column CO2 is slightly larger than the mean ratio deviation for the TCCON input windows 
(0.011 compared to a TCCON average of 0.007) which is reflected in the error of the lower partial 
column CO2 retrieval. The retrieved lower partial column for CO has a slope much closer to one than 
the slopes of the TCCON input and with a much smaller mean ratio deviation (0.002 compared to a 
TCCON average of 0.024). The retrieved upper partial column CO has a slope that is between the 700 
slopes of the TCCON input windows but still has a smaller mean ratio deviation suggesting increased 
precision.  

These comparisons suggest that, for CO, the TARDISS algorithm is very effective at separately 
inferring the lower partial column CO values since the validation slope is closer to one and the mean 
ratio deviation is smaller than the individual windows. The algorithm is limited in its retrieval of the 705 
upper partial column CO which is shown by its direct comparisons and mean ratio deviation being 
similar to the TCCON input window partial column. The performance of the algorithm suggests that the 
large variations in the CO vertical profile shapes benefit from the increased flexibility in the lower 
column but that there might be some spectroscopic biases to correct, particularly in the mid infrared 
windows.  710 

For CO2, the comparisons show that the algorithm can effectively infer upper partial column 
values but is less effective at retrieving the lower partial column CO2 values. The lower partial columns 
benefit from the secondary scaling as the have less bias (a slope closer to one) than the individual 
windows but the slight increase in mean ratio deviation suggests that the retrieval cannot be as precise at 
adjusting for the surface errors in the a priori profile shape. The a priori profiles for CO2 intentionally do 715 
not include variations of local sources or sinks at the surface but are quite accurate in the middle and 
upper troposphere. Accordingly, the secondary scaling of the upper partial column has improved 
accuracy and precision compared to the individual windows.   

Finally, we compare the performance of the total column values calculated from the TARDISS 
scaled partial columns to the total column validations of the TCCON individual windows. The 720 
comparisons are shown in Fig. S3 and summarized in Table S3. The total column comparisons show 
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similar trends as the upper column comparisons. This is likely due to the upper partial column vertical 
sensitivity being much larger than the lower partial column sensitivities as is discussed in Sect. 3.4.1.  

 

Figure 5. The direct comparisons between the partial column DMF values retrieved from the TARDISS 725 
fit and the integrated, smoothed in situ partial columns for CO2 (a,b) and the CO (c,d) for the lower (a,c) 
and upper (b,d) columns. The CO2 comparisons are color coded by site and the CO comparisons are 
solely from the Lamont site. The error bars in the x-direction are the reported errors from the aircraft 
data smoothed the same way as the in situ measurements and the error bars in the y-direction are the 
output errors from the TARDISS fit scaled by the VEM values. The black solid line is the 1-1 line and 730 
the blue dot-dash line is the linear fit of the data with the y-intercept forced through zero. The blue dot-
dash line for the lower partial column CO fit is overlapping with the solid black line. The slopes of the 
partial column validation of the TCCON spectral windows used in the retrieval are represented by 
dashed lines.  

 735 
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TCCON 
Window 

(cm-1) 

Lower 
Column 

Validation 
Slope 

Lower 
Column 

Validation 
Slope Error 

Lower 
Column Mean 

Ratio 
Deviation 

Upper Column 
Validation 

Slope 

Upper Column 
Validation 
Slope Error 

Upper Column 
Mean Ratio 
Deviation 

CO2       
6220 1.016 0.004 0.007 1.004 0.0010 0.003 
6339 1.013 0.004 0.005 1.001 0.0009 0.003 
6073 1.014 0.004 0.009 1.003 0.0011 0.003 
4852 1.020 0.006 0.007 1.002 0.0011 0.004 

TARDISS 
CO2 

1.001 0.003 0.011 0.999 0.0008 0.002 

CO       
4290 0.990 0.034 0.041 1.058 0.077 0.106 
2160 1.031 0.019 0.052 1.077 0.024 0.095 
2111 1.059 0.020 0.061 1.092 0.023 0.108 

TARDISS CO 0.999 0.002 0.005 1.081 0.012 0.081 
 
Table 4. Comparisons of the TARDISS partial column retrieval to the partial column comparisons of 
the fits of the TCCON spectral windows from TCCON used as input for the TARDISS algorithm. The 
data in the TARDISS row uses the operational parameters for the fit that are identified in Table 2 and 3 
by an asterisk.   740 
 
3.3.2 Comparisons with Low Altitude In Situ Profiles 
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Figure 6. East Trout Lake site direct comparisons between the partial column DMF values 

retrieved from the TARDISS fit and the integrated, smoothed aircraft partial columns for lower column 745 
CO2 and CO. The error bars in the x-direction are the integrated partial columns of the profile shifted by 
the error values and then subtracted from the original partial column integration. The error bars in the y-
direction are the output errors from the TARDISS fit scaled by the VEM value for the site. The black 
solid line is the 1-1 line and the blue dot-dash line is the linear fit of the data with the y-intercept forced 
through zero. The slope for the fit is 1.001±0.002 for CO2 and is 0.945±0.012 for CO. 750 
 

In addition to the aircraft and AirCore validation data that include profile measurements at 
altitudes in the upper troposphere and lower stratosphere, we compare to aircraft data obtained as part of 
the NOAA GGGRN aircraft program at the Lamont and East Trout Lake sites. These measurements 
were made more frequently but do not include enough high-altitude measurements to compare with our 755 
retrieved upper partial column values, so we use them as an independent comparison to our validation 
data for our lower column CO2 and CO retrievals. We use data obtained between the surface and 7 km 
from 26 of the 40 flights made between 2017 and 2020 at East Trout Lake. We also use data obtained 
between the surface and 6 km from 267 of the 399 flights performed at the Lamont site over the period 
of 2008 to 2018 and all 34 flights for CO made between 2017 and 2021. Figure 6 (East Trout Lake) and 760 
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Fig. 7 (Lamont) show the retrieved lower partial column DMF plotted against the integrated, smoothed, 
in situ columns similar to Fig. 5.  

Similar to the validation comparison, we revert to the a priori profile for altitudes not measured 
by in situ methods. To account for the errors in using the a priori profile, we add twice the standard 
deviation of the partial column that is measured to the average measurement error in quadrature. Given 765 
the lower altitudes measured by the GGGRN program, the errors associated with the parts of the profile 
that use the a priori profile are higher and, therefore, the errors in the long-term comparative 
measurements tend to be much higher than the validation measurements as shown in the CO 
comparisons in Fig 6.     

Despite the larger error values, the consistency of the statistical parameters (summarized in 770 
Table S4) using the larger number of measurements in the long-term comparisons further motivates the 
use of the extended validation dataset. Some of the in situ profile comparisons occur during times with 
larger CO DMFs that suggest influences from sources not accounted for by the TCCON a priori profiles 
such as those from wildfires which likely resulted in the large VEM for the long-term CO comparisons. 
Although the comparisons with the long-term data are not used for validation, the long-term 775 
comparisons show that the validation comparisons are generally representative of the performance of 
the TARDISS algorithm overall.  
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Figure 7. Lamont site direct comparisons between the partial column DMF values retrieved 
from the TARDISS fit and the integrated, smoothed airborne partial columns for lower column CO2 and 780 
CO. The error bars in the x-direction are the integrated partial columns of the profile shifted by the error 
values and then subtracted from the original partial column integration. The error bars in the y-direction 
are the output errors from the TARDISS fit scaled by the VEM value for the site. The black solid line is 
the 1-1 line and the blue line is the linear fit of the data with the y-intercept forced through zero. The 
slope for the fit is 1.002±0.001 for CO2 and is 1.000±0.002 for CO. 785 

 
3.4 Retrieval Characterization 
 
3.4.1 TARDISS Vertical Sensitivity and Temporal Covariance 

 790 
TARDISS uses an a priori covariance matrix with temporal covariance between upper partial 

column scalars over the course of a day of measurement, as shown in Fig. 3. To determine how this 
constraint influences the retrievals, we compare the data above to the validation comparison from a CO2 
retrieval not constrained by a temporal covariance. The a priori covariance matrix without the temporal 
covariance is simply a diagonal matrix of the 10-5 scalar value. Table 5 shows that the retrievals without 795 
temporal constraints have a slightly poorer validation comparison overall, including larger errors and 
fewer degrees of freedom. However, the site-by-site differences in validation data show that the upper 
column VEM values are smaller when using a temporally unconstrained fit, whereas the lower column 
VEM values are improved when implementing the temporal constraints. While the purpose of this study 
is to create a universally-applicable operational algorithm, local differences in the sources and 800 
meteorology may alter the effects of the a priori covariance matrix choice on the site VEMs. This 
suggests that site-by-site parameter choices may enable smaller errors and increased precision.  

 

 Statistics Temporally Constrained 
Upper Column 

Temporally Unconstrained 
Upper Column 

Validation DoF (Overall)  0.0462 (2.12) 0.0352 (1.59) 
Lower Column CO2    

 Error (ppm) 1.15 1.15 
 Validation Slope 1.001 1.002 
 Mean Ratio Deviation 0.011 0.009 
 Park Falls VEM 3.25 3.75 
 Armstrong VEM 2.98 4.42 

 Lamont VEM 1.35 2.50 
Upper column CO2    

 Error (ppm) 0.497 0.956 
 Validation Slope 0.999 0.998 
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 Mean Ratio Deviation 0.002 0.003 
 Park Falls VEM 3.61 1.92 
 Armstrong VEM 4.63 1.66 
 Lamont VEM 2.70 1 

 
Table 5. Validation comparison DoF, error, validation slope and mean ratio deviation and site VEM 805 
values for lower and upper column CO2 for retrievals using a temporally constrained upper column and 
a temporally unconstrained upper column. The retrievals are performed with the operational parameters 
denoted by asterisks in Table 2.      
 

The temporal covariance impacts our validation comparison through the partial column vertical 810 
sensitivities described in Equation 22 via the gain matrix (Equation 21). To assess the importance of 
the choice of a priori covariance matrix, we compare the vertical sensitivities for a temporally 
constrained upper column and a temporally unconstrained upper column (shown in Fig. 8) for a 
representative day (July 27th, 2018, at the Lamont site).  

Without the temporal constraint, the upper column sensitivities are on the same order as the 815 
lower column sensitivities with values between -0.05 and 0.18. The upper column sensitivity peaks 
around the 15 km level at low solar zenith angles and the peak moves toward the surface at higher 
solar zenith angles consistent with the changing kernel of the 6220 and 6339 cm-1 bands. The lower 
column sensitivities always peak near the surface (~2 km or below) and the sensitivity increases at 
higher solar zenith angles.  820 

With the temporal constraint, the altitude of the maximum sensitivities with respect to SZA 
remains similar but the upper column sensitivities are roughly twice the value and the lower column 
sensitivities are half the value as the temporally unconstrained values. The imposed temporal 
covariance constrains the upper column to vary slowly over the span of a measurement day so that a 
change in the column at one measurement point induces changes at other measurement points 825 
thereby increasing the vertical sensitivities in the upper column over the entire day. This constraint 
is also stringent enough that it propagates into the sensitivity of the lower column scalar. Since our 
goal is to retrieve a lower partial column, it seems counterintuitive that using sensitivities with an 
order of magnitude difference provides a better validation comparison. However, for this method we 
assume that we know the shape and behavior of the upper column fairly well and that most of the 830 
change occurs near the surface. Given these assumptions, constraining the upper column more 
heavily by introducing expected daily patterns through the a priori covariance matrix allows for the 
lower column retrieval to have improved comparisons with in situ data despite the decreased 
vertical sensitivities.  

While we test retrievals simply with and without temporal covariance, the possible choice of a 835 
priori covariance matrix shape could be much more complex. Future study could include using 
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model generated or back trajectory based temporal covariances to include outside information in the 
retrieval dynamically. For an operational retrieval product, we will include the temporal covariance 
in the a priori covariance matrix as an operational parameter. 

 840 

 
Figure 8. Vertical sensitivities of the lower partial column (left column) and upper partial column (right 
column) scalars color coded by solar zenith angle in degrees. The sensitivities calculated when using a 
temporally covariant a priori covariance matrix are shown in the top row and when using a non-
temporally covariant a priori covariance matrix are shown in the bottom row.  845 

 
3.4.2 Error Analysis 
 

Using the information from the validation comparison, we can evaluate the errors of the entire 
dataset from each of the five sites. The output of the retrieval is the partial column scalar and the error 850 
retrieved is the standard deviation of the partial column scalar calculated from the retrieval variance and 
represented as another scalar value. To convert our partial column scalar error to a dry air mole fraction, 
we multiply the error scalar value by the a priori partial column mixing ratio (𝑧*,&0012 in Equation 17). 
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Error varies from site to site due to variations in the TCCON total column errors that are input to the 
measurement covariance matrix and due to how well the a priori partial column DMF matches the, 855 
generally unknown, actual partial column DMF. We report the total retrieval error, retrieval error 
components, and the error contribution from the validation comparison measurements in Table 6.  

The retrieval error values range from 1.16 ppm to 1.41 ppm for lower column CO2 and from 0.26 
ppm to 1.33 ppm for the upper column CO2. For CO retrievals, the average total retrieval error ranges 
from 0.48 ppb to 14.0 ppb for the lower column and 0.032 ppb to 2.23 ppb for the upper column. In 860 
general, the errors vary minimally over the record, but there is a distinct seasonality for both lower 
column CO and CO2 retrievals with the highest errors during the summer perhaps as a result of errors in 
the near surface a priori profiles (Fig. S4). The absolute errors for CO2 generally increase over time 
since simply because CO2 is increasing due to anthropogenic emissions. Fractionally, the errors remain 
similar across the dataset for both CO and CO2 (Fig. S5).  865 

Because the model parameter error goes to zero in our implementation, the current total retrieval 
error is the square root of the sum of the smoothing error (Equation 25) and the retrieval noise 
(Equation 26). The smoothing error is 94.0% to 96.5% of the total retrieval error on average for CO2 
and 81.6% to 87.8% of the total retrieval error on average for CO depending on the site and is directly 
related to the scaling of the a priori covariance matrix. While scaling the a priori covariance matrix by a 870 
higher value increases the smoothing error, it also results in a reduction to the total retrieval error. 
Furthermore, the fit of the lower partial column CO2 benefits from a stronger constraint since the slope 
of the lower partial column CO2 validation is closest to one when using the tightest covariance matrix as 
shown in Table 2. The retrieval noise is 3.5% to 6.0% of the total retrieval error on average for CO2 and 
18.4% to 12.2% of the total retrieval error on average for CO depending on the site and has the opposite 875 
relationship to the scaling of the a priori covariance matrix. The retrieval noise reflects the effect of the 
model covariance matrix that is composed of the TCCON total column measurement errors and 
therefore reducing these errors would also reduce the retrieval noise.  

Using the operational setup for our TARDISS fit, we calculate the site specific VEM values 
using Equation 27 (Tables 5 and 6). These values are used to scale the error of the TARDISS fit for all 880 
the comparisons in this work. The VEM scaled errors serve as a conservative estimate for the retrieval 
errors and should be reevaluated with additional in situ profile measurements as they become available. 
For CO2 at Park Falls, the lower and upper column VEM are 3.61 and 3.25; at Armstrong, the lower and 
upper column values are 4.63 and 2.98; and at Lamont the values are 2.70 and 1.35 for the lower and 
upper column, respectively. Since Caltech and East Trout Lake do not have comparison data, we apply 885 
error multiplier values of 4.63 and 3.25 as they are the largest multiplier values from among the other 
sites. For CO, the Lamont site multiplier values are 1.00 and 15.4, which we use for the Caltech and 
East Trout Lake site CO retrieval data as well.  

Since the TARDISS retrieval cannot fully optimize the shape of the partial profile, the site-to-
site differences in VEM are likely due to the variation in the accuracy of the TCCON priors which by 890 
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design do not capture the local source, sink, and transport complexities. For CO2, the upper column 
VEM and retrieval error values are consistently smaller than the associated lower column values 
suggesting that these data support the assumption that the shape of the profile of the upper partial 
column is generally much more accurately captured by the TCCON priors. 

The total error for each site is determined by the multiplying the retrieved errors by the site and 895 
partial column respective VEM values. After implementing the VEMs, the errors for the lower partial 
column CO2 retrieval range from 3.38 ppm to 5.88 ppm and from 1.22 ppb to 1.96 ppb for CO across all 
sites and data. As the Caltech and East Trout Lake sites have no validation comparisons, we use the 
largest validation error multiplier (that of the lower column Armstrong and upper column Park Falls 
comparison) as a higher bound.  900 
 Since the overall biases are small with validation slopes close to one, the errors are sufficiently 
small that the TARDISS retrievals have skill in evaluating CO2 fluxes at TCCON sites. The error 
compared to the overall lower partial column DMF is small, 1.25% on average across the five sites for 
CO2.  
 905 

Site 
Retrieval 

Noise (% of 
total) 

Smoothing 
Error (% of 

total) 

Mean 
Lower/Upper 

Column 
Retrieval Error 
(ppm for CO2; 

ppb for CO) 

Lower/Upper 
Column 

Validation Error 
Multiplier 
(unitless) 

Mean Total 
Lower/Upper 
Column Error 
(ppm for CO2; 
ppb for CO) 

CO2 
Retrievals      

Park Falls 3.5 96.5 1.257/0.655 3.61/3.25 4.54/2.13 
Armstrong 6.0 94.0 1.253/0.500 4.63/2.98 5.80/1.49 

Lamont 4.5 95.5 1.252/0.582 2.70/1.35 3.38/0.786 
Caltech 4.5 95.5 1.271/0.568 4.63/3.25 5.88/1.85 

East Trout 
Lake 5.4 94.6 1.268/0.514 4.63/3.25 5.87/1.67 

CO Retrievals      
Lamont 12.2 87.8 1.34/0.447 1.00/15.4 1.34/6.88 
Caltech 18.4 81.6 1.96/0.318 1.00/15.4 1.96/4.90 

East Trout 
Lake 15.7 84.3 1.22/0.355 1.00/15.4 1.22/5.47 
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Table 6. Errors in the CO and CO2 lower partial column retrievals of each site shown as the average of 
the entire data time series and broken down into total retrieval error, retrieval noise, smoothing error, 
validation error multiplier, and total error. The values for total retrieval error and total error represent 
one standard deviation.  910 
 
3.4.3 Information Content Analysis 
 

The information content of the retrieval is determined by the DoF and Shannon information 
content (H) of the retrieval, each calculated from the averaging kernel. The DoF represent the 915 
independent pieces of information that can be retrieved from a measurement. We report our DoF values 
both normalized by the number of measurements made in a day, as well as the daily overall DoF. Since 
the DoF are calculated as the trace of the averaging kernel, we isolate and report the DoF from the 
upper and lower column separately along with the total. The Shannon information content is a single 
value to represent the effectiveness of the retrieval to recover information from the model with respect 920 
to the variance in the data. Higher Shannon information content values correspond to a retrieval with a 
higher possible effectiveness.   

The information content is summarized for each site in Table 7. The overall average lower 
column DoF per measurement across all sites and collected data is 0.047 for CO2 and 0.15 for CO. The 
lowest DoF average value of 0.034 is in Park Falls and the highest DoF average value of 0.061 is in 925 
Armstrong for CO2 and, between the three sites with CO retrievals, Caltech has the highest average 
lower column DoF of 0.18 compared to 0.12 for Lamont and 0.15 for East Trout Lake. The retrievals of 
CO have much larger DoF compared to CO2 primarily since the CO2 requires a stronger scaling 
constraint of the a priori covariance matrix limiting the amount of information that can be inferred.  

Ideally, DoF values greater than one are desired for traditional profile retrievals. However, the 930 
temporal aspect of our retrieval complicates the discussion. If we consider the CO2 retrievals, the five 
sites used in this work made an average of 172 measurements per day so that the DoF value average of 
0.0470 per measurement yields 8.08 independent pieces of information about the lower partial column 
per day which provides significant information on the diurnal variation and the fluxes into and out of 
the lower column.  935 

The information content shown in the DoF are mirrored in the Shannon information content. 
Similar to the DoF, Park Falls has the lowest and Armstrong has the highest Shannon information 
content on average for CO2. These differences are likely driven by the combination of the TCCON 
retrieval errors and how well the a priori covariance matrix matches the temporal aspects of local 
meteorology, such as cloud cover or upper tropospheric transport, or the magnitude and time scales of 940 
the local carbon fluxes in the boreal forest versus the lack of such fluxes in the Mojave Desert. For CO, 
the Caltech retrieval has the highest DoF and Shannon information content of the three sites. While the 
differences in Shannon information content and DoF between sites are not necessarily directly 
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comparable, these differences also might be due to the TCCON retrieval errors and how well the chosen 
a priori covariance matrix constrains the solution.   945 

 
 

Site 

Total Degrees 
of Freedom 

per 
Measurement 

(per day) 

Lower Column 
DoF per 

Measurement 
(per day) 

Upper Column 
DoF per 

Measurement 
(per day) 

Average 
Measurements 

per day 

Shannon 
Information 
Content per 

day 

CO2 Retrievals      
Park Falls 0.151 (14.0) 0.0338 (4.30) 0.117 (9.72) 116 9.96 

Armstrong 0.165 (33.2) 0.0613 (14.3) 0.104 (18.9) 227 24.7 

Lamont 0.163 (20.6) 0.0444 (7.22) 0.119 (13.4) 155 15.0 

Caltech 0.156 (23.1) 0.0452 (8.45) 0.111 (14.7) 180 17.0 
East Trout Lake 0.181 (25.5) 0.0503 (10.2) 0.131 (15.3) 181 19.0 

Overall 0.163 (23.2) 0.0470 (8.89) 0.116 (14.4) 172 17.1 
CO Retrievals       

Lamont 0.236 (26.1) 0.123 (15.7) 0.113 (10.4) 120 17.5 
Caltech 0.227 (43.6) 0.184 (36.9) 0.0431 (6.76) 194 26.8 

East Trout Lake 0.263 (43.4) 0.146 (29.5) 0.113 (13.8) 178 26.2 
Overall 0.242 (37.7) 0.151 (27.4) 0.0910 (10.3) 164 23.5 

 
Table 7. Degrees of freedom per measurement (and per day) for the lower column, upper column, and 
total retrieval, in addition to the Shannon information content separated by site for the CO and CO2 950 
retrievals.  
 

The informational content of the retrieval assists in evaluating the TARDISS algorithm, but also 
serves as a diagnostic of the effectiveness of the retrieval for each day of measurement. Figure 9 shows 
the long-term comparisons between the retrieved lower partial column and the smoothed, integrated, in 955 
situ data at the Lamont site color-coded by the DoF per measurement for each point. The comparisons 
with higher DoF per measurement generally sit closer to the 1-to-1 line as expected and suggest that 
days with higher DoF per measurement have lower associated VEM. Figure S7 shows the VEM 
calculated after removing days that have DoF per measurement values below a specific threshold. The 
VEM calculated for the long-term comparison data decreases consistently with increasing DoF filters 960 
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until it reaches one at ~0.07 DoF per measurement. This, however, this excludes roughly 90% of the 
data. As a first step, the data could be filtered for low DoF or low Shannon information content. In the 
future, the information content could be used to create more dynamic VEM values for our datasets and 
provide more precise error values than the conservative, static VEM per site reported in Table 6.  
 965 

 
Figure 9. The same comparison shown in Fig. 7 is shown here without error bars and color 

coded by the DoF per measurement for the comparison day retrieval. The blue dot-dash line above the 
black 1-to-1 line is the linear fit of the data with the y-intercept forced through zero with a slope of 
1.002±0.001. 970 
 
3.5 Time Series of the TARDISS Retrieval 
 

The TARDISS algorithm is applicable to any spectra reported as TCCON data with the correct 
detector requirements (InGaAs for CO2 and both InGaAs and InSb for CO). Overall, there are at least 975 
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nine years of CO2 data at each site in this work and approximately five years of CO data at the East 
Trout Lake, Lamont, and Caltech sites.  

Figure 10 shows the monthly mean lower and upper partial column data retrieved from spectra 
obtained over the last decade at the North American TCCON sites. These upper columns reflect the 
global seasonal patterns in CO2. The lower column at Park Falls and East Trout Lake reflect the local 980 
influences on CO2 in the sharp decline in surface CO2 when the surrounding forest is most 
photosynthetically active. In contrast, the lower column Caltech trace shows a consistent urban 
enhancement over the global trends of ~5 ppm. All five upper column traces are generally consistent 
with one another and have a ~6 ppm seasonal fluctuation.  

Figure 11 shows the monthly median retrieved lower and upper partial column CO data from the 985 
East Trout Lake, Lamont, and Caltech site. We observe a slight seasonality at each site with maximums 
in the winter months and minimums in the summer months. The CO lower partial column data from the 
Caltech site tends to be larger than those from the Lamont site due to the urban enhancement despite the 
recent decreasing trend. An example of effect of the urban enhancement on total and partial column 
values is shown in Fig. S8.   990 

 
 

 
Figure 10. Time series plot of the monthly median lower (top) and upper (bottom) partial column 
values of CO2 in ppm for the five sites used in the work from 2012 (or the start of measurement) to the 995 
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end of 2021. Data from before 2012 measured in Park Falls and 2011 in Lamont are not used due to 
instrument alignment issues and laser issues.  

 
 

 1000 
Figure 11. Time series plot of the monthly median lower (top) and upper (bottom) partial column 
values of CO in ppb for the three sites used in the work that have the InSb detector from 2017 to the end 
of 2021. CO has been declining in most of the US cities due to emissions control technologies.   

4 Conclusions 

The TARDISS retrieval algorithm enables partial column information to be derived from the 1005 
TCCON total column observations of CO2 and CO derived from different absorption bands with 
different vertical averaging kernels. Compared to traditional vertical retrieval approaches, the algorithm 
relaxes the requirement of very accurate meteorology knowledge, is less biased by spectroscopic errors, 
and is computationally inexpensive to run since it does fit spectra directly. By inferring information 
from the differences between total column DMF values from spectral windows that are quality 1010 
controlled, the retrieval is restricted to imposing small changes to the partial and total columns. This 
effectively limits the amount of informational content that can be retrieved but also mitigates the issues 
of oscillation or large deviations in the retrieved vertical profile, partial columns in this case. Finally, 
this algorithm takes advantage of the temporal dimension by fitting over an entire day of measurements 
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to retrieve enough information to infer temporal changes in the lower (surface to ~2 km) and upper (2 to 1015 
70 km) partial columns which also allows for the input of external, a priori, temporal information that is 
shown to improve the information content in the lower partial column fit. 

Using measurements from the five North American TCCON sites, we compare our retrieved 
partial columns of CO and CO2 DMF to the partial columns calculated from integrated, smoothed in situ 
data measured by aircraft and AirCore. We report slopes of 1.001±0.003 and 0.999±0.001 for the lower 1020 
and upper partial column CO2 comparisons, respectively, and slopes of 0.999±0.002 and 1.081±0.012 
for the lower and upper partial column CO comparisons, respectively. The retrieved partial columns 
have improved direct comparisons and precision compared to the partial columns calculated from the 
original TCCON spectral windows.  

We use the comparison data to calculate validation error multiplier (VEM) values to scale 1025 
retrieved errors to be representative of the in situ comparisons. The average VEM scaled errors for the 
lower partial column CO and CO2 retrievals are 1.51 ppb (~2%) and 5.09 ppm (~1.25%), respectively. 
The magnitudes of these error values suggest that the TARDISS retrieval will be useful in its current 
state for understanding surface fluxes of CO and will have some power for evaluating surface fluxes of 
CO2.  1030 

The Bayesian TARDISS algorithm enables the informational content of the retrieval to be 
estimated. The average DoF for the lower partial column retrievals are 8.89 and 27.4 degrees of 
freedom so that ~9 and ~27 lower partial column values can be retrieved over a day of measurement for 
CO2 and CO, respectively. The information content is affected by the parameters of the retrieval so that 
there is a tradeoff between retrieved error and the DoF of the retrieval. Furthermore, the daily DoF 1035 
normalized by the number of measurements made in a day could serve as a quality control variable.  

Future implementations of the retrieval could use the DoF values to create dynamic VEM to 
provide error values that are more precise than the static VEM. Similarly, future work could improve 
the effectiveness of the retrieval of lower partial column CO2 using the TARDISS algorithm with the 
input of external information through the a priori covariance matrix, a priori partial column scalar, or 1040 
the inclusion of the other parameters in the state vector.   
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