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Abstract. The version 10 (v10) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval

algorithm has been applied to multi-year records of observations from NASA’s Orbiting Carbon Observatory -2 and -3 sensors

(OCO-2 and OCO-3, respectively) to provide estimates of the carbon dioxide (CO2) column-averaged dry-air mole fraction

(XCO2). In this study, a number of improvements to the ACOS v10 L2FP algorithm are described. The post-processing qual-

ity filtering and bias correction of the XCO2 estimates against multiple truth proxies are also discussed. The OCO v10 data5

volumes and XCO2 estimates from the two sensors for the time period August 2019 through February 2022 are compared,

highlighting differences in spatiotemporal sampling, but demonstrating broad agreement between the two sensors where they

overlap in time and space. A number of evaluation sources applied to both sensors suggest they are broadly similar in data

and error characteristics. Mean OCO-3 differences relative to collocated OCO-2 data are approximately 0.2 ppm and -0.3 ppm

for land and ocean observations, respectively. Comparison of XCO2 estimates to collocated Total Carbon Column Observing10

Network (TCCON) measurements show root mean squared errors (RMSE) of approximately 0.8 ppm and 0.9 ppm for OCO-2

and OCO-3, respectively. An evaluation against XCO2 fields derived from atmospheric inversion systems that assimilated only

near-surface CO2 observations, i.e., did not assimilate satellite CO2 measurements, yielded RMSEs of 1.0 ppm and 1.1 ppm

for OCO-2 and OCO-3, respectively. Evaluation of errors in
::::::::::
uncertainties

::
in

::::::
XCO2::::

over
:
small areas, as well as

:::::
XCO2:

biases
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across land-ocean crossings, also show encouraging results, for each sensor and in their agreement
::::::
indicate

::::::
similar

::::::::
behavior15

::
in

:::
the

::::
error

::::::::::::
characteristics

::
of

:::::
both

::::::
sensors. Taken together, our

::::
these results demonstrate a broad consistency of OCO-2 and

OCO-3 XCO2 measurements, suggesting they may be used together for scientific analyses.

1 Introduction

Estimates of the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) derived from global space-based mea-20

surements can be assimilated into atmospheric inversion systems to quantify CO2 fluxes associated with both natural and

anthropogenic sources and sinks (Gurney et al., 2002). However, these estimates must have both high precision and accuracy

due to the long atmospheric lifetime of CO2 (Archer et al., 2009), and the high background concentrations (≈ 415 parts per

million by volume, ppm, in 2022), such that even the most intense sources and sinks produce only small (≈ 1 ppm) changes in

XCO2 (Miller et al., 2007).25

The Orbiting Carbon Observatory -2 and -3 missions, OCO-2 and OCO-3, respectively, referred to collectively as OCO in

this document, are NASA’s primary operating assets for monitoring CO2 concentrations from space. Both of these instruments

measure reflected solar radiation at high spectral resolution in specific narrow spectral bands in the near and short-wave in-

frared regions (NIR and SWIR, respectively), where molecular oxygen (O2) and CO2 absorb sun light. A variety of physics30

based algorithms and sources of prior information are required to convert the measured spectra into estimates of XCO2 in a

series of steps. First, the individual soundings are geolocated and then radiometrically and spectrally calibrated. Then, these

products are pre-screened to filter out scenes contaminated by clouds and heavy aerosol loading. A retrieval is then performed

to estimate XCO2 from the geolocated and calibrated radiances. Finally, a post-processing step is applied that quality screens

the retrieval output and applies an empirically-based bias correction to the XCO2 concentrations. Although estimates of solar-35

induced chlorophyll fluorescence (SIF) are also provided from OCO-2 and OCO-3 measurements, the focus of this paper is on

the XCO2 estimates. Readers are referred to Doughty et al. (2022) for an overview of the OCO SIF products.

Space-based measurements from OCO-2 and OCO-3 have already been successfully used to quantify CO2 sources and

sinks at global (e.g., Crowell et al., 2019; Peiro et al., 2022; ?)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Crowell et al., 2019; Peiro et al., 2022; Byrne et al., 2023)40

, regional (e.g., Palmer et al., 2019; Byrne et al., 2021; Philip et al., 2022) and even local/urban scales (e.g., Lei et al., 2021; Kiel

et al., 2021; Nassar et al., 2022). However, biases and random errors in the XCO2 estimates relative to reference measurements

persist, even after application of bias correction and filtering. These biases and random errors are associated with multiple fac-

tors, such as
:::::::::
instrument

:::::::::::
measurement

:::::
noise,

:
uncertainties in instrument calibration, error in CO2 and O2 gas absorption cross

sections, complications in accurately representing aerosols and surface characteristics in the retrieval, and lack of accurate45

knowledge of the prior estimates of the atmospheric state that are used in the retrieval algorithm (Connor et al., 2016; Kulawik

et al., 2016; Hobbs et al., 2017; Kulawik et al., 2019). Numerous studies have demonstrated that small, but regionally coherent,
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biases in CO2 concentrations can result in flux estimate errors (e.g., Chevallier et al., 2005, 2007, 2014; Basu et al., 2013; Feng

et al., 2016). It is therefore essential to quantify, as best as possible, the remaining biases present in the satellite XCO2 products.

50

The paper is organized as follows.
:
: The OCO instruments, spectral measurements, and calibration are reviewed in Section 2.

Section 3 discusses updates to the v10 L2FP retrieval algorithm and other components of the data processing pipeline. In Sec-

tion 4, the OCO-2 and OCO-3 v10 XCO2 data volumes are analyzed for the overlapping time period December
::::::
August

:
2019

through February 2022, while Section 5 compares the XCO2 estimates from the two sensors. Section 6 compares the satellite

XCO2 estimates from both sensors to XCO2 estimates derived from Total Carbon Column Observing Network (TCCON), at-55

mospheric inversion systems (models), as well as to small areas and coastal crossings. A summary of the findings are presented

in Section 7. A deeper examination of the full 7+ year OCO-2 v10 record is provided in Appendix A. Finally, in Appendix B,

several aspects of the OCO-3 v10 data set are explored in detail, including the application of a time-dependent correction to

the OCO-3 v10 XCO2 estimates to correct a calibration artifact using a set of soundings collocated to OCO-2.

60

2 The OCO-2 and OCO-3 instruments and calibration

There are many similarities between the OCO-2 and OCO-3 sensors, as the latter was built as a flight spare for the former. Both

are three-channel grating spectrometers with a common telescope used to direct reflected solar radiation from the field of view

through a dispersion grating onto a focal plane array (FPA). The FPA electronics convert analog signals into measured digi-

tal numbers (DN). Predetermined calibration information is used to convert DN into radiances (photons s−1 m−2 sr−1 µm−1)65

in the three spectral channels: (i) the Oxygen-A band centered at 0.765µm, (ii) a weak CO2 band centered at 1.61µm, and

(iii) a strong CO2 band centered at 2.06µm, referred to as the ABO2, WCO2, and SCO2, respectively, all with high spectral

resolving power (λ / ∆λ > 17,000) and 1016 spectral channels. A single OCO-2/3 measurement frame contains 8 along-slit

“footprints”, which are acquired at 3 Hz, yielding 24 individual soundings per second. The exact footprint size of each OCO-2

sounding varies by observation mode and latitude, but is of order 1.3 km cross-track and 2.25 km along-track (2.9 km2) near70

nadir viewing. The orbit altitude of OCO-3 aboard the International Space Station (ISS) is lower than that of OCO-2 (≈ 400 km

and≈ 705 km for OCO-3 and OCO-2, respectively), necessitating an enlargement of the instrument’s field of view from 0.8◦ to

1.8◦ in order to maintain a similar footprint size. Even so, OCO-3 footprints are typically slightly larger, at 1.6 km cross-track

by 2.2 km along-track (3.5 km2).

75

OCO-2 began science operations in September, 2014 (Crisp et al., 2017; Eldering et al., 2017). It flies in a sun-synchronous

polar orbit on a dedicated satellite bus in the Afternoon constellation, i.e., A-train (L’Ecuyer and Jiang, 2010), which has a local

overpass time of approximately 13:36 and a 16-day orbit repeat cycle. OCO-2 science measurements are made in one of three

observation modes: (i) down-looking nadir (ND), (ii) sun-glint (GL), or (iii) target (TG). For routine science observations, a

full day-side orbit is acquired in one of the two primary observation modes (nadir or glint), in an alternating fashion. However,80
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for orbits that pass largely over ocean, the satellite orients the instrument to view the sun’s specular glint spot, which maximizes

the signal over water (Miller et al., 2007). In addition, a small number (order 30) of pre-determined target sites are viewed as

conditions allow. Most of the targeted observations are collected over Total Carbon Column Observing Network (TCCON)

stations, whose up-looking observations are used to validate the OCO-2 XCO2 estimates (Wunch et al., 2011a, 2017). Other

targets include surface calibration sites (e.g., Bruegge et al., 2019), large urban areas (e.g., Rißmann et al., 2022), and power85

plants (e.g., Nassar et al., 2017).

OCO-3 began science operations in August, 2019 (Taylor et al., 2020). The OCO-3 instrument is mounted as an external pay-

load on the Japanese Experimental Module Exposed-Facility (JEM-EF) aboard the ISS, which .
::::
The

:::
ISS

:
flies in a precessing

orbit with a varying time-of-day local overpass across a 63-day illumination cycle. To provide agile pointing from the ISS, a90

2-axis Pointing Mirror Assembly (PMA) was added to the fore-optics of OCO-3 (Eldering et al., 2019). For routine science

observations, OCO-3 acquires measurements in nadir mode over land and glint mode over large water bodies. A much larger

set of target observations are possible compared to OCO-2 due to the more up-to-date on-board electronics control system

and the rapid re-pointing allowed by the PMA. In addition, a new observation mode called Snapshot Area Mapping (SAM)

allows the instrument to compile contiguous images as large as 80 by 80 km2, over sites of interest such as mega-cities, power95

plants, volcanoes, flux towers, and field campaigns. The spatially contiguous nature of the SAMs is already showing tremen-

dous promise for both carbon cycle science , e.g., (Kiel et al., 2021; Wu et al., 2022; Roten et al., 2022; Nassar et al., 2022),

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kiel et al., 2021; Wu et al., 2022; Roten et al., 2022; Nassar et al., 2022) and for investigating sources of bias within the

L2FP retrieval (Bell et al., 2023).

100

:::
The

::::::::
precision

::::
and

:::::::
accuracy

:::::::::::
requirements

:::
for

:::::::
OCO-2

:::
and

:::::::
OCO-3

::::
were

:::::::::
originally

::::::
applied

::
to

:::::::
regional

::::::
scales,

:::::::
roughly

:::::::
defined

::
as

:::
10◦

:::::::
latitude

::
by

::::
10◦

:::::::::
longitude. Early Observation System Simulation Experments

::::::::::
Experiments

:
(OSSEs) indicated that an

XCO2 precision and accuracy better than 1 ppm (less than 0.25%) is needed on regional scales
::
at

:::
this

:::::
scale

:
to constrain

typical natural and anthropogenic sources and sinks of CO2 (Miller et al., 2007). This places
::
In

:::::::
practice,

:::
the

::::::
spatial

:::::
scale

:::
for

:::::::
precision

::::
and

:::::::
accuracy

:::::::::::
requirements

::
is

:::::::::
determined

:::
by

::
the

::::::::::
distribution

::
of

:::
the

::::::::
validation

::::::::
reference

:::::::::::::
measurements.

::::
This

:
is
:::::::
defined105

::
by

:::
the

::::::::::::
approximately

::::
two

:::::
dozen

::::::::
TCCON

:::::::
stations

:::
and

::
a
::::::::::
comparable

:::::::
number

::
of

:::::::::
EM27/Sun

::::
and

:::::::
Aircore

:::::::
stations

:::::::::
distributed

:::
over

::::
the

:::::
globe.

::::
The

::::::
system

:::::::::::
performance

:::
on

::::
finer

:::::
scales

::::
has

::::
also

::::
been

:::::::
assessed

:::::::
through

:::::::::::
comparisons

::::
with

::::
data

::::::::
collected

:::
by

::::::
aircraft

:::::::::
campaigns,

::::
e.g.

::::::::::::
ACT-America

:::::::::::::::
(Bell et al., 2020)

:::
and

:::::
ATom

:::::::::::::::::::
(Kulawik et al., 2019),

:::
and

:::::::::::::::
multi-instrument

::::::::::
EM27/SUN

:::::::::
Campaigns

:::::::::::::::::::
(Rißmann et al., 2022).

:

110

:::
The

::::::::
precision

:::
and

::::::::
accuracy

:::::::::::
requirements

::::
place

:
strict demands not only on the instrument sensitivity, but also on its calibration

and the accuracy of the retrieval algorithm. Both OCO-2 and OCO-3 were radiometrically calibrated prior to launch using

integrating sphere sources calibrated with respect to the National Institute of Standards and Technology (NIST) reference stan-

dards. Observations of the integrating spheres yielded pre-launch gain coefficients used to convert measured digital numbers

into radiances. The radiometric calibration of OCO-2 and OCO-3 is frequently updated in-flight through the use of on-board115
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calibration systems (Crisp et al., 2017; Keller et al., 2022), which are analyzed to update Ancillary Radiometric Products

(ARPs) covering three to seven days, where gain degradation coefficients are provided to correct radiances based on prelaunch

gains.

For OCO-2, in-flight updates to the pre-launch calibration are derived from observations of the sun through a transmissive120

diffuser and from its primary on-board lamp. While the sun observations track the overall change in instrument response with

time, lamp observations provide corrections of relative changes in the response of the individual samples, which are comprised

of twenty detector pixels each (see Fig. 2 of Crisp et al. (2017) for the readout scheme). Lunar observations taken throughout

the mission have been used to track and account for the degradation of the solar diffuser. Details of the pre-flight and on-orbit

calibration of OCO-2 Level 1b (L1b) can be found in Rosenberg et al. (2017); Lee et al. (2017); Crisp et al. (2017); Marchetti125

et al. (2019). In general, the instrument calibration and the full physics retrieval algorithm for OCO-2 have reached relatively

mature states. For example, updates to the OCO-2 v10 calibration algorithms used to produce calibrated L1b spectra were

limited to an improved treatment of radiometric degradation using lunar calibration observations, a small refinement in the

spectral dispersion coefficients, and the identification of additional spectral sample outliers (Crisp et al., 2021).

130

Keller et al. (2022) describes the current state of the calibration for the
:::
L1b OCO-3 v10 data products. OCO-3, unlike OCO-2,

cannot view the sun from the ISS, making solar calibration impossible (Rosenberg et al., 2020). Therefore, as compared to

OCO-2, more emphasis has been placed on the internal lamp calibration system, which is comprised of three tungsten halogen

lamps and a reflective diffuser. The three calibration lamps are illuminated with different cadences and thus age at different

rates. In version 10
:::
For

:::
v10

::::
L1b, an algorithm was developed to use information from all three lamps with the goal of mitigating135

lamp aging while still allowing changes in instrument response to be tracked with the necessary temporal resolution. This is

particularly important for OCO-3, as it has exhibited significant, abrupt changes in its overall instrument response. In addition,

an update was made to the OCO-3 stray light model used for v10
:::
L1b

:
to account for spatial variability on the detectors. More

detail is provided in Section 2.1 of the OCO-3 v10.4 data quality statement (Chatterjee et al., 2022). Because of initial diffi-

culties in reducing geolocation errors for OCO-3, plans to perform lunar calibration, intercomparison of L1b radiances with140

OCO-2, and vicarious calibration using the Railroad Valley Playa were delayed. These are now all underway and will inform

the in-flight calibration for the next OCO-3 product version. Additional OCO-3 calibration details are contained in the L1b

Algorithm Theoretical Basis Document (ATBD) (Crisp et al., 2021).

3 The ACOS v10 XCO2 retrieval pipeline145

Beginning with the geolocated and calibrated L1b spectra, the ACOS pipeline consists of three distinct steps to produce the

final estimates of XCO2. First, due to the computational demands of the L2FP retrieval algorithm, which requires about five

minutes per sounding on a single processor, and the inability to reliably estimate XCO2 in the presence of clouds and heavy

5



aerosol loadings, a pre-screening step is performed to identify and remove these soundings (Taylor et al., 2016). The sound-

ings that are identified as likely to yield good quality results are then input to the ACOS Level 2 full physics (L2FP) retrieval150

algorithm, which utilizes a Bayesian optimal estimation framework to derive estimates of XCO2 by combining information

from the L1b spectra with prior information about the state of the atmosphere and measurement geometry (Rodgers, 2004;

Connor et al., 2008; O’Dell et al., 2012). In a post-processing step, each sounding that successfully converges within the L2FP

is assigned either a good or bad quality flag based on a set of empirically-derived filters. Furthermore, an empirical, parametric

bias correction, derived from comparisons with multiple truth proxies, is applied to each sounding (O’Dell et al., 2018). The155

quality-filtered and bias-corrected XCO2 estimates are included in the L2 Lite files, which also contain essential retrieval, time

and geometry information. A brief summary of recent changes specific to v10 is provided in Section 3.1.

3.1 Level 2 full physics retrieval algorithm updates for v10

ACOS v10 is the fourth major reprocessing of the OCO-2 record, which began with the v6 release in December 2014, followed160

by v7 in 2015, and v8 in 2017 (O’Dell et al., 2018). The v9 XCO2 product, released in 2018, was a post-processing-only effort

to correct XCO2 errors introduced by a small error in the instrument boresight pointing and geolocation (Kiel et al., 2019).

Since there were no changes to the L2FP code from v8 to v9, for the remainder of this document we will use the nomenclature

::
the

::::::::::::
nomenclature

:
“v8/9

:
”
:::
will

:::
be

::::
used

:
to refer to the previous version of the algorithm. For OCO-3, the v10 XCO2 product is

only the second public release. It is a substantial improvement over the first release, vEarly, which employed the ACOS v10165

algorithm, but had significant instrument calibration and geolocation errors, and was quality-filtered and bias-corrected against

a very short data record of only a few months (Taylor et al., 2020). Table 1 summarizes the four substantial changes that were

made to ACOS L2FP retrieval algorithm from v8/9 to v10. More detail can be found in the v10 L2FP ATBD (Crisp et al., 2020).

Each new release of ACOS uses the latest gas absorption coefficient (ABSCO) tables produced at NASA’s Jet Propulsion Lab-170

oratory (JPL). For v10, the ABSCO tables were updated from v5.0 (Oyafuso et al., 2017) in ACOS v8/9 to ABSCO v5.1 in

ACOS v10 (Payne et al., 2020). The most significant changes occurred in the ABO2 spectral band (Drouin et al., 2017; Payne

et al., 2020) related to consistency between oxygen line shapes and collision induced absorption. This update yielded reduced

spatial variability of the bias between the L2FP retrieved surface pressure and the prior value
::::
from

:::::::
3.3 hPa

::
in

::
v9

::
to

:::::::
2.8 hPa

::
in

:::
v10. ABSCO v5.1 also includes an update to the water vapor continuum model, which affects the WCO2 and SCO2 spectral175

bands.

A second important change between ACOS v8/9 and v10 was an update of the priors
::::
prior values adopted for aerosol types,

optical depths (AOD), vertical distribution and the uncertainties. In previous versions, the aerosol priors were compiled from a

monthly climatology derived from the NASA Goddard Modeling and Assimilation Office (GMAO) Modern-Era Retrospective180

analysis for Research and Applications version 2 (MERRA-2) product (Rienecker et al., 2008, 2011; Gelaro et al., 2017). For

v10, these monthly aerosol priors were replaced with daily estimates derived from the GEOS-5 Forward Product for Instru-

6



ment Teams (FP-IT) product. Furthermore, the AOD prior variance (expressed in log(AOD)) were reduced from 2 to 0.5 in

v10. These changes lead to significant improvements in both retrieved aerosol values and estimates of XCO2 from OCO-2,

especially in aerosol-laden regions. Full details on the v10 aerosol formulation, including tests on its efficacy, are provided in185

Nelson and O’Dell (2019) and Section 3.3.2.3 of Crisp et al. (2020).

A third significant change from v8/9 to v10 was replacing the source of the CO2 prior profiles from that developed by

the TCCON team for use in the GGG2014 algorithm (Wunch et al., 2015) to the newest version used in GGG2020 (?)

::::::::::::::::::
(Laughner et al., 2023). A complete description of the calculation of the v10 CO2 priors is provided in Sec. 3.3.2.1 of the190

L2FP ATBD Crisp et al. (2020)
:::::::::::::::
(Crisp et al., 2020). In short, the priors are calculated from a scaling of the NOAA monthly

averaged flask values (Lan et al., 2022) measured at the Mauna Loa and American Samoa sites to individual sounding dates

and locations. The tropopause altitude is derived from data contained in the 3-hourly GOES-FPIT meteorology, which has a

nominal one-day lag and provides diagnosed potential vorticity, allowing for better representation of latitudinal CO2 transport

in the stratosphere. A previous study using measurements from the Japanese Greenhouse Gases Observing Satellite (GOSAT,195

Kuze et al. (2009)) processed with the ACOS v9 L2FP retrieval showed that a correction to account for the difference in the

CO2 prior from v8/9 to v10 yielded a global mean adjustment in XCO2 of approximately 0.2 ppm, with 95% of changes falling

between -0.1 and +0.5 ppm (Taylor et al., 2022).

The last significant change to the v10 L2FP was replacement of the solar continuum model used to simulate the top-of-200

atmosphere (TOA) solar spectrum. For the OCO missions, a high-resolution TOA solar spectrum is derived by combining a

high-spectral resolution solar transmission spectrum for solar Fraunhofer lines with an observed, low-spectral resolution TOA

solar spectrum. The solar transmission spectrum is derived from an empirical solar line list (Toon, 2014). In earlier versions of

the L2FP model, the solar continuum was derived to fit the ATLAS 3 SOLSPEC measurements (Thuillier et al., 2003) when

the OCO solar spectrum was convolved with the SOLSPEC spectral response function (SRF). For v10, this continuum was205

replaced by one derived to fit new measurements from the Total Solar Irradiance Sensor (TSIS) Spectral Irradiance Monitor

(SIM) aboard the ISS (Richard et al., 2020) when convolved with the TSIS-SIM SRF. The new solar model reduced the solar

continuum values by ≈ -1.3%, -3.0%, and -6.5%, in the ABO2, WCO2, and SCO2 spectral bands, respectively. These results

are consistent with the more recently derived TSIS-1 Hybrid Solar Reference Spectrum (Coddington et al., 2021). L2FP tests

indicated that these changes had a minimal impact to XCO2 estimates. This is most likely because the solar flux differences210

were relatively small in the ABO2 channel, which is most sensitive to the accuracy of the solar illumination and absolute

radiometric calibration. However, even these small differences shifted the retrieved surface pressures by ≈ -0.2 hPa for land

and ≈+0.2 hPa for ocean soundings, which has a small impact on the bias correction.

3.2 Preprocessor and sounding selection for v10

The ACOS software includes two preprocessors to flag soundings that are likely to fail to converge in the full physics retrieval215

due to cloud and aerosol: the A-Band Preprocessor (ABP) (Taylor et al., 2012, 2016) and the IMAP-DOAS Preprocessor (IDP)

7



Table 1. Updates to the ACOS L2FP retrieval algorithm from v8/9 to v10. N/C indicates no change.

ACOS v8/v9 ACOS v10

1 Spectroscopy ABSCO v5.0 ABSCO v5.1

2 Aerosol prior source MERRA monthly climatology 3-hourly GEOS-5 FP-IT with tightened prior AOD uncertainty

3 CO2 prior source TCCON GGG2014 TCCON GGG2020

4 Solar continuum model ATLAS 3 SOLSPEC TSIS-SIM

(Frankenberg et al., 2005; Taylor et al., 2016). For v10, an update was made to the ABP state vector to include a zero level

offset to the calculated top of the atmosphere radiances to account for instrument stray light and SIF. The v10 ABP uses v5.1

ABSCO to be consistent with the L2FP retrieval. To accommodate changes to the ABSCO and L1b, updates were made to tune

the ABP surface pressure vs. solar zenith angle and chi-squared vs. signal-to-noise ratio parameterizations, both of which are220

used as individual filters to determine scenes contaminated by clouds and aerosols as first described in (Taylor et al., 2012) for

application to GOSAT, and more recently in Taylor et al. (2016) as applied to OCO-2.

The IDP algorithm serves two purposes in the ACOS pipeline: (i) single band retrievals of CO2 and H2O are used for cloud

screening, and (ii) the ABO2 spectral band is used to estimate SIF (Frankenberg et al., 2012; Doughty et al., 2022). For v10,225

no changes were made to the IDP. In fact, the code has remained unaltered for many versions, including use of the older v4.2

ABSCO (Drouin et al., 2017).

The sounding selection strategy, which determines if a sounding should be run through the L2FP, remains roughly consis-

tent for v10 compared to previous versions.
::::::
Details

:::
are

:::::::
provided

:::
in

:::::
Table

::
2. For both sensors, the single difference between230

land and ocean-glint selection criteria is that for OCO-2, the solar zenith angle (SZA) cutoff is slightly more strict at 80◦

for ocean-glint, compared to 85◦ for land. For OCO-3, the SZA cutoff is 80◦ for both land and ocean-glint. For OCO-2 v10,

target mode observations were filtered using the satellite observation angle to remove soundings more oblique than 50◦. This

criterion was removed for OCO-3 target (and SAM) observations, so that the same set of selection criteria is used for all

land observations. Because there is minimal information content in ocean-nadir measurements due to a low signal-to-noise235

ratio (SNR), no ocean-nadir soundings were selected for OCO-2 v10. However, the early part of the OCO-3 record contains a

large fraction of ocean-nadir observations prior to tuning of the PMA. To maximize the selection of potentially good quality

soundings, the L1b SNR filters in both the ABO2 and SCO2 spectral bands were relaxed. However, the scientific merit of the

ocean-nadir observations is as of yet undetermined and therefore ocean-nadir soundings are not considered further in this work.

240
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Table 2. Sounding selection criteria for OCO-2 and OCO-3 v10. Soundings are categorized as either land (land fraction≥ 80%), water (land

fraction≤ 20%), or indeterminate (20%< land fraction < 80%). N/U = Not Used. N/P = Not Processed. In addition to the criteria defined in

the table, all soundings must have a “sounding quality flag” = 0.

OCO-2 v10 Land (all except TG) TG Ocean-Glint Ocean-Nadir

Solar zenith angle ≤ 85 ≤ 85 ≤ 80 N/P

Observation zenith N/U < 50 N/U N/P

ABP cloud flag = 0 = 0 = 0 N/P

IDP CO2 ratio [0.985, 1.045] N/U [0.985, 1.045] N/P

L1b ABO2 SNR > 100 N/U > 100 N/P

L1b SCO2 SNR > 75 N/U > 75 N/P

OCO-3 v10 Land (all) Ocean-Glint Ocean-Nadir

PMA motion flag = 0 = 0 = 0

Solar zenith angle ≤ 80 ≤ 80 ≤ 80

Observation zenith N/U N/U N/U

ABP cloud flag = 0 = 0 = 0

IDP CO2 ratio [0.980, 1.055] [0.980, 1.055] [0.980, 1.055]

IDP H2O ratio [0.80, 1.25] [0.80, 1.25] [0.80, 1.25]

L1b ABO2 SNR > 100 > 100 > 225

L1b SCO2 SNR > 50 > 50 > 125

3.3 Postprocessing: quality filtering and bias correction for OCO v10 XCO2 estimates

All selected soundings, as described in Section 3.2, are subsequently processed by the L2FP retrieval, which primarily es-

timates XCO2. Soundings that converge (typically ≈ 85-90% of the attempts), are reported in the L2 Standard product files

(L2Std), which are organized into granules, which typically include full orbits or partial orbits, yielding about 15 files per day.

The L2Std files are in HDF5 format, and are about 20 MB each (≈ 300 MB per day). Next, a post-processing step assigns to245

each sounding a binary quality flag (QF=0 indicates the best data), as well as a bias correction adjustment to XCO2 (O’Dell

et al., 2018). The results are aggregated into daily output L2 Lite XCO2 files. Lite files are in NetCDF format and are typically

about 50-70 MB each. It is highly recommended that only the good quality (QF = 0) soundings contained in the L2 Lite XCO2

product be used in global and regional scale studies, although local scale studies may benefit from the use of some of the lower

quality (QF> 0) soundings.250
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3.3.1 Quality filtering and bias correction truth proxies

The quality filtering and bias correction procedure requires XCO2 truth proxies, with which to compare the retrieved estimates.

We use the term truth proxies
:::
The

:::::
term

::::::::::
truth-proxies

::
is
:::::
used to describe sources of data which can be used as an independent

estimate of the atmospheric CO2 abundance. For OCO v10, three truth proxies were used. The first was estimates of XCO2255

derived from TCCON measurements. Table 3 provides a list of TCCON stations, locations, operational ranges, and data cita-

tions. Although TCCON XCO2 estimates have relatively high precision and accuracy, while providing good temporal coverage

at most sites, they are very limited in spatial extent, especially outside of the northern mid-latitudes.

To augment the sparse spatial coverage of TCCON, we use global atmospheric inversion models
:::
are

::::
used

:
in the OCO XCO2260

quality filtering and bias correction process to provide full global coverage (O’Dell et al., 2018). For ACOS v10, the median

XCO2 was derived from the 4-dimensional (4D) CO2 fields of models that assimilated only in-situ CO2 data. To ensure consis-

tency in the models, for each OCO sounding, only the models with XCO2 that deviated by less than ±1.5 ppm from the initial

median value were retained. Furthermore, soundings were excluded if more than one of the four models had been rejected, or if

the standard deviation amongst the valid models was>1 ppm. Tables 4, 5, and 6 provide information about the suite of models.265

::
An

:::::::
asterisk

::
is

::::
used

::
in

:::::
Table

::
6

::
to

::::::
identify

:::
the

:::::::
specific

::::::
models

::::
and

::::
data

:::::::
versions

::::
used

::
in

:::
the

::::::
quality

:::::::
filtering

:::
and

::::
bias

:::::::::
correction

:::::::::
procedure:

::::
three

:::
for

:::::::
OCO-2

:::
and

::::
four

:::
for

::::::
OCO-3

::::
v10.

::::::
Some

::
of

:::
the

:::::
same

::::::
models

::::
were

::::
also

::::
used

:::
in

:::
the

:::::
XCO2::::::::::

evaluation,
:::
but

::::
using

::
a
:::::::
different

::::::
model

::::
data

:::::::
version

:::
and

::
a
:::::::
different

:::::::::
evaluation

:::::::
period.

::
A

::::
few

::
of

:::
the

:::::::
models

::::
were

::::
used

:::::
only

:::
for

:::
the

::::::
XCO2

::::::
product

:::::::::
evaluation.

:

270

An averaging kernel correction was applied to both the TCCON and the model XCO2 values to account for differences in the

vertical profiles compared to the ACOS prior. The general form of the equation is:

XCO2,ak =

20∑
i=1

h
:
h
i
{a

:
a
i
u
:
u
m,i

+ (1− a1−
:::

a
i
)u

:
u
a,i
},. (1)

where hi ::::
Here,

::
hi:

is the pressure weighting function on the i= 1...20 ACOS model levels, a is the normalized ACOS averaging

kernelfor
::::::
defined

::
as

:::
the

:::::::
pressure

:::::::
intervals

::::::::
assigned

::
to

:::
the

::::
state

:::::
vector

::::::::::
normalized

::
by

:::
the

::::::
surface

::::::::
pressure

:::
and

::::::::
corrected

:::
for

:::
the275

:::::::
presence

::
of

:::::::::::
atmospheric

:::::
water

::::::
vapor.

:::
See

:::::::::
Appendix

::
A

::
of

:::::::::::::::::
O’Dell et al. (2012)

:::
for

::::::
details.

::::
The

::::::
vector

:
a
::

is
::::

the
::::
CO2:::::::

column

::::::::
averaging

::::::
kernel,

:::::
which

::::::
relates

:::
the

::::::::
sensitivity

:::
of

:::
the

:::::::
retrieved

:
CO2 , um is the TCCON/

::
to

::
the

::::
true

::::::::::
atmospheric

::::
state

:::
of

::::
CO2 ::

at

::::
each

::::::
vertical

:::::
level,

::
as

::::::::
described

:::
in

::::::::::::::::
Connor et al. (2008)

:
.
:::
The

::::::
vector

:::
um::

is
:::
the

::::::::
retrieved

:::::::
TCCON

::
or

:
model profile of CO2, and

ua ::::::
linearly

::::::::::
interpolated

::::
from

:::
the

::::::
native

::::::
vertical

:::::::::
resolution

::
to

:::
the

::
20

::::::
ACOS

::::::
levels.

:::
The

::::::
vector

:::
ua is the ACOS prior profile of

CO2. Generally the
::::::::
averaging

:::::
kernel

:
corrections are on the order of a tenth of a

:::
0.5 ppm or less.280

Finally, a third truth proxy for training the v10 quality filtering and bias correction was the "small area approximation"
:::::
(SAA).

Each small area is a collection of OCO XCO2 soundings over < 100 km sections within single orbits, where, in the absence of

10



strong localized sources, the real variability
:::::::::
uncertainty in XCO2 is expected to be well under 0.1 ppm (Worden et al., 2017).

:
A
:::::::

median
:::::
value

::
of

::::
each

:::::
small

::::
area

::::::::
provides

:
a
::::
truth

::::::
proxy

::
to

:::::
which

:::::
each

:::::::
sounding

:::
in

:::
the

:::::
small

:::
area

::::
can

::
be

:::::::::
compared.

:
While285

small areas are not suitable for determining large-scale biases in the satellite data, they provide a measure of the variability

:::::::::
uncertainty in the XCO2 estimates, due to both instrument noise and systematic errors that act on smaller scales.

::::
This

:::::::
“actual”

:::::::::
uncertainty

:::
can

:::
be

::::::::
compared

::
to

:::
the

:::::::::::
“theoretical”

::::::::::
uncertainty

::::::
derived

:::::
from

:::
the

:::::
L2FP

:::::::
retrieval

:::
and

::::::
stored

::
in

:::
the

::::::
L2Lite

::::
files

::
as

::::::::::::::
xco2_uncertainty.

:
For the v10 quality filtering and bias correction training, approximately 750×103 and 280×103 small areas

were identified for OCO-2 and OCO-3, respectively.290

3.3.2 Quality filtering and bias correction methodology

Details of the OCO quality filtering procedure were described in Sec. 4.2 of Kiel et al. (2019) for the OCO-2 v9 product and in

Sec. 6.2 of Taylor et al. (2020) for OCO-3 vEarly. Here, we summarize those methods and highlight
::
the

:::::::
method

:
is
:::::::::::
summarized

:::
and

:
differences in the v10 implementation for OCO-2 and OCO-3

:::
are

::::::::::
highlighted. In short, the quality filtering procedure295

assigns to each sounding in the L2Std XCO2 product a good (QF = 0) or bad (QF = 1) binary quality flag based on comparison

to truth proxies. A number of retrieval parameters (32 for OCO-2 v10 and 30 for OCO-3 v10.4) are assigned threshold cutoff

values, outside of which a sounding is considered unreliable, although all soundings in the L2Std product are retained in the

L2 Lite XCO2 files. The selected variables and their threshold values can be found in Sec. 3.2.4 of the OCO-2 v10 Data User’s

Guides (DUG) (Osterman et al., 2020), and Sec. 5.1.2 of the OCO-3 v10.4 DUG (Payne et al., 2022).
:::::::
Training

:::
for

:::
the

::::::
quality300

::::::
filtering

::::
and

::::
bias

:::::::::
correction

::::::::
procedure

:::::
takes

:::::
place

:::
on

::
a

:::::
Quick

::::
Test

:::
Set

:::::::
(QTS),

:::::
which

::
is
:::

an
::::::::::
intelligently

::::::::
selected

:::::
subset

:::
of

::::::::::::
approximately

:::
5%

::
of

:::
the

:::
full

:::::
OCO

::::
data

:::::
record

::::
that

::
is

:::::::
available

::
at

:::
the

::::
time

::
of

:::
the

::::::::
training.

The methodology for the empirical bias correction of the XCO2 estimates was first described in Wunch et al. (2011b), and later

in more detail by O’Dell et al. (2018), where the fundamental equation for OCO is defined as:305

XCO2,bc (mode, j) =
XCO2,raw−CP (mode)−CF (j = 1 . . .8)

C0 (mode)
. (2)

Here, CP is the mode-dependent parametric bias, CF is a mode and footprint-dependent bias for each of the eight footprints,

and C0 represents a mode-dependent global scaling factor.
:::
Bias

:::::::::
correction

::::::::::
coefficients

:::
are

::::::
derived

:::::
using

::::
only

:::::::::
soundings

::::
that

::::
have

::::
been

:::::::
assigned

::
a
::::
good

::::::
quality

::::
flag.

:
Many details related to the v10 quality filtering and bias correction can be found in the

DUGs (Osterman et al., 2020; Payne et al., 2022).310

For ACOS OCO-2 v10, the selected bias correction parameters are similar to those used in previous versions. For land, the

parameters are (i) a term related to the deviation in the retrieved CO2 profile from the prior: “CO2 grad del”, (ii) the difference

between the elevation adjusted retrieved surface pressure and the prior surface pressure: dPfrac, (iii) the combined aerosol op-

tical depth (AOD) of course-mode
:::::::::::
coarse-mode particles: log(AODdust + AODwatercloud + AODseasalt), and (iv) the AOD315
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Table 3. TCCON stations used in the quality filtering and bias correction of OCO-2 and OCO-3 v10. Sites used only for OCO-2 are indicated

with a dagger (†) in the first column. Sites located on an island are indicated with an asterisks (*) in the second column.

TCCON Latitude Altitude Operational Date Range Data

Station Name Continent (degrees) (meters) (YYYYMM - YYYYMM) Citation

Sodankylä† Europe 67.4 N 188 200901 – present Kivi et al. (2020)

East Trout Lake North America 54.4 N 502 201610 – present Wunch et al. (2018)

Bialystok† Europe 53.2 N 180 200903 – 201810 Deutscher et al. (2017)

Bremen† Europe 53.1 N 27 200407 – present Notholt et al. (2019)

Karlsruhe Europe 49.1 N 116 200909 – present Hase et al. (2015)

Paris Europe 48.8 N 60 201409 – present Te et al. (2014)

Orleans Europe 48.0 N 130 200908 – present Warneke et al. (2014)

Garmisch Europe 47.5 N 740 200707 – present Sussmann and Rettinger (2018a)

Zugspitze Europe 47.4 N 2960 201204 – present Sussmann and Rettinger (2018b)

Park Falls North America 45.9 N 440 200405 – present Wennberg et al. (2017a)

Rikubetsu Asia 43.5 N 380 201311 – present Morino et al. (2018c)

Lamont North America 36.6 N 320 200807 – present Wennberg et al. (2016)

Anmyeondo† Asia 36.5 N 30 201408 – present Goo et al. (2017)

Tsukuba Asia∗ 36.1 N 30 200812 – present Morino et al. (2018a)

Nicosia Europe∗ 35.1 N 185 201908 – present Petri et al. (2020)

Edwards North America 35.0 N 699 201307 – present Iraci et al. (2016)

JPL† North America 34.2 N 390 201103 – 201307 Wennberg et al. (2017b)

201706 – 201805 Wennberg et al. (2017b)

Caltech North America 34.1 N 230 201209 – present Wennberg et al. (2015)

Saga Asia∗ 33.2 N 7 201106 – present Shiomi et al. (2014)

Izana Africa∗ 28.3 N 237 200705 – present Blumenstock et al. (2017)

Burgos Asia∗ 18.5 N 35 201703 – present Morino et al. (2018b)

Ascension† Africa∗ 7.9 S 10 201205 – present Feist et al. (2017)

Darwin Australia 12.4 S 30 200508 – present Griffith et al. (2014a)

Reunion Africa∗ 20.9 S 87 201109 – present De Mazière et al. (2017)

Wollongong Australia 34.4 S 30 200805 – present Griffith et al. (2014b)

Lauder Australia∗ 45.0 S 370 200406 – present Pollard et al. (2017)
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Table 4. Names, institutions and citations of the atmospheric inversion systems used in the quality filtering and bias correction and XCO2

evaluation of OCO v10.

Model Name Institute Citations

CAMS-REAN European Centre for Medium-range Weather Forecasts Agustí-Panareda et al. (2014); CAMS-REAN (2021)

CAMS-INV Copernicus Atmosphere Monitoring Service Chevallier et al. (2010); CAMS-INV (2021)

CarbonTracker NOAA Global Monitoring Laboratory Peters et al. (2007); Jacobson et al. (2021)

CarboScope Max Planck Institute for Biogeochemistry Rödenbeck et al. (2018); CarboScope (2021)

LoFI NASA Goddard GMAO Weir et al. (2021)

UoE University of Edinburgh Atmospheric Feng et al. (2009); UoE (2021)

Composition Modelling Group

Table 5. Characteristics of models used for quality filtering, bias correction, and evaluation of OCO v10. N/A indicates Not Applicable.

Model Spatial Temporal Transport Inverse Meteorology

Short Resolution Resolution Model Method Source

Name [lat×lon]

CAMS-REAN 0.75◦×0.75◦ 3 h Integrated Forecast System (IFS) 4D-Var ECMWF

CAMS-INV 1.9◦×3.75◦ 3 h LMDZ Variational ERA-Interim

CarbonTracker 2◦×3◦ 3 h TM5 EnKF ERA-Interim

CarboScope 4◦×5◦ 6 h TM3 4D-Var NCEP

LoFI 0.5◦×0.625◦ 3 h GEOS GCM N/A MERRA-2

UoE 2◦×2.5◦ 3 h GEOS-Chem EnKF GEOS-FP

of fine-mode particles: AODfine. Ocean retrievals use two terms: (i) CO2 grad del, and (ii) the difference between the retrieved

and prior surface pressure in the SCO2 band: dPSCO2. The bias correction is very similar for OCO-3 v10, with the exception

that the coefficients are slightly different, and over land, the AODfine term has been replaced with a criteria based on the

retrieved albedo in the weak CO2 channel.

320

Table 7 provides a statistical summary of the results from the quality filtering and bias correction for both OCO-2 and OCO-3

for each of the three truth proxies. Results are given separately for land observations (combined nadir and glint) and for ocean-

glint observations. The number of soundings contained in each truth proxy data set that was used in the quality filtering and

bias correction procedure is listed, along with the fraction of the total soundings contained in the L2 Lite XCO2 product that

were assigned a good quality flag, i.e., the throughput. The standard deviation (σ) of the difference between the satellite XCO2325
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Table 6. Model versions used for the quality filtering and bias correction (indicated by asterisk *) and XCO2 evaluation of OCO v10. N/A

means not applicable.

Model QF/BC QF/BC Evaluation Evaluation

Name Version Time period Version Time period

OCO-2

CAMS-INV∗ 2018-v2 20140906 - 20190304 v20r2 20190806 - 20201231

CarbonTracker∗ CT-NRT.v2019-2 20140906 - 20190329 N/A N/A

CarboScope∗ s04oc-v4 20140906 - 20190304 s10oc-v2021 20190806 - 20201231

Lo-Fi N/A N/A m2ccv1sim 20190806 - 20201231

UoE N/A N/A v5 20190806 - 20201231

OCO-3

CAMS-REAN∗ v11899 20190806 - 20210223 N/A N/A

CAMS-INV∗ v20r3 20190806 - 20210223 v20r2 20190806 - 20201231

CarbonTracker∗ CT-NRT.v2021-3 20190806 - 20200731 N/A N/A

Lo-Fi m2ccv1 20190806 - 20210223 m2ccv1sim 20190806 - 20201231

CarboScope∗ N/A N/A s10oc-v2021 20190806 - 20201231

UoE N/A N/A v5 20190806 - 20201231

estimates and the truth proxy values are derived relative to (i) the raw , un-bias corrected, XCO2 ::::
prior

::
to

::::
bias

::::::::
correction, (ii)

the quality-filtered XCO2, and (iii) the combined quality-filtered and bias-corrected XCO2. The two right-most columns of the

table show the percent of the variance explained by the quality filtering (compared to the raw XCO2) and the bias correction

(compared to the quality filtered XCO2), respectively. The variance explained is calculated as 1.− (σ2/σ1)2
:::::::::::
1− (σ2/σ1)2,

where σ1 is the original variance in the data
:::::::::
uncertainty

::::::::
(standard

::::::::
deviation)

::
in

:::
the

::::::::
∆XCO2 and σ2 is the remaining variance.330

Below each sensor
::::::::::
uncertainty.

:::
For

::::
each

::::::
sensor

:::
and

:::
for

::::
both

::::
land

:::
and

::::::::::
ocean-glint

::::::::::
observations, the mean values from the three

truth proxies are provided
::
to

::::
help

:::::::::
summarize

:::
the

:::::::
statistics.
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Table 7. Summary of the OCO-2 and OCO-3 v10 quality filtering (QF) and bias correction (BC) results versus the individual XCO2 truth

proxies.

N Fraction Sigma (ppm) Variance Explained

Mode Sensor Truth Proxy (soundings ×106
::
103

::::::::
soundings) Good QF (%) Raw QF QF & BC by QF by BC

Land OCO-2 TCCON 0.70
:::
700 67.1

::
67% 2.74 1.74 1.15 60% 56%

Models 3.95
:::
3950

:
44.0

::
44% 3.77 1.67 1.09 80% 57%

SAA 1.40
:::
1400

:
69.4

::
69% 2.18 1.53 0.84 51% 71%

::::::
mean= mean=

::::
2017 60% 2.9

:::
2.90

:
1.6

:::
1.65

:
1.0

:::
1.03

:
64% 61%

::::
Land OCO-3 TCCON 0.20

:::
200 68.9

::
69% 2.02 1.50 1.33 45% 24%

Models 2.15
:::
2150

:
56.3

::
56% 2.76 1.49 1.16 71% 34%

SAA 0.87
:::
870 66.7

::
67% 1.70 1.11 0.97 57% 43%

::::::
mean= mean=

::::
1073 64% 2.2

:::
2.16

:
1.4

:::
1.37

:
1.3

:::
1.30

:
58% 34%

Ocean-Glint OCO-2 TCCON 0.24
:::
240 70.8

::
71% 1.73 1.07 0.82 62% 41%

Models 2.03
:::
2030

:
52.1

::
52% 2.52 1.12 0.73 80% 58%

SAA 0.75
:::
750 71.9

::
72% 1.52 0.90 0.46 65% 74%

::::::
mean= mean=

::::
1006 65% 1.9

:::
1.92

:
1.0

:::
1.03

:
0.7

:::
0.67

:
69% 58%

:::::::::
Ocean-Glint

:
OCO-3 TCCON 0.17

:::
170 53.5

::
54% 2.05 1.15 1.01 69% 23%

Models 1.56
:::
1560

:
55.0

::
55% 2.22 1.21 0.72 70% 65%

SAA 0.91
:::
910 73.4

::
73% 1.59 0.97 0.47 63% 77%

::::::
mean= mean=

:::
880 61% 2.0

:::
1.95

:
1.1

:::
1.11

:
0.7

:::
0.73

:
67% 55%

Overall, the fraction of good-quality soundings remains the same at approximately 60% for both sensors for land and ocean-

glint. XCO2 estimates from both sensors exhibit comparable scatter
::::::::::
uncertainties

:
in raw XCO2 against the three truth proxies335

of ≈ 2-3 ppm. Estimates from both sensors show a reduction in scatter
::::::::::
uncertainties

:
after application of first, the quality filter,

and then the combined quality filter and bias correction to approximately 1 ppm for land and 0.7 ppm for ocean-glint. Even

though the mean of the scatter
::::::::::
uncertainties for the OCO-2 raw XCO2 versus truth proxies for land was higher (2.9 ppm) com-

pared to OCO-3 (2.2 ppm), the mean of the scatter
::::::::::
uncertainties

:
for the OCO-2 quality-filtered and bias-corrected XCO2 of

1.0 ppm is somewhat smaller than for OCO-3 at 1.3 ppm. This implies that the bias correction is more effective for OCO-2 than340

for OCO-3 over land. This is evidenced in the right-most column of the table, which indicates that the OCO-2 bias correction

explains, 56%-71% of the variance (mean of 61%) across the truth proxies, while only 24%-43% of the variance (mean of

34%) is explained by the OCO-3 bias correction. The same is not true for
:::
For

:
ocean-glint observations, where the variance
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explained by the bias correction is similar for OCO-2 and OCO-3 at 58% and 55%, respectively.

345

The lower variance explained by the OCO-3 bias correction seems to originate from a combination of both a less effective

dP correction, and a much less effective CO2 grad del correction, a term related to the deviation in the retrieved CO2 profile

from the prior. It is likely that the residual pointing errors in OCO-3 v10 of up to 1-2 km (median of ≈ 0.5 km), shown in

Section
::::::::
Appendix B, produce a less accurate surface pressure prior, which in turn yields larger dP scatter

::::::::::
uncertainties

:
from

the L2FP retrieval. FIn
:
In

:
addition, remaining radiometric calibration issues in the OCO-3 ABO2 spectral band may affect the350

retrieved surface pressure. Both of these factors could explain the less effective OCO-3 dP bias correction term. We currently

have no working hypothesis
:::
No

:::::
viable

::::::::::
explanation

:::
has

:::
yet

::::
been

::::::::::
formulated for why the OCO-3 CO2 grad del bias correction

term is so much less effective relative to that for OCO-2.

:::::::::::
Improvements

:::
in

:::::::::
successive

:::::::
versions

::
of

:::
the

::::::
ACOS

:::::
L2FP

:::::::
retrieval

:::
are

:::::::::::
demonstrated

::
in

::::
Fig.

::
1,

:::::
which

:::::::::
compares

::::
RMS

::::::
errors

::
in355

:::::
XCO2::::

from
:::
v9

:::
and

::::
v10

::::::
OCO-2

::::
and

:::
v10

::::::
OCO-3

::::::
versus

:::
the

::::
three

:::::::::::
truth-proxies

:::
for

::::
land

:::
and

::::::::::
ocean-glint

:::::::::::
observations.

:::::
There

:::
are

:::::::::
substantial

::::::::
decreases

::
in

:::
the

:::::
RMSE

:::
for

:::::::
OCO-2

::::
from

::
v9

::
to
::::
v10

::
as

::::::::
compared

::
to
::::
both

::::::::
TCCON

:::
and

::
to

:::
the

::::::
MMM

::
for

::::
both

::::
land

::::
and

:::::::::
ocean-glint.

::::
The

:::::::
changes

::
in

:::
the

::::::
OCO-2

::::::
RMSE

:::::
from

::
v9

::
to

::::
v10

:::
for

:::
the

::::
small

::::
area

:::::::
analysis

:::::
were

::::::::::
insignificant

:::::::
between

::::::::
versions,

:::::
which

::
is

::
to

::
be

::::::::
expected

:::::::
because

:::::
errors

::
at

::::
very

:::::
small

::::::
spatial

:::::
scales

:::
are

::::::::
primarily

::::::
driven

::
by

::::::::::
instrument

:::::
noise,

:::::
which

::::::
cannot

:::
be

:::::
further

::::::::
reduced.

:::
For

:::
all

::::
three

::::
truth

:::::::
metrics

:::::
versus

::::
land

:::::::::::
observations,

:::::::
OCO-3

::::::::
compares

:::::
worse

::::
than

:::::::
OCO-2.

::::
The

::::::::::
discrepancy

::
is360

:::::
likely

:::::
driven

:::
by

::::
both

::::::
OCO-3

:::::::
residual

:::::::
pointing

:::::
errors

::::
and

:::
L1b

::::::::::
calibration

:::::
errors,

::::
both

:::
of

:::::
which

:::
are

:::::::
expected

:::
to

:::::::
improve

::
in

:::
the

:::
next

::::
data

:::::::
version.

::::
The

:::::
worse

:::::::::
agreement

::
of

:::::::
OCO-3

:::
v10

::::
with

::::::::
TCCON

::
as

::::::::
compared

::
to
:::::::
OCO-2

:::
v10

::::
can

::
be

::::::::
explained

:::
in

:::
part

:::
by

::
the

:::::::
limited

::::::
number

:::
of

:::::::
TCCON

::::::::::
collocations

::::
with

:::::::
OCO-3

:::
that

:::::
were

::::::::
available

::
at

:::
the

::::
time

::
of

:::::::
creation

::
of

:::
the

:::::
QTS.

:::::::::::
Incidentally,

::
the

::::
data

::::
also

::::::::::
demonstrate

::::
that

::
for

:::
all

::::
truth

::::::
proxies

::::
and

:::
for

::::
both

::::::
sensors,

::::::::::
ocean-glint

:::::
errors

:::
are

:::::
lower

::::
than

::::
land

:::::
errors,

:::::::::
indicating

:::::
higher

::::::::
precision

::::::
relative

::
to

::::
land

:::::::::::
observations.

::::
This

:::::
result

::
is

:
at
:::::
odds

::::
with

:::::::
previous

:::::::
findings

:::::::
showing

:::::::::
unrealistic

::::::
features

::
in

::::::
global365

:::::::
inversion

:::::::
models

:::::
which

::::::::
assimilate

:::::::
OCO-2

:::::::::
ocean-glint

::::
data

::::::::::::::::::::::::::::::::::
(e.g. Peiro et al., 2022; Byrne et al., 2023)

:
.

4 OCO v10 XCO2 data volumes

Global maps showing the spatial distribution of the native sounding densities for a single year (2020) and a single footprint, are

shown in panels (a) and (c) of Fig. 2, for OCO-2 and OCO-3, respectively. The data here have been aggregated to 2.5◦ by 5◦370

latitude/longitude grid cells, whereas the actual swath width of each sensor is on the order of 10 km. Although the total number

of soundings collected is very similar (≈ 40 M
::::::
million), the distinct difference in latitudinal extent of the two sensors due to the

orbital characteristics is evident. The polar orbit of OCO-2 provides nearly continuous latitudinal coverage. There is somewhat

less coverage for orbit tracks over the northeastern Pacific because these orbits are used for data down-link, during which

the OCO-2 instrument does not acquire science measurements. The precessing orbit of OCO-3 on the ISS limits coverage to375

latitudes less than ≈ 52◦, near which there is a high density of soundings at the orbit inflection points. In other words, OCO-3
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Figure 1.
::::
RMS

:::::
errors

::
for

:::::::
different

::::::
versions

::
of

::::::
OCO-2

:::
and

::::::
OCO-3

:::::
XCO2 :::::

versus
::::
three

:::
truth

:::::::
proxies:

:::::::
TCCON,

:::::::::::::::
multi-model-median

:::::::
(MMM),

:::
and

::::
small

::::
area

:::::::::::
approximations

::::::
(SAA).

::::::
Results

:::
are

::::::
derived

::::
from

:::::
single

:::::::
sounding

:::::::
statistics

::::
using

::::::::::::
quality-filtered

:::
and

:::
bias

::::::::
corrected

:::::
XCO2

:::
from

:::
the

::::
QTS.

::::::
Results

:::
for

:::
land

::::::::::
observations

::
are

::::::
shown

:
in
:::::
panel

:::
(a),

::::
while

::::
panel

:::
(b)

:::::
shows

:::::
results

:::
for

::::::::
ocean-glint

::::::::::
observations.

:
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produces a similar overall number of soundings compared to OCO-2, but the soundings are restricted into a smaller area, thus

producing a higher density.

The soundings that pass the preprocessor checks for cloud and aerosol loading and then converge in the L2FP algorithm are380

assigned either a good (QF=0) or a bad (QF>0) quality flag in post-processing. Typically, we
:
is

::
is recommend that only the

good quality flag soundings are used in global (or regional) atmospheric inversion systems to deduce CO2 fluxes. Panels (b) and

(d) of Fig. 2 show the sounding densities of the good quality flagged
::::::::::::
quality-flagged

:
data for OCO-2 and OCO-3, respectively.

Qualitatively, the distributions of good soundings from the two sensors resemble clear-sky fraction maps, as expected. Over

land, OCO-3 provides more good soundings than OCO-2, especially near 50◦ latitude as a result of the ISS orbit. Furthermore,385

OCO-3 operates almost exclusively in nadir mode over land, which may also contribute to a higher good quality sounding

throughput relative to OCO-2 land-glint observations, which have higher optical pathlengths and thus sensitivity to clouds and

aerosols. Conversely, OCO-3 provides less good soundings over the oceans compared to OCO-2 due to lower sampling rates

in glint observation mode as constrained by operations aboard the ISS. Mechanical and operational constraints on the OCO-3

instrument frequently preclude pointing towards the glint spot. During these periods, the instrument collects ocean data in nadir390

mode, for which the signal-to-noise ratio is too low to provide accurate estimates of XCO2.

Fig.
:::::
Figure 3 shows bar plots quantifying the number of good soundings by month for each observation mode for the over-

lapping time period August 2019 through February 2022 for OCO-2 (a) and OCO-3 (b). These plots help to visualize the

difference in the ratio of land to ocean-glint observations for the two sensors. OCO-2 collects a much larger and more stable395

fraction of monthly ocean-glint compared to OCO-3. The lack of good quality ocean-glint OCO-3 observations early in the

mission is evident, as observations were often restricted to nadir viewing mode due to safety concerns related to early uncer-

tainties in the effects of polarization and signal levels for OCO-3, which were mitigated by revised PMA pointing with respect

to the glint spot (Taylor et al., 2020). The plot also highlights the higher relative fraction of OCO-3 TG and SAM data (8% of

the total), compared to only 1% TG data for OCO-2, a distinguishing characteristic that sets the two missions apart.400

Figure 4 presents the densities of good data (QF=0) gridded in time (10 day) and latitude (10◦) for OCO-2 (top) and OCO-3

(bottom). This again effectively demonstrates the difference in spatial coverage between the two sensors. The time-latitudinal

coverage of OCO-2 is much smoother than OCO-3 , while
:::
due

::
to

:::
the

::::::::
repeating

:::::::::::::::
sun-synchronous

:::::
polar

:::::
orbit.

::
In

::::::::
contrast,

OCO-3 has a sinusoidal-like pattern of higher/lower densities over mid-latitude land
:::::::::
alternating

::::
high

:::
and

::::
low

::::::::
densities

::::
over405

:::::::::::
mid-latitudes, with the maximum value alternating in time between the northern and southern hemispheres.

:::
This

::
is
::::
due

::
to

:::
the

::::::::
precessing

:::::
orbit

::
of

::::::
OCO-3

::::::
aboard

:::
the

::::
ISS,

:::::
which

:::::::::
introduces

:::::::
periodic

::::::::
variations

::
in

:::
the

::::::
portion

::
of

:::
the

:::::
earth

:::
that

::
is

::::::
viewed

::::::
during

:::::::
daylight

:::::
hours. In addition, OCO-3 is subject to both predictable and unpredictable periods during which science measurements

either cannot be collected at all, or are limited to nadir viewing, as discussed in Appendix B. Predictable data gaps occurs rather

frequently for ocean-glint observations, due to physical viewing constraints aboard the ISS JEM-EF. Periods of missing data410
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Figure 2.
::::::
Version

::
10

:::
data

:::::::
volumes

::::
from

:
a
:::::
single

::::::
detector

::::::
footprint

::
(4
::
of

::
8,

:::::::
1-based)

::
for

:::
the

:::
year

::::
2020

::::::
gridded

::
at

:::
2.5◦

::::::
latitude

::
by

:::
5◦

:::::::
longitude

:::::::
resolution

:::
for OCO-2 (top row) and OCO-3 (bottom row)v10 data volumes for the single, complete year 2020, and the single Footprint 4

(of 8). The
::::
total

::::::
number

::
of measured sounding density per 2.5◦ by 5◦ latitude/longitude grid cell

:::::::
soundings

:::
(N)

:::
for

::::
each

:::::
sensor

:::
are

:::::
shown

in panels (a) and (c), .
:::::
Panels

:::
(b) and

:::
(d)

::::
show the sounding density

:::::
number

::
of

::::::::
soundings

:::
(N)

:::
that

::::
were

:
assigned a good quality flag in the

L2 Lite XCO2 product(panels b and d).
:::
The

::::::
percent

::
of

:::
the

:::
total

::::::
number

::
of
:::::::::::

measurements
::
is
::::
given

:::
as

::
G.

::::
Grid

:::
cells

:::::::::
containing

:::
less

:::
than

:::
10

:::::::
soundings

:::
are

::::::
colored

::::
gray.

that are longer than 10 days can be seen in panel (d) as columns that are fully grey.

5 Comparing v10 XCO2 estimates from OCO-2 and OCO-3

As described in Section 1 of the OCO-3 v10.4 data quality statement (Chatterjee et al., 2022), early in the production of the

OCO-3 v10 XCO2 Lite product, an analysis of XCO2 estimates collocated to OCO-2 soundings suggested that there was415

a diverging trend that was correlated with time since the last OCO-3 instrument decontamination cycle. After development

and application of an “ad hoc” bias correction to the OCO-3 XCO2, the drift was eliminated, bringing the two sensors into

agreement within the expected uncertainties of a few tenths of a ppm. A new set of OCO-3 L2 Lite XCO2 files (v10.4) was

generated and distributed to the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) website
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Figure 3. Bar plots of the monthly number of good QF
:::::::::::
quality-flagged

:
soundings for OCO-2 (a) and OCO-3 (b) by observation mode (colors)

for the time period August 2019 through February 2022.
:::
The

:::::::
fractional

::::::
percent

::
for

::::
each

:::::::::
observation

::::
mode

::
is
::::
listed

::
in
:::
the

::::::
legend,

::::
along

::::
with

::
the

::::
total

::::::
number

::
of

::::
good

:::::::::::
quality-flagged

::::::::
soundings

:::
(N).

:
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Figure 4. Data density (in thousands
:::
103) of the number of good

:::::
quality

::::::
flagged soundings for v10 OCO-2 (top) and OCO-3 (bottom) for

land (left) and ocean (right) at 10◦
::::::
latitude by 10 day

:::
days

:
resolution for the time period August 2019 through February 2022.

::
The

:::::::
ordinate

:::
axis

::
is

:::::
scaled

::
by

:::
the

:::::
cosine

::
of

::
the

::::::
latitude

::
to

:::::::
elucidate

:::
the

::::::::
decreasing

:::::::
fractional

::::::
surface

:::
area

::
of
:::

the
::::
earth

::::
with

::::::::
increasing

::::::
latitude.

:
Grid cells

containing less than 10 soundings are colored gray.

OCO Science Team et al. (2022). A full discussion of the ad hoc correction is provided in Appendix B. The remainder of the420

analysis that follows uses the OCO-3 v10.4 XCO2.

Figure ??
:
5
:
shows maps of the magnitude of the bias correction (ppm) for both sensors for April and August, 2020. Here, the

:::
The

:::::::
patterns

::::
look

::::::::::
qualitatively

::::::
similar,

::::
with

::::
bias

:::::::::
corrections

:::::::
ranging

::::
from

::::
zero

::
to

:::::::
≈ 2 ppm

::
in

:::
the

::::::::::
midlatitudes

:::
and

:::::
polar

:::::::
regions,

:::
and

::::
bias

:::::::::
corrections

::
of

::
up

::
to
::::::::
≈ 4 ppm

::::
over

:::
the

:::::
Sahara

::::
and

::::
dust

::::::
outflow

:::::::
regions,

::
as

::::
well

::
as

:::
the

:::::::
tropical

::::::
oceans.

:::
The

:::::
mean

::::::
global425

:::
bias

::::::::::
corrections

:::
are

::::::
slightly

:::::
larger

:::
for

:::::::
OCO-2

::::::::
compared

::
to
:::::::
OCO-3

:::
for

::::
both

:::::::
months,

:::
but

:::
the

:::::::::::
uncertainties

:::
are

::::::
slightly

:::::::
smaller

::
for

:::::::
OCO-3.

::::
The

:::::
2020

:
annual median bias for each sensor (

:::::::::
correction

:::
was

:
1.81 ppm

:::
for

::::::
OCO-2

:
and 2.11 ppm for OCO-2

and OCO-3, respectively) has been subtracted. Furthermore
:
.
::::
Note

::::
that, the OCO-3 time-dependent v10.4

::::::::::::
time-dependent

:
ad

hoc bias correction discussed in Appendix B3 has also been removed. Qualitatively, there is reasonable agreement in the bias

correction between the sensors, as they are not expected to be identical at these spatiotemporal scales as dictated by vastly430

different sampling.

Figure 6 shows the spatial maps of OCO-2 and OCO-3 gridded
::::::::::::
quality-filtered

:::
and

::::
bias

::::::::
corrected

:
XCO2 for the months of

April 2020 and August 2020. The well-known features of the atmospheric distribution of CO2 are present. For example, high

values are observed in the northern hemisphere (NH) spring when the land biosphere is still quiescent (≈ 415 ppm), followed435

by lower values at high northern latitudes in August when the biosphere is most active (≈ 405 ppm). Since the seasonal cycle

of CO2 is driven primarily by biospheric activity on land, the difference in April and August XCO2 in the southern hemisphere
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Figure 5. Monthly maps of the bias correction for OCO-2 (top row) and OCO-3 (bottom row) for April 2020 (left) and August 2020 (right)

gridded in 2.5◦ latitude by 5◦ longitude bins.
:::
The

::::::
number

::
of

:::::
single

:::::::
soundings

::::
(SS)

:::
are

::::
given

::
by

::
N,

:::::
while

::
the

::::
mean

:::
(µ)

:::
and

:::::::
standard

:::::::
deviation

::
(σ)

::
of

:::
the

::::::
gridded

::::
(bin)

:::
data

:::
are

:::::::
reported. Grid cells with less than ten

::
10 soundings are colored gray.

(SH) is much smaller compared to the NH. Although the distribution of XCO2 between the two sensors is qualitatively sim-

ilar, the figures illustrate the difference in latitudinal coverage due to the differing orbit characteristics. This has meaningful

consequences for the interpretation of flux estimates derived from inverse modeling of the OCO-2 and OCO-3 datasets
:::::
XCO2440

::::::::::::
concentrations. For example, OCO-3 cannot directly capture the strong summer draw down of CO2 in the northern boreal

forests, thereby forcing the models to .
::::

For
:::
this

:::::
time

:::
and

::::::::
location,

:::
an

::::::::
inversion

::
of

:::::::
OCO-3

::::
CO2::::::

fluxes
::::
must

:
rely more on

the prior spatial variations
:::::
model

:::::
prior

::::::
values

:::::
since

::::
there

::
is
:::
no

::::::::::
information

::::::::
provided

::
by

:::::::
satellite

:::::::::::::
measurements,

:::::::
whereas

:::
an

::::::::::
assimilation

::
of

:::::::
OCO-2

::::::
XCO2 :::

for
:::
this

:::::
same

::::
time

::::
and

:::::::
location

::::::
would

:::::::
provide

::::::::::
information

::
to

:::
the

:::::::
models

:::::
since

:::
the

:::::::
satellite

:::::::
observed

::::
this

:::::::
location

:
at
::::

this
::::
time. It is worth noting that it is challenging to produce a meaningful difference in XCO2 for the445

two sensors at the global scale due to the spatial and temporal differences in sampling. Generally, such maps look qualitatively

like differences in CO2 driven by synoptic-scale weather patterns, as for any given grid box, there might be a difference of

several days in observations from the two sensors. However, a direct comparison in XCO2 on a small set of collocated obser-

vations is provided in Appendix B3.

450

To further demonstrate the agreement between the two sensors, panels (a) and (c) of Fig. 7 show the meridional behavior of

XCO2 for both sensors and observation modes for April and August 2020.
:::::
2020,

::::::::::
respectively. Here, the resolution is 5◦ latitude

bins, and the monthly median OCO-2 XCO2 has been subtracted. In April, when XCO2 concentrations are near maximal
::::
their

:::::
annual

::::::::::
maximums in the extra-tropical northern hemisphere, the meridional gradients are strong over both land and ocean. In

August, when the northern hemisphere biosphere is fully active, XCO2 is within ≈ 1 ppm of the global median for latitudes455

below approximately 50
::
40◦ N, but much lower than the global average at higher northern latitudes. The difference plots (panels

b and d)
::::::
OCO-3

::
−

::::::::
OCO-2),

:::::
shown

::
in
::::::

panels
:::
(b)

::::
and

:::
(e),

:
indicate that OCO-3

:::::::::
ocean-glint is generally biased low relative to

OCO-2 by about 0.1 to 0.5
::
0.3

::
to

:::
0.4 ppm . Differences between XCO2 estimates from the two sensorsfor

::::
with

:::::::::
uncertainty,

:::
σ,

::
of

::::::::::::
approximately

:::::::
0.2 ppm.

::::
For

::::
land

:::::::::::
observations,

:::
the

:::::::::
differences

::::
vary

:::::::::::
significantly

::::
with

:::::::
latitude,

:::::::
making

::::::::
inferences

::::::::
difficult.

:::::
Panels

:::
(c)

:::
and

:::
(f)

:::::
show

::
the

:::::::
zonally

::::::::
averaged

:::::::::
differences

:::::::
between

::::
land

:::
and

::::::
ocean

:::::::::::
observations,

:::::
which

:::
are

::::::::
expected

::
to

::
be

:::::
close460

::
to

::::
zero

::
for

:::::
both

:::::::
sensors.

:::::
Based

:::
on

:::
the

:::::
results

:::
for

:::::
these

::::::::
particular

:::::::
months,

:::::::
OCO-2

:::
and

:::::::
OCO-3

:::
are

::
in

::::::::::
approximate

::::::::::
agreement,

::::
with

:::::::::
land/ocean

::::::
biases

::::::
ranging

::::::::::
≈± 2 ppm,

:::::
with

:::::::::
significant

:::::::
variation

:::
by

:::::::
latitude.

::::::
These

:::::
same

::::::::
behaviors

:::::
were

::::::::
observed

:::
for

::::
most

::::::
months

::
in

:::::
2020.

::::
This

:::::::::::::::::::
latitudinally-dependent

:::::::::
land/ocean

::::
bias

::
is

::
an

::::::::::
unexpected

::::::
feature

::
of

:::
the

::::
data

::
set

::::
that

:::::::
requires

::::::
further

:::::::::::
investigation.

:::
The

:::::::
analysis

:::
for

:
April and August 2021 (not shown) are

::::
was qualitatively very similar.

465

22



N=2.62M (SS) =412.86 (bin) =2.59 (bin)

(a) OCO-2, 2020, April

404
406
408
410
412
414
416
418

XC
O 2

 (p
pm

)

N=3.15M (SS) =410.03 (bin) =2.26 (bin)

(b) OCO-2, 2020, August

404
406
408
410
412
414
416
418

XC
O 2

 (p
pm

)

N=2.95M (SS) =412.73 (bin) =2.50 (bin)

(c) OCO-3, 2020, April

404
406
408
410
412
414
416
418

XC
O 2

 (p
pm

)

N=3.56M (SS) =410.57 (bin) =1.66 (bin)

(d) OCO-3, 2020, August

404
406
408
410
412
414
416
418

XC
O 2

 (p
pm

)

Figure 6. Monthly
::::
maps

::
of

:::::::::::
quality-filtered

:::
and

::::
bias

:::::::
corrected XCO2 maps for OCO-2 (top) and OCO-3 (bottom) for April 2020 (left) and

August 2020 (right) at 2.5◦ latitude by 5.0◦ longitude resolution.
::
The

::::::
number

::
of
:::::
single

::::::::
soundings

::::
(SS)

::
are

:::::
given

::
by

::
N,

:::::
while

:::
the

::::
mean

:::
(µ)

:::
and

::::::
standard

:::::::
deviation

:::
(σ)

::
of

:::
the

::::::
gridded

::::
(bin)

:::
data

:::
are

:::::::
reported.

:::
Grid

::::
cells

::::
with

:::
less

:::
than

:::
10

:::::::
soundings

:::
are

::::::
colored

::::
gray.

./figures/fig06.pdf

Figure 7. Meridional XCO2 gradients at 5◦ latitude resolution by season, sensor , and observation mode for April 2020 (a), and August 2020

(c
:
d). Only latitude bins containing at least 1000 soundings are shown.

::
The

::::
total

::::::
number

::
of

::::::::
soundings

:::
(N)

:::
for

::::
each

:::::
sensor

:::
and

:::::::::
observation

::::
mode

::
is

::::
given

::
in

:::
the

:::::
legend.

:
Panels (b) and (d

:
e) show the differences in the monthly binned values (OCO-3 minus

::
− OCO-2) for both land

(pink diamonds) and ocean (purple circles) observations.
:::::
Panels

::
(c)

:::
and

::
(f)

:::::
show

::
the

::::::::
differences

::
in
:::
the

::::::
monthly

::::::
binned

:::::
values

::::
(land

::
−

:::::
ocean)

:
to
::::::::::

demonstrate
::
the

:::::::::
land/ocean

::::
bias.

:::
The

:::::
mean

::
(µ)

::::
and

::::::
standard

:::::::
deviation

:::
(σ)

::
of

:::
the

:::::
binned

:::::::::
differences

:::
are

::::
given

::
in

:::
the

::::::
legend.

::::
Here,

::::
land

:::::::::
observations

::::::
include

::::::::
land-nadir,

::::::::
land-glint,

::::::
land-TG

::::
and

::::::::
land-SAM,

::::
while

:::::
ocean

:::::::
includes

::::::::
ocean-glint

::::::::::
observations.

:
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Figure 8 shows XCO2 binned at 10 day by 10◦ latitude for the overlapping time period August 2019 through February 2022

for OCO-2 (top row) and OCO-3 (middle row). Results are shown separately for land (left column) and ocean (right column).

Qualitatively, the XCO2 patterns at this spatiotemporal resolution look very similar, as expected, with maximum XCO2 in NH

spring just before the biospheric drawdown begins, and minimums in NH summer. The plots highlight the secular trend of

≈ 2.2 ppm/year, and the seasonal variation in the latitudinal gradient of XCO2, both important features of the carbon cycle.470

Again, the substantial time periods where no ocean data is collected by OCO-3 are evident in panel (e).

Due to the vastly different sampling strategies of OCO-2 and OCO-3, coupled with spatial changes in XCO2 over short time

periods, a direct comparison of observed XCO2 at a global scale is extremely difficult, and can only be used to obtain a

rough idea of how the sensors agree. Using the gridded values, the differences for land observations (c) have a mean value475

of 0.0 ppm, standard deviation of 0.67 ppm, and a range of +
:
+5 to -4

:::
−4 ppm. The ocean observations (f) exhibit a mean

bias of -0.26
:::::
−0.26 ppm (OCO-3 lower than OCO-2), with significantly lower scatter

:::::::::
uncertainty

:
(0.45 ppm) and min/max

(-1.9
::::
−1.9/+

:
+1.7 ppm), compared to land. A more direct and accurate comparison between the two sensors, reported on a

small subset of observations with tight spatial and temporal collocation, is discussed in Appendix B3.
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Figure 8.
::::
Good

::::::::::::
quality-flagged

:::
and

:::
bias

:::::::
corrected XCO2 gridded at 10day by 10◦ latitude

::
by

::
10

:::
days

:
for the overlapping time period August

2019 through February 2022 for OCO-2 land (a) ,
::
and

:
OCO-3 land (b)and the .

::::
The gridded differences

::
for

::::
land

::::::::::
observations (

::::::
includes

::::::::
land-nadir,

::::::::
land-glint,

::::::
land-TG

:::
and

:::::::::
land-SAM)

:::
are

:::::
shown

::
in

::::
panel

:
(c). Panels (d), (e), (f) are the same, except for ocean-glint observations.

:::
The

::::::
ordinate

:::
axis

::
is

:::::
scaled

::
by

:::
the

:::::
cosine

::
of

::
the

::::::
latitude

::
to

:::::::
elucidate

::
the

::::::::
decreasing

::::::::
fractional

:::::
surface

::::
area

:
of
:::
the

::::
earth

::::
with

:::::::
increasing

:::::::
latitude.

Data cells with less than ten
::
10 soundings are colored gray.

:
In

:::::
panels

:::
(c)

:::
and

::
(f)

:::
the

::::::
number

::
of

::::
valid

:::
grid

::::
cells

:::
(N)

::
is

:::::
given,

::::
along

::::
with

:::
the

::::
mean

:::
(µ),

:::::::
standard

:::::::
deviation

:::
(σ),

:::
and

::::::::
maximum

:::::
(max)

:::
and

:::::::
minimum

::::
(min)

:::::::::
differences

::
in

::
the

::::::
gridded

::::::
values.
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6 Evaluation of OCO v10 XCO2 estimates versus truth proxies
:::::::::::
truth-proxies

6.1 OCO v10 XCO2 estimates versus TCCON

Section 3.3.1 introduced and discussed the TCCON data as used in
:::
This

::::::
section

::::::::
discusses

:::
the

:::::::::
evaluation

::
of

:
the OCO v10

::::
good

::::::::::::
quality-flagged

::::::
XCO2 ::::::::

estimates
::::::
against

:::
the

::::::::::
truth-proxies

:::::
used

::
in

::
the

:
quality filtering and bias correction . Although it could be

considered circular to also validate the satellite XCO2 estimates against TCCON, we argue that
::::::::
procedure.

::::::::
Although

:::::
there

::
is485

::::
some

:::::::::
circularity

::
in

:::::::::
evaluating

:::
the

:::::::
satellite

:::
data

:::::::
against

:::
the

::::
same

:::::::::::
truth-proxies

::::
used

:::
for

:::::::
filtering

:::
and

::::
bias

:::::::::
correction,

:
the multi-

parameter parametric bias correction is general enough so as to not over-fit the OCO data. Furthermore, both
:::
the

:::::::::::
truth-proxies

::::
used

::
for

:::::::::
evaluation

::::
have

::::
been

::::::::
extended

::
in

::::
time

::::::::
compared

::
to

:::
the

::::
data

:::
sets

::::
used

::
to

::::
train

:::
the

:::::::
filtering

:::
and

::::
bias

:::::::::
correction.

::::::::
Although

:
it
::
is

::::::
outside

:::
the

:::::
scope

::
of

:::
the

::::::
current

::::::
work, OCO-2

::::
data

::::
have

::::
been

::::::::
validated

::::::
against

::
a

::::
range

:::
of

::::
other

::::::::
datasets,

::::::::
including

::::::
in-situ,

:::
and

::::::
NOAA

::::
and

::::::
Aircore

:::::::
vertical

::::::::::
observations

::::::::::::::::::
(Rastogi et al., 2021),

:::::::
aircraft

:::::::::
campaigns,

::::
e.g.

:::::
ATom

:::::::::::::::::::
(Kulawik et al., 2019)

:::
and490

:::::::::::
ACT-America

:::::::::::::::
(Bell et al., 2020),

:::::::::
ship-borne

::::
and

:::::::
airborne

::::::::::::
measurements

:::::::::::::::::
(Müller et al., 2021),

::::
and

::::::::::
EM27/SUN

::::::::::::
measurements

::::::::::::::::
(Jacobs et al., 2020)

:
.

6.1
::::

OCO
::::
v10

::::::
XCO2 ::::::::

estimates
::::::
versus

::::::::
TCCON

::::::
Section

:::::
3.3.1

:::::::::
introduced

:::
and

:::::::::
discussed

:::
the

:::::::
TCCON

::::
data

::
as

:::::
used

::
in

:::
the

:::::
OCO

:::
v10

:::::::
quality

:::::::
filtering

:::
and

::::
bias

:::::::::
correction.

:::::
Both495

::::::
OCO-2

:
and OCO-3 were quality filtered and bias corrected against TCCON GGG2014 data, while here we compare to

:::::::
TCCON GGG2020

:::::
XCO2:::::::::

estimates
:::
are

::::
used

::
in

:::
the

::::::::::
comparison. Key changes to the retrieval algorithm between GGG2014

and GGG2020 are available on the TCCON wiki page (TCCON). We also note that some time has elapsed since the data were

trained :
:::
The

:::::
OCO

:::::::::::::
quality-filtering

::::
and

:::
bias

::::::::::
corrections

::::
were

::::::
trained

:::::
using

::::
data

:
through December 2018 for OCO-2 and De-

cember 2020 for OCO-3, whereas the validation data extends through February 2022 for OCO-2 and August 2022 for OCO-3.500

This provides some degree of independence in the evaluation.

Figure 9 shows one-to-one correlation plots of the OCO-2 and OCO-3 v10 XCO2 estimates versus TCCON GGG2020 es-

timates, as well as the direct correlation between OCO-2 and OCO-3 using the collocated soundings that are presented in

Appendix B. Each point on the graphs represents, for OCO, the mean XCO2 of the individual soundings acquired on a single505

overpass within a box 2.5◦ latitude by 5.0◦ longitude around a TCCON station. Only overpasses with at least one hundred

good quality-flagged OCO soundings
:::::
within

:::
the

::::
2.5◦

:::::::
latitude

::
by

::::
5.0◦

::::::::
longitude

::::
grid

::::
box

:
were retained. The TCCON values

are the median of the XCO2 acquired within ± 1 h of the OCO overpass.

For the 1121 OCO-2 land collocations (includes land-nadir, land-glint, and land-target) shown in panel (a), and the 259 OCO-3510

land collocations (includes land-nadir and land-target) shown in panel (b), the mean biases versus TCCON are 0.24 ppm and

0.12 ppm, respectively, while the scatter is
::::::::::
uncertainties

:::
are 0.77 ppm and 0.90 ppm, respectively. In comparison, the OCO-3 vs.

OCO-2 results, using the satellite collocations described in Appendix B, show a mean bias of 0.16 ppm with scatter
:::::::::
uncertainty

25



of 0.74 ppm for land (panel (c)). This suggests that OCO-2 and OCO-3 agree with each other about as well as they agree with

TCCON for land observations.515

For the ocean-glint observations, OCO-2 exhibits a relatively high bias against TCCON of 0.43 ppm, with scatter
:::::::::
uncertainty of

0.73 ppm (panel d), while for OCO-3, the bias is 0.09 ppm with scatter
:::::::::
uncertainty

:
of 0.90 ppm (panel e). It is important to note

however that several of the TCCON stations that provide the bulk of the ocean-glint collocations had not yet processed their

measurements through the GGG2020 version of the algorithm to provide estimates of XCO2. These stations include Ascension520

Island, Darwin, and Wollongong. When those data are available, more robust statistics will be calculated. Comparison of the

OCO-2/3 ocean-glint collocations in panel (f) indicates that the bias between OCO-3 and OCO-2 ocean-glint is -0.34 ppm,

with scatter
:::::::::
uncertainty

:
0.44 ppm. This again suggests that the two sensors agree with each other in ocean-glint viewing ap-

proximately as well as they agree with TCCON.

525

6.2 OCO v10 XCO2 estimates versus models

To assess the impact of OCO XCO2 estimates on atmospheric inverse models, it is useful to compare the v10 product to re-

sults generated by an ensemble of carbon flux inverse models constrained by in situ measurements alone (e.g., O’Dell et al.,

2018). This is done by calculating the difference between OCO retrievals from a reference XCO2 field, where this difference

is referred to as the “signal”. In the current work, the reference field is computed as the median of posterior concentrations530

from multiple models constrained by in-situ measurements, and is hereafter referred to as the multi-model-median (MMM).

The MMM provides a reasonable representation of XCO2 with seasonality and trends consistent with information derived

from in-situ measurements of atmospheric CO2, and does not necessarily represent the actual atmosphere at all spatiotemporal

scales. This technique for looking at differences between satellite retrievals and modeled fields over broad, zonal regions is not

new, and has been employed in the literature for sanity checks (e.g., Chahine et al., 2008; Buchwitz et al., 2017; Zhang et al.,535

2017).

One of the contributions of satellite XCO2 estimates, such as those from OCO-2 and OCO-3, towards improving atmospheric

flux inversion estimates is their ability to increase the density of global observations. A well-calibrated and precise satellite

data record should offer the potential to reduce some of the uncertainties in the flux estimation associated with sparse sampling.540

However, the global atmospheric transport models used in current-generation inversion studies have spatial resolutions of or-

der 2◦ to 6◦ of latitude and longitude. Such models cannot provide information with variability finer than several hundred

kilometers. Rather than ingesting each individual OCO-2 XCO2 estimate falling inside a model grid box, down sampling

of the data into ten-second-averages (10-sec-avg) prior to assimilation into inversion systems has become common, e.g.,545

(Crowell et al., 2019; Peiro et al., 2022; ?)
:::::::::::::::::::::::::::::::::::::::::::::::
(Crowell et al., 2019; Peiro et al., 2022; Byrne et al., 2023). This provides an even

more compact data set with reduced random sounding-to-sounding errors in the XCO2 estimates and mitigates the poten-
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(d) OCO-2 vs TCCON Ocean
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(b) OCO-3 vs TCCON Land
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(e) OCO-3 vs TCCON Ocean
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(c) OCO-3 vs OCO-2 Land
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(f) OCO-3 vs OCO-2 Ocean
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TCCON XCO2: µ=407.16, σ=0.54
OCO-2 XCO2: µ=407.40, σ=0.84
∆XCO2 (ss): N=1121
µ= 0.24 ppm
σ=0.77 ppm
RMSE=0.81 ppm
R2=0.98

TCCON XCO2: µ=407.12, σ=0.53
OCO-2 XCO2: µ=407.56, σ=0.49
∆XCO2 (ss): N= 298
µ= 0.43 ppm
σ=0.73 ppm
RMSE=0.84 ppm
R2=0.99

TCCON XCO2: µ=412.46, σ=0.53
OCO-3 XCO2: µ=412.59, σ=0.99
∆XCO2 (ss): N= 259
µ= 0.12 ppm
σ=0.90 ppm
RMSE=0.91 ppm
R2=0.92

TCCON XCO2: µ=414.12, σ=0.48
OCO-3 XCO2: µ=414.21, σ=0.43
∆XCO2 (ss): N= 119
µ= 0.09 ppm
σ=0.90 ppm
RMSE=0.91 ppm
R2=0.93

OCO-2 XCO2: µ=412.45, σ=0.72
OCO-3 XCO2: µ=412.49, σ=0.77
∆XCO2 (ss): N=2883
µ= 0.04 ppm
σ=0.82 ppm
RMSE=0.82 ppm
R2=0.94

OCO-2 XCO2: µ=412.91, σ=0.46
OCO-3 XCO2: µ=412.63, σ=0.38
∆XCO2 (ss): N=1633
µ=-0.28 ppm
σ=0.49 ppm
RMSE=0.56 ppm
R2=0.96

Figure 9. One-to-one XCO2 correlation plots for land (top row) and ocean (bottom row) observations. Panels (a) and (d) show OCO-2

v10 versus collocated TCCON GGG2020 estimates, while panels (b) and (e) show OCO-3 v10 versus TCCON. Panels (c) and (f) show the

correlation in OCO-3 versus OCO-2 XCO2, respectively, for the set of collocated soundings described in Appendix B3.
:

In
::::
each

::::
panel,

:::
the

:::
top

:::
two

::::
rows

::
of

::::::
statistics

::::
give

::
the

:::::
mean

::
(µ)

::
of
:::
the

:::::
XCO2::::

from
::
all

::
of

:::
the

:::::::::
collocations,

::::
and

::
the

:::::
mean

::::::
standard

:::::::
deviation

::
in

:::
the

:::::
XCO2 :::

(σ)
:::
from

:::
all

:
of
:::
the

::::::::::
collocations.

:::
The

::::
third

::::::
through

:::::
seventh

::::
rows

::
of

:::::::
statistics

:::
give

:::
the

:::::
number

::
of
:::::::::
collocations

::::
(N),

::
the

:::::
mean

:::::::
∆XCO2,

::
the

:::::::
standard

:::::::
deviation

:
of
:::

the
:::::::
∆XCO2,

:::
the

:::::
RMSE

::::::::::
(
√
µ2 +σ2),

:::
and

:::
the

::::::::
coefficient

::
of

::::::::::
determination

::::
(R2

:
=
:::
the

::::::
squared

::::::
Pearson

::::
linear

:::::::::
correlation

:::::::::
coefficient).
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tial impact of correlated errors on ≈ 10 km spatial scales, such as those driven by surface features or the presence of aerosols

and clouds (Massie et al., 2021; ?)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Massie et al., 2021; Mauceri et al., 2023; Massie et al., 2023). Care is taken to specify an

appropriate measurement uncertainty, calculated as a function of the number of soundings within the 10-sec-avg bin, individ-550

ual uncertainties associated with the soundings, coverage across the grid box and correlations between their individual errors

(Baker et al., 2022). In this study, we use the XCO2 from the 10-sec-avg files
:
is

::::
used

:
to compare against the relatively spatially

course
:::::
coarse model fields.

The four models chosen for evaluation of the OCO v10 signal, identified in Section 3.3
:::
and

:::::
Table

:
6, all fit the following criteria:555

(i) each is constrained only by in-situ measurements of CO2 concentrations in the atmosphere, (ii) each has been evaluated and

vetted against independent data in the peer-reviewed literature, (iii) the simulated CO2 fields and surface fluxes are publicly

available, and (iv) each simulation uses different atmospheric transport models and unique inverse modeling framework (Ta-

ble 5), thus sampling the full range of uncertainties in our present-day state-of-the-art knowledge of the atmospheric CO2 field.

560

Figure 10 shows maps of the signal at 2.5◦ by 5◦ lat/lon resolution for April (top row) and August (bottom row), 2020, for

OCO-2 (right column) and OCO-3 (middle column). Both sensors exhibit spatially coherent biases against models on the order

of half of a ppm, and
:
.
::::
Over

:::::::
oceans,

:::
the

:::::::
satellite

::::::::
estimates

:::
of

:::::
XCO2:

are generally biased low relative to the models in the

SH and biased high in the NH. However, in the OCO-2 data, which extends further pole-ward compared to OCO-3, the high

bias seems to occur at higher latitudes, both north and south. Following expectations, the scatter
:::::::::
uncertainty in the gridded565

data for both sensors in both months is higher for land (≈ 1 ppm) due to biases associated with topographic and surface albedo

variability than it is for ocean (≈ 0.5 ppm), where these effects are minimal.

The differences in the gridded sensor signals are shown in panels
::::
Fig.

::
10

:::::
panel

:
(c) for April and

::::
panel (f) for August. Math-

ematically, the calculation is expressed as (signal 1)
:::::::
∆signal

::
=

::::::::::
signalOCO-3 − (signal2), where signal1 are the satellite minus570

MMM values for OCO-3 v10 and signal2 are the satellite minus MMM for OCO-2 v10
:::::::::
signalOCO-2 . Since the satellites sample

the models at different times for individual soundings within a grid box, this calculation is not equivalent to a direct difference

in the XCO2 between the sensors. Rather, it quantifies how different the satellite signals are from the MMM. The gridded

differences in the signal
:::::::
∆signal

:::::
values

:
demonstrate that the two sensors agree better with each other than they do with the

model suite in the region of overlap, as seen by the reduction in scatter
:::::::::
uncertainty

:
to ≈ 0.45 ppm, with mean biases around575

0.25 ppm in both months. Generally, OCO-3 is biased slightly higher against the MMM over land compared to OCO-2, while

over ocean, OCO-3 is biased low against the MMM compared to OCO-2.

A useful way to investigate the characteristics of the signal is by binning values into zonal (10◦ latitude) and 10 day bands, as

seen in Fig. 11. Here, land observations
:
,
:::::
which

:::::::
include

:::::::::
land-nadir,

:::::::::
land-glint,

::::::::
land-TG,

:::
and

::::::::::
land-SAM, are shown in the left580

column, and ocean
:::::::::
ocean-glint observations on the right, with OCO-2 on the top row and OCO-3 in the middle. The bottom

row shows the binned differences between the two sensors. The model suite runs only through December of 2020, so the
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Figure 10. Maps of XCO2 signal (OCO - MMM
:::::::
XCOOCO

2 ::
−

:::::::
XCOMMM

2 ) at 2.5◦
::::::
latitude by 5◦ lat/lon

:::::::
longitude resolution for April

::::
2020

(top row) and August
::::
2020

:
(bottom row), 2020 for OCO-2 (left) and OCO-3 (middle). Shown in the right column

:::
The

::::::
number

::
of

:::::
single

:::::::
soundings

:::
(N

:::
SS)

::
for

::
all

:::::::::
observation

:::::
modes

::::::::
combined

::::
(all),

:::::::
combined

:::::::::
land-nadir,

::::::::
land-glint,

::::::
land-TG

:::
and

::::::::
land-SAM

:::::
(land),

:::
and

:::::::::
water-glint

:::::
(water)

:
are

:::::
given.

:::
The

::::
mean

:::
(µ)

:::
and

:::::::
standard

:::::::
deviation

:::
(σ)

::
of the binned differences

::::
values

::::
(bin)

:::
are

:::
also

:::::
given for

:::
each

:::::::::
observation

:::::
mode.

:::
Grid

::::
cells

::::::::
containing

:::
less

::::
than

:
5
::::::::
soundings

:::
are

:::::
colored

::::
gray.

:::::
Panels

:::
(c)

:::
and

::
(f)

::::
show

:::
the

::::::
∆signal

:::::::
(OCO-3

::
−

::::::
OCO-2),

:::
for grid cells in which

both sensors have valid data. Grid cells containing less than five soundings
::::
Here,

:::
the

::::::
statistics

:
are colored gray

:::
given

::::
only

:::
for

::
all

:::::::::
observation

:::::
modes

:::::::
combined.

graphs cover a 16 month period, starting in August, 2019. While the zonal mean tends to de-emphasize certain spatial features

visible in the global maps, it brings out the temporal variations in the signal. Coherent
:::::
Based

:::
on

::::
these

::::::
results,

::::::::
coherent seasonal

and latitudinal patterns in the signal are observed for both sensors. For land ,
:::::::::::
observations,

::::
both

:::::::
sensors

::::
tend

::
to

::::
have

:::::::
positive585

::::::
signals

::
in

:::
the

:::
NH

::::
and

:::::::
negative

::::::
signals

::
in

:::
the

::::
SH,

:::::
while

:::
for

:::::::::
ocean-glint

:::::::::::
observations,

:::
the

::::::
signals

::::
tend

:::
to

::
be

:::::::
positive

::::::::
poleward

::
of

:::
the

::::::
tropics

::
in

::::
both

:::::::::::
hemispheres,

:::
and

:::::::
negative

::
in

:::
the

:::::::
tropics.

:::
The

::::::::
statistics

::::::::
calculated

:::
on

:::
the

::::::
gridded

::::::
signal

:::
data

:::::::
indicate

::::
that

OCO-3 (panel (b)) has higher scatter
:::
has

:::::
higher

::::::::::
uncertainty

::::
than

::::::
OCO-2 (0.62 ppm vs. 0.46 ppm) and

:
a larger bias (-0.30 ppm

vs. -0.15 ppm) than OCO-2 (panel a) . Both sensors have a positive signal near zero degrees latitude around February 2020.

And both sensors show a northward propagation of the signal through about August of 2020. Similarly, both sensors have a590

negative signal in the southern tropics beginning around February 2020 that diminishes in time. The largest difference
:::
for

::::
land

:::::::::::
observations,

::
as

::::
seen

::
in

::::::
panels

::
(a)

::::
and

:::
(b).

::::
The

:::::::
statistics

:::
for

:::::::::
ocean-glint

::::::
signals

:::::::
indicate

::::::
similar

:::::::::::
uncertainties

:::::::
between

:::
the

::::
two

::::::
sensors

::
of

::::::::
0.53 ppm

::::
and

::::::::
0.59 ppm

:::
for

::::::
OCO-2

::::
and

:::::::
OCO-3,

::::::::::
respectively,

::::
with

:::::
mean

::::::
biases

::
of

::::
0.24

::::
and

:::::::::
-0.23 ppm,

::
as

:::::
seen

::
in

:::::
panels

:::
(d)

:::
and

::::
(e).

595
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:::
The

:::::
lower

::::
two

::::::
panels

::
of

::::
Fig.

:::
11

:::::
show

:::
the

::::::::::
differences

::
in

:::
the

:::::::
gridded

::::::
values

:::
(∆

::::::
signal)

:
between the two sensors for land

(
::::::::::
observations

::
in panel (c) ) occurs approximately

:::
and

:::
for

::::::::::
ocean-glint

:::::::::::
observations

::
in

:::::
panel

:::
(f).

:::
The

:::::::
gridded

:::::
mean

:::::::::
difference

:::::::
between

:::
the

:::
two

:::::::
sensors

:::
for

::::
land

::::::::::
observations

::
is

:::::::::
-0.08 ppm.

::::
The

::::::
largest

:::::::::
differences

:::
for

::::
land

:::::
occur

::
in

:
December 2019, imme-

diately following the OCO-3 PMA calibration that was described in Sec. 2.1.2 of Taylor et al. (2020), and running through

approximately
:::::::::
continuing

::::::
through

:
January 2020 when the next OCO-3 decontamination cycle occurred. At the time of writing,600

we have not yet had time to investigate this newly discovered
::::
The

:::::
origin

::
of

:::
this

:
feature in the OCO-3 v10.4 XCO2 record .

For ocean observations(right column of Fig. 11), both sensors exhibit negative signals in the tropics with some seasonal

variations, and positive signals in the extra-tropics. This is very evident in the OCO-2 data (panel (d) ) since it covers a wider

latitude range compared to
::
is

:::
not

:::::::
currently

::::::::::
understood.

::::
The

:::::::
gridded

:::::::::
differences

:::
for

::::::::::
ocean-glint

:::::::::::
observations,

::::::
shown

::
in

:::::
panel

::
(f)

:::::::
indicate

:
a
:::::
mean

:::
low

::::
bias

::
of

::::::::
-0.3 ppm

:::
for OCO-3 (panel (e)). The differences for ocean observations are generally similar to605

those for land, although it is difficult to compare due to the sparseness in the OCO-3 record
::::::
relative

::
to

::::::
OCO-2. Overall, as was

demonstrated with the maps in Fig. 10, these plots suggest that the two sensors tend to agree better with one another than they

do with the model suite, as evidenced by the lower scatter (0.41 ppm) compared to the scatter for the individual sensors of 0.53

and 0.59 ppm for OCO-2 and OCO-3, respectively.

610

6.3 OCO v10 XCO2 estimates over small areas

Small areas, as introduced in Sec. 3.3.1, were used
::
as

::::::
XCO2 :::::::::::

truth-proxies in the development of the v10 quality filtering

and bias correction, and .
:::::
Small

:::::
areas

:
can also be used to examine the error characteristics in the satellite

:::::
derive

:::::::
realistic

:::::::
estimates

:::
of

:::::
XCO2:::::::::::

uncertainties
:::
for

::::::::::
assimilation

::::
into

:::::::
inversion

:::::::
systems

:::::::::::::::::::::::::::::::
(Baker et al., 2022; Peiro et al., 2022).

::::
For

::::
each

:::::
small

::::
area,

:::
the

:::::::::::
“theoretical”

:::::::::
uncertainty

::
is

::::::::
calculated

:::
as

:::
the

::::::
median

:::::
value

::
of

:::
the XCO2 products manifesting over regions .100 km.615

This information is often used to derive realistic estimates of uncertainties for the OCO-2
:::::::::::
uncertainties,

:::::
which

:::
are

:::::::::
described

::
in

::::::::
Appendix

::
B

::
of

:::::::::::::::::
O’Dell et al. (2012)

:::
and

::::::::
recorded

::
in

:::
the

::::::
L2Lite

::::
files.

::::
The

:::::::
“actual”

:::::::::
uncertainty

::
is
:::::::::
calculated

::
as

:::
the

::::::::
standard

:::::::
deviation

::
of

:::
the

::::::::
retrieved XCO2 , to be used when they are assimilated into inversion systems (Baker et al., 2022; Peiro et al., 2022)

::
in

::::
each

:::::
small

::::
area.

::
A
:::::::::

minimum
::
of

:::
40

:::::
OCO

::::::::
soundings

::::
are

:::::::
required

:::
for

::::
each

:::::
small

:::::
area.

::::::
Ideally,

:::
the

::::::
actual

:::::::::::
uncertainties

:::
are

:::::
highly

:::::::::
correlated

::
to

:::
the

:::::::::
theoretical

:::::::::::
uncertainties,

::::
with

:::
the

::::::::::
relationship

::::::
having

::
a

:::::::::
one-to-one

::::::::::
dependence

::::::
(slope,

:::::
m=1),

::::
and

:::
the620

:::::::::
y-intercept

::::::
falling

::
at

::::
zero

:::::
(y=0). Figures 12 and 13 show the results of an analysis on the small areas for land

:::
area

::::::
XCO2

::::::::::
uncertainties

:::
for

:::::::::
land-nadir and ocean-glint observations, respectively.

For the land observations shown in Fig. 12, the actual variability of OCO
:::
The

:::::::::
frequency

::::::::::
distributions

::
of

:::
the

:
XCO2 over small

areas (green curves
::::::::::
uncertainties

:::::
over

::::::::
land-nadir

:::::
small

::::::
areas,

::
as

::::::
shown in panels (a) and (c) ) has

:
of

::::
Fig.

:::
12

:::
for

::::::
OCO-2

::::
and625

::::::
OCO-3,

:::::::::::
respectively,

:::::::
indicate

:::
that

:::
the

:::::
actual

:::::::::::
uncertainties

::::::
(green

::::::
curves)

:::
are

:::::::
slightly

:::::
larger

::::
with a wider distribution of values

compared to the L2FP noise-driven theoretical values
::::::::::
uncertainties

:
(blue curvesin panels (a)and (c))). Although the actual

variability tends to be higher, it is
:::::::::::
uncertainties

::::
tend

::
to

::
be

::::::
biased

:::::
high,

::::
they

:::
are

:
highly correlated with the theoretical error,

having values ≈ 43% higher on average
:::::::::::
uncertainties,

::::::
having

::
R

:::::
values

:::
of

::::
0.95

:::
and

::::
0.98

:
for OCO-2 (

:::
and

:::::::
OCO-3,

:::::::::::
respectively,
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Figure 11.
:::
The

:
XCO2 signal (OCO - models

::::::
XCOOCO

2 ::
−

::::::::
XCOMMM

2 ) for land (left) and ocean-glint (right) observations,gridded at 10day by

10◦ latitude
::
by

::
10

::::
days

:
for the time period August 2019 through December 2020. The top row shows

:::
2020

:::
for

:
OCO-2 , while the middle

row shows
:::
land

:::
(a)

:::
and

:
OCO-3

:::
land

::
(b). The bottom row shows the binned differences

::::::
∆signal

:
for grid cells

:::
land

::::::::::
observations

:::::::
(includes

::::::::
land-nadir,

::::::::
land-glint,

::::::
land-TG

::::
and

::::::::
land-SAM)

:::
are

:::::
shown

:
in which both sensors have valid data

::::
panel

::
(c). Grid

:::::
Panels

:::
(d),

:::
(e),

::
(f)

:::
are

:::
the

::::
same,

:::::
except

:::
for

:::::::::
ocean-glint

::::::::::
observations.

:::
The

:::::::
ordinate

:::
axis

::
is
:::::

scaled
:::

by
:::
the

:::::
cosine

::
of

:::
the

::::::
latitude

::
to

:::::::
elucidate

:::
the

::::::::
decreasing

::::::::
fractional

:::::
surface

::::
area

::
of

::
the

:::::
earth

:::
with

::::::::
increasing

:::::::
latitude.

:::
Data

:
cells containing

:::
with

:
less than ten

::
10

:
soundings are colored gray.

::
In

:::::
panels

:::
(a),

:::
(b),

:::
(d),

:::
and

::
(e)

:::
the

::::::
number

::
of
:::::

single
::::::::

soundings
:::

(N
:::
SS)

::
is

:::::
given,

::::
along

::::
with

:::
the

:::::
mean

:::
(µ),

:::::::
standard

:::::::
deviation

:::
(σ),

::::
and

::::::::
maximum

:::::
(max)

:::
and

:::::::
minimum

::::
(min)

:::::
values

::
of
:::
the

::::::
gridded

::::
(bin)

:::::
values.

::
In
:::::
panels

:::
(c)

:::
and

::
(f)

:::
the

::::::
number

::
of

::::
valid

:::
grid

::::
cells

:::
(N)

::
is

::::
given,

:::::
along

:::
with

:::
the

:::::
mean

:::
(µ),

::::::
standard

:::::::
deviation

:::
(σ),

:::
and

::::::::
maximum

:::::
(max)

:::
and

:::::::
minimum

:::::
(min)

::::::::
differences

::
in

:::::::
∆signal.

::
as

::::
seen

::
in
:

panel (b) ) and ≈25% higher for OCO-3 (
:::
and

:
panel (d) ). This implies

::
for

:::::::
OCO-2

::::
and

:::::::
OCO-3,

:::::::::::
respectively.630

::::
Here,

::::
the

::::::
median

::::::
binned

::::::
values

:::
are

:::::::
shown,

:::::
rather

::::
than

:::
the

:::::::::::
uncertainties

:::
for

:::::::::
individual

:::::
small

::::::
areas,

::
to

::::::::
highlight

:::::::::
deviations

::::
from

:::
the

::::::::
expected

:::::::::
one:to:one

::::::::::
relationship.

::::::
These

:::::
results

::::::
imply

:::
that

:
there are additional spatially-correlated systematic errors

::::::::::
uncertainties

:
in the ACOS retrieval operating over these

::::
over small areas, and these additional biases

:::::::::::
uncertainties are similar

for both sensors, with mean small area 1σ values of ≈ 0.35 ppm.

635

For ocean-glint observations, shown in Figure 13, quite different behavior regarding
:::
Fig.

:::
13, XCO2 errors

::::::::::
uncertainties in small

areas is observed. Although the overall shape of the actual error distributions are similar to the theoretical distributions for both

OCO-2 (panel (a) ) and OCO-3 (panel (c) ), the correlation between actual and theoretical uncertainties is poor for both sensors

(panels (b) and (d)
:::
have

::::::::
different

::::::::::::
characteristics

:::::::::
compared

::
to

::::
land

::::::::::::
observations.

::::
The

::::::::
frequency

:::::::::::
distributions

:::
of

:::
the

::::::
XCO2

:::::::::::
uncertainties,

::::::
shown

::
in

::::::
panels

::
(a)

::::
and

:::
(c)

:
for OCO-2 and

::::::
OCO-3,

:::::::::::
respectively,

:::::::
indicate

:::
that

::::
the

:::::
actual

:::::::::::
uncertainties

::::::
(green640

::::::
curves)

:::
are

::::
often

:::::
lower

::::
than

:::
the

:::::
L2FP

::::::::::
noise-driven

:::::::::
theoretical

:::::::::::
uncertainties

:::::
(blue

::::::
curves),

:::::::::
especially

:::
for OCO-3, respectively)

:
.
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Figure 12. Analysis of
::::
XCO2::::::::::

uncertainties
:::
for land-nadir small areas for OCO-2 (top) and OCO-3 (bottom).

::::
Panels

:::
(a)

:::
and

:::
(c)

::::::
provide

::
the

::::::::
frequency

:::::::::
distributions

:::
of

:::
both

:::
the

::::::::
theoretical

::::::::::
uncertainties

::::
(blue

::::::
curves)

::
of

:::
the

:::::::
retrieved

:::::
XCO2::

as
:::::::
reported

::
in

::
the

::::::
L2Lite

:::
file

::::::
product

::::::
(variable

:::::::::::::
xco2_uncertainty

:
)
:::
and

:::
the

:::::
actual

::::::::::
uncertainties

:::::
(green

::::::
curves)

::::::::
calculated

::::
from

::
the

:::::::
standard

:::::::
deviation

::
in
:::
the

:::::
XCO2:::

for
::::::::
individual

::::
small

:::::
areas.

:::
The

::::::
number

::
of

::::
small

::::
areas

:::
(N)

:::
and

:::
the

::::
mean

:::
(µ)

:::
and

:::::::
standard

:::::::
deviation

:::
(σ)

:
of
:::

the
::::::::
theoretical

:::
and

:::::
actual

::::::::::
uncertainties

::
are

:::::
given

:
in
:::

the
::::::
legend.

:::::
Panels

:::
(b)

:::
and

:::
(d)

::::
show

:::
the

::::::::
correlation

::
of

:::
the

:::::
actual

:::::::::
uncertainties

::::::
against

:::
the

::::::::
theoretical

::::::::::
uncertainties,

::::
using

::::::
binned

::::::
median

:::::
values

:::::
(black

::::
filled

::::::
circles)

:
to
:::::::
highlight

::::::::
deviations

::::
from

:::
the

::::::::
one-to-one

:::
line

::::::
(dashed

:::::
black

::::
line).

::
A

::::::::::
least-squares

::::
linear

::
fit

::
to

:::
the

:::::
binned

::::
data

:
is
:::::
shown

::::::
(dotted

:::
red

::::
line),

::::
along

::::
with

:::
the

::::::::
correlation

::::::::
coefficient

:::
(R),

:::
the

::::
slope

::
of

:::
the

::
fit

:::
(m)

:::
and

::
the

::
fit

:::::
offset

:::
(y).
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Figure 13. Same as Fig. 12, but for ocean-glint small areas.
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::::::::::
Furthermore,

:::::
even

::::::
though

:::
the

:::::
actual

:::::::::
uncertainty

::::::::
correlates

:::::::::
reasonably

::::
well

::::
with

:::
the

:::::::::
theoretical

::::::::::
uncertainty

:::::::
(R=0.53

::
for

:::::::
OCO-2

:::
and

:::::::
R=0.89

:::
for

:::::::
OCO-3),

::::
the

::::::::::::
line-of-best-fit

::::
falls

::::
well

:::
off

::
of
::::

the
:::::::
expected

::::::::::
one:to:one

::::::::::
relationship,

:::::
with

:
a
:::::
slope

::
of

:::::
0.18

:::
for

::::::
OCO-2

:::
and

::::
0.31

:::
for

:::::::
OCO-3. For the lowest theoretical uncertainties, the actual error

:::::::::
uncertainty

:
is near or somewhat higher

than anticipated, while at high values of theoretical uncertainty
:::
but

:::::
when

:::
the

:::::::::
theoretical

::::::::::
uncertainties

:::
are

:::::
large, the actual error645

is
::::::::::
uncertainties

:::
are

:
significantly lower than anticipated. This should not be the case

::
is

::::::::::
unexpected for a well-characterized

retrieval, and indicates that there is some non-linearity (or other pathological behavior )
:
or
:::::
other

:::::::::
systematic

:::::::
behavior

:
in the v10

ocean-glint retrieval. Early efforts to develop the OCO-2 v11 product suggest this is due to the parameterization of the ocean

surface reflectance model. Additional investigation is underway.

650

6.4 OCO v10 XCO2 estimates along coastal crossings

Although not used in the parametric bias correction, the continuity of XCO2 estimates across coastlines (coastal crossings) pro-

vides a metric for detecting and correcting biases between land and ocean estimates of XCO2. Barring strong carbon sources

or sinks, the true XCO2 should not change significantly at this transition, so the retrieved estimates should agree quite well.

Here, a coastal crossing is defined as a set of contiguous soundings, spanning approximately 50 km on either side of a land/wa-655

ter interface. The XCO2 values are quality filtered and bias corrected
:::
and

::::::
include

:::::
only

::::
glint

:::::::
viewing

:::::
mode

:::::::::::
observations

:::
for

::::
both

::::
land

:::
and

:::::
water. For OCO-2 v10, the coastal crossings were used, along with TCCON collocations and model fields, to

determine the ocean-glint global scaling factor of 0.995, as described in Section 3.2.3 of the DUG (Osterman et al., 2020). For

OCO-3 v10, the coastal crossings alone were used to determine the ocean-glint global scaling factor of 0.9997, as described in

Section 4.2.3 of the DUG (Payne et al., 2022).660

Figure 14 shows analysis of the coastal crossings data set for the v10 OCO-2 (top row) and OCO-3 (bottom row), containing

≈ 20 k and 1.1 k
:::::
×103

:::
and

::::::::
0.5×103

:
crossings, respectively. Panels (a) and (c) show ∆XCO2 in 5◦ latitude bins with one

standard deviation error bars as thin vertical lines. The mean land-ocean difference tends to be positive (negative) in the

southern (northern) extra-tropical latitudes for both sensors. Panels (b) and (d) show the frequency distributions of ∆XCO2665

for the individual coastal crossings. The mean is well-centered on zero for both sensors, indicating that neither displays a

global mean land-ocean bias. However, both sensors show some variation of this number,
:::::
means

:::
are

::::::
biased

::::::::::
-0.10± 0.83

::::
and

::::::::::::::
-0.11± 0.88 ppm

:::
for

::::::
OCO-2

::::
and

:::::::
OCO-3,

::::::::::
respectively.

::::
The

:::::::::::
uncertainties

:::
are due presumably to local geometry, aerosol, and

surface effects. In the future, we plan to assess
::
an

:::::::::
assessment

::::::
should

:::
be

:::::
made

::
as

::
to

:
whether these biases can be explained by

any retrieved parameters or other independent information such as population centers, which may help to shed light on the670

cause of these ubiquitous land-ocean XCO2 differences.
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Figure 14. Analysis of the coastal crossings data set for OCO-2 v10 (top row) and OCO-3 v10 (bottom row). Panels (a) and (c) show ∆XCO2

(land
:::::::
land-glint

:
− ocean

::::::::
ocean-glint) in 5◦ latitude bins with one standard deviation error bars as thin vertical lines.

:::
The

::::::
number

::
of

::::::
latitude

:::
bins

:::
(N),

::::
and

::
the

:::::
mean

:::
(µ)

:::
and

::::::
standard

::::::::
deviation

::
(σ)

::
of
:::

the
::::::
binned

:::::
values

::
are

:::::
given

::
in

:::
the

:::::
legend.

:
Panels (b) and (d) show the frequency

distributions of ∆XCO2 for the individual coastal crossings.
:::
The

::::::
number

::
of

:::::
coastal

::::::::
crossings

:::
(N),

:::
and

:::
the

::::
mean

:::
(µ)

:::
and

:::::::
standard

:::::::
deviation

::
(σ)

::
of

:::
the

:::::
XCO2:::::

values
:::
for

::
the

::::::::
individual

:::::::
crossings

:::
are

::::
given

::
in

:::
the

:::::
legend.

7 Summary

This work presents updates to the ACOS v10 retrieval algorithm used to derive estimates of XCO2 from the data collected by

both the NASA OCO-2 and OCO-3 sensors. Four substantial changes were made to the L2FP code to provide better estimates

of XCO2 relative to v9: (i) use of the ABSCO v5.1 absorption tables, (ii) calculation of more realistic prior aerosol infor-675

mation derived from daily GMAO GEOS-5 FP-IT model output, (iii) an update to the calculation of the CO2 vertical priors

based on the GGG2020 algorithm, and (iv) implementation of a new solar continuum model based on TSIS-SIM measurements.

The quality filtering and bias correction implemented in the post-processing of the raw XCO2 estimates for v10 were briefly

described. Overall, both the quality filtering and bias correction parameters selected from the training were similar to previous680

versions. It was shown that, while the efficacy of the quality filtering was similar for both sensors, the bias correction is more

effective for OCO-2 than it is for OCO-3 for land observations. We speculate that the
:::
The

:
remaining OCO-3 v10 pointing
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errors (median value of ≈ 0.5 km), coupled with residual instrument calibration errors, may introduce a less accurate surface

pressure prior, which affects the efficacy of the dP bias correction term. The cause of a less effective CO2 grad del term in the

OCO-3 v10 bias correction is still not understood.685

Although the OCO-2 and OCO-3 sensors are similar, they provide different spatiotemporal coverage from their polar, sun-

synchronous (OCO-2) and precessing (OCO-3) orbits. In particular, OCO-2 provides nearly full latitudinal coverage with a

local sampling time of ≈ 1:36PM± 0.25 h, while OCO-3 is limited to latitudes ≈ ≤ 52◦ with variable local sampling time

across a 63-day cycle. We demonstrated
:::
This

:::::
work

:::::::::::
demonstrates, however, that the number of good quality XCO2 estimates690

from the two sensors are approximately equal, albeit with different spatiotemporal coverage and quite different splits in obser-

vation modes. The OCO-3 sensor provides a larger fraction of good quality soundings in nadir viewing over land, especially

around 50◦ N latitude at the orbit inflection point. In addition, for OCO-3, nearly 10% of its good quality-flagged XCO2 es-

timates are taken in TG or SAM observation mode, allowing additional opportunities for targeting sites of interest, such as

mega-cities and power plants (Wu et al., 2022; Roten et al., 2022; Lei et al., 2021; Nassar et al., 2022; Chevallier et al., 2022).695

We
::
In

::::
this

:::::
work,

::
it

:::
has

:::::
been demonstrated that the spatial and temporal distributions of XCO2 estimates from the OCO-2

and OCO-3 v10 products display the well-known features of the atmospheric distribution of CO2, including the northern

hemisphere spring draw-down, the expected seasonal meridional gradients, and the secular trend of ≈ 2.2 ppm/year. After

application of an ad-hoc bias correction to the OCO-3 XCO2 by way of an L2 Lite file reprocessing to account for a time-700

dependent drift due to an L1b calibration artifact, the OCO-3 product agrees with OCO-2 within a few tenths of a ppm for

a set of collocated soundings. This agreement is of a similar magnitude as the agreement of either sensor with the two truth

proxies, TCCON and the multi-model-median, for which RMSEs are on the order of 0.5 to 1 ppm. An analysis against small

areas, contiguous regions smaller than 100 km over which the real variability
:::::::::
uncertainty

:
in XCO2 is expected to be less than

≈ 0.1 ppm, shows that the retrieval posterior uncertainties are underestimated by 20-40% for land observations, while the un-705

correlated relationship between actual and theoretical uncertainties for ocean-glint observations suggests deficiencies in the

ACOS L2FP v10 ocean surface model. These deficiences
:::::::::
deficiencies

:
are expected to be mitigated in the next ACOS algorithm

version. Additionally, a set of aggregated land-ocean XCO2 estimates from coastal crossings, used to deduce the global land

and ocean scaling factors during the bias correction procedure, show a global mean land-ocean difference of ≤ 0.1 ppm for

both sensors, suggesting that the land-ocean bias has been mitigated.710

As the science community continues work to better constrain the global carbon cycle (Crisp et al., 2022; Friedlingstein et al.,

2022), top-down flux and inventory estimates utilizing XCO2 observations from space have demonstrated promise for answer-

ing key questions about the present and future response of the system to continued human activities and climate change (e.g.,

Byrne et al., 2021, 2022; Philip et al., 2022; Kong et al., 2022; Chevallier et al., 2022). The need for an international fleet of ro-715

bust, dedicated carbon monitoring satellites is paramount to this effort (Ciais et al., 2014; Crisp et al., 2018; Janssens-Maenhout

et al., 2020; Palmer et al., 2022). The OCO-2 and OCO-3 records, which began in September 2014 and August 2019, respec-
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tively, will only gain in significance over time as an early baseline for globally monitoring CO2 concentrations from space.

Overall, the results presented in this work indicate that a set of consistent estimates of XCO2 from OCO-2 and OCO-3, derived

from a single retrieval algorithm (ACOS v10), compare well with one another. This suggests that the simultaneous assimilation720

of the two data records into atmospheric inversion systems has the potential to provide additional constraints on carbon fluxes,

relative to assimilating a single sensor.
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Appendix A: OCO-2 v10 full data record and comparison to v9

While the discussion in Sections 4 and 5 focused on the two and half year overlap period with OCO-3, here, the full seven725

and a half year OCO-2 v10 data record is examined. The use of the OCO-2 v10 data record has already begun to appear in

the published literature. Examples include an evaluation of the CO2 concentrations against the NOAA in situ network (Rastogi

et al., 2021), quantification of power plant emissions (Nassar et al., 2021, 2022), detection of urban XCO2 gradients (Rißmann

et al., 2022), a global and regional carbon budget analysis (Kong et al., 2022; Byrne et al., 2022), and an evaluation of global

net carbon exchange based on a multi model inter-comparison project (?)
:::::::::::::::
(Byrne et al., 2023).730

Figure A1 shows a bar chart of the good quality-flagged data volume for the full OCO-2 v10 data record, spanning 6-Sep-2014

through 28-Feb-2022. Here only 1 of the 8 footprints per frame is represented. This figure highlights the stability in the data

volume over the seven and a half year OCO-2 v10 record. During approximately the first year of operations, prior to the op-

timization of the scanning strategy implemented on 12-Nov-2015 as detailed in Section 5.2 of Crisp et al. (2017), the volume735

of good quality-flagged data tended to be lower. Overall, the fractions of ocean-glint and land observations match those of

the Earth proportions (≈ 70% and 30%, respectively). Due to the alternating nadir/glint viewing pattern, there is an even split

between land-glint and land-nadir. The fraction of TG data is ≈ 1% of the full science record. The most substantial instrument

anomaly took place in August and September 2017 due to the temporary failure of the instrument baffle calibrator assembly

door. However, regular planned decontamination cycles often interrupt OCO-2 science data acquisition for several days at a740

time.

Figure A2 shows the OCO-2 v10 XCO2 binned by latitude (10◦) and time (10 day) from September 2014 through February

2022 for both land (A) and ocean (B). The dominant features of the atmospheric carbon cycle are observed, namely the secular

increase of ≈ 2.2 ppm per year (> 15 ppm over 7.5 y
::::
years), the seasonal cycle with higher CO2 concentrations in the NH win-745

ter/spring, and lower values in the summer/autumn. In addition, the latitudinal dependence of the seasonal cycle is observed.

The seven and a half year OCO-2 v10 XCO2 data record has the potential to allow for examinations of near-decadal long

carbon cycle phenomena, as has been done with the eleven and a half year GOSAT v9 record (Jiang et al., 2022).

Figure A3 provides a brief analysis of the CO2 concentrations and atmospheric growth rates (AGR) calculated from the OCO-2750

v10 seven year record. This figure is a reproduction of Fig. 2 in Buchwitz et al. (2018). Shown in panel (a) are the globally

averaged, monthly values of XCO2 for OCO-2 land observations (orange), along with the most recent ACOS GOSAT XCO2

(v9, Taylor et al. (2022)) in grey, and the global monthly mean marine surface values reported by NOAA GML (Dlugokencky

and Tans, 2022) in blue. Here, a cosine of latitude factor has been applied to the satellite data to weight individual soundings

for surface area, i.e., higher (lower) weighting in the tropics (high latitudes). It is important to distinguish differences in the755

NOAA and satellite products. NOAA’s values are calculated from precisely calibrated surface observations at a few select

locations (Conway et al., 1994), while OCO-2 and GOSAT provide full column measurements with much larger random errors
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Figure A1. Bar plots of the monthly number of good quality-flagged soundings for a single footprint (4 of 8
:
,
::::::
1-based) for the full OCO-2

v10 data record, spanning 6-Sep-2014 through 28-Feb-2022. Observation modes are distinguished by colors.
::
The

::::::::
fractional

:::::
percent

:::
for

::::
each

::::::::
observation

:::::
mode

:
is
:::::

listed
::
in

::
the

::::::
legend,

::::
along

::::
with

:::
the

:::
total

::::::
number

::
of

::::::::
soundings

:::
(N).
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Figure A2. OCO-2 v10 XCO2 binned

:::::
gridded

:
at 10◦

::::::
latitude by 10 day resolution

::::
days for the time period September 2014 through

February 2022 for land
::::
2022.

:::::
Panel (a)

::::::
includes

::::::::
land-nadir,

::::::::
land-glint,

:::::::
land-TG and ocean

::::::::
land-SAM (

::::
Land)

::::::::
soundings,

:::::
while

::::
panel

::
(b)

:
is

::
for

:::::::::
ocean-glint

::::::::
soundings.

:::
The

:::::::
ordinate

:::
axis

::
is

:::::
scaled

::
by

:::
the

:::::
cosine

::
of

:::
the

::::::
latitude

:
to
:::::::

elucidate
:::

the
::::::::
decreasing

::::::::
fractional

:::::
surface

::::
area

::
of

:::
the

::::
earth

:::
with

::::::::
increasing

::::::
latitude.

:
Grid cells containing less than ten

::
10 soundings are colored gray.
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(instrument plus retrieval), and spatial and temporal sampling biases, but for hundreds to thousands of samples per day.

Panel (b) of Fig. A3 shows the monthly calculated AGRs from the OCO-2 v10 (orange) and GOSAT v9 (gray) data sets. Here760

the vertical error bars are calculated as the mean of two individual error terms, divided by the number of valid months within a

given calendar year. The error terms are (i) the mean value of the XCO2 uncertainty for individual soundings within the month,

and (ii) the mean of the standard deviation of the calculated AGRs within the calendar year. The monthly average OCO-2 AGR

over the 7.5 year record is 2.53± 0.42 ppm, shown here as a solid line. The dashed lines indicate the ± 2-σ level. The sharp

increase in AGR during the middle of 2015 due to the strong El Niño is observed (Chatterjee et al., 2017; Liu et al., 2017),765

followed by a slow decreasing period from early 2016 to early 2017. The AGR was then stable through the end of 2018, when

a second sharp increase was observed due to the weak 2019 El Niño. After some decline through early 2020, the AGR has

remained relatively constant through the end of the reported record (autumn 2021). The GOSAT v9 AGRs agree quite well

with the OCO-2 v10 for the overlapping time period.

770

Panel (c) of Fig. A3 compares the annual growth rates of OCO-2 v10 and GOSAT v9 (the annual mean of the monthly values

shown in panel b) to the NOAA GML annual marine surface values. The satellite AGRs generally agrees to within a tenth of a

ppm or less. The correlation coefficient across the seven year OCO-2 record is 0.98 with a mean difference of 0.02± 0.08 ppm.

The maximum difference of 0.13 ppm occurred in 2019, presumably due to the high AGR peak seen by OCO-2 in the first

quarter.775

To get a sense of the improvement in the OCO-2 v10 XCO2 product relative to v9, Fig. A4 shows maps of XCO2 signal (OCO

- MMM
::::::::
XCOOCO

2 ::
−

::::::::
XCOMMM

2 ) at 2.5◦
::::::
latitude

:
by 5◦ lat/lon

::::::::
longitude resolution for April (top row) and August (bottom row),

2019 for OCO-2 v9 (left) and OCO-2 v10 (middle). The right column shows the binned differences
:::::::
∆signal

:::::::
(OCO-2

::::
v10

::
−

::::::
OCO-2

:::
v9)

:
for grid cells in which both v9 and v10 have valid data. Generally, for April and August 2019, the global bias780

against models is smaller for OCO-2 v10 (leq
::
≤ 0.3 ppm) than it was for v9 (≥ 0.5 ppm), with a slight reduction in scatter

from /gt
:::::::::
uncertainty

:::::
from

::
> 0.65 ppm to ≈ 0.60 ppm. The difference plots (right column) indicates

::::::
∆signal

::::::
values

:::::::
indicate

that OCO-2 v10 XCO2 is shifted ≈ 0.6 ppm higher than v9. Most of the difference is in the ocean, whereas the changes in land

XCO2 were relatively small between versions. Although the details vary, corresponding plots for other months and years (not

shown) look similar.785
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(c) Annual mean CO2 atmospheric growth rate
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Figure A3. CO2 concentrations and calculated
::::::::
atmospheric

:
growth rates

:::::
(AGR) from the OCO-2 v10 data record

::::::
(orange), with a comparison

to ACOS GOSAT v9
::::

(gray) and NOAA GML marine surface values . See
:::::
(blue),

::::::
similar

:
to
:

Fig. 2 in Buchwitz et al. (2018).
::::
Panel

:::
(a)

:::::
shows

::
the

:::::::
monthly

::::
CO2 :::::::::::

concentrations
::
for

::::
each

:::::::
product.

::::
Panel

:::
(b)

:::::
shows

:::
the

:::::::
calculated

:::::::
monthly

:::::
values

::
of

:::
the

::::
AGR

::::
with

::::::
vertical

::::
error

:::
bars

::::
(see

:::
text

::
for

:::::::::
description

::
of

::::
how

::
the

::::
error

::
is
:::::::::
calculated).

:::
The

:::::
mean

:::
(µ)

::::::
monthly

::::
AGR

::
is
:::::::
indicated

::::
with

:::::::::::
corresponding

:::::::
standard

:::::::
deviation.

:::::
Panel

::
(c)

:::::
shows

:::
the

:::::::
calculated

::::::
annual

:::::
AGRs.

:::
The

:::::
linear

::::::
Pearson

::::::::
correlation

::::::::
coefficient

:::
(R)

::
of

::
the

:::::::
satellite

:::::
versus

::
the

::::::
NOAA

::::
GML

:::::
values

::
is

:::::
given,

::::
along

::::
with

::
the

:::::
mean

:::::::
difference

::
in

:::
the

:::::
annual

::::
AGR

::::::::
(µ∆AGR)

::::
with

:::::::::::
corresponding

::::::
standard

::::::::
deviation.
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Figure A4. Maps of XCO2 signal (OCO - MMM
:::::::
XCOOCO

2 ::
−

::::::::
XCOMMM

2 ) at 2.5◦
::::::
latitude by 5◦ lat/lon

:::::::
longitude resolution for April

::::
2019

(top row) and August
::::
2019 (bottom row), 2019 for OCO-2 v9 (left) and OCO-2 v10 (middle). Right column shows

:::
The

::::::
number

::
of

:::::
single

:::::::
soundings

:::
(N

:::
SS)

::
for

::
all

:::::::::
observation

:::::
modes

::::::::
combined

::::
(all),

:::::::
combined

:::::::::
land-nadir,

::::::::
land-glint,

::::::
land-TG

:::
and

::::::::
land-SAM

:::::
(land),

:::
and

:::::::::
water-glint

:::::
(water)

:::
are

:::::
given.

:::
The

::::
mean

:::
(µ)

:::
and

:::::::
standard

:::::::
deviation

:::
(σ)

::
of the binned differences

::::
values

::::
(bin)

:::
are

:::
also

:::::
given for grid cells in which both

versions have valid data
:::
each

:::::::::
observation

:::::
mode. Grid cells with

:::::::
containing

:
less than 5 soundings are colored gray.

::::
Panels

:::
(c)

:::
and

::
(f)

::::
show

:::
the

::::::
∆signal

::::::
(OCO-2

:::
v10

::
−

::::::
OCO-2

:::
v9)

::
for

::::
grid

:::
cells

::
in

:::::
which

::::
both

:::::
sensors

::::
have

::::
valid

::::
data.

::::
Here,

:::
the

:::::::
statistics

::
are

:::::
given

:::
only

:::
for

::
all

:::::::::
observation

:::::
modes

::::::::
combined.

Appendix B: OCO-3 v10

B1 OCO-3 operations

As was discussed in Taylor et al. (2020), the collection of science data by OCO-3 is often interrupted by either the Hun-

stville Operations Support Center (HOSC) or the Mission Operations System (MOS) at JPL. The former are generally due to790

arriving or departing vehicles from the ISS, or other ISS activities such as spacewalks or instrument out-gassing events. OCO-

3 also suffers from data drop-outs in ocean-glint viewing due to physical obstructions within the field of view, e.g., solar panels.

Table B1 shows the statistics at a per-granule (orbit) level for OCO-3 from August 2019 through February 2022. Over the course

of these 31 months, HOSC interrupts occurred for≈ 9% (1329) of the total number of granules (14,527), while MOS interrupts795

occurred for ≈ 8% (1038) of the observable granules (13,198), yielding 12,160 granules containing science measurements

(≈ 92% of the observable, 84% of total). This well exceeds the mission requirement of 50% data acquisition.
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Table B1. Monthly statistics of the OCO-3 collection for the period August 2019 through February 2022.

Total Orbits containing Number of Orbits containing Number of

Month Number of HOSC interrupts Observable Orbits MOS interrupts Collected Orbits

Orbits (% of total) (% of total) (% of observable) (% of observable)

Aug (2019) 402 99 ( 24.6%) 303 ( 75.4%) 34 ( 11.2%) 269 ( 88.8%)

Sep (2019) 465 34 ( 7.3%) 431 ( 92.7%) 60 ( 13.9%) 371 ( 86.1%)

Oct (2019) 481 176 ( 36.6%) 305 ( 63.4%) 127 ( 41.6%) 178 ( 58.4%)

Nov (2019) 465 40 ( 8.6%) 425 ( 91.4%) 382 ( 89.9%) 43 ( 10.1%)

Dec (2019) 481 92 ( 19.1%) 389 ( 80.9%) 0 ( 0.0%) 389 (100.0%)

Jan (2020) 480 90 ( 18.8%) 390 ( 81.2%) 16 ( 4.1%) 374 ( 95.9%)

Feb (2020) 449 74 ( 16.5%) 375 ( 83.5%) 21 ( 5.6%) 354 ( 94.4%)

Mar (2020) 480 34 ( 7.1%) 446 ( 92.9%) 6 ( 1.3%) 440 ( 98.7%)

Apr (2020) 465 33 ( 7.1%) 432 ( 92.9%) 8 ( 1.9%) 424 ( 98.1%)

May (2020) 480 21 ( 4.4%) 459 ( 95.6%) 9 ( 2.0%) 450 ( 98.0%)

Jun (2020) 464 0 ( 0.0%) 464 (100.0%) 46 ( 9.9%) 418 ( 90.1%)

Jul (2020) 480 31 ( 6.5%) 449 ( 93.5%) 0 ( 0.0%) 449 (100.0%)

Aug (2020) 480 8 ( 1.7%) 472 ( 98.3%) 0 ( 0.0%) 472 (100.0%)

Sep (2020) 465 2 ( 0.4%) 463 ( 99.6%) 8 ( 1.7%) 455 ( 98.3%)

Oct (2020) 480 31 ( 6.5%) 449 ( 93.5%) 2 ( 0.4%) 447 ( 99.6%)

Nov (2020) 465 7 ( 1.5%) 458 ( 98.5%) 0 ( 0.0%) 458 (100.0%)

Dec (2020) 480 11 ( 2.3%) 469 ( 97.7%) 4 ( 0.9%) 465 ( 99.1%)

Jan (2021) 480 16 ( 3.3%) 464 ( 96.7%) 56 ( 12.1%) 408 ( 87.9%)

Feb (2021) 433 36 ( 8.3%) 397 ( 91.7%) 26 ( 6.5%) 371 ( 93.5%)

Mar (2021) 480 11 ( 2.3%) 469 ( 97.7%) 0 ( 0.0%) 469 (100.0%)

Apr (2021) 465 25 ( 5.4%) 440 ( 94.6%) 26 ( 5.9%) 414 ( 94.1%)

May (2021) 480 0 ( 0.0%) 480 (100.0%) 31 ( 6.5%) 449 ( 93.5%)

Jun (2021) 464 13 ( 2.8%) 451 ( 97.2%) 1 ( 0.2%) 450 ( 99.8%)

Jul (2021) 480 71 ( 14.8%) 409 ( 85.2%) 0 ( 0.0%) 409 (100.0%)

Aug (2021) 480 63 ( 13.1%) 417 ( 86.9%) 48 ( 11.5%) 369 ( 88.5%)

Sep (2021) 464 13 ( 2.8%) 451 ( 97.2%) 0 ( 0.0%) 451 (100.0%)

Oct (2021) 480 38 ( 7.9%) 442 ( 92.1%) 0 ( 0.0%) 442 (100.0%)

Nov (2021) 465 81 ( 17.4%) 384 ( 82.6%) 0 ( 0.0%) 384 (100.0%)

Dec (2021) 480 65 ( 13.5%) 415 ( 86.5%) 50 ( 12.0%) 365 ( 88.0%)

Jan (2022) 480 88 ( 18.3%) 392 ( 81.7%) 31 ( 7.9%) 361 ( 92.1%)

Feb (2022) 434 26 ( 6.0%) 408 ( 94.0%) 46 ( 11.3%) 362 ( 88.7%)

Grand Total 14527 1329 ( 9.2%) 13198 ( 90.8%) 1038 ( 8.3%) 12160 ( 91.7%)
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B2 OCO-3 v10 pointing correction

Although the first public release of OCO-3 XCO2 (vEarly) was derived using the v10 L2FP algorithm, the data set suffered

from significant geolocation errors (Taylor et al., 2020). Here, an update in the geolocation for v10 is described.800

Precise geolocation of OCO-3 footprints requires knowledge of (i) the position and attitude of the instrument in space, (ii)

the position and control of the PMA, and (iii) the effective alignment of the OCO-3 detectors with respect to the instrument

reference. Improvements were made in all three areas for v10, as described in Section 2.2 of the OCO-3 v10.4 data qual-

ity statement (Chatterjee et al., 2022). OCO-3 attitude data are now taken primarily from the on-board stellar reference unit805

(SRU), which was not possible for vEarly due to a systems timing error that yielded large geolocation errors early in the mis-

sion. When the SRU is not available for attitude information, the OCO-3 processing stream relies on stellar reference data from

the CALorimetric Electron Telescope (CALET) (Torii and Marrocchesi, 2019), another instrument aboard the ISS JEM-EF.

During early operations, the PMA was calibrated using measurements from the on-board internal context camera (ICC), and

an external look-up table was derived for azimuth and elevation angle offsets. For v10, a model fit to the PMA calibration810

data was implemented directly into the geolocation algorithm. Finally, for OCO-3 v10, the effective alignment of the detectors

to the instrument reference was empirically determined using a best-fit static alignment adjustment. An additional rotation

element was added to the geolocation algorithm, and the relative alignment space was systematically explored using a metric

derived from minimizing surface pressure errors and albedo differences. This removed a systematic pointing error of 1 to 2 km.

Overall, adjustments to the OCO-3 geolocation led to an improvement in the pointing errors from 1-2 km in vEarly down to815

typically less than 1 km in v10. Further refinements to OCO-3 geolocation are expected in future versions.

To confirm the v10 pointing errors, a pointing optimization code was developed to examine the residual errors for individual

swaths within a collection of SAMs. The code minimizes a cost function using the difference in retrieved and modeled surface

pressure (the L2FP prior), coupled with differences in the weak CO2 surface albedo between the retrieved values from the820

IDP and the black-sky albedo from MODIS Band 6, using the closest-in-time available MODIS Albedo file (1 km resolution,

product MCD43A3, Schaaf (2022)). The primary result of the code is an optimal shift in latitude and longitude for each swath

in a given OCO-3 SAM or Target observation, to bring it into alignment with the ancillary data. Note that SAM swaths are not

actually displaced by the suggested optimization values within the v10.4 data products, and thus geolocation errors typically up

to 1 km remain in OCO-3 v10 data. However, for future reprocessing, a final optimization on all SAMs in the data collection825

prior to public release may be considered, depending on the residual errors. In specific instances, the project has supported

requests to optimize individual SAMs in support of science analysis, as was done for Nassar et al. (2022).

Figure B1 shows analysis of the OCO-3 v10 pointing offset optimization results for a set of a few hundred SAMs collected

over an approximate one year period. As each SAM consists of between 4 and 6 swaths, the total swath count is 372, after830

several quality assurance criteria are applied based on the certainty of the results for each fit. Panel (a) provides the frequency
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distribution of the optimization distance (∆ d) for vEarly (pink) and v10 (blue). While the mean/median ∆ d was ≈ 1.5 km in

vEarly, for v10 the optimization distance has been reduced to ≈ 0.5 km.

Panel (b) of Fig. B1 shows the cumulative frequency distribution, which indicates that for vEarly ≈65% of the swaths had ∆ d835

> 1.25 km, while for v10 the fraction of swaths with ∆ d > 1.25 km has been reduced to ≈ 15%. In the vEarly product, more

than 7% of the swaths had ∆ d < 2.5 km, while for v10, less than 1% of the swaths have a pointing error greater than 2.5 km.

Recall that the nominal size of an OCO-3 footprint is 1.6 by 2.2 km. Additional reductions in the OCO-3 pointing error to the

sub 0.5 km level, on order with OCO-2 (Kiel et al., 2019) is the nominal goal for a future reprocessing.

840

B3 OCO-3 v10 ad hoc XCO2 bias correction

The ad hoc correction to OCO-3 v10 XCO2 using collocated OCO-2 data is predicated upon the hypothesis that two sensors

measuring the same column of air at the same time should produce the same XCO2 estimate when derived using the same

retrieval algorithm. Therefore, a set of spatiotemporal collocations between the OCO-2 and OCO-3 sensors was identified over

the time period 6-Aug-2019 through 31-Oct-2021. If the XCO2 from the two sensors are in good agreement, the expectation is845

for a mean bias close to zero, with low variability, and no time trend.

Each OCO-2/3 collocation consists of a cluster of soundings for each of the two sensors measured within a 25 km radius and

± 4 h time, and containing at least 15 good quality flagged soundings per sensor. The difference in the mean bias corrected

XCO2 (µ) for each collocated cluster of soundings (∆XCO2 = µOCO-3− µOCO-2) provides a reasonably direct comparison850

between the sensors.

Figure B2 provides two example visualizations of overlapping orbit tracks from OCO-2 and OCO-3 as measured over eastern

Europe on 12-August-2019 (A) and over the southwest coast of Africa on 22-September-2021 (B). In example (A) the time

difference between the overpasses was < 5 m
:::::::
minutes, with a ∆XCO2 of 0.17 ppm. In example (B), the time difference was855

25 m
:::::::
minutes, with a ∆XCO2 of 0.01 ppm. The variability in XCO2 for the entire scene was about 0.5-0.8 ppm for both sensors.

Time series plots of the ∆XCO2, as shown in panel (a) of Fig. B3 suggests a significant divergence in ∆XCO2 between orbits

4339 to 9719 (February 2020 through January 2021). This time period corresponds to a long interval with no instrument de-

contamination, which are indicated by the shaded areas in the plot. Upon investigation, it was found that the diverging ∆XCO2860

correlates with an OCO-3 L1b calibration artifact: the instrument stray light, or zero-level-offset (ZLO), as shown in panel (b).

The band-dependent ZLO is derived from measurements of the on-board calibration lamps on the unilluminated pixels of the

detector, and is found to increase non-linearly in time since the last decontamination cycle, as shown against the left ordinate

in panel (c).

865
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Figure B1. Comparison of OCO-3 pointing optimization for vEarly (pink) and v10 (blue) spanning an approximately one year time period.

Panel (a) shows the frequency distribution of the the optimization distance
:
.
:::
The

::::
orbit

::::::
ranges

:::
and

::::::
number

::
of

::::::
swaths

:::
are

:::::::
indicated

::
in

:::
the

:::::
legend, while panel

::::
along

:::
with

:::
the

:::::
mean,

::::::
median,

:::
and

::::::::
maximum

::::::::::
optimization

:::::::
distances (

::
dx)

::
in

:::::::::
kilometers.

::::
Panel

:
(b) shows the cumulative

frequency distribution
:::::::::
distributions.

:::
The

:::::
percent

::
of

:::
the

:::::
swaths

::::
(Frac

:::
N)

:::
with

::::::::::
optimization

:::::::
distances

:::::
greater

::::
than

:::::::
1.25 km,

:::::
2.5 km,

:::
and

::::::
5.0 km

::
are

:::::::
indicated

::
in

:::
the

:::::
legend.

:
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Figure B2. XCO2 from simultaneous nadir overpasses (SNOs) between the OCO-2 and OCO-3 over eastern Europe on 12-August-

2019 (A) and over the southwest coast of Africa on 22-September-2021 (B). In example (A) the time difference between the over-

passes was 282 s (< 5 m) and the difference in the average XCO2 from the two sensors was 0.17 ppm. In example (B), the time differ-

ence was 1519 s (25 m) and the difference in the average XCO2 from the two sensors was 0.01 ppm. The scatter
::::::::
uncertainty

:
in XCO2

for the entire scene was about 0.5 -0.8
::
to

:::
0.8 ppm for both sensors. The background for these image comes from ArcGIS, available at

https://server.arcgisonline.com/ArcGIS/rest/services. Note that the collocation criteria used in this work (25 km radius and ± 4 h) means that

not all collocations were direct simultaneous overpasses, and a mixture of both nadir and glint viewing was used.

A correction to the OCO-3 XCO2 values (right ordinate of panel (c)) is derived from a linear fit of the ∆XCO2 (at a given

orbit) versus the WCO2 ZLO at the same orbit (panel b). After application of this ad hoc correction, the time dependence of

∆XCO2 between OCO-2 and OCO-3 is largely mitigated, as shown in panel (d). Fit coefficients were determined separately

for each OCO-3 FP and for land and ocean-glint observations. A reprocessing of the OCO-3 L2 Lite product was performed

to correct the XCO2 for all reported soundings. The new v10.4 L2 Lite XCO2 files were delivered to the NASA GES DISC in870

April of 2022 (Chatterjee et al., 2022). The files contain a new variable field, Retrieval/xco2_zlo_bias, giving the size of the

additive correction made to the XCO2 values. Researchers are urged to use these files, and avoid use of the XCO2 reported in

the L2 Standard product which do not have the ad hoc bias correction applied.

Figure B5 shows a verification of the OCO-3 XCO2 ad hoc correction as compared to the multi-model-median (MMM) that875

was discussed in Section 6.2. The top row shows results prior to the ad hoc correction for land-nadir (a) and for ocean-glint

(b). Although early in the record, the agreement is quite good, a strong, unexpected time divergence is seen in the uncorrected
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(a) v10 ∆XCO2 prior to ad hoc correction :: Land :: FP-4
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(b) v10 ∆XCO2 vs OCO-3 WCO2 ZLO
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(c) OCO-3 v10 WCO2 zero-level-offset vs OCO-3 orbit number
 

2000 4000 6000 8000 10000 12000 14000
OCO-3 orbit number

0.0006
0.0008
0.0010
0.0012
0.0014

O
C

O
-3

 W
C

O
2 

Z
L

O

0.0
0.5
1.0
1.5
2.0

O
C

O
-3

 X
C

O
2

ad
ju

st
m

en
t 

(p
p

m
)

(d) v10 ∆XCO2 after ad hoc correction
 

N=1609, µ=0.18  ppm, σ=0.71 ppm
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Figure B3. Ad hoc bias correction of OCO-3 v10 XCO2 for footprint 4 (FP-4) land measurements. Panel (a) shows the ∆XCO2 (OCO-3

minus
:
−
:
OCO-2) for a set of collocated clusters of soundings versus the OCO-3 orbit number.

:::
The

:::::
number

::
of
:::::::::
collocations

::::
(N),

:::
and

::
the

:::::
mean

::
(µ)

:::
and

:::::::
standard

:::::::
deviation

:::
(σ)

::
of

:::
the

::::::
∆XCO2:::

are
::::
given

::
in

:::
the

::::::
legend. Panel (b) shows the correlation between the ∆XCO2 and the OCO-3

WCO2 ZLO used to determine the correction. Panel (c) shows the OCO-3 WCO2 ZLO (left) and magnitude in ppm of the ad hoc XCO2 bias

correction (right) versus OCO-3 orbit number. Panel (d) is similar to panel (a), except with the OCO-3 XCO2 ad hoc correction applied. In all

panels, the small grey dots indicate individual collocations, while the large black dots are binned median values. The vertical shaded regions

in panels (a), (c), and (d) indicate the time period during which the OCO-3 instrument was powered down for a decontamination cycle.
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(a) v10 ∆XCO2 prior to ad hoc correction :: Ocean :: FP-4
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(b) v10 ∆XCO2 vs OCO-3 WCO2 ZLO
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(c) OCO-3 v10 WCO2 zero-level-offset vs OCO-3 orbit number
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(d) v10 ∆XCO2 after ad hoc correction
 

N= 687, µ=-0.32 ppm, σ=0.43 ppm
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Figure B4. Same as Fig. B3, but for ocean
::::::::
ocean-glint

:
collocations.

data in the second half of 2020. After application of the ad hoc bias correction, as seen in (c) for land and (d) for ocean-glint,

the OCO-3 XCO2 is in better agreement with the MMM, and is on par with expectations based on previous results from both

OCO-2 and GOSAT, e.g., Section 6.2 of this work and Section 4.4 of Taylor et al. (2022).880

B4 OCO-3 v10 XCO2 diurnal signal

The orbit of OCO-3 aboard the ISS precesses in time such that the equator crossing occurs approximately 20 minutes earlier

each day. This yields observations spanning all daylight hours over the course of a 63-day repeat cycle (Eldering et al., 2019).

The semi-diurnal nature of the OCO-3 data has potential to allow for interesting science investigations (e.g., Xiao et al., 2021),885
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Figure B5. OCO-3 v10
:::
The XCO2 versus the

:::::
signal

::::::
(OCO-3

::
−

:
MMMbinned )

::::::
gridded

:
at 15◦ latitude by 10 day resolution.

:::
days

:::
for

:::
the

:::
time

:::::
period

::::::
August

::::
2019

::::::
through

::::::::
December

::::
2020.

:
Panels (a) and (bc) show results prior to

::::
before

:::
and

::::
after the ad hoc XCO2 bias correction

for land and ocean-glint
:::::::

land-nadir
::::::::::
observations, respectively. Panels

::::
while

:::::
panels

:
(c
:
b) and (d) show results after application of the ad hoc

correction
::
are

:
for land and ocean-glint , respectively

:::::::::
observations.

:::
The

:::::::
ordinate

:::
axis

::
is

:::::
scaled

::
by

:::
the

:::::
cosine

::
of

:::
the

::::::
latitude

::
to

:::::::
elucidate

:::
the

::::::::
decreasing

:::::::
fractional

::::::
surface

:::
area

::
of

:::
the

::::
earth

:::
with

::::::::
increasing

:::::::
latitude.

:::
Data

::::
cells

::::
with

:::
less

::::
than

::
10

::::::::
soundings

::
are

::::::
colored

::::
gray.

that are not possible with data from polar orbiters with a fixed overpass time.

Analysis of OCO-3 XCO2 from a set of more than two thousand same-day paired intersecting orbits, i.e., self-crossings, over

land are shown in Fig. B6. The time separation between intersecting orbits ranges from 1.5 h up to approximately 10 h, with a

spatial coincidence of 25 km radius. The difference in observed XCO2 between overpasses is a combination of random scatter890

:::::::::
uncertainty driven by instrument calibration and retrieval uncertainties, plus real changes in XCO2. Over a time scale of hours,

local variations in XCO2 are due to a combination of (i) synoptic scale transport, i.e., CO2 weather (Parazoo et al., 2008), (ii)

biospheric diurnal effects, i.e., draw down by the terrestrial biosphere (Keppel-Aleks et al., 2011), or (iii) local point source

emissions (e.g., Nassar et al., 2021).

895

Panel (a) shows the scatter
::
of

::::
Fig.

:::
B6

:::::
shows

:::
the

::::
one

::
to

::::
one

:::::::::::::
correspondence in XCO2 between the 2218 pairs of orbits. The

mean difference is 0.04 ppm with a 1.1 ppm standard deviation
:::::::::
uncertainty. About one quarter of the samples have a difference

smaller than 0.25 ppm, while one quarter have a difference larger than 1 ppm, near the upper end of expected diurnal changes

in the column (Torres et al., 2019). The maximum observed difference is> 6.6 ppm! A test using a tighter spatial collocation of

10 km radius yielded indistinguishable differences, but a reduction in the number of collocations to≈1850 (Results not shown).900
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Panel (b) of Fig. B6 shows the ∆XCO2 versus the time difference between self-crossings. It might be expected that if the

self-crossings were detecting real changes in the column CO2 between overpasses driven by smooth diurnal variations due to

biospheric draw down, then larger ∆XCO2 would be seen at larger ∆time. However, we observe no significant correlation in

∆XCO2 with ∆time
::
is

:::::::
observed. The largest differences in XCO2 are about as likely to occur between two orbits 1.5 h apart905

as they are to occur between two orbits 8 or 9 h apart.

An effort was made to explore geophysical and retrieval covariates in the observed XCO2 differences. Any significant corre-

lations between ∆XCO2 and L2FP retrieval variables, as is done in the bias correction procedure, could help to understand

physical processes. As aerosols are a known source of error in the L2FP (Nelson and O’Dell, 2019; Bell et al., 2023), Panel910

(c) shows the correlation in ∆XCO2 with the L2FP retrieved total aerosol optical depth (combined for the two overpasses).

Although there is modest increase in spread for higher values of AOD, the median ∆XCO2 values (heavy filled circles with

one sigma error bars) shows no significant correlation. No other L2FP retrieval variables, e.g., albedos, geometries, were found

to correlate with ∆XCO2 (results not shown).

915

Although additional analysis is warranted, the general conclusion is that the variability in the ∆XCO2 from the self-crossing

analysis is dominated by random uncertainties in the measurements and/or the L2FP retrieval. This conclusion stands in line

with reported XCO2 errors on the order of 0.5 ppm, and with the fidelity of the comparisons against truth proxies.

Data availability920

The OCO XCO2 and other retrieval properties are publicly available at the NASA Goddard Earth Science Data and Informa-

tion Services Center (GES-DISC). The full suite of retrieval products in the standard per-orbit format can be obtained at (OCO

Science Team et al., 2020b, https://doi.org/10.5067/6SBROTA57TFH) and (OCO Science Team et al., 2021, https://doi.org/10.

5067/D9S8ZOCHCADE) for OCO-2 and OCO-3, respectively. The light-weight per-day format data, which includes
:::
Lite

:::::
files,

:::::
which

::::::
include

:
the quality flag and bias corrected estimates of XCO2, can be obtained at (OCO Science Team et al., 2020a,925

https://doi.org/10.5067/E4E140XDMPO2) and (OCO Science Team et al., 2022, https://doi.org/10.5067/970BCC4DHH24)

for OCO-2 and OCO-3, respectively.
:::
For

:::::::
OCO-3,

:::::::::
researchers

:::
are

:::::
urged

::
to

:::
use

:::
the

:::::
v10.4

::::
Lite

::::
files,

::::
and

:::::
avoid

:::
use

::
of

:::
the

::::::
XCO2

:::::::
reported

::
in

:::
the

:::
v10

:::
L2

:::::::
Standard

:::::::
product

:::::
which

:::
do

:::
not

::::
have

:::
the

:::
ad

:::
hoc

::::
bias

::::::::
correction

:::::::
applied.

:

The TCCON data for individual stations are available on the CaltechDATA site (https://data.caltech.edu/https://data.caltech.930

edu/). CarbonTracker CT-NRT.v2019-2 and CT-NRT.v2021-3 results provided by NOAA ESRL, Boulder, Colorado, USA from

the website at https://carbontracker. noaa.gov. https://carbontracker.noaa.gov.
:
The Jena-Carboscope model data are available at

http://www. bgc-jena.mpg.de/CarboScope. The CAMS model data are available at https://atmosphere.copernicus.eu/data http:

//www.bgc-jena.mpg.de/CarboScope.
::::
The

:::::::::
Copernicus

::::::::::
Atmosphere

::::::::::
Monitoring

::::::
Service

::::::::
(CAMS)

::::::::::
CAMS-INV

::::::
model

:::
data

:::::
were
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Figure B6. Analysis of OCO-3 XCO2 from a set of paired intersecting orbits, i.e., self-crossings, over land. Panel (a) shows the scatter
:::
one

:
to
:::
one

::::::::::::
correspondence

:
in XCO2 between the early and late orbits.

:::
The

::::::
number

::
of

:::::::::
collocations

:::
(N)

:::
and

:::
the

::::
mean

:::
(µ),

:::::::
standard

:::::::
deviation

:::
(σ)

:::
and

:::::::
maximum

:::::::
∆XCO2::::::

(∆max)
:::
are

::::
given

::
in

:::
the

:::::
legend.

::::
Also

:::::
shown

::
in

:::
the

:::::
legend

::
are

:::
the

::::::
percent

::
of

::
the

:::::::::
collocations

::::::
having

::::::
∆XCO2::::::

greater

:::
than

::::
0.25,

::::
0.5,

:::
1.0,

:::
2.0,

:::
and

:::::::
3.0 ppm.

:
Panel (b) shows the ∆XCO2 versus the time difference between self-crossings. Panel (c) shows the

∆XCO2 versus the L2FP retrieved total aerosol optical depth (combined for the ascending and descending nodes).

:::::::
obtained

::::
from

:
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview,

:::::
while935

::
the

:::::::::::::
CAMS-REAN

:::
data

:::::
were

:::::::
obtained

::::
from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?

tab=overview. The UoL model data are available at https://www. geos.ed.ac.uk/ lfeng/. The ECMWF/CAMS data obtained

from the Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store (ADS). The https://www.geos.ed.ac.

uk/~lfeng/
:
.
::::
The GEOS data used in this study were provided by the Global Modeling and Assimilation Office (GMAO) at

NASA Goddard Space Flight Center.940
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