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Abstract  25 
We describe an approach for determining limited information about the vertical distribution of 

carbon monoxide (CO) and carbon dioxide (CO2) from total column observations from ground-based 
TCCON observations. For long-lived trace gases, such as CO and CO2, it has been difficult to retrieve 
information about their vertical distribution from spectral line shapes in the shortwave infrared (SWIR) 
spectra because of the large doppler widths at 6000 cm-1, and errors in the spectroscopy and in the 30 
atmospheric temperature profile which mask the effects of variations in their mixing ratio with altitude 
in the troposphere. For CO2 the challenge is especially difficult given that these variations are typically 
2% or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly 
valuable for evaluation of retrievals from satellites and more generally for improving the estimate of 
surface sources and sinks of these trace gases. We present here the Temporal Atmospheric Retrieval 35 
Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses 
several simultaneously obtained total column observations of the same gas from different absorption 
bands with distinctly different vertical averaging kernels. Since TARDISS avoids spectral re-fitting by 
ingesting retrieved column abundances, it is very fast and processes years of data in minutes. The 
different total column retrievals are combined using a Bayesian approach where the weights and 40 
temporal covariance applied to the different retrievals include additional constraints on the diurnal 
variation in the vertical distribution for these gases. We assume that only the near surface is influenced 
by local sources and sinks, while variations in the distribution in the middle and upper troposphere 
result primarily from advection that can be independently constrained using reanalysis data about the 
variation in mid-tropospheric potential temperature. Using measurements from five North American 45 
TCCON sites, we find that the retrieved lower partial column (between the surface and ~800 hPa) of the 
CO and CO2 dry mole fractions (DMF) have slopes of 1.001±0.002 and 1.007±0.002 with respect to 
lower column DMF from integrated in situ data measured by aircraft and AirCore. The average error for 
our CO retrieval is 0.857 ppb (~1%) while the average error for our CO2 retrieval is 3.55 ppm (~0.8%). 
We calculate degrees of freedom from signal of 0.218 per measurement for lower partial column CO on 50 
average and of 0.353 per measurement for lower partial column CO2 on average. Compared with 
classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward 
model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line 
shape. We anticipate that this approach will find broad application for use in carbon cycle science.  

1 Introduction  55 

Remote sensing measurements of atmospheric gases are made around the world in an attempt to 
better understand the sources, sinks, and fluxes at the local, regional, and global scales (Connor et al., 
2008, p.2; Deeter, 2004; Kerzenmacher et al., 2012; Wunch et al., 2011). Compared with in situ 
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measurements, these retrievals are less influenced by nearby point sources or sinks and rapidly changing 
meteorological conditions (Keppel-Aleks et al., 2012) which is both a strength and a weakness for use 60 
in carbon cycle science investigations. Additionally, because the column represents the integral of a gas 
from the surface to the top of the atmosphere, flux estimates from column amounts are less sensitive to 
errors in the assumed vertical transport than those using surface measurements (Keppel-Aleks et al., 
2011, 2012).  

Contrastingly, column measurements have their own drawbacks for estimating surface fluxes. 65 
Total column concentrations are much less sensitive to the local emissions and flux estimation can be 
influenced by variation in the mixing ratio at higher altitudes. Signals of CO2 and CO from the surface 
are muted in the total column due to the dilution of signals from the surface being integrated across an 
entire column. For CO2, the total columns are strongly influenced by mesoscale flux patterns in the 
troposphere above the boundary layer making it even more difficult to discern the influences of surface 70 
fluxes (Keppel-Aleks et al., 2011, 2012). For CO, its several-week lifetime in the free troposphere 
results in regional transport influences that can dampen the surface signals in the total column values 
(Deeter, 2004; Zhou et al., 2019). These issues can limit the effectiveness of total column measurements 
in surface flux analysis – particularly for local sources.  

Profile retrievals can, in principle, ameliorate these issues and provide clearer information on 75 
surface processes.  Theoretical analysis shows that two to three vertical degrees of freedom (DoF) can 
be achieved in CO2 retrievals from near-IR (NIR) and mid-IR (MIR) spectra from high-resolution 
Fourier transform spectrometers (Connor et al., 2016; Kuai et al., 2012; Roche et al., 2021; Shan et al., 
2021). In practice, Connor et al. (2016) and Roche et al. (2021) showed that the precision of retrieved 
CO2 profiles using spectral windows in the NIR was much lower than the theoretical estimate due to 80 
errors in the a priori temperature profile and in the forward model. Likewise, Shan et al. (2021) retrieve 
CO2 profiles using spectral windows in the MIR. They use an a posteriori optimization method to 
improve the tropospheric CO2 signal and they report errors near 2%. Although both of these methods 
retrieve profiles with sufficient degrees of freedom to observe some signals of the variation in the 
vertical distribution, they report errors which limit their use for carbon cycle studies.  85 

Several operational CO profile retrievals exist, but these products still face the issues of column 
dilution or larger sensitivity to the free troposphere compared to the surface. For example, spectra 
recorded from the MOPITT instrument aboard the Terra satellite in both MIR and NIR have been used 
to provide limited information on the vertical distribution of CO (between one and two degrees of 
freedom in the troposphere)  (Deeter, 2004; Turquety et al., 2008). The Network for the Detection of 90 
Atmospheric Composition Change (NDACC) retrieves profiles of CO in the atmosphere (Buchholz et 
al., 2017) with ~2 degrees of freedom for the signal providing information of a lower (surface-8km) 
layer sensitive to the boundary layer and an upper (8-20km) layer with ~1-3% uncertainty in the total 
column (Zhou et al., 2018, 2019). These measurements require higher spectral resolution and therefore 
a longer measurement time, resulting in fewer observations per day. This limits their ability to capture 95 
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diurnal changes and makes the measurements more susceptible to cloud interruption. These 
measurements also require accurate knowledge of the spectral line widths, their temperature 
dependence, the instrument line shape (ILS), and the solar spectrum. These limitations motivate our 
work to develop a new product with better sensitivity to surface processes and higher temporal 
resolution. 100 

Profile retrievals that fit measured spectra and exploit the profile information given by pressure 
broadening of spectral lines require high resolution data to obtain information about different levels of 
the atmosphere (Sepúlveda et al., 2014). In the approach described here, we do not retrieve profile 
information directly from the spectra. Instead, we utilize information from the vertical, temporal, and a 
priori vertical profile domains to infer partial column dry mole fraction values. We fit partial column 105 
scalar values to match TCCON total column dry mole fraction measurements that are 1) quality 
controlled and 2) individually tied to the WMO trace gas standard scale which mitigates a number of 
errors in the forward spectroscopic model. We use multiple total column measurements from spectral 
windows with different line intensities, and hence different shapes of the column averaging kernel. We 
extract the vertical information from the differences in total column values between the different 110 
windows by fitting over an entire day of measurement in order to make use of the information from the 
temporal dimension. We optimize the separation between the near surface and the rest of the 
atmosphere using additional a priori information about the expected temporal covariance in the different 
partial columns based on known atmospheric behavior. This method allows us to use the algorithm to 
extract information focused on the lower atmosphere where the concentrations are most sensitive to 115 
surface exchange.  

The accuracy of this new method for retrieving partial column values is evaluated using 
comparisons with in situ vertical profiles. Section 2 describes the theory and parameters chosen for our 
retrieval, and the data used for the retrieval, validation, and comparison. Sections 3.1 to 3.2 present our 
validation data, a sensitivity study of the retrieval parameters, and an error and information content 120 
analysis. Finally, Sect. 3.3 and 3.4 give examples of data using this approach and provide evidence for 
the utility of this approach in flux estimation.   

2 Methods 

2.1 Total Carbon Column Observing Network 

The Total Carbon Column Observing Network (TCCON) is described by Wunch et al. (2011), 125 
although we will give a brief overview here to include aspects of the retrieval algorithm and observation 
scheme that have evolved since 2011. TCCON is a network of sites that use ground-based Fourier 
transform spectrometers with InGaAs and Si detectors to gather spectra for the 3900 to 15500 cm-1 
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spectral region. Importantly for our work here on CO, some sites are now equipped with an InSb 
detector that simultaneously allows spectral measurement down to 2000 cm-1 at the expense of 130 
simultaneous observations using the Si detector. CO2 and CO are retrieved simultaneously over several 
spectral windows (independent spectral bands). These windows are chosen to provide high sensitivity to 
the gas of interest while limiting interference from other atmospheric absorbers.  

Column abundances of atmospheric species are computed from the measured spectra using a 
nonlinear least-squares fitting algorithm, GFIT, which minimizes the residuals between a measured 135 
spectrum and one calculated by uniformly scaling a priori vertical profiles for the fitted atmospheric 
species, yielding the optimal VMR (volume mixing ratio) scaling factors (VSF) of the fitted gases. The 
prior profiles scaled by the VSF are integrated to calculate the total column abundance of a species. The 
retrieved scaled column abundances are converted to column dry mole fraction (DMF) by dividing by 
the column of O2, retrieved from a different spectral window of the same spectrum. These retrievals are 140 
then quality-controlled and scaled to minimize both any airmass dependence and the difference with in 
situ profiles. These outputs from standard TCCON processing are used as input for TARDISS. 

For each window and for each spectrum fit by GFIT, an associated column averaging kernel is 
computed that describes the sensitivity of the VSF to changes in species abundance at each altitude. A 
perfect column averaging kernel would have values of one for all altitudes. More commonly, the kernels 145 
will be greater than 1 at lower/higher altitudes and less than 1 at higher/lower altitudes. Values higher 
(lower) than 1 mean that the retrieval is more (less) sensitive to changes at that altitude. These 
sensitivities also vary with solar zenith angle (SZA) as the spectral absorption deepen. The vertical 
sensitivity of each window is a result of its spectral properties.  Optically thin spectral regions 
(windows) tend to be more sensitive to the upper troposphere and the stratosphere while optically thick 150 
windows tend to be more sensitive to the lower troposphere. Since information about the stratosphere 
comes from near the line center as a result of collisional broadening, if the absorption at the line center 
is saturated (nearly zero transmission), the spectrum will contain little information about the 
stratosphere and hence the kernel will be small there. The differences in column averaging kernel 
shapes are the main source of information used in our algorithm. 155 

 

https://doi.org/10.5194/amt-2022-322
Preprint. Discussion started: 7 December 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

 
Figure 1. Vertical sensitivities of the total column retrievals from GFIT and used in our algorithm for 
both CO2 (left and middle column) and CO (right column) plotted against normalized pressure and color 
coded by the solar zenith angle (SZA). We also use a window centered at 2111 cm-1 for CO which has 160 
vertical sensitivities that are nearly identical to the 2160 cm-1 window. A column averaging kernel 
greater than 1 means that the total column is more sensitive to molecules at this pressure level than the 
average sensitivity. For example, if we move some of the CO2 from 200 hPa to the surface in our a 
priori profile, the retrieved scale factor (VSF) will decrease for the 6073 cm-1 window and increase for 
the 4852 cm-1 window while the true total column remains unchanged. The 6220 and 6339 cm-1 CO2 165 
windows have near-identical kernels due to the CO2 bands being almost identical in their line strengths, 
separations, widths, and temperature dependences. 
 

Since the terminology for the fitting done in a standard TCCON retrieval is similar to that used 
in the partial column retrieval discussed in this work, we will refer to the standard TCCON retrievals as 170 
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being the phase 1 (P1) fit and the partial column retrievals as the TARDISS fit. We also use the terms 
retrieval and fit interchangeably to refer to the P1 or TARDISS methodology.  

2.1.1 Sites Used in this Work 

In this study, we use data from five TCCON sites located across the United States from as early 
as 2004 to as recent as 2021. These are located at Park Falls, Wisconsin; NASA Armstrong, Edwards 175 
Air Force Base, California; Lamont, Oklahoma (the DOE Southern Great Plains ARM site), the 
California Institute of Technology (Caltech), in Pasadena, California, and East Trout Lake, 
Saskatchewan, Canada. Table 1 presents a summary of the sites used in this work.  

Park Falls, WI hosts the first operational TCCON site (July 2004-present). The site is in a rural, 
heavily forested area and generally far from anthropogenic influence. The FTS does not have an InSb 180 
detector so we are able to only retrieve partial column values for CO2. We focus on data obtained since 
2012, when the alignment of the instrument has been more consistent. The increased variance of the 
TARDISS retrieval for data before 2012 likely reflects the inconsistent alignment of the FTS. 

We use similar data from the TCCON site located at NASA’s Armstrong Flight Research Center 
(formerly the Dryden Flight Research Center) in California which has been operational since July 2013. 185 
We report CO2 partial column values for the 2013 to 2021 time period. The Armstrong site is on the 
northwest edge of Rogers Dry Lake within the Edwards Air Force Base in the Mojave Desert. 

The Lamont, OK TCCON site is surrounded by farmland. It has been operational since July 
2008, and an InSb detector was installed in October 2016. We report CO2 partial column values from 
2008 to 2021 and CO partial column values from 2017 to 2021. 190 

The TCCON site on the Caltech campus in Pasadena, CA has been operational since July 2012 
with an InSb detector measuring since October 2016. We report CO2 partial column values from 2012 
to 2021 and CO partial column values from 2017 to 2021. 

The East Trout Lake, Sask., CA TCCON site is located in a remote, heavily forested area in the 
middle of the Saskatchewan Province. The instrument uses an InSb detector so allowing us to retrieve 195 
partial column CO values. It has been operational since October 2016 and we report partial column 
values for CO and CO2 from 2017 to 2021.  

 
 
 200 
 
 
 
 

https://doi.org/10.5194/amt-2022-322
Preprint. Discussion started: 7 December 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

Site Location 
Dates of 

Measurements Used Data DOI 

Park Falls, WI 45.945N, 
90.273W 

CO2: 2012 - 2021 10.14291/tccon.ggg2020.parkfalls01.R0 
 

NASA 
Armstrong, 
Edwards Air 

Force Base, CA 

34.958N, 
117.882W 

CO2: 2013 - 2021 10.14291/tccon.ggg2020.edwards01.R0 

Lamont, OK 36.604N, 
97.486W 

CO2: 2008 - 2021 
CO: 2017- 2021 

10.14291/tccon.ggg2020.lamont01.R0 
 

Caltech, 
Pasadena, CA 

34.1362N, 
118.126W 

CO2: 2012 - 2021 
CO: 2017 - 2021 

10.14291/tccon.ggg2020.pasadena01.R0 
 

East Trout Lake, 
Sask., CA 

54.354 N, 
104.987W 

CO2: 2017 - 2021 
CO: 2017 - 2021 

10.14291/tccon.ggg2020.easttroutlake01.R0 
 

 205 
Table 1. Location, dates of measurement, and DOIs of the TCCON sites used in this work. CO 
measurements require an InSb detector to cover the 2160 and 2111 cm-1 windows, which has only been 
available since 2017 at Caltech, Lamont, and East Trout Lake. 

 

2.2 The TARDISS Algorithm 210 

Traditional profile retrievals fit spectra by adjusting the abundance of the trace gases at multiple 
vertical levels to determine the vertical distribution of a specific atmospheric species. Here, we focus on 
developing an algorithm that we are calling the Temporal Atmospheric Retrieval Determining 
Information from Secondary Scaling  (TARDISS), that optimizes separating the profile of our target trace 
gas into two layers, one near the surface and the other at and above the middle troposphere (two ‘partial 215 
columns’, here scaled prior DMFs).  

We use the notation and concepts of Rodgers and Connor (2003) with vectors represented with 
bolded lower-case letters and matrices represented with bolded upper-case letters. The following 
equations are used for each spectral window, each TCCON measurement, and each species retrieved (CO 
and CO2 in this work) in the P1 fit. Equations 1 through 7 are used to calculate the weights and values 220 
that are used in Equation 8 and beyond as we shift the focus from one measurement of one spectral 
window to including all the measurements in a day of all the spectral windows used for a particular species. 
We will therefore keep the equations species and window agnostic for this description. We start with an 
equation expressing the calculation of the total column value: 

�̂�!" = 𝑧#,!" +	𝒂!"𝑻 	(𝒙&#'( − 𝒙#,!")        (1) 225 
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Where �̂�!" is the total column DMF output of a chosen species in a particular window from the P1 fit, 
za,P1 is the original vertical column DMF calculated from the prior profile scaled by the median VSF of 
the windows used, 𝒂!" is the vector of column averaging kernel values output from the P1 TCCON 
processing weighted by the pressure thickness of each atmospheric layer, 𝒙#,!" is the prior profile for the 
chosen species also scaled by the median VSF of the windows used, and 𝒙&#'( is partial column DMF to 230 
be retrieved for the chosen species. All components in Equation 1 are in dry mole fractions and the 
averaging kernel is unitless. Equation 1 tells us how the retrieved DMF would change if the profile 
constructed from the two partial colummns differed from xa,P1. 

Focusing on the rightmost term of Equation 1, the averaging kernel is multiplied by the difference 
of the prior and unknown DMF profiles summed for each level of the atmosphere.  235 

�̂�!" − 𝑧#,!" 	= 𝒂!") 	+𝒙&#'( − 𝒙#,!", = ∑ 𝑎!",*(+
*," 𝑥&#'(,* − 𝑥#,*)    (2) 

Our method splits the total column at a specified altitude, q, and scales the prior profile below and 
above q independently such that:  

�̂�!" − 𝑧#,!" = ∑ 𝑎!",*(
-
*," 𝛾.𝑥#,!",* − 𝑥#,!",*) + ∑ 𝑎!",*(+

*,-/" 𝛾0𝑥#,!",* − 𝑥#,!",*)  (3) 

where 𝜸𝑳 and 𝜸𝑼 are the lower partial column scaling factor and upper partial column scaling factor, 240 
respectively. As this is linear, we group terms reducing the right side of Equation 3 to: 

	�̂�!" − 𝑧#,!" 	= (𝛾. − 1)∑ 𝑎!",*
-
*," 𝑥#,* + (𝛾0 − 1)∑ 𝑎!",*+

*,-/" 𝑥#,*   (4) 

Or further to: 

�̂�!" − 𝑧#,!" 	= (𝛾. − 1)	𝐽. + (𝛾0 − 1)	𝐽0       (5) 
 245 

Where, 

𝐽. = 𝐴𝑊∑ 𝑎!",*
-
*," 𝑥#,!",*         (6) 

and  

𝐽0 = 𝐴𝑊∑ 𝑎!",*+
*,-/" 𝑥#,!",*         (7) 

𝐽.  and 𝐽0  both reduce to scalar values for each spectral window and prior profile. The AW term is a 250 
weighting term based on daily anomaly values between individual windows and is referred to as window 
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weighting from here on. We discuss the choices and reasoning for the AW term in Sect. 3.1.1 and 
Appendix A.    

Equation 5 is applicable to all spectral windows for each spectrum measured. For example, for 
our CO2 retrieval we use four separate spectral windows per measured spectrum and often have a few 255 
hundred spectra measured per day.  

Our TARDISS retrieval uses an entire day’s worth of TCCON retrievals in order to utilize the 
information in the temporal dimension. We combine the above equations into a matrix form: 

𝒚 = 𝑲𝒙3 + 𝝐           (8) 

Where y is a vector of values from the left side of Equation 5 for the a number of windows and k number 260 
of spectra over a day,  

𝒚 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(�̂�!" − 𝑧#,!")4","

⋮
(�̂�!" − 𝑧#,!")4",5

⋮
(�̂�!" − 𝑧#,!")46,"

⋮
(�̂�!" − 𝑧#,!")46,5⎦

⎥
⎥
⎥
⎥
⎥
⎤

         (9) 

 K is the matrix of the 𝑱𝑳 and 𝑱𝑼 values for the a number of windows and k number of spectra over a day,  

𝑲 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐽.,4"," 0 𝐽0,4"," 0

⋱ ⋱
0 𝐽.,4",5 0 𝐽0,4",5
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐽.,46," 0 𝐽0,46," 0
⋱ ⋱

0 𝐽.,46,5 0 𝐽0,46,5⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

      (10) 
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and 𝒙3 is our state vector of partial column scalars which are the same for all windows in each measured 265 
spectrum.  

𝒙3 =	

⎣
⎢
⎢
⎢
⎢
⎡
(𝛾. − 1)"

⋮
(𝛾. − 1)5
(𝛾0 − 1)"

⋮
(𝛾0 − 1)5⎦

⎥
⎥
⎥
⎥
⎤

          (11) 

With k measurements made in a day, four spectral windows, and two partial columns, the y vector is of 
the size 4k by 1, the 𝒙3 vector is of the size 2k by 1, and the K matrix is of the size 4k by 2k.  

Fitting over an entire day of TCCON retrievals reduces the retrieved partial column error values 270 
compared to fitting individual measurements using Equation 5. Appendix B shows the influence of 
including multiple observations on the retrieved partial column errors. 

We use the maximum a posteriori (MAP) approach (Rodgers 2008) to calculate the most probable 
state vector from the given models and prior information. In line with the assumptions of the MAP 
approach, we assume our problem is linear and follows a gaussian distribution.  The MAP solution can 275 
take a few equivalent forms. In this work we use: 

𝒙C3 = 𝒙#,3 + 𝑺#𝑲)(𝑲𝑺#𝑲) + 𝑺7)8"(𝒚 − 𝑲𝒙#,3)      (12) 

Where 𝒙#,3 is the prior partial column scalar values, 𝑺# is the prior covariance matrix, K is the forward 
mapping matrix, 𝑺𝝐 is the model covariance matrix, y is the measurement vector, and 𝒙C3 is the output 
solution vector. The input components (xa,y, Sa, and 𝑺𝝐) are described in Sect. 2.3.2.  280 

 Once we have calculated the most likely solution for the partial column scalars, 𝒙C3, we reconstruct 
the partial column DMF for the lower and upper partial columns as: 

𝒙!: = 𝒙C3𝒙#,!" + 𝒙#,!"         (13) 
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where 𝒙#,!" is the prior partial column DMF calculated by integrating the median P1 posterior profile 
using the same method as the standard TCCON full column retrievals (Wunch et al., 2011).  285 

The MAP retrieval allows us to calculate the information content of the retrieval. In particular, we 
compare the degrees of freedom for our retrieval calculated by taking the trace of the averaging kernel of 
the fit, calculated as the following: 

𝐷𝑜𝐹𝑠 = 𝑡𝑟(𝑨) = 𝑡𝑟((𝑲)𝑺78"𝑲+ 𝑺#8")8"𝑲)𝑺78"𝑲)      (14) 
 290 
as well as the Shannon information content derived from the natural log of the determinant of the 
difference between the averaging kernel and an identity matrix:  
 
𝐻 = − "

;
ln	(|𝑰 − 𝑨|)          (15) 

Generally, profile retrieval averaging kernels represent the sensitivity of a specific level of a 295 
profile to the rest of the levels in the profile. The averaging kernel for the TARDISS inversion is primarily 
a temporal averaging kernel relating how each partial column calculation relates to every other 
measurement during a day. We normalize the degrees of freedom by the number of measurements in each 
day for a more comparative understanding of the TARDISS degrees of freedom with respect to a 
traditional profile retrieval as well as between days with a large variation in the number of measurements. 300 

In order to compare the partial column retrievals to the in situ profiles for validation purposes, we 
calculate the vertical sensitivities of the TARDISS fit (shown in Fig. 4) using the gain matrix, G, from 
the TARDISS inversion and the averaging kernel profiles from the P1 measurement windows as: 

𝑮 = (𝑲)𝑺78"𝑲+ 𝑺#8")8"𝑲)𝑺78"	        (16) 
 305 
𝑨<='( = 𝒙#,!" ∗ 𝑮 ∗ 𝒂!"         (17) 

where 𝒂!" is the same vector of column averaging kernels from Equation 1.  

Since 𝒂!"	 represents the change in TCCON Xgas DMF per change in true DMF at each level 

(𝜹𝑿𝒈𝒂𝒔,𝑻𝑪𝑪𝑶𝑵
𝜹𝒙𝒕𝒓𝒖𝒆

) and the gain matrix represents the change in partial column scalar per change in TCCON 

Xgas DMF ( 𝜹𝜸
𝜹𝑿𝒈𝒂𝒔,𝑻𝑪𝑪𝑶𝑵

), 𝑨𝒗𝒆𝒓𝒕 has units of change in partial column scalar per change in level DMF 310 
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value ( 𝜹𝜸
𝜹𝒙𝒕𝒓𝒖𝒆

) and relies on the difference between a ‘true’ in situ profile and the prior profile used in the 

inversion.  

2.3 Algorithm Setup and Choices 

2.3.1 Pre-processing of the Phase 1 Data 

We begin by preprocessing the P1 fits. We take the P1 model prior profile and scale it by the 315 
median value of the P1 output scalar values for each spectrum from the windows used so that our 
TARDISS fit is centered around the median P1 posterior profile for each measurement point. This 
assumes that the true column VMR of a species is some linear combination of the VMRs calculated 
from the windows used in the TARDISS fit. Then, we calculate the partial column priors by integrating 
the scaled prior profiles over the respective pressure levels for each chosen partial column. Finally, we 320 
assemble the necessary matrices for the fit described by Equation 12. 

2.3.2 Maximum a Posteriori Components 

The different components of Equation 12 reflect where prior information can be used in the 
algorithm and several additional choices can be made to improve the fit. The following describes our 
standard input for these components. We present tests of the retrieval’s sensitivity to these choices in 325 
Sect. 3.1.1. 

For the prior covariance matrix, we use an identity matrix for the lower partial column scalar 
portion of the covariance matrix, and we use an exponential decay from the diagonal for the upper 
partial column scalar portion of the covariance matrix. This requires that upper column scalar values 
shift in relation to one another and theoretically imposes higher costs if the upper partial column scalars 330 
change rapidly in time. The off-diagonal values of the upper partial column portion of the prior 
covariance matrix decay with respect to the measurements made before and after them over the course 
of one-third of a day of measurement. Since the prior covariance matrix is inverted in the calculations, 
decreasing the magnitude of the prior covariance matrix scalar increases the constraints imposed during 
the calculations so that a scalar of 10-5 is a larger constraint than a scalar of 10-4. A discussion of the 335 
influence of the temporal covariance is in Sect. 3.1.3.  
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Figure 2.  Example of a prior covariance matrix color coded by the magnitude of the value. The lower 340 
partial column has a prior covariance that is a scaled identity matrix, the upper partial column has a 
prior covariance that decays over one third of the measurement day, and the cross covariances between 
the upper and lower partial columns is assumed to be zero.  

 
The measurement error covariance matrix is a diagonal matrix composed of the squares of the 345 

P1 errors for each spectral window so that measurements with smaller errors are weighted more heavily 
than those with larger errors.  

CO2 and CO use different values for the prior TARDISS scale factors (xa,g). For CO, we assume 
a uniform prior scale factor of one for all observations. For CO2 we solve Equation 12 using the linear 
least-squares method: 350 
 
𝒙.; = (𝑲)𝑲)8"𝑲)𝒚          (18) 
 
and use the median daily value of xL2 as xa,g in Equation 12. While the linear least-squares method 
provides a solution to our retrieval, it does not allow us to utilize additional prior information in the 355 
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covariance of the partial columns or to specify prior partial column scale factors. Including these pieces 
of information reduces the retrieved partial column error values as shown in Fig. B. in Appendix B. 

We adopted different approaches for these two gases since using a static prior of one for the CO2 
retrievals worsened the comparison to in situ data but improved the validation comparison for the CO 
retrievals (shown in Sect. 3.1.1).     360 

2.3.3 Choosing Spectral Windows for the TARDISS Fit 

The primary information content used in our algorithm is derived from the fact that the total 
column abundances retrieved from different spectral windows of the same species will differ due to 
differences in their kernels, unless the shape of the a priori profile is perfect. Thus, differences in the 
retrieved columns from different windows, together with their kernels, can be used to infer the errors in 365 
the a priori VMR profile, and hence derive a better VMR profile than one which is determined by 
simply scaling the a priori VMR profile. For this method to have sufficient information, windows with 
different vertical averaging kernels are needed, such as those shown in Fig. 1. Preferably, the windows 
used for the TARDISS retrieval would have a window that is more sensitive to the lower atmosphere 
and a window that is more sensitive to the upper atmosphere so that a larger amount of information is 370 
contained between them. While it is imperative to use windows that have differing averaging kernel 
profiles, it is also necessary to use windows that have low error in the P1 fit. The higher the error in a 
particular spectral window, the more uncertainty that that retrieval will add to the TARDISS results.  

For the partial column CO2 calculations, we use four spectral windows in the P1 process 
centered at 6339, 6220, 4852, and 6073 cm-1. The 6339 cm-1 and 6220 cm-1 windows are 375 
spectroscopically similar and have column averaging kernel profiles that vary with solar zenith angle 
providing some vertical information over the course of a day. The 4852 cm-1 window has an averaging 
kernel profile that is largest at the surface and minimal at upper troposphere and lower stratosphere and 
the 6073 cm-1 window has an averaging kernel profile that is effectively the opposite of the 4852 cm-1 
window. Both the 4852 cm-1 and 6073 cm-1 window averaging kernels are largely independent of solar 380 
zenith angle with the exception of the highest levels in the 6073 cm-1 window profile.  

For the partial column CO calculations, we use three spectral windows fit during the P1 process. 
There is one window in the NIR region centered at 4233 cm-1 and two windows in the MIR region 
centered at 2111 and 2160 cm-1. The two MIR windows have similar averaging kernel profiles that 
maximize at the surface and drop to nearly zero at upper levels. The NIR window averaging kernel 385 
profile has a minimum at the surface and a maximum at the upper levels.  

Unlike the CO2 windows that are all observed by the InGaAs detector, the MIR CO windows are 
measured by a liquid nitrogen cooled InSb detector. For this reason, we only have results of the CO 
partial column fits at the Caltech, Lamont, and East Trout Lake TCCON sites and, due to the lack of in 
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situ profiling data in Pasadena, we only have direct vertical profile comparison results from the Lamont 390 
and East Trout Lake TCCON site.  

Other windows measured by TCCON instruments were considered for the partial column 
calculations for both species however they had high levels of error in the P1 fit, had fits that were 
particularly sensitive to changes in temperature, or their averaging kernels were similar enough to the 
other windows that they would not provide any extra information while still increasing the error.  395 

2.3.4 Choice of Partial Column Height 

We chose the lower partial column to integrate from the surface through the first five vertical 
layers of the GEOS meteorological fields. Using this criterion, a site at sea level has a lower column 
from sea level to 2 km and the upper partial column from 2 to 70 km. While somewhat arbitrary, the 
choice of 2 km was made to have the lower partial column encompass the surface mixed layer at most 400 
locations while minimizing the dilution of surface exchange signals that would result from integrating 
over a larger partial column. If there are known enhancements of significant species enhancement near 
the 2 km level (such as CO during wildfire season), the retrieval performance may be degraded and a 
different partial column height may be a more appropriate choice.   

2.4 Comparison Data 405 

2.4.1 In situ Vertical Profile Data 

We use data from multiple aircraft and AirCore campaigns between 2008 and 2020 (Cooperative 
Global Atmospheric Data Integration Project; (2019)) to evaluate our partial column retrieval. All in 
situ CO2 data are reported on the WMO X2007 scale. The aircraft data are from the SEAC4RS 
campaign in 2013, the ATom and KORUS-AQ campaigns in 2016, and from measurements made by 410 
the Goddard Space Flight Center between 2014 and 2016. We use AirCore measurements taken in July 
of 2018 at the Armstrong, Lamont, and Park Falls sites. In addition, we use measurements from the 
NOAA Global Greenhouse Gas Reference Network’s Aircraft Program to compare with our lower 
column measurements. Table S2 provides a summary of the in situ data used in this work.  

The NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling 415 
by Regional Surveys (SEAC4RS) campaign used an AVOCET instrument on the ER-2 aircraft to 
sample in situ CO2 in the atmosphere from the surface into the lower stratosphere (Toon et al., 2016). 
The SEAC4RS measurements align with TCCON measurements at the Armstrong site on 23 September 
2013 where the ER-2 sampled from 1.5 km to 19 km altitude.  

The Korea-United States Air Quality Study (KORUS-AQ) campaign used a multitude of 420 
instruments and platforms to measure and better understand air quality in South Korea and how to 
improve it (Crawford et al., 2021). One of the measurement platforms was the NASA DC-8 aircraft 
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which made coincident measurements with the TCCON instrument at the Armstrong site on 18 June 
2016. Measurements of CO2 using a non-dispersive IR spectrometer during a flight that sampled from 
0.68 km to 12 km are used here for comparison to retrieved partial columns.  425 

The Atmospheric Tomography Mission (ATom) generated a global dataset to study the 
interactions of anthropogenic air pollution and greenhouse gases from Summer 2016 through Spring 
2018 (Wofsy et al., 2021; Thompson et al., 2022). During this mission, the NASA DC-8 aircraft made 
measurements of trace gases worldwide. On 22 August 2016, their path coincided with the TCCON 
measurements at the Park Falls site, where they measured in situ CO2 using a Picarro cavity ringdown 430 
spectroscopy (CRDS) trace gas analyzer (Crosson, 2008) from 0.79 km to 12 km.  

We use Goddard Space Flight Center aircraft measurements that were made at the Armstrong 
site on 20 and 22 August 2014, 02 October 2015, and 10 February 2016. Picarro CRDS measurements 
were made on these flights up to ~13 km and down to 0.6 km. Multiple measurements were made on 20 
and 22 August 2014. 435 

The AirCore sampling system is composed of coiled stainless-steel tubing that is open on one 
end and samples ambient air as it descends from a balloon flight. This sample is then analyzed using a 
Picarro CRDS trace gas analyzer using an algorithm that accounts for the effect of longitudinal mixing 
on vertical resolution (Karion et al., 2010; Tans, 2009). We use AirCore data from measurements made 
on 16, 17, and 18 July 2018 at the Armstrong site; on 23, 25, and 27 July 2018 at the Lamont site, and 440 
on 30 and 31 July 2018 at the Park Falls site.  

Finally, we use CO and CO2 data measured at the Lamont site (site code SGP) and at the East 
Trout Lake site (site code ETL) as a part of the NOAA Global Greenhouse Gas Reference Network’s 
Aircraft Program to measure the seasonal climatology of greenhouse gases in North America (Sweeney 
et al., 2015). We use data from 282 of the 399 flights made between 2008 and 2018 and all 34 flights 445 
for CO made between 2017 and 2020 at the SGP site. At the ETL site we use 26 of the 40 flights for 
CO2 and 26 of the 39 flights for CO made between 2017 and 2021. Most of the measurements were 
made below 6 km altitude at the SGP site and below 7 km altitude at the ETL site, with some 
measurements as low as 0.17 km altitude. We use data from individual flights that have more than 2 
measurements points within our 1.9 km lower partial column and at least one point at or below 1 km. 450 
Since these datasets do not include much data within the upper partial column, we compare with these 
measurements only to our retrieved lower partial column values and exclude them from the validation 
discussion in Section 3.1.  

2.4.2 Ground-based Data 

 In Section 3.4, we use ground-based data to compare to our lower partial column retrieval output 455 
and to begin discussions of the applications of our retrievals.  
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 Directly next to the Park Falls TCCON site is a 400 m tall tower that is part of the NOAA 
GGGRN tall-tower and AmeriFlux networks and has multiple vertical levels altitudes along the tower at 
which measurements are made (Berger et al., 2001; Andrews et al., 2014). The tall tower uses a Licor 
LI-6262 to measure CO2, and we use the measurements at the 396 m level to compare to our lower 460 
partial column retrievals.  
 A Cimel CE-318-N multiband photometer measures aerosol optical depth as a part of the 
AERONET network from the top of the Caltech Hall roughly 100 m from the Caltech TCCON site 
(Holben et al., 1998). It measures aerosol optical depth at 340, 380, 440, 500, 675, 870, and 1020 nm as 
well as atmospheric water vapor in centimeters. The photometer measures in 15-minute intervals and 465 
has been measuring at this location since 2010. We compare the level 1.5 cloud screened aerosol 
measurements to our lower partial column CO measurements to explore the connection between 
emissions, meteorology, and aerosols in Sect. 3.4.  

3 Results and Discussion 

To understand the effectiveness of our partial column retrieval, we use an adjusted version of the 470 
smoothing calculation shown in Equation 3 of Wunch et al. (2010) to determine the value the inversion 
would return if it were using the true profile instead of the scaled P1 priors:  

 
�̂�F = 𝑧#,!" + 𝑨<='(+𝒙('G= − 𝒙#,!",       (19) 
 475 

where 𝒙# is the prior profile used in Equation 1 and 𝒙('G= is the measured in situ profile converted to 
DMF. The in situ profile is interpolated to the same vertical levels as the TCCON prior profile as shown 
in Fig. 3. After calculating the smoothed in situ profile, we integrate from the surface of the profile to 
the same vertical level at which the partial column is separated, q in Equation 3, for the lower column or 
that level to the top of the atmosphere for the upper column using the method outlined in Wunch et al. 480 
(2010). We then compare the integrated, smoothed, in situ partial column DMF directly to the output 
from the reconstructed lower and upper partial columns calculated in Equation 13.  
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Figure 3. An example of the profiles used in the direct comparison calculations using data from the 485 
Park Falls site on July 27, 2018. The profile above 6 km is not shown. The solid black line is the 
TARDISS prior profile scaled by the median of the TCCON vertical scaling factors from the spectral 
windows used. The green dot-dashed line is the measured AirCore mixing ratios. The red, dashed line is 
the AirCore measurements interpolated to the vertical spacing of the TARDISS prior, and the blue, 
dotted line with circles is the smoothed, vertical sensitivity weighted profile that is integrated to 490 
calculate the partial column that our phase 2 fitting would calculate if it had a ‘true,’ AirCore profile. 
The black dots within the blue circles represent the points of the profile that make up the lower partial 
column.  
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The TARDISS algorithm is very efficient – taking only a minute of processing time per year of 495 
data for each species. This efficiency enables the validation comparisons to be performed using many 
different model choices. Thus, we evaluated the sensitivity of the TARDISS inversion by varying 
different forward model choices. The set of choices that we have designated as the operational setup for 
CO2 inversion are:  

• The covariance matrix is scaled by 10-5 to better constrain the fit  500 
• The prior scalar for the lower and upper partial column scalar is the daily median of the 

least squares solution for the respective column 
• The J values for each window are weighted by the square of the respective daily anomaly 

ratio of the individual columns (further explained in Appendix A).  
 505 
For the CO inversion, the operational setup parameters are:  

• A covariance matrix scaled by 10-5  
• An ideal prior partial column scalar of one  
• The J values are left unweighted. 

 510 
The daily anomaly ratios weightings are only applied to the CO2 fits as changing the weightings in the 
CO inversion did not significantly affect the output. We vary three aspects of the algorithm and observe 
the differences in the validation comparisons. The results of these tests are discussed in Sect. 3.1.1 and 
represented in Table 2 and Table 3. 

3.1 Validation Comparisons 515 

We compare retrieved partial column values from three of the five sites presented in this work 
using measurements from the same set of in situ data used to evaluate and derive the so-called ‘in situ 
scaling factor’ of the P1 TCCON retrievals. For CO2, there are twenty-four points of comparison 
obtained between 2013 to 2018. Twelve of those comparisons are from the Armstrong TCCON site 
spanning 2013 to 2018 and during different months of the year. Four profiles are available above the 520 
Park Falls TCCON site (August 2016 and July 2018). The remaining eight profiles are from the Lamont 
TCCON site and are all from July 2018. As the Lamont site is the only site in this work with an InSb 
detector and overlapping in situ measurements, the eight profiles measured at the Lamont site serve as 
the entire CO comparison.  

The comparison profiles were measured by aircraft-based instruments or AirCore measurements, 525 
all described in Sect. 2.4.1. We compare the TARDISS retrievals from spectra obtained within one hour 
of the of the in situ profile. One benefit of the 𝐴<='(	term in Equation 19 is that it includes the temporal 
sensitivity of the inversion data which is not able to be taken into account in other remote sensing 
validations; however, the temporal sensitivity (represented by off diagonal terms in 𝐴<='() is often close 
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to zero so that the retrieved partial column values have little influence on the data before or after them. 530 
We report linear fits between the partial column retrievals and the integrated, smoothed, in situ partial 
columns with y-intercepts forced through zero. Since our retrieval is designed to be linear, we use fits 
with y-intercepts forced through zero. As there are only scaling values in our retrieval, a non-zero y-
intercept would introduce spurious error into our analysis. Since the reported coefficient of 
determination (commonly referred to as the r2 value) for this linear fit would be spuriously high, we 535 
report the mean ratio of our retrieved partial column to the integrated, smoothed, in situ measurement as 
it deviates from one. This mean ratio deviation value gives a more direct understanding of how the 
partial column values compare as a lower value signifies a better comparison.  

We use these validation comparisons to perform sensitivity tests of our algorithm parameters 
and determine an operational set of parameters. We then use these optimal parameters for the CO2 and 540 
CO retrievals to quantify the total error of our retrieval by calculating a validation error multiplier for 
each site. 

3.1.1 Sensitivity Analysis 

 Several terms in our retrieval do not have a single, unambiguously correct choice for their 
values. To evaluate the sensitivity our retrieval to the choices made for these parameters, we have run 545 
our retrieval with alternate choices and report the degrees of freedom and comparison to in situ data 
(specifically, the retrieval comparison error, slope of the zero-forced linear fit, and the mean ratio 
deviation value of the linear fit) for each test. We tested changes to three terms: the TARDISS scale 
factor priors, the a priori covariance matrix scaling, and changes to the weightings on the individual 
windows. 550 

To test the sensitivity of the retrieval to the partial column scalar prior, we compare the changes in 
the validation when using 𝒙.; from Equation 18 as the prior, the daily median of 𝒙.; (our operational 
choice for CO2), as well as the idealized scalar of unity (our operational choice for CO) to each other. In 
Tables 2 and 3, these are identified as “Xl2,” “Xl2 daily median,” and “static ideal prior,” respectively. 

We also test the sensitivity of the retrieval to how the prior covariance matrix is scaled. Doing so 555 
changes how strongly the retrieval is constrained to the prior. Here, we alter the a priori covariance 
matrix by scaling the matrix uniformly to evaluate the optimal weighting with respect to the validation 
comparisons. We report the results of using scaling values of 1x10-4, 5x10-5, and 1x10-5. While other 
scaling values were tested, the resulting errors were large enough or the resulting degrees of freedom 
were small enough, that the values were disregarded from further study.  560 

Finally, we test the sensitivity to scaling the window weighting matrices defined by Equations 6 and 
7. In our testing, we scale these matrices (the AW term in Equation 6 and 7) by one, the daily anomaly 
ratios discussed in Appendix A, and the square of the daily anomaly ratios. We multiply the matrices by 
these scalars since each spectral window is sensitive to different parts of the atmosphere and therefore 
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returns a different total column Xgas value for the same atmospheric state. The ratio of the daily 565 
anomalies measured with the different windows used allows us to weight the windows in the inversion 
based on their observed relationships. Scaling the window weightings for the CO2 retrieval by the 
square of the daily anomaly ratios gave the best comparison likely due to the increase of the 
contribution of the 4852 cm-1 window to the retrieval. Scaling the window weightings for the CO 
retrieval had little effect so we proceed with results retrieved with unscaled window weightings. We 570 
show the results of the scaled CO2 retrieval comparisons in Table 2 and the results of the unscaled CO 
retrieval comparisons in Table 3.  

For the CO2 retrievals, the best performance and the operational set of parameters comes from using 
the daily median of the least squares solution as the prior, scaling the a priori covariance matrix by 10-5, 
and scaling the window weights by the square of the daily anomaly ratios. The degrees of freedom per 575 
measurement changes with the scaling of the prior covariance matrix and varies between 0.364 (16.1 for 
the overall comparison) for the 10-5 scaling increasing to 0.800 (34.5 overall) for the 10-4 scaling. The 
same pattern holds for the errors with values of 0.586 ppm and 0.942 ppm for the 10-5 scaling increasing 
to 1.331 ppm and 1.661 ppm for the 10-4 scaling for the upper and lower columns, respectively.  

The validation slopes change with both the prior covariance matrix scaling and the prior scalar 580 
choice. As we are trying to determine the parameters that give the best comparison results between the 
in situ and lower partial column CO2 data specifically, we chose the parameters that resulted in the 
validation slope closest to one for the lower partial column. The validation slope closest to one is 1.007 
which is the results of using the daily median of the 𝒙.; values as a prior and scaling the prior 
covariance matrix by 10-5. The validation slope for the upper column comparison with these parameters 585 
is 1.004 which is comparable to values from other parameter choices. While scaling the prior covariance 
matrix by 5x10-5 and using a prior scalar of unity optimizes the upper partial column comparison, it 
leads to a poorer lower column comparison which is counter to the intention of the algorithm. The full 
comparison data between retrieval parameters is shown in Table 2 and the comparison data for the 
unscaled window weights are shown in Table S1. The poor lower column comparisons and excellent 590 
upper column comparisons for the retrievals using no window weightings shown in Table S1 suggest 
that the window weightings are acting to emphasize the information from the 4852 cm-1 window (and 
theoretically the surface) as intended. Since the largest variation in validation slopes in either column 
and for different window weightings is driven by the change in the prior partial column scalar, we posit 
that the prior partial column scalar choice is the most significant parameter in the CO2 retrieval.   595 

 
 
 

https://doi.org/10.5194/amt-2022-322
Preprint. Discussion started: 7 December 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

TARDISS 
Prior 

Choice 

Prior 
Covariance 

Matrix 
Scaling 

DoF per 
measurement 

(overall) 

Lower 
Column 

Error 
(ppm) 

Lower 
Column 

Validation 
Slope 

Lower 
Column 
Mean 
Ratio 

Deviation 

Upper 
Column 

Error 
(ppm) 

Upper 
Column 

Validation 
Slope 

Upper 
Column 
Mean 
Ratio 

Deviation 

 

 10-5* 0.364 (16.1) 0.942 1.007 0.010 0.586 1.004 0.012  

Xl2 daily 
median 10-4 0.800 (34.5) 1.661 1.012 0.014 1.331 1.005 0.012  

 5x10-5 0.700 (30.4) 1.444 1.010 0.012 1.042 1.005 0.012  
 10-5 0.364 (16.1) 0.942 1.008 0.010 0.586 1.004 0.012  

Xl2 10-4 0.800 (34.5) 1.661 1.012 0.014 1.331 1.004 0.011  
 5x10-5 0.700 (30.4) 1.444 1.010 0.012 1.042 1.004 0.012  
 10-5 0.364 (16.1) 0.942 1.013 0.013 0.586 0.998 0.005  

Static 
ideal prior 

10-4 0.800 (34.5) 1.661 1.016 0.016 1.331 1.001 0.007  

 5x10-5 0.700 (30.4) 1.444 1.014 0.015 1.042 1.000 0.006  
 
Table 2. Variations in CO2 retrieval upper and lower column validation slopes, upper and lower column 600 
mean ratio deviations, upper and lower column comparison errors, and DoF for different TARDISS 
prior choices and prior covariance matrix scaling values. All values shown here are for retrievals using 
the square of the anomaly weightings. The asterisk in the first row indicates that this is the operational 
set of parameter choices for the CO2 retrieval.  
 605 

For the CO retrievals, the best performance uses a static prior scalar of one, scaling the prior 
covariance matrix by 10-5, and not scaling the window weights. The degrees of freedom per 
measurement increases from 0.170 (6.77 overall) to 0.638 (25.3 overall) and the errors increase from 
0.174 ppb and 0.413 ppb to 0.402 ppb and 0.861 ppb as we change the scaling of the prior covariance 
matrix from 10-5 to 10-4 for the upper and lower columns, respectively. All the tests resulted in similar 610 
values of mean ratio deviation and errors under 1 ppb but using a static prior scalar of one and scaling 
the prior covariance matrix by 10-5 resulted in the lower column validation slope that was closest to one 
(1.001), so we chose this set of parameters as the operational parameters for the CO retrievals. These 
parameters also had an upper column validation slope of 1.031 which is closer to one than slopes from 
most other parameter choices.  615 

 
 

 

https://doi.org/10.5194/amt-2022-322
Preprint. Discussion started: 7 December 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

TARDISS 
Prior 

Choice 

Prior 
Covariance 

Matrix 
Scaling 

DoF per 
measurement 

(overall) 

Lower 
Column 

Error 
(ppb) 

Lower 
Column 

Validation 
Slope 

Lower 
Column 
Mean 
Ratio 

Deviation 

Upper 
Column 

Error 
(ppb) 

Upper 
Column 

Validation 
Slope 

Upper 
Column 
Mean 
Ratio 

Deviation 

 10-5 0.170 (6.77) 0.413 0.977 0.024 0.174 1.079 0.078 

Xl2 daily 
median 

10-4 0.638 (25.3) 0.861 0.987 0.014 0.402 1.095 0.094 

 5x10-5 0.485 (19.3) 0.727 0.983 0.017 0.310 1.092 0.091 

 10-5 0.170 (6.77) 0.413 0.973 0.028 0.174 1.088 0.087 

Xl2 10-4 0.638 (25.3) 0.861 0.985 0.017 0.402 1.101 0.100 

 5x10-5 0.485 (19.3) 0.727 0.980 0.021 0.310 1.098 0.098 

 10-5 * 0.170 (6.77) 0.413 1.001 0.005 0.174 1.031 0.033 

Static 
ideal prior 10-4 0.638 (25.3) 0.861 1.007 0.012 0.402 1.053 0.055 

 5x10-5 0.485 (19.3) 0.727 1.005 0.009 0.310 1.046 0.048 

 
Table 3. Variations in CO retrieval upper and lower column validation slopes, upper and lower column 620 
mean ratio values, upper and lower column comparison errors, and DoF for different TARDISS prior 
choices and prior covariance matrix scaling values. The asterisk in the second to last row indicates that 
this is the operational set of parameter choices for the CO retrieval.      
 
 625 
3.1.2 Standard Output 
 

Using the operational setup for our TARDISS fit, the comparison of CO2 between our output 
lower partial column VMRs and the integrated, smoothed, in situ partial columns for all of the sites 
gives a slope of 1.007, a best fit standard error of 0.002 on the slope, and a corresponding mean ratio 630 
deviation value of 0.010. Figure 4 shows the 1-to-1 comparison plots for the upper and lower partial 
columns for CO2 and CO. Across all twenty-four points, the average degrees of freedom of the daily 
inversions was 0.364 degrees of freedom per measurement for the lower column and the comparisons 
include between thirteen and sixty-seven inverted partial column data points. The error in the lower 
partial column values was 0.942 ppm on average across the comparison and the average reported error 635 
from the in situ profiles was between 0.03 and 0.156 ppm for the comparative partial column. The 
comparisons vary by site with the Lamont comparisons having the largest offset slope of 1.008. The 
Park Falls and Armstrong comparisons have slopes of 1.000 and 1.006 respectively. Since neither the 
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P1 or TARDISS retrieval can fully optimize the shape of the partial profile that they are scaling, the site 
to site differences are likely due to the variation of ability of the TCCON P1 priors to capture the 640 
source, sink, and transport complexities in the shape of the prior profile that directly translate to the 
DMFs used in the partial column scaling.  

The operational comparison for the lower partial column CO fit gives a slope of 1.001, a best fit 
standard error of 0.002, and a corresponding mean ratio deviation value of 0.005. The inversion days 
have an average of 0.170 degrees of freedom per measurement with between 33 and 43 data points per 645 
comparison. The error in the lower partial column values was 0.413 ppb on average across the 
comparison.  

To quantify the total error of our retrieval, we use the 1-to-1 comparisons to scale our error 
values to the point where at least 50% of the comparison points are within the error range of the 1-to-1 
line. We calculate the scalar values as: 650 

𝑉𝐸𝑀 = 	𝑀𝑒𝑑𝑖𝑎𝑛(HÎ-./08	Î1H
L

)       (18) 
where �̂�MNO& is the comparison partial column value, �̂�F	is the integrated, in situ partial column value, 𝜎 
is the output total retrieval error, and VEM is the calculated validation error multiplier. For CO2 at Park 
Falls, the lower and upper column VEM are 1.23 and 11.7; at Armstrong, the lower and upper column 
values are 4.48 and 8.33; and at Lamont the values are 3.43 and 6.29 for the lower and upper column, 655 
respectively. Since Caltech and East Trout Lake do not have comparison data, we apply error multiplier 
values of 4.48 and 11.7 as they are the largest multiplier values from among the other sites. For CO, the 
Lamont site the multiplier values are 1.57 and 12.5 which we use for the Caltech and East Trout Lake 
site CO retrieval data as well. The upper column VEM values are consistently larger than the associated 
lower column values; however, since the upper column errors are smaller than the lower column errors, 660 
the total errors for the lower and upper columns are closer in magnitude than the VEM values.  
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Figure 4. The direct comparisons between the partial column DMF values retrieved from the TARDISS 
fit and the integrated, smoothed aircraft partial columns for CO2 (a,b) and the CO (c,d) for the lower 
(a,c) and upper (b,d) columns. The CO2 comparisons are color coded by site and the CO comparisons 665 
are solely from the Lamont site. The error bars in the x-direction are the reported errors from the aircraft 
data smoothed the same way as the in situ measurements and the error bars in the y-direction are the 
output errors from the TARDISS fit. The black solid line is the 1-1 line and the blue line is the linear fit 
of the data with the y-intercept forced through zero. 

 670 
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3.1.3 Temporal Covariance 675 
 

The analysis above implemented an a priori covariance matrix with temporal covariance 
between upper partial column scalars over the course of a day of measurement, shown in Fig. 2. To 
determine how this affects our retrievals, we compare the data above to the validation comparison from 
a CO2 retrieval not constrained by a temporal covariance. The prior covariance matrix without the 680 
temporal covariance is simply a diagonal matrix of the 10-5 scalar value. Table 4 shows that the 
retrievals without temporal constraints have a slightly poorer validation comparison overall, including 
higher errors and fewer degrees of freedom. However, the site by site differences in validation data 
show that the lower column VEM for the Armstrong site is smaller when using a temporally 
unconstrained fit, whereas both the Park Falls and Lamont VEMs are improved when implementing the 685 
temporal constraints. Similarly, the upper column VEM values at all sites improve without the temporal 
constraints. While the purpose of this publication is to create an operational product, the varying effects 
of the prior covariance matrix choice on the site VEMs suggest that the site by site parameter choices 
could be individually determined in order to minimize error and increase the partial column precision if 
there were sufficient in situ validation profiles over the measurement site. 690 

 

Statistics  
Temporally Constrained 

Upper Column 
Temporally Unconstrained 

Upper Column 
Validation DoF (Overall)  0.364 (16.1) 0.317 (13.9) 

Lower Column CO2    
 Error (ppm) 0.942 0.978 
 Validation Slope 1.007 1.008 
 Mean Ratio Deviation 0.010 0.012 
 Park Falls VEM 1.23 1.52 
 Armstrong VEM 4.48 4.35 

 Lamont VEM 3.43 5.09 
Upper column CO2    

 Error (ppm) 0.586 1.053 
 Validation Slope 1.004 1.002 
 Mean Ratio Deviation 0.012 0.013 
 Park Falls VEM 11.7 9.04 
 Armstrong VEM 8.33 5.26 
 Lamont VEM 6.29 3.36 

 
Table 4. Validation comparison DoF, error, validation slope and mean ratio deviation and site VEM 
values for lower and upper column CO2 for retrievals using a temporally constrained upper column and 
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a temporally unconstrained upper column. The retrievals are performed with the operational parameters 695 
denoted by asterisks in Table 2.      
 

The way that the temporal covariance impacts our validation comparison is through the partial 
column vertical sensitivities described in Equation 17 via the gain matrix (Equation 16). To assess 
the importance of our chosen prior covariance matrix, we compare the vertical sensitivities for a 700 
temporally constrained upper column and a temporally unconstrained upper column (shown in Fig. 
5) for a representative day (July 27th, 2018 at the Lamont site) using the operational parameters 
denoted by the asterisk in Table 2.  

Without the temporal constraint, the upper column sensitivities are on the same order as the 
lower column sensitivities with values between -0.05 and 0.12. For reference, a change of 1 ppm at 705 
a level with a sensitivity of 1 would result in a change in the partial column scalar of 0.025 and 
partial column scalars for CO2 change on the order of a few percent O(0.01) per measurement. The 
upper column sensitivity peaks around the 10 km level at low solar zenith angles and the peak 
moves toward the surface at higher solar zenith angles. The lower column sensitivities always peak 
at the surface but the sensitivity increases at higher solar zenith angles.  710 

With the temporal constraint, the pattern of the peaks with respect to SZA remains similar but 
the upper column sensitivities are roughly five times the value and the lower column sensitivities are 
half the value as the temporally unconstrained values. The imposed temporal covariance constrains 
the upper column to vary together over the span of a measurement day so that a change at one level 
in the column at one measurement point would also induce changes at other measurement points 715 
therefore increasing the vertical sensitivities in the upper column over the entire retrieval day. This 
constraint is also stringent enough that it propagates into the sensitivity of the lower column scalar. 
Since our goal is to retrieve a lower partial column it seems counterintuitive that using sensitivities 
with an order of magnitude difference provides a better validation comparison. However, for this 
method we assume that we know the shape and behavior of the upper column fairly well and that 720 
most of the change occurs near the surface. Given these assumptions, constraining the upper column 
more heavily by introducing expected daily patterns through the a priori covariance matrix allows 
for the lower column retrieval to have improved comparisons with in situ data despite decreased 
vertical sensitivities.  

While we test retrievals with and without temporal covariance, the choice of prior covariance 725 
matrix shape could be much more complex. Future study could include using model generated or 
back trajectory based temporal covariances to include outside information in the retrieval 
dynamically. For an operational retrieval product, we will include the temporal covariance in the 
prior covariance matrix as an operational parameter. 

 730 
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Figure 5. Vertical sensitivities of the lower partial column (a,c) and upper partial column (b,d) scalars 
color coded by solar zenith angle in degrees. The sensitivities calculated when using a temporally 
covariant prior covariance matrix are shown in (a) and (b) and when using a non-temporally covariant 
prior covariance matrix are shown in (c) and (d).  735 
 

3.2 Errors and Information Content 

3.2.1 Error Analysis 

Using the information from the validation comparison, we can study the errors of the entire dataset 
from each of the five sites. The output of the retrieval is the partial column scalar and the error retrieved 740 
is the standard deviation of the partial column scalar calculated from the retrieval variance and 
represented as another scalar value. To convert our partial column scalar error to parts per million, we 
multiply the error scalar value by the prior partial column mixing ratio. Error varies from site to site due 
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to variations in the P1 total column errors that are input to the measurement covariance matrix and due 
to how well the prior partial column DMF matches the, generally unknown, actual partial column DMF. 745 
We report the total retrieval error, retrieval error components, and the error contribution from the 
validation comparison measurements in Table 5.  

Amongst all the sites, the error values range from 0.977 ppm to 1.068 ppm for lower column CO2 
and from 0.605 ppm to 0.737 ppm for the upper column CO2 with the highest average error in Park 
Falls and the lowest average error in Armstrong for both columns. For CO retrievals, the average total 750 
retrieval error ranges from 0.391 ppb to 0.832 ppb for the lower column and 0.105 ppb to 0.492 ppb for 
the upper column. In general, the errors vary minimally with season, but the Lamont site has a distinct 
seasonality for both lower column CO and CO2 retrievals with the highest errors are during the summer 
perhaps due to differences between the true and prior profiles at this site during summer (Fig. S1). The 
errors for CO2 generally increase over time since the prior partial column that is being scaled is 755 
increasing with continuing anthropogenic emissions even though the scalar values remain similar across 
the dataset for both CO and CO2 (Fig. S2).  

The total retrieval error is the total of the model parameter error, the smoothing error, and the 
retrieval noise (Rodgers, 2008). In this retrieval, since there are no model parameters in the state vector, 
the model parameter error is zero. The variance due to model parameters is represented in the sensitivity 760 
analysis and becomes zero when we choose a particular set of model parameters. In future 
implementations, the model parameters could be included in the state vector and optimized within the 
retrieval.  

Because the model parameter error goes to zero in our implementation, this means that the 
current total retrieval error is the square root of the sum of the smoothing error and the retrieval noise. 765 
The smoothing error is 59.3% to 71.0% of the total retrieval error on average for CO2 and 40.5% to 
81.0% of the total retrieval error on average for CO depending on the site and is directly related to the 
scaling of the prior covariance matrix. For example, if we did not scale our prior covariance matrix our 
smoothing error would be nearly zero. While scaling the a priori covariance matrix increases the 
smoothing error, it also results in a reduction to the total retrieval error. The retrieval noise is 29.0% to 770 
40.7% of the total retrieval error on average for CO2 and 19.0% to 59.5% of the total retrieval error on 
average for CO depending on the site and has the opposite relationship to the scaling of the a priori 
covariance matrix. The retrieval noise reflects the effect of the model covariance matrix that is 
composed of the P1 measurement errors and therefore reducing the P1 errors would also reduce the 
retrieval noise.  775 

The total retrieval error for each site is determined by the multiplying the retrieved errors by the 
site and partial column respective VEM values. After implementing the VEMs, the errors for the lower 
partial column CO2 retrieval range from 1.31 ppm to 4.66 ppm and from 0.614 ppb to 1.31 ppb for CO 

across all sites and data. As the Caltech and East Trout Lake sites have no validation comparisons, we 
use the largest validation error multiplier (that of the lower column Armstrong and upper column Park 780 
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Falls comparison) as a higher bound. The comparisons in Fig. 4 are recreated with the scaled errors in 
Fig. S4.  
 The retrieval errors are small enough that the TARDISS results have some power for evaluating 
CO2 fluxes at TCCON sites. The error compared to the overall lower partial column DMF is small, 
0.80% on average across the five sites for CO2.  785 
 

Site 

Mean 
Lower/Upper 

Column 
Retrieval 

Error (ppm 
for CO2; ppb 

for CO) 

Retrieval 
Noise (% of 

total) 

Smoothing 
Error (% of 

total) 

Lower/Upper 
Column 

Validation 
Error 

Multiplier 

Mean Total 
Lower/Upper 
Column Error 
(ppm for CO2; 
ppb for CO) 

CO2 Retrievals      
Park Falls 1.068/0.737 29.0 71.0 1.23/11.7 1.31/8.62 
Armstrong 0.977/0.608 40.7 59.3 4.48/8.33 4.12/5.06 

Lamont 1.035/0.678 32.1 67.9 3.43/6.29 3.08/4.26 
Caltech 1.040/0.670 35.0 65.0 4.48/11.7 4.66/7.84 

East Trout Lake 1.025/0.605 36.2 63.8 4.48/11.7 4.59/7.08 
CO Retrievals      

Lamont 0.832/0.492 59.5 40.5 1.57/12.5 1.31/6.15 
Caltech 0.413/0.105 19.0 81.0 1.57/12.5 0.648/1.31 

East Trout Lake 0.391/0.182 27.1 72.9 1.57/12.5 0.614/2.28 
 
Table 5. Errors in the CO and CO2 lower partial column retrievals of each site shown as the average of 
the entire data time series and broken down into total retrieval error, retrieval noise, smoothing error, 
validation error multiplier, and total error. The values for total retrieval error and total error are one 790 
sigma.  

3.2.2 Information Content 

The information content of the retrieval is determined by the DoF and Shannon information 
content (H) of the retrieval, each calculated from the averaging kernel of the retrieval. The DoF 
represent the independent pieces of information that can be retrieved from a measurement. We report 795 
our DoF values both normalized by the number of measurements made in a day, as well as the daily 
average DoF. Since the DoF are calculated as the trace of the averaging kernel, we isolate and report the 
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DoF from the upper and lower column separately along with the total. The Shannon information content 
is a single value to represent the effectiveness of the retrieval to recover information from the model 
with respect to the variance in the data. Higher Shannon information content values correspond to a 800 
retrieval with a higher possible effectiveness.   

The information content is summarized for each site in Table 6. The overall average lower 
column DoF per measurement across all sites and collected data is 0.353 for CO2 and 0.218 for CO. The 
lowest DoF average value of 0.287 is in Park Falls and the highest DoF average value of 0.425 is in 
Armstrong for CO2 and, between the three sites with CO retrievals, East Trout Lake has the highest 805 
average DoF of 0.292 compared to 0.214 for Lamont and 0.197 for Caltech. The upper column DoF are 
significantly less than the lower column DoF due to the constraints implemented in the prior covariance 
matrix.  

Ideally, DoF values greater than one are desired for traditional profile retrievals. However, the 
temporal aspect of our retrieval complicates the discussion. If we consider the CO2 retrievals, the five 810 
sites used in this work made an average of 173 measurements per day so that the DoF value average of 
0.353 per measurement still retrieve an average of 60.4 independent pieces of information about the 
lower partial column per day which provides significant information on the diurnal variation and the 
fluxes into and out of the lower column.  

The information content shown in the DoF are mirrored in the Shannon information content. 815 
Similar to the DoF, Park Falls has the lowest and Armstrong has the highest Shannon information 
content on average for CO2. These differences are likely driven by the combination of the P1 retrieval 
errors and how well the chosen prior covariance matrix matches the temporal aspects of local 
meteorology, such as cloud cover or upper tropospheric transport, or the magnitude and time scales of 
the local carbon fluxes in the boreal forest and the Mojave Desert. For CO, the East Trout Lake retrieval 820 
has the highest DoF and Shannon information content of the three sites. Interestingly, the Lamont 
retrieval has a higher DoF but the Caltech retrieval has a higher average Shannon information content. 
While the differences in Shannon information content and DoF between sites are not necessarily 
directly comparable, these differences also might be due to the P1 retrieval errors and how well the 
chosen prior covariance matrix constrains the solution. Since the Shannon information content includes 825 
the off diagonal terms of the averaging kernel matrix, the larger information content at the Caltech site 
suggests that the chosen model covariance matrix and prior covariance matrix are an effective constraint 
on the Caltech retrieval.   

 
 830 
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Site 

Total Degrees 
of Freedom 

per 
measurement 

(per day) 

Lower Column 
DoF per 

measurement 
(per day) 

Upper Column 
DoF per 

measurement 
(per day) 

Average 
Measurements 

per day 

Shannon 
Information 
Content per 

day 

CO2 Retrievals      
Park Falls 0.370 (43.1) 0.287 (35.9) 0.0830 (7.19) 116 28.7 

Armstrong 0.495 (112) 0.425 (98.9) 0.0700 (13.3) 227 81.0 

Lamont 0.415 (64.9) 0.337 (55.5) 0.0782 (9.35) 159 44.4 

Caltech 0.440 (77.8) 0.364 (67.4) 0.0760 (10.5) 180 54.0 
East Trout Lake 0.447 (81.6) 0.354 (70.2) 0.0925 (11.4) 182 34.8 

Overall 0.433 (75.9) 0.353 (60.4) 0.0799 (10.3) 173 48.6 
CO Retrievals      

Lamont 0.247 (30.5) 0.214 (27.0) 0.0333 (3.52) 119 18.5 
Caltech 0.197 (39.0) 0.188 (37.5) 0.0091 (1.57) 189 23.5 

East Trout Lake 0.292 (55.5) 0.253 (49.9) 0.0333 (5.59) 178 25.0 
Overall 0.246 (41.7) 0.218 (38.2) 0.0273 (3.56) 162 22.3 

 
Table 6. Degrees of freedom per measurement (and per day) for the lower column, upper column, and 
total retrieval, in addition to the Shannon information content separated by site for the CO and CO2 
retrievals.  
 835 
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3.2.3 Long-term Comparisons  

 
Figure 6. East Trout Lake site direct comparisons between the partial column DMF values 

retrieved from the TARDISS fit and the integrated, smoothed aircraft partial columns for lower column 
CO2 and CO. The error bars in the x-direction are the reported errors from the aircraft data smoothed the 840 
same way as the in situ measurements and the error bars in the y-direction are the output errors from the 
TARDISS fit. The black solid line is the 1-1 line and the blue line is the linear fit of the data with the y-
intercept forced through zero. 
 

In addition to the aircraft and AirCore validation data that include profile measurements at 845 
altitudes in the upper troposphere and lower stratosphere, we compare to aircraft data obtained at the 
Lamont and East Trout Lake sites. We use data obtained between the surface and 7 km from 26 of the 
40 flights for CO2 and 26 of the 39 flights for CO made between 2017 and 2020 at East Trout Lake. We 
also use data obtained between the surface and 6 km from 282 of the 399 flights performed at the 
Lamont site over the time period of 2008 to 2018 and all 34 flights for CO made between 2017 and 850 
2021. Measurements at both sites were made as part of the NOAA GGGRN aircraft program. Figure 6 
(East Trout Lake) and Figure 7 (Lamont) show the retrieved lower partial column DMF plotted against 
the integrated, smoothed, in situ columns similar to Fig. 4. These measurements were made more 
frequently but do not include enough high-altitude measurements to compare with our retrieved upper 
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partial column values, so we use them as an independent comparison to our validation data for our 855 
lower column CO2 and CO retrievals.  

The consistency of the statistical parameters using the larger number of measurements in the 
long-term comparisons further reinforces the use of the validation comparison results across the entire 
retrieval dataset. Using the operational retrieval parameters, the long-term comparisons have similar 
informational and error statistics to the validation comparisons. For the Lamont site, the CO2 retrievals 860 
have an average DoF per measurement of 0.334 and the comparison slope is 0.995. The overall VEM 
and mean total error calculated from the long-term comparisons is 3.15 and 3.20 ppm compared to 3.43 
and 3.60 ppm from the Lamont, lower column validation comparisons. The Lamont CO retrievals have 
an average DoF per measurement of 0.215 and the comparison slope is 1.0003. The overall VEM and 
mean total error calculated from the long-term comparisons is 1.64 and 0.595 ppb compared to 1.57 and 865 
1.31 ppb from the Lamont, lower column validation comparisons. For the East Trout Lake site, the CO2 
retrievals have an average DoF per measurement is 0.372 and the comparison slope is 0.997. The long-
term VEM and mean total error for CO2 are 2.42 and 2.48 ppm compared to the Armstrong VEM of 
4.48 used for East Trout Lake and the resulting total error of 4.59 ppm. For long-term CO retrievals at 
East Trout Lake, the DoF per measurement is 0.263 and the comparison slope is 0.946. The overall 870 
VEM and mean total error calculated from the long-term comparisons is 22.5 and 8.34 ppb compared to 
the Lamont VEM of 1.57 used for East Trout Lake and the resulting total error of 0.614 ppb. Some of 
the in situ profile comparisons occur during times with larger CO DMFs that suggest influences from 
sources not accounted for by the P1 a prior profiles such as wild fires which likely resulted in the large 
VEM for the long-term CO comparisons.  875 
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Figure 7. Lamont site direct comparisons between the partial column DMF values retrieved 

from the TARDISS fit and the integrated, smoothed aircraft partial columns for lower column CO2 and 880 
CO. The error bars in the x-direction are the reported errors from the aircraft data smoothed the same 
way as the in situ measurements and the error bars in the y-direction are the output errors from the 
TARDISS fit. The black solid line is the 1-1 line and the blue line is the linear fit of the data with the y-
intercept forced through zero. 

 885 
The informational content of the retrieval helps us understand the algorithm more thoroughly but 

could also serve as a diagnostic parameter to indicate the effectiveness of the retrieval for a particular 
day of measurement. Figure 8 shows the long-term comparisons between the retrieved lower partial 
column and the smoothed, integrated, in situ data at the Lamont site color-coded by the DoF per 
measurement for each point. The comparisons with higher DoF per measurement generally sit closer to 890 
the 1-to-1 line as we would expect and suggest that days with higher DoF per measurement would have 
a lower associated VEM. Figure S5 shows the VEM calculated when filtering out measurement days 
that have DoF per measurement values below a specific threshold. The lowest VEM is calculated when 
filtering out days with DoF per measurement lower than 0.35 which excludes roughly half of the 282 
flights used. A threshold higher than 0.35 reduces the number of measurements enough that it is no 895 
longer representative of the dataset. As a first step, the data could be filtered for low DoF or low 
Shannon information content. Moving forward, the information content could be used to create more 
dynamic VEM values for our datasets and provide more precise error values than the conservative, 
static VEM per site reported in Table 5. In addition to the DoF, the Shannon information content can be 
used to filter retrieval days where the  900 
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Figure 8. The same comparison shown in Fig. 7 is shown here without error bars and color 

coded by the DoF per measurement for the comparison day retrieval. The blue line below the black 1-to 
-1 line is the linear fit of the data with the y-intercept forced through zero. 

 905 

3.3 Current Products 

The TARDISS algorithm is applicable to any spectra reported as TCCON data with the correct 
detector requirements (InGaAs for CO2 and both InGaAs and InSb for CO). Overall there are at least 
nine years of CO2 data at each site in this work and approximately five years of CO data at the East 
Trout Lake, Lamont, and Caltech sites.  910 
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Figure 9 shows the monthly mean lower and upper partial column data retrieved from spectra 
taken over the last decade for the five sites discussed in this work. These data show the global seasonal 
patterns in CO2 in all sites with values in the Armstrong and Lamont traces being the most similar and 
consistent. The lower column Park Falls and East Trout Lake traces show the local influences on CO2 in 
the sharp dips in the summers when the surrounding forest is most photosynthetically active. The lower 915 
column Caltech trace shows a consistent urban enhancement over the global trends of ~5 ppm. All five 
upper column traces are generally consistent with one another and have a ~6 ppm seasonal fluctuation.  

Figure 10 shows the monthly median retrieved lower and upper partial column CO data from the 
East Trout Lake, Lamont, and Caltech site. We observe seasonality at both sites with maximums in the 
winter months and minimums in the summer months. The CO lower partial column data from the 920 
Caltech site tends to be larger than those from the Lamont site due to the urban enhancement despite the 
recent decreasing trend but this is muted when using the monthly medians shown here. The East Trout 
Lake site show influences from the incomplete combustion of wildfires in both the upper partial column 
CO traces in both 2017 and 2021.  

 925 
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Figure 9. Time series plot of the monthly median lower (top) and upper (bottom) partial column values 
of CO2 in ppm for the five sites used in the work from 2012 (or the start of measurement) to the end of 930 
2021. Data from before 2012 measured in Park Falls are not used due to instrument alignment issues.  

 
 

 
 935 

Figure 10. Time series plot of the monthly median lower (top) and upper (bottom) partial column 
values of CO in ppb for the three sites used in the work that have the InSb detector from 2017 to the end 
of 2021. CO has been declining in most of the US cities due to emissions control technologies.   

3.4 Future Applications 

Using the lower partial column data product, we can analyse carbon fluxes in novel ways. The 940 
data retrieved from the Park Falls site is collocated with in situ CO2 data from a ~400-meter tall tower 
that measures continuously (Andrews et al., 2014) and also reports eddy covariance fluxes (Berger et 
al., 2001). Our lower partial column values are comparable to the in situ data in magnitude and general 
trend, particularly during the midday when turbulent mixing is often strong enough to create a more 
homogenous mixed layer CO2 concentration (Xu et al., 2019).  In future work, we will compare the 945 
tower CO2 concentration and flux values with estimates of the diurnal variation in partial column CO2.  
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The lower partial column CO are useful for comparison with other column averaged pollution 
tracers such as aerosol optical depth (AOD) and TROPOMI NO2. For example, the chemical 
composition of the atmosphere in the South Coast Air Basin (SoCAB) continues to rapidly change 
(Parrish et al., 2016; Van Rooy et al., 2021) and it is of interest to diagnose whether the relationships 950 
between primary VOC emission sources, meteorology, and aerosols are also evolving. In future work, 
we will examine these relationships over the entire partial column data record using both the FTS data 
and observations from a nearby AERONET AOD measurement. Preliminary comparisons of afternoon 
average lower column CO values versus afternoon average 500 nm AOD values for days in which the 
afternoon average temperatures were above 25 degrees Celsius for the 2016 to 2021 time period show a 955 
strong correlation, particularly when decoupled from temperature and accounting for atmospheric water.  

 

Appendix A: Daily Anomaly Calculation 

Daily anomalies in this work mean the difference between the column values at a particular solar 
zenith angle in the afternoon and the column value at the same solar zenith angle in the morning. This 960 
approach removes air mass dependencies and allows for a direct comparison of the measured change in 
column values over a particular day. Due to the differences in the averaging kernel of each window, 
spectral windows sensitive to different parts of the atmosphere return different total column Xgas values 
and the ratio of the daily anomalies measured with the different windows used provides insight into how 
to weight the different inputs in the inversion. Since the sensitivities of each spectral window is 965 
determined by spectroscopy, the daily anomaly ratios are expected to be the same and independent of 
measurement location. 
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Figure A. Scatter plot of the daily anomaly values for the standard 6220 cm-1 and 6339 cm-1 TCCON 970 
windows and the 6073 cm-1 CO2 window plotted against the daily anomaly values from the 4852 cm-1 
CO2 window for days in July, 2018. The black line is the 1-to-1 line and the least squares linear fits for 
the respective windows are shown in the text on the plot. The slopes of the fit are used as weightings in 
the TARDISS retrieval.  
 975 

Appendix B: Temporal Assimilation 

 We want to test the influence of the number of observations included in a single retrieval. To do 
this, we compare the retrieved error value for one measurement fit on its own and with an increasing 
number of observations until we retrieve with a full day. We take the midday observation from the Park 
Falls site on July 18, 2018 and retrieve the partial column error values using the least squares method 980 
and the maximum a posteriori method (using a static ideal prior scalar to avoid influences from the least 
squares approach). These values are represented by the points that correspond with zero on the x axis of 
Fig. B for both the lower and upper partial column errors. We then retrieve the errors of the midday 
measurement again including the observation before and after it which is represented by the points that 
correspond with 2 on the x axis of Fig. B. We repeat this method, expanding the number of observations 985 
included until we are fitting the entire day of observations.  
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  The left-hand plot of Fig. B1 shows the decrease of the retrieved upper and lower partial column 
error of the midday point as the number of observations included in the retrieval increases. The upper 
partial column errors decrease more than the lower partial column errors partially due to the temporal 
constraints of the a priori covariance matrix. On the contrary, the right-hand plot of Fig. B shows that 990 
the inclusion of more observations in the least squares fit does not change the retrieved partial column 
errors of the midday measurement. Moreover, the partial column errors retrieved using the least squares 
method are at least six times larger than the partial column errors retrieved using the MAP method. This 
is due to the use the a priori covariance matrix in the MAP method that can improve upon the best 
estimate retrieval of the least squares method.  995 
 To understand the influence of the prior covariance matrix (overall scaling and temporal 
constraints), we compare the error values of the least squares method with the MAP method with an 
entirely uninformed prior covariance matrix. Shown in Fig. B2, the uninformed MAP approach returns 
errors of similar magnitude to the least squares method. This suggests that a main value of the MAP 
approach is the use of external information to improve and inform the retrieval.  1000 

 

Figure B1. Errors in the retrieval of CO2 from the midday total column measurement at the Park Falls 
site on July 18, 2018 using the MAP method outlined by equation 12 and the least squares method 
outlined by equation 18. The blue circles represent the error in the lower partial column and the orange 
asterisks represent the error in the upper partial column. Note the difference in the range of the y axis in 1005 
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the left and right plots both of which are in parts per million. The x axis indicates the number of points 
included in the overall fit with zero additional points representing the retrieval of a single spectra.   
 

 
Figure B2. Same as Fig. B1, except the prior covariance is removed from the MAP retrieval.   1010 
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