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Abstract. The version 10 (v10) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval

algorithm has been applied to multi-year records of observations from NASA’s Orbiting Carbon Observatory -2 and -3 sensors

(OCO-2 and OCO-3, respectively) to provide estimates of the carbon dioxide (CO2) column-averaged dry-air mole fraction

(XCO2). In this study, a number of improvements to the ACOS v10 L2FP algorithm are described. The post-processing qual-

ity filtering and bias correction of the XCO2 estimates against multiple truth proxies are also discussed. The OCO v10 data5

volumes and XCO2 estimates from the two sensors for the time period August 2019 through February 2022 are compared,

highlighting differences in spatiotemporal sampling, but demonstrating broad agreement between the two sensors where they

overlap in time and space. A number of evaluation sources applied to both sensors suggest they are broadly similar in data

and error characteristics. Mean OCO-3 differences relative to collocated OCO-2 data are approximately 0.2 ppm and -0.3 ppm

for land and ocean observations, respectively. Comparison of XCO2 estimates to collocated Total Carbon Column Observing10

Network (TCCON) measurements show root mean squared errors (RMSE) of approximately 0.8 ppm and 0.9 ppm for OCO-2

and OCO-3, respectively. An evaluation against XCO2 fields derived from atmospheric inversion systems that assimilated only

near-surface CO2 observations, i.e., did not assimilate satellite CO2 measurements, yielded RMSEs of 1.0 ppm and 1.1 ppm

for OCO-2 and OCO-3, respectively. Evaluation of uncertainties in XCO2 over small areas, as well as XCO2 biases across
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land-ocean crossings, also indicate similar behavior in the error characteristics of both sensors. Taken together, these results15

demonstrate a broad consistency of OCO-2 and OCO-3 XCO2 measurements, suggesting they may be used together for scien-

tific analyses.

1 Introduction

Estimates of the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) derived from global space-based mea-20

surements can be assimilated into atmospheric inversion systems to quantify CO2 fluxes associated with both natural and

anthropogenic sources and sinks (Gurney et al., 2002). However, these estimates must have both high precision and accuracy

due to the long atmospheric lifetime of CO2 (Archer et al., 2009), and the high background concentrations (≈ 415 parts per

million by volume, ppm, in 2022), such that even the most intense sources and sinks produce only small (≈ 1 ppm) changes in

XCO2 (Miller et al., 2007).25

The Orbiting Carbon Observatory -2 and -3 missions, OCO-2 and OCO-3, respectively, referred to collectively as OCO in

this document, are NASA’s primary operating assets for monitoring CO2 concentrations from space. Both of these instruments

measure reflected solar radiation at high spectral resolution in specific narrow spectral bands in the near and short-wave in-

frared regions (NIR and SWIR, respectively), where molecular oxygen (O2) and CO2 absorb sun light. A variety of physics30

based algorithms and sources of prior information are required to convert the measured spectra into estimates of XCO2 in a

series of steps. First, the individual soundings are geolocated and then radiometrically and spectrally calibrated. Then, these

products are pre-screened to filter out scenes contaminated by clouds and heavy aerosol loading. A retrieval is then performed

to estimate XCO2 from the geolocated and calibrated radiances. Finally, a post-processing step is applied that quality screens

the retrieval output and applies an empirically-based bias correction to the XCO2 concentrations. Although estimates of solar-35

induced chlorophyll fluorescence (SIF) are also provided from OCO-2 and OCO-3 measurements, the focus of this paper is on

the XCO2 estimates. Readers are referred to Doughty et al. (2022) for an overview of the OCO SIF products.

Space-based measurements from OCO-2 and OCO-3 have already been successfully used to quantify CO2 sources and sinks

at global (e.g., Crowell et al., 2019; Peiro et al., 2022; Byrne et al., 2023), regional (e.g., Palmer et al., 2019; Byrne et al.,40

2021; Philip et al., 2022) and even local/urban scales (e.g., Lei et al., 2021; Kiel et al., 2021; Nassar et al., 2022). However,

biases and random errors in the XCO2 estimates relative to reference measurements persist, even after application of bias

correction and filtering. These biases and random errors are associated with multiple factors, such as instrument measurement

noise, uncertainties in instrument calibration, error in CO2 and O2 gas absorption cross sections, complications in accurately

representing aerosols and surface characteristics in the retrieval, and lack of accurate knowledge of the prior estimates of the45

atmospheric state that are used in the retrieval algorithm (Connor et al., 2016; Kulawik et al., 2016; Hobbs et al., 2017; Kulawik

et al., 2019). Numerous studies have demonstrated that small, but regionally coherent, biases in CO2 concentrations can result
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in flux estimate errors (e.g., Chevallier et al., 2005, 2007, 2014; Basu et al., 2013; Feng et al., 2016). It is therefore essential to

quantify, as best as possible, the remaining biases present in the satellite XCO2 products.

50

The paper is organized as follows: The OCO instruments, spectral measurements, and calibration are reviewed in Section 2.

Section 3 discusses updates to the v10 L2FP retrieval algorithm and other components of the data processing pipeline. In

Section 4, the OCO-2 and OCO-3 v10 XCO2 data volumes are analyzed for the overlapping time period August 2019 through

February 2022, while Section 5 compares the XCO2 estimates from the two sensors. Section 6 compares the satellite XCO2

estimates from both sensors to XCO2 estimates derived from Total Carbon Column Observing Network (TCCON), atmo-55

spheric inversion systems (models), as well as to small areas and coastal crossings. A summary of the findings are presented

in Section 7. A deeper examination of the full 7+ year OCO-2 v10 record is provided in Appendix A. Finally, in Appendix B,

several aspects of the OCO-3 v10 data set are explored in detail, including the application of a time-dependent correction to

the OCO-3 v10 XCO2 estimates to correct a calibration artifact using a set of soundings collocated to OCO-2.

60

2 The OCO-2 and OCO-3 instruments and calibration

There are many similarities between the OCO-2 and OCO-3 sensors, as the latter was built as a flight spare for the former. Both

are three-channel grating spectrometers with a common telescope used to direct reflected solar radiation from the field of view

through a dispersion grating onto a focal plane array (FPA). The FPA electronics convert analog signals into measured digi-

tal numbers (DN). Predetermined calibration information is used to convert DN into radiances (photons s−1 m−2 sr−1 µm−1)65

in the three spectral channels: (i) the Oxygen-A band centered at 0.765µm, (ii) a weak CO2 band centered at 1.61µm, and

(iii) a strong CO2 band centered at 2.06µm, referred to as the ABO2, WCO2, and SCO2, respectively, all with high spectral

resolving power (λ / ∆λ > 17,000) and 1016 spectral channels. A single OCO-2/3 measurement frame contains 8 along-slit

“footprints”, which are acquired at 3 Hz, yielding 24 individual soundings per second. The exact footprint size of each OCO-2

sounding varies by observation mode and latitude, but is of order 1.3 km cross-track and 2.25 km along-track (2.9 km2) near70

nadir viewing. The orbit altitude of OCO-3 aboard the International Space Station (ISS) is lower than that of OCO-2 (≈ 400 km

and≈ 705 km for OCO-3 and OCO-2, respectively), necessitating an enlargement of the instrument’s field of view from 0.8◦ to

1.8◦ in order to maintain a similar footprint size. Even so, OCO-3 footprints are typically slightly larger, at 1.6 km cross-track

by 2.2 km along-track (3.5 km2).

75

OCO-2 began science operations in September, 2014 (Crisp et al., 2017; Eldering et al., 2017). It flies in a sun-synchronous

polar orbit on a dedicated satellite bus in the Afternoon constellation, i.e., A-train (L’Ecuyer and Jiang, 2010), which has a local

overpass time of approximately 13:36 and a 16-day orbit repeat cycle. OCO-2 science measurements are made in one of three

observation modes: (i) down-looking nadir (ND), (ii) sun-glint (GL), or (iii) target (TG). For routine science observations, a

full day-side orbit is acquired in one of the two primary observation modes (nadir or glint), in an alternating fashion. However,80
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for orbits that pass largely over ocean, the satellite orients the instrument to view the sun’s specular glint spot, which maximizes

the signal over water (Miller et al., 2007). In addition, a small number (order 30) of pre-determined target sites are viewed as

conditions allow. Most of the targeted observations are collected over Total Carbon Column Observing Network (TCCON)

stations, whose up-looking observations are used to validate the OCO-2 XCO2 estimates (Wunch et al., 2011a, 2017). Other

targets include surface calibration sites (e.g., Bruegge et al., 2019), large urban areas (e.g., Rißmann et al., 2022), and power85

plants (e.g., Nassar et al., 2017).

OCO-3 began science operations in August, 2019 (Taylor et al., 2020). The OCO-3 instrument is mounted as an external

payload on the Japanese Experimental Module Exposed-Facility (JEM-EF) aboard the ISS. The ISS flies in a precessing orbit

with a varying time-of-day local overpass across a 63-day illumination cycle. To provide agile pointing from the ISS, a 2-axis90

Pointing Mirror Assembly (PMA) was added to the fore-optics of OCO-3 (Eldering et al., 2019). For routine science obser-

vations, OCO-3 acquires measurements in nadir mode over land and glint mode over large water bodies. A much larger set of

target observations are possible compared to OCO-2 due to the more up-to-date on-board electronics control system and the

rapid re-pointing allowed by the PMA. In addition, a new observation mode called Snapshot Area Mapping (SAM) allows the

instrument to compile contiguous images as large as 80 by 80 km2, over sites of interest such as mega-cities, power plants,95

volcanoes, flux towers, and field campaigns. The spatially contiguous nature of the SAMs is already showing tremendous

promise for both carbon cycle science (e.g., Kiel et al., 2021; Wu et al., 2022; Roten et al., 2022; Nassar et al., 2022) and for

investigating sources of bias within the L2FP retrieval (Bell et al., 2023).

The precision and accuracy requirements for OCO-2 and OCO-3 were originally applied to regional scales, roughly defined as100

10◦ latitude by 10◦ longitude. Early Observation System Simulation Experiments (OSSEs) indicated that an XCO2 precision

and accuracy better than 1 ppm (less than 0.25%) is needed at this scale to constrain typical natural and anthropogenic sources

and sinks of CO2 (Miller et al., 2007). In practice, the spatial scale for precision and accuracy requirements is determined by

the distribution of the validation reference measurements. This is defined by the approximately two dozen TCCON stations and

a comparable number of EM27/Sun and Aircore stations distributed over the globe. The system performance on finer scales105

has also been assessed through comparisons with data collected by aircraft campaigns, e.g. ACT-America (Bell et al., 2020)

and ATom (Kulawik et al., 2019), and multi-instrument EM27/SUN Campaigns (Rißmann et al., 2022).

The precision and accuracy requirements place strict demands not only on the instrument sensitivity, but also on its calibration

and the accuracy of the retrieval algorithm. Both OCO-2 and OCO-3 were radiometrically calibrated prior to launch using110

integrating sphere sources calibrated with respect to the National Institute of Standards and Technology (NIST) reference stan-

dards. Observations of the integrating spheres yielded pre-launch gain coefficients used to convert measured digital numbers

into radiances. The radiometric calibration of OCO-2 and OCO-3 is frequently updated in-flight through the use of on-board

calibration systems (Crisp et al., 2017; Keller et al., 2022), which are analyzed to update Ancillary Radiometric Products

(ARPs) covering three to seven days, where gain degradation coefficients are provided to correct radiances based on prelaunch115
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gains.

For OCO-2, in-flight updates to the pre-launch calibration are derived from observations of the sun through a transmissive

diffuser and from its primary on-board lamp. While the sun observations track the overall change in instrument response with

time, lamp observations provide corrections of relative changes in the response of the individual samples, which are comprised120

of twenty detector pixels each (see Fig. 2 of Crisp et al. (2017) for the readout scheme). Lunar observations taken throughout

the mission have been used to track and account for the degradation of the solar diffuser. Details of the pre-flight and on-orbit

calibration of OCO-2 Level 1b (L1b) can be found in Rosenberg et al. (2017); Lee et al. (2017); Crisp et al. (2017); Marchetti

et al. (2019). In general, the instrument calibration and the full physics retrieval algorithm for OCO-2 have reached relatively

mature states. For example, updates to the OCO-2 v10 calibration algorithms used to produce calibrated L1b spectra were125

limited to an improved treatment of radiometric degradation using lunar calibration observations, a small refinement in the

spectral dispersion coefficients, and the identification of additional spectral sample outliers (Crisp et al., 2021).

Keller et al. (2022) describes the current state of the calibration for the L1b OCO-3 v10 data products. OCO-3, unlike OCO-2,

cannot view the sun from the ISS, making solar calibration impossible (Rosenberg et al., 2020). Therefore, as compared to130

OCO-2, more emphasis has been placed on the internal lamp calibration system, which is comprised of three tungsten halogen

lamps and a reflective diffuser. The three calibration lamps are illuminated with different cadences and thus age at different

rates. For v10 L1b, an algorithm was developed to use information from all three lamps with the goal of mitigating lamp aging

while still allowing changes in instrument response to be tracked with the necessary temporal resolution. This is particularly

important for OCO-3, as it has exhibited significant, abrupt changes in its overall instrument response. In addition, an update135

was made to the OCO-3 stray light model used for v10 L1b to account for spatial variability on the detectors. More detail is

provided in Section 2.1 of the OCO-3 v10.4 data quality statement (Chatterjee et al., 2022). Because of initial difficulties in

reducing geolocation errors for OCO-3, plans to perform lunar calibration, intercomparison of L1b radiances with OCO-2, and

vicarious calibration using the Railroad Valley Playa were delayed. These are now all underway and will inform the in-flight

calibration for the next OCO-3 product version. Additional OCO-3 calibration details are contained in the L1b Algorithm The-140

oretical Basis Document (ATBD) (Crisp et al., 2021).

3 The ACOS v10 XCO2 retrieval pipeline

Beginning with the geolocated and calibrated L1b spectra, the ACOS pipeline consists of three distinct steps to produce the

final estimates of XCO2. First, due to the computational demands of the L2FP retrieval algorithm, which requires about five145

minutes per sounding on a single processor, and the inability to reliably estimate XCO2 in the presence of clouds and heavy

aerosol loadings, a pre-screening step is performed to identify and remove these soundings (Taylor et al., 2016). The sound-

ings that are identified as likely to yield good quality results are then input to the ACOS Level 2 full physics (L2FP) retrieval
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algorithm, which utilizes a Bayesian optimal estimation framework to derive estimates of XCO2 by combining information

from the L1b spectra with prior information about the state of the atmosphere and measurement geometry (Rodgers, 2004;150

Connor et al., 2008; O’Dell et al., 2012). In a post-processing step, each sounding that successfully converges within the L2FP

is assigned either a good or bad quality flag based on a set of empirically-derived filters. Furthermore, an empirical, parametric

bias correction, derived from comparisons with multiple truth proxies, is applied to each sounding (O’Dell et al., 2018). The

quality-filtered and bias-corrected XCO2 estimates are included in the L2 Lite files, which also contain essential retrieval, time

and geometry information. A brief summary of recent changes specific to v10 is provided in Section 3.1.155

3.1 Level 2 full physics retrieval algorithm updates for v10

ACOS v10 is the fourth major reprocessing of the OCO-2 record, which began with the v6 release in December 2014, followed

by v7 in 2015, and v8 in 2017 (O’Dell et al., 2018). The v9 XCO2 product, released in 2018, was a post-processing-only effort

to correct XCO2 errors introduced by a small error in the instrument boresight pointing and geolocation (Kiel et al., 2019).160

Since there were no changes to the L2FP code from v8 to v9, for the remainder of this document the nomenclature “v8/9” will

be used to refer to the previous version of the algorithm. For OCO-3, the v10 XCO2 product is only the second public release.

It is a substantial improvement over the first release, vEarly, which employed the ACOS v10 algorithm, but had significant in-

strument calibration and geolocation errors, and was quality-filtered and bias-corrected against a very short data record of only

a few months (Taylor et al., 2020). Table 1 summarizes the four substantial changes that were made to ACOS L2FP retrieval165

algorithm from v8/9 to v10. More detail can be found in the v10 L2FP ATBD (Crisp et al., 2020).

Each new release of ACOS uses the latest gas absorption coefficient (ABSCO) tables produced at NASA’s Jet Propulsion Lab-

oratory (JPL). For v10, the ABSCO tables were updated from v5.0 (Oyafuso et al., 2017) in ACOS v8/9 to ABSCO v5.1 in

ACOS v10 (Payne et al., 2020). The most significant changes occurred in the ABO2 spectral band (Drouin et al., 2017; Payne170

et al., 2020) related to consistency between oxygen line shapes and collision induced absorption. This update yielded reduced

spatial variability of the bias between the L2FP retrieved surface pressure and the prior value from 3.3 hPa in v9 to 2.8 hPa in

v10. ABSCO v5.1 also includes an update to the water vapor continuum model, which affects the WCO2 and SCO2 spectral

bands.

175

A second important change between ACOS v8/9 and v10 was an update of the prior values adopted for aerosol types, optical

depths (AOD), vertical distribution and the uncertainties. In previous versions, the aerosol priors were compiled from a monthly

climatology derived from the NASA Goddard Modeling and Assimilation Office (GMAO) Modern-Era Retrospective analysis

for Research and Applications version 2 (MERRA-2) product (Rienecker et al., 2008, 2011; Gelaro et al., 2017). For v10, these

monthly aerosol priors were replaced with daily estimates derived from the GEOS-5 Forward Product for Instrument Teams180

(FP-IT) product. Furthermore, the AOD prior variance (expressed in log(AOD)) were reduced from 2 to 0.5 in v10. These

changes lead to significant improvements in both retrieved aerosol values and estimates of XCO2 from OCO-2, especially in
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aerosol-laden regions. Full details on the v10 aerosol formulation, including tests on its efficacy, are provided in Nelson and

O’Dell (2019) and Section 3.3.2.3 of Crisp et al. (2020).

185

A third significant change from v8/9 to v10 was replacing the source of the CO2 prior profiles from that developed by the TC-

CON team for use in the GGG2014 algorithm (Wunch et al., 2015) to the newest version used in GGG2020 (Laughner et al.,

2023). A complete description of the calculation of the v10 CO2 priors is provided in Sec. 3.3.2.1 of the L2FP ATBD (Crisp

et al., 2020). In short, the priors are calculated from a scaling of the NOAA monthly averaged flask values (Lan et al., 2022)

measured at the Mauna Loa and American Samoa sites to individual sounding dates and locations. The tropopause altitude is190

derived from data contained in the 3-hourly GOES-FPIT meteorology, which has a nominal one-day lag and provides diag-

nosed potential vorticity, allowing for better representation of latitudinal CO2 transport in the stratosphere. A previous study

using measurements from the Japanese Greenhouse Gases Observing Satellite (GOSAT, Kuze et al. (2009)) processed with the

ACOS v9 L2FP retrieval showed that a correction to account for the difference in the CO2 prior from v8/9 to v10 yielded a

global mean adjustment in XCO2 of approximately 0.2 ppm, with 95% of changes falling between -0.1 and +0.5 ppm (Taylor195

et al., 2022).

The last significant change to the v10 L2FP was replacement of the solar continuum model used to simulate the top-of-

atmosphere (TOA) solar spectrum. For the OCO missions, a high-resolution TOA solar spectrum is derived by combining a

high-spectral resolution solar transmission spectrum for solar Fraunhofer lines with an observed, low-spectral resolution TOA200

solar spectrum. The solar transmission spectrum is derived from an empirical solar line list (Toon, 2014). In earlier versions of

the L2FP model, the solar continuum was derived to fit the ATLAS 3 SOLSPEC measurements (Thuillier et al., 2003) when

the OCO solar spectrum was convolved with the SOLSPEC spectral response function (SRF). For v10, this continuum was

replaced by one derived to fit new measurements from the Total Solar Irradiance Sensor (TSIS) Spectral Irradiance Monitor

(SIM) aboard the ISS (Richard et al., 2020) when convolved with the TSIS-SIM SRF. The new solar model reduced the solar205

continuum values by ≈ -1.3%, -3.0%, and -6.5%, in the ABO2, WCO2, and SCO2 spectral bands, respectively. These results

are consistent with the more recently derived TSIS-1 Hybrid Solar Reference Spectrum (Coddington et al., 2021). L2FP tests

indicated that these changes had a minimal impact to XCO2 estimates. This is most likely because the solar flux differences

were relatively small in the ABO2 channel, which is most sensitive to the accuracy of the solar illumination and absolute

radiometric calibration. However, even these small differences shifted the retrieved surface pressures by ≈ -0.2 hPa for land210

and ≈+0.2 hPa for ocean soundings, which has a small impact on the bias correction.

3.2 Preprocessor and sounding selection for v10

The ACOS software includes two preprocessors to flag soundings that are likely to fail to converge in the full physics retrieval

due to cloud and aerosol: the A-Band Preprocessor (ABP) (Taylor et al., 2012, 2016) and the IMAP-DOAS Preprocessor (IDP)

(Frankenberg et al., 2005; Taylor et al., 2016). For v10, an update was made to the ABP state vector to include a zero level215

offset to the calculated top of the atmosphere radiances to account for instrument stray light and SIF. The v10 ABP uses v5.1
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Table 1. Updates to the ACOS L2FP retrieval algorithm from v8/9 to v10. N/C indicates no change.

ACOS v8/v9 ACOS v10

1 Spectroscopy ABSCO v5.0 ABSCO v5.1

2 Aerosol prior source MERRA monthly climatology 3-hourly GEOS-5 FP-IT with tightened prior AOD uncertainty

3 CO2 prior source TCCON GGG2014 TCCON GGG2020

4 Solar continuum model ATLAS 3 SOLSPEC TSIS-SIM

ABSCO to be consistent with the L2FP retrieval. To accommodate changes to the ABSCO and L1b, updates were made to tune

the ABP surface pressure vs. solar zenith angle and chi-squared vs. signal-to-noise ratio parameterizations, both of which are

used as individual filters to determine scenes contaminated by clouds and aerosols as first described in (Taylor et al., 2012) for

application to GOSAT, and more recently in Taylor et al. (2016) as applied to OCO-2.220

The IDP algorithm serves two purposes in the ACOS pipeline: (i) single band retrievals of CO2 and H2O are used for cloud

screening, and (ii) the ABO2 spectral band is used to estimate SIF (Frankenberg et al., 2012; Doughty et al., 2022). For v10,

no changes were made to the IDP. In fact, the code has remained unaltered for many versions, including use of the older v4.2

ABSCO (Drouin et al., 2017).225

The sounding selection strategy, which determines if a sounding should be run through the L2FP, remains roughly consis-

tent for v10 compared to previous versions. Details are provided in Table 2. For both sensors, the single difference between

land and ocean-glint selection criteria is that for OCO-2, the solar zenith angle (SZA) cutoff is slightly more strict at 80◦

for ocean-glint, compared to 85◦ for land. For OCO-3, the SZA cutoff is 80◦ for both land and ocean-glint. For OCO-2 v10,230

target mode observations were filtered using the satellite observation angle to remove soundings more oblique than 50◦. This

criterion was removed for OCO-3 target (and SAM) observations, so that the same set of selection criteria is used for all

land observations. Because there is minimal information content in ocean-nadir measurements due to a low signal-to-noise

ratio (SNR), no ocean-nadir soundings were selected for OCO-2 v10. However, the early part of the OCO-3 record contains a

large fraction of ocean-nadir observations prior to tuning of the PMA. To maximize the selection of potentially good quality235

soundings, the L1b SNR filters in both the ABO2 and SCO2 spectral bands were relaxed. However, the scientific merit of the

ocean-nadir observations is as of yet undetermined and therefore ocean-nadir soundings are not considered further in this work.

3.3 Postprocessing: quality filtering and bias correction for OCO v10 XCO2 estimates

All selected soundings, as described in Section 3.2, are subsequently processed by the L2FP retrieval, which primarily es-240

timates XCO2. Soundings that converge (typically ≈ 85-90% of the attempts), are reported in the L2 Standard product files
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Table 2. Sounding selection criteria for OCO-2 and OCO-3 v10. Soundings are categorized as either land (land fraction≥ 80%), water (land

fraction≤ 20%), or indeterminate (20%< land fraction < 80%). N/U = Not Used. N/P = Not Processed. In addition to the criteria defined in

the table, all soundings must have a “sounding quality flag” = 0.

OCO-2 v10 Land (all except TG) TG Ocean-Glint Ocean-Nadir

Solar zenith angle ≤ 85 ≤ 85 ≤ 80 N/P

Observation zenith N/U < 50 N/U N/P

ABP cloud flag = 0 = 0 = 0 N/P

IDP CO2 ratio [0.985, 1.045] N/U [0.985, 1.045] N/P

L1b ABO2 SNR > 100 N/U > 100 N/P

L1b SCO2 SNR > 75 N/U > 75 N/P

OCO-3 v10 Land (all) Ocean-Glint Ocean-Nadir

PMA motion flag = 0 = 0 = 0

Solar zenith angle ≤ 80 ≤ 80 ≤ 80

Observation zenith N/U N/U N/U

ABP cloud flag = 0 = 0 = 0

IDP CO2 ratio [0.980, 1.055] [0.980, 1.055] [0.980, 1.055]

IDP H2O ratio [0.80, 1.25] [0.80, 1.25] [0.80, 1.25]

L1b ABO2 SNR > 100 > 100 > 225

L1b SCO2 SNR > 50 > 50 > 125

(L2Std), which are organized into granules, which typically include full orbits or partial orbits, yielding about 15 files per day.

The L2Std files are in HDF5 format, and are about 20 MB each (≈ 300 MB per day). Next, a post-processing step assigns to

each sounding a binary quality flag (QF=0 indicates the best data), as well as a bias correction adjustment to XCO2 (O’Dell

et al., 2018). The results are aggregated into daily output L2 Lite XCO2 files. Lite files are in NetCDF format and are typically245

about 50-70 MB each. It is highly recommended that only the good quality (QF = 0) soundings contained in the L2 Lite XCO2

product be used in global and regional scale studies, although local scale studies may benefit from the use of some of the lower

quality (QF> 0) soundings.

3.3.1 Quality filtering and bias correction truth proxies250

The quality filtering and bias correction procedure requires XCO2 truth proxies, with which to compare the retrieved estimates.

The term truth-proxies is used to describe sources of data which can be used as an independent estimate of the atmospheric

CO2 abundance. For OCO v10, three truth proxies were used. The first was estimates of XCO2 derived from TCCON measure-

ments. Table 3 provides a list of TCCON stations, locations, operational ranges, and data citations. Although TCCON XCO2
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estimates have relatively high precision and accuracy, while providing good temporal coverage at most sites, they are very255

limited in spatial extent, especially outside of the northern mid-latitudes.

To augment the sparse spatial coverage of TCCON, atmospheric inversion models are used in the OCO XCO2 quality filtering

and bias correction process to provide full global coverage (O’Dell et al., 2018). For ACOS v10, the median XCO2 was derived

from the 4-dimensional (4D) CO2 fields of models that assimilated only in-situ CO2 data. To ensure consistency in the models,260

for each OCO sounding, only the models with XCO2 that deviated by less than ±1.5 ppm from the initial median value were

retained. Furthermore, soundings were excluded if more than one of the models had been rejected, or if the standard deviation

amongst the valid models was >1 ppm. Tables 4, 5, and 6 provide information about the suite of models. An asterisk is used

in Table 6 to identify the specific models and data versions used in the quality filtering and bias correction procedure: three for

OCO-2 and four for OCO-3 v10. Some of the same models were also used in the XCO2 evaluation, but using a different model265

data version and a different evaluation period. A few of the models were used only for the XCO2 product evaluation.

An averaging kernel correction was applied to both the TCCON and the model XCO2 values to account for differences in the

vertical profiles compared to the ACOS prior. The general form of the equation is:

XCO2,ak =

20∑
i=1

hi{aium,i + (1− ai)ua,i}. (1)270

Here, hi is the pressure weighting function on the i= 1...20 ACOS model levels, defined as the pressure intervals assigned to

the state vector normalized by the surface pressure and corrected for the presence of atmospheric water vapor. See Appendix

A of O’Dell et al. (2012) for details. The vector a is the CO2 column averaging kernel, which relates the sensitivity of the

retrieved CO2 to the true atmospheric state of CO2 at each vertical level, as described in Connor et al. (2008). The vector um is

the retrieved TCCON or model profile of CO2, linearly interpolated from the native vertical resolution to the 20 ACOS levels.275

The vector ua is the ACOS prior profile of CO2. Generally the averaging kernel corrections are on the order of 0.5 ppm or less.

Finally, a third truth proxy for training the v10 quality filtering and bias correction was the "small area approximation" (SAA).

Each small area is a collection of OCO XCO2 soundings over < 100 km sections within single orbits, where, in the absence of

strong localized sources, the real uncertainty in XCO2 is expected to be well under 0.1 ppm (Worden et al., 2017). A median280

value of each small area provides a truth proxy to which each sounding in the small area can be compared. While small areas

are not suitable for determining large-scale biases in the satellite data, they provide a measure of the uncertainty in the XCO2

estimates, due to both instrument noise and systematic errors that act on smaller scales. This “actual” uncertainty can be com-

pared to the “theoretical” uncertainty derived from the L2FP retrieval and stored in the L2Lite files as xco2_uncertainty. For

the v10 quality filtering and bias correction training, approximately 750×103 and 280×103 small areas were identified for285

OCO-2 and OCO-3, respectively.
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Table 3. TCCON stations used in the quality filtering and bias correction of OCO-2 and OCO-3 v10. Sites used only for OCO-2 are indicated

with a dagger (†) in the first column. Sites located on an island are indicated with an asterisks (*) in the second column.

TCCON Latitude Altitude Operational Date Range Data

Station Name Continent (degrees) (meters) (YYYYMM - YYYYMM) Citation

Sodankylä† Europe 67.4 N 188 200901 – present Kivi et al. (2020)

East Trout Lake North America 54.4 N 502 201610 – present Wunch et al. (2018)

Bialystok† Europe 53.2 N 180 200903 – 201810 Deutscher et al. (2017)

Bremen† Europe 53.1 N 27 200407 – present Notholt et al. (2019)

Karlsruhe Europe 49.1 N 116 200909 – present Hase et al. (2015)

Paris Europe 48.8 N 60 201409 – present Te et al. (2014)

Orleans Europe 48.0 N 130 200908 – present Warneke et al. (2014)

Garmisch Europe 47.5 N 740 200707 – present Sussmann and Rettinger (2018a)

Zugspitze Europe 47.4 N 2960 201204 – present Sussmann and Rettinger (2018b)

Park Falls North America 45.9 N 440 200405 – present Wennberg et al. (2017a)

Rikubetsu Asia 43.5 N 380 201311 – present Morino et al. (2018c)

Lamont North America 36.6 N 320 200807 – present Wennberg et al. (2016)

Anmyeondo† Asia 36.5 N 30 201408 – present Goo et al. (2017)

Tsukuba Asia∗ 36.1 N 30 200812 – present Morino et al. (2018a)

Nicosia Europe∗ 35.1 N 185 201908 – present Petri et al. (2020)

Edwards North America 35.0 N 699 201307 – present Iraci et al. (2016)

JPL† North America 34.2 N 390 201103 – 201307 Wennberg et al. (2017b)

201706 – 201805 Wennberg et al. (2017b)

Caltech North America 34.1 N 230 201209 – present Wennberg et al. (2015)

Saga Asia∗ 33.2 N 7 201106 – present Shiomi et al. (2014)

Izana Africa∗ 28.3 N 237 200705 – present Blumenstock et al. (2017)

Burgos Asia∗ 18.5 N 35 201703 – present Morino et al. (2018b)

Ascension† Africa∗ 7.9 S 10 201205 – present Feist et al. (2017)

Darwin Australia 12.4 S 30 200508 – present Griffith et al. (2014a)

Reunion Africa∗ 20.9 S 87 201109 – present De Mazière et al. (2017)

Wollongong Australia 34.4 S 30 200805 – present Griffith et al. (2014b)

Lauder Australia∗ 45.0 S 370 200406 – present Pollard et al. (2017)
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Table 4. Names, institutions and citations of the atmospheric inversion systems used in the quality filtering and bias correction and XCO2

evaluation of OCO v10.

Model Name Institute Citations

CAMS-REAN European Centre for Medium-range Weather Forecasts Agustí-Panareda et al. (2014); CAMS-REAN (2021)

CAMS-INV Copernicus Atmosphere Monitoring Service Chevallier et al. (2010); CAMS-INV (2021)

CarbonTracker NOAA Global Monitoring Laboratory Peters et al. (2007); Jacobson et al. (2021)

CarboScope Max Planck Institute for Biogeochemistry Rödenbeck et al. (2018); CarboScope (2021)

LoFI NASA Goddard GMAO Weir et al. (2021)

UoE University of Edinburgh Atmospheric Feng et al. (2009); UoE (2021)

Composition Modelling Group

Table 5. Characteristics of models used for quality filtering, bias correction, and evaluation of OCO v10. N/A indicates Not Applicable.

Model Spatial Temporal Transport Inverse Meteorology

Short Resolution Resolution Model Method Source

Name [lat×lon]

CAMS-REAN 0.75◦×0.75◦ 3 h Integrated Forecast System (IFS) 4D-Var ECMWF

CAMS-INV 1.9◦×3.75◦ 3 h LMDZ Variational ERA-Interim

CarbonTracker 2◦×3◦ 3 h TM5 EnKF ERA-Interim

CarboScope 4◦×5◦ 6 h TM3 4D-Var NCEP

LoFI 0.5◦×0.625◦ 3 h GEOS GCM N/A MERRA-2

UoE 2◦×2.5◦ 3 h GEOS-Chem EnKF GEOS-FP

3.3.2 Quality filtering and bias correction methodology

Details of the OCO quality filtering procedure were described in Sec. 4.2 of Kiel et al. (2019) for the OCO-2 v9 product and in

Sec. 6.2 of Taylor et al. (2020) for OCO-3 vEarly. Here, the method is summarized and differences in the v10 implementation290

for OCO-2 and OCO-3 are highlighted. In short, the quality filtering procedure assigns to each sounding in the L2Std XCO2

product a good (QF = 0) or bad (QF = 1) binary quality flag based on comparison to truth proxies. A number of retrieval

parameters (32 for OCO-2 v10 and 30 for OCO-3 v10.4) are assigned threshold cutoff values, outside of which a sounding

is considered unreliable, although all soundings in the L2Std product are retained in the L2 Lite XCO2 files. The selected

variables and their threshold values can be found in Sec. 3.2.4 of the OCO-2 v10 Data User’s Guides (DUG) (Osterman et al.,295

2020), and Sec. 5.1.2 of the OCO-3 v10.4 DUG (Payne et al., 2022). Training for the quality filtering and bias correction

procedure takes place on a Quick Test Set (QTS), which is an intelligently selected subset of approximately 5% of the full
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Table 6. Model versions used for the quality filtering and bias correction (indicated by asterisk *) and XCO2 evaluation of OCO v10. N/A

means not applicable.

Model QF/BC QF/BC Evaluation Evaluation

Name Version Time period Version Time period

OCO-2

CAMS-INV∗ 2018-v2 20140906 - 20190304 v20r2 20190806 - 20201231

CarbonTracker∗ CT-NRT.v2019-2 20140906 - 20190329 N/A N/A

CarboScope∗ s04oc-v4 20140906 - 20190304 s10oc-v2021 20190806 - 20201231

Lo-Fi N/A N/A m2ccv1sim 20190806 - 20201231

UoE N/A N/A v5 20190806 - 20201231

OCO-3

CAMS-REAN∗ v11899 20190806 - 20210223 N/A N/A

CAMS-INV∗ v20r3 20190806 - 20210223 v20r2 20190806 - 20201231

CarbonTracker∗ CT-NRT.v2021-3 20190806 - 20200731 N/A N/A

Lo-Fi m2ccv1 20190806 - 20210223 m2ccv1sim 20190806 - 20201231

CarboScope∗ N/A N/A s10oc-v2021 20190806 - 20201231

UoE N/A N/A v5 20190806 - 20201231

OCO data record that is available at the time of the training.

The methodology for the empirical bias correction of the XCO2 estimates was first described in Wunch et al. (2011b), and later300

in more detail by O’Dell et al. (2018), where the fundamental equation for OCO is defined as:

XCO2,bc (mode, j) =
XCO2,raw−CP (mode)−CF (j = 1 . . .8)

C0 (mode)
. (2)

Here, CP is the mode-dependent parametric bias, CF is a mode and footprint-dependent bias for each of the eight footprints,

and C0 represents a mode-dependent global scaling factor. Bias correction coefficients are derived using only soundings that

have been assigned a good quality flag. Many details related to the v10 quality filtering and bias correction can be found in the305

DUGs (Osterman et al., 2020; Payne et al., 2022).
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For ACOS OCO-2 v10, the selected bias correction parameters are similar to those used in previous versions. For land, the

parameters are (i) a term related to the deviation in the retrieved CO2 profile from the prior: “CO2 grad del”, (ii) the difference

between the elevation adjusted retrieved surface pressure and the prior surface pressure: dPfrac, (iii) the combined aerosol op-310

tical depth (AOD) of coarse-mode particles: log(AODdust + AODwatercloud + AODseasalt), and (iv) the AOD of fine-mode

particles: AODfine. Ocean retrievals use two terms: (i) CO2 grad del, and (ii) the difference between the retrieved and prior

surface pressure in the SCO2 band: dPSCO2. The bias correction is very similar for OCO-3 v10, with the exception that the

coefficients are slightly different, and over land, the AODfine term has been replaced with a criteria based on the retrieved

albedo in the weak CO2 channel.315

Table 7 provides a statistical summary of the results from the quality filtering and bias correction for both OCO-2 and OCO-3

for each of the three truth proxies. Results are given separately for land observations (combined nadir and glint) and for ocean-

glint observations. The number of soundings contained in each truth proxy data set that was used in the quality filtering and

bias correction procedure is listed, along with the fraction of the total soundings contained in the L2 Lite XCO2 product that320

were assigned a good quality flag, i.e., the throughput. The standard deviation (σ) of the difference between the satellite XCO2

estimates and the truth proxy values are derived relative to (i) the raw XCO2 prior to bias correction, (ii) the quality-filtered

XCO2, and (iii) the combined quality-filtered and bias-corrected XCO2. The two right-most columns of the table show the

percent of the variance explained by the quality filtering (compared to the raw XCO2) and the bias correction (compared to the

quality filtered XCO2), respectively. The variance explained is calculated as 1− (σ2/σ1)2, where σ1 is the original uncertainty325

(standard deviation) in the ∆XCO2 and σ2 is the remaining uncertainty. For each sensor and for both land and ocean-glint

observations, the mean values from the three truth proxies are provided to help summarize the statistics.
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Table 7. Summary of the OCO-2 and OCO-3 v10 quality filtering (QF) and bias correction (BC) results versus the individual XCO2 truth

proxies.

N Fraction Sigma (ppm) Variance Explained

Mode Sensor Truth Proxy (103 soundings) Good QF Raw QF QF & BC by QF by BC

Land OCO-2 TCCON 700 67% 2.74 1.74 1.15 60% 56%

Models 3950 44% 3.77 1.67 1.09 80% 57%

SAA 1400 69% 2.18 1.53 0.84 51% 71%

mean= 2017 60% 2.90 1.65 1.03 64% 61%

Land OCO-3 TCCON 200 69% 2.02 1.50 1.33 45% 24%

Models 2150 56% 2.76 1.49 1.16 71% 34%

SAA 870 67% 1.70 1.11 0.97 57% 43%

mean= 1073 64% 2.16 1.37 1.30 58% 34%

Ocean-Glint OCO-2 TCCON 240 71% 1.73 1.07 0.82 62% 41%

Models 2030 52% 2.52 1.12 0.73 80% 58%

SAA 750 72% 1.52 0.90 0.46 65% 74%

mean= 1006 65% 1.92 1.03 0.67 69% 58%

Ocean-Glint OCO-3 TCCON 170 54% 2.05 1.15 1.01 69% 23%

Models 1560 55% 2.22 1.21 0.72 70% 65%

SAA 910 73% 1.59 0.97 0.47 63% 77%

mean= 880 61% 1.95 1.11 0.73 67% 55%

Overall, the fraction of good-quality soundings remains the same at approximately 60% for both sensors for land and ocean-

glint. XCO2 estimates from both sensors exhibit comparable uncertainties in raw XCO2 against the three truth proxies of330

≈ 2-3 ppm. Estimates from both sensors show a reduction in uncertainties after application of first, the quality filter, and then

the combined quality filter and bias correction to approximately 1 ppm for land and 0.7 ppm for ocean-glint. Even though the

mean of the uncertainties for the OCO-2 raw XCO2 versus truth proxies for land was higher (2.9 ppm) compared to OCO-

3 (2.2 ppm), the mean of the uncertainties for the OCO-2 quality-filtered and bias-corrected XCO2 of 1.0 ppm is somewhat

smaller than for OCO-3 at 1.3 ppm. This implies that the bias correction is more effective for OCO-2 than for OCO-3 over335

land. This is evidenced in the right-most column of the table, which indicates that the OCO-2 bias correction explains, 56%-

71% of the variance (mean of 61%) across the truth proxies, while only 24%-43% of the variance (mean of 34%) is explained

by the OCO-3 bias correction. For ocean-glint observations, the variance explained by the bias correction is similar for OCO-2

and OCO-3 at 58% and 55%, respectively.

340
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The lower variance explained by the OCO-3 bias correction seems to originate from a combination of both a less effective dP

correction, and a much less effective CO2 grad del correction, a term related to the deviation in the retrieved CO2 profile from

the prior. It is likely that the residual pointing errors in OCO-3 v10 of up to 1-2 km (median of≈ 0.5 km), shown in Appendix B,

produce a less accurate surface pressure prior, which in turn yields larger dP uncertainties from the L2FP retrieval. In addition,

remaining radiometric calibration issues in the OCO-3 ABO2 spectral band may affect the retrieved surface pressure. Both of345

these factors could explain the less effective OCO-3 dP bias correction term. No viable explanation has yet been formulated

for why the OCO-3 CO2 grad del bias correction term is so much less effective relative to that for OCO-2.

Improvements in successive versions of the ACOS L2FP retrieval are demonstrated in Fig. 1, which compares RMS errors in

XCO2 from v9 and v10 OCO-2 and v10 OCO-3 versus the three truth-proxies for land and ocean-glint observations. There are350

substantial decreases in the RMSE for OCO-2 from v9 to v10 as compared to both TCCON and to the MMM for both land and

ocean-glint. The changes in the OCO-2 RMSE from v9 to v10 for the small area analysis were insignificant between versions,

which is to be expected because errors at very small spatial scales are primarily driven by instrument noise, which cannot be

further reduced. For all three truth metrics versus land observations, OCO-3 compares worse than OCO-2. The discrepancy is

likely driven by both OCO-3 residual pointing errors and L1b calibration errors, both of which are expected to improve in the355

next data version. The worse agreement of OCO-3 v10 with TCCON as compared to OCO-2 v10 can be explained in part by

the limited number of TCCON collocations with OCO-3 that were available at the time of creation of the QTS. Incidentally,

the data also demonstrate that for all truth proxies and for both sensors, ocean-glint errors are lower than land errors, indicating

higher precision relative to land observations. This result is at odds with previous findings showing unrealistic features in global

inversion models which assimilate OCO-2 ocean-glint data (e.g. Peiro et al., 2022; Byrne et al., 2023).360

4 OCO v10 XCO2 data volumes

Global maps showing the spatial distribution of the native sounding densities for a single year (2020) and a single footprint, are

shown in panels (a) and (c) of Fig. 2, for OCO-2 and OCO-3, respectively. The data here have been aggregated to 2.5◦ by 5◦

latitude/longitude grid cells, whereas the actual swath width of each sensor is on the order of 10 km. Although the total number365

of soundings collected is very similar (≈ 40 million), the distinct difference in latitudinal extent of the two sensors due to the

orbital characteristics is evident. The polar orbit of OCO-2 provides nearly continuous latitudinal coverage. There is somewhat

less coverage for orbit tracks over the northeastern Pacific because these orbits are used for data down-link, during which

the OCO-2 instrument does not acquire science measurements. The precessing orbit of OCO-3 on the ISS limits coverage to

latitudes less than ≈ 52◦, near which there is a high density of soundings at the orbit inflection points. In other words, OCO-3370

produces a similar overall number of soundings compared to OCO-2, but the soundings are restricted into a smaller area, thus

producing a higher density.
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Figure 1. RMS errors for different versions of OCO-2 and OCO-3 XCO2 versus three truth proxies: TCCON, multi-model-median (MMM),

and small area approximations (SAA). Results are derived from single sounding statistics using quality-filtered and bias corrected XCO2

from the QTS. Results for land observations are shown in panel (a), while panel (b) shows results for ocean-glint observations.
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The soundings that pass the preprocessor checks for cloud and aerosol loading and then converge in the L2FP algorithm are

assigned either a good (QF=0) or a bad (QF>0) quality flag in post-processing. Typically, is is recommend that only the good375

quality flag soundings are used in atmospheric inversion systems to deduce CO2 fluxes. Panels (b) and (d) of Fig. 2 show the

sounding densities of the good quality-flagged data for OCO-2 and OCO-3, respectively. Qualitatively, the distributions of good

soundings from the two sensors resemble clear-sky fraction maps, as expected. Over land, OCO-3 provides more good sound-

ings than OCO-2, especially near 50◦ latitude as a result of the ISS orbit. Furthermore, OCO-3 operates almost exclusively in

nadir mode over land, which may also contribute to a higher good quality sounding throughput relative to OCO-2 land-glint380

observations, which have higher optical pathlengths and thus sensitivity to clouds and aerosols. Conversely, OCO-3 provides

less good soundings over the oceans compared to OCO-2 due to lower sampling rates in glint observation mode as constrained

by operations aboard the ISS. Mechanical and operational constraints on the OCO-3 instrument frequently preclude pointing

towards the glint spot. During these periods, the instrument collects ocean data in nadir mode, for which the signal-to-noise

ratio is too low to provide accurate estimates of XCO2.385
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Figure 2. Version 10 data volumes from a single detector footprint (4 of 8, 1-based) for the year 2020 gridded at 2.5◦ latitude by 5◦ longitude

resolution for OCO-2 (top row) and OCO-3 (bottom row). The total number of measured soundings (N) for each sensor are shown in panels

(a) and (c). Panels (b) and (d) show the number of soundings (N) that were assigned a good quality flag in the L2 Lite XCO2 product. The

percent of the total number of measurements is given as G. Grid cells containing less than 10 soundings are colored gray.
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Figure 3 shows bar plots quantifying the number of good soundings by month for each observation mode for the overlapping

time period August 2019 through February 2022 for OCO-2 (a) and OCO-3 (b). These plots help to visualize the difference

in the ratio of land to ocean-glint observations for the two sensors. OCO-2 collects a much larger and more stable fraction of

monthly ocean-glint compared to OCO-3. The lack of good quality ocean-glint OCO-3 observations early in the mission is390

evident, as observations were often restricted to nadir viewing mode due to safety concerns related to early uncertainties in the

effects of polarization and signal levels for OCO-3, which were mitigated by revised PMA pointing with respect to the glint

spot (Taylor et al., 2020). The plot also highlights the higher relative fraction of OCO-3 TG and SAM data (8% of the total),

compared to only 1% TG data for OCO-2, a distinguishing characteristic that sets the two missions apart.

395

Figure 3. Bar plots of the monthly number of good quality-flagged soundings for OCO-2 (a) and OCO-3 (b) by observation mode (colors)

for the time period August 2019 through February 2022. The fractional percent for each observation mode is listed in the legend, along with

the total number of good quality-flagged soundings (N).
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Figure 4 presents the densities of good data (QF=0) gridded in time (10 day) and latitude (10◦) for OCO-2 (top) and OCO-3

(bottom). This again effectively demonstrates the difference in spatial coverage between the two sensors. The time-latitudinal

coverage of OCO-2 is much smoother than OCO-3 due to the repeating sun-synchronous polar orbit. In contrast, OCO-3 has

a sinusoidal-like pattern of alternating high and low densities over mid-latitudes, with the maximum value alternating in time

between the northern and southern hemispheres. This is due to the precessing orbit of OCO-3 aboard the ISS, which intro-400

duces periodic variations in the portion of the earth that is viewed during daylight hours. In addition, OCO-3 is subject to both

predictable and unpredictable periods during which science measurements either cannot be collected at all, or are limited to

nadir viewing, as discussed in Appendix B. Predictable data gaps occurs rather frequently for ocean-glint observations, due to

physical viewing constraints aboard the ISS JEM-EF. Periods of missing data that are longer than 10 days can be seen in panel

(d) as columns that are fully grey.405
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Figure 4. Data density (103) of the number of good quality flagged soundings for v10 OCO-2 (top) and OCO-3 (bottom) for land (left) and

ocean (right) at 10◦ latitude by 10 days resolution for the time period August 2019 through February 2022. The ordinate axis is scaled by the

cosine of the latitude to elucidate the decreasing fractional surface area of the earth with increasing latitude. Grid cells containing less than

10 soundings are colored gray.

5 Comparing v10 XCO2 estimates from OCO-2 and OCO-3

As described in Section 1 of the OCO-3 v10.4 data quality statement (Chatterjee et al., 2022), early in the production of the

OCO-3 v10 XCO2 Lite product, an analysis of XCO2 estimates collocated to OCO-2 soundings suggested that there was

a diverging trend that was correlated with time since the last OCO-3 instrument decontamination cycle. After development410

and application of an “ad hoc” bias correction to the OCO-3 XCO2, the drift was eliminated, bringing the two sensors into

20



agreement within the expected uncertainties of a few tenths of a ppm. A new set of OCO-3 L2 Lite XCO2 files (v10.4) was

generated and distributed to the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) website

OCO Science Team et al. (2022). A full discussion of the ad hoc correction is provided in Appendix B. The remainder of the

analysis that follows uses the OCO-3 v10.4 XCO2.415

Figure 5 shows maps of the magnitude of the bias correction (ppm) for both sensors for April and August, 2020. The patterns

look qualitatively similar, with bias corrections ranging from zero to ≈ 2 ppm in the midlatitudes and polar regions, and bias

corrections of up to ≈ 4 ppm over the Sahara and dust outflow regions, as well as the tropical oceans. The mean global bias

corrections are slightly larger for OCO-2 compared to OCO-3 for both months, but the uncertainties are slightly smaller for420

OCO-3. The 2020 annual median bias correction was 1.81 ppm for OCO-2 and 2.11 ppm for OCO-3. Note that, the OCO-3

v10.4 time-dependent ad hoc bias correction discussed in Appendix B3 has been removed.
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Figure 5. Monthly maps of the bias correction for OCO-2 (top row) and OCO-3 (bottom row) for April 2020 (left) and August 2020 (right)

gridded in 2.5◦ latitude by 5◦ longitude bins. The number of single soundings (SS) are given by N, while the mean (µ) and standard deviation

(σ) of the gridded (bin) data are reported. Grid cells with less than 10 soundings are colored gray.

Figure 6 shows the spatial maps of OCO-2 and OCO-3 gridded quality-filtered and bias corrected XCO2 for the months of April

2020 and August 2020. The well-known features of the atmospheric distribution of CO2 are present. For example, high values425
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are observed in the northern hemisphere (NH) spring when the land biosphere is still quiescent (≈ 415 ppm), followed by lower

values at high northern latitudes in August when the biosphere is most active (≈ 405 ppm). Since the seasonal cycle of CO2 is

driven primarily by biospheric activity on land, the difference in April and August XCO2 in the southern hemisphere (SH) is

much smaller compared to the NH. Although the distribution of XCO2 between the two sensors is qualitatively similar, the fig-

ures illustrate the difference in latitudinal coverage due to the differing orbit characteristics. This has meaningful consequences430

for the interpretation of flux estimates derived from inverse modeling of the OCO-2 and OCO-3 XCO2 concentrations. For

example, OCO-3 cannot directly capture the strong summer draw down of CO2 in the northern boreal forests. For this time and

location, an inversion of OCO-3 CO2 fluxes must rely more on the model prior values since there is no information provided by

satellite measurements, whereas an assimilation of OCO-2 XCO2 for this same time and location would provide information to

the models since the satellite observed this location at this time. It is worth noting that it is challenging to produce a meaningful435

difference in XCO2 for the two sensors at the global scale due to the spatial and temporal differences in sampling. Generally,

such maps look qualitatively like differences in CO2 driven by synoptic-scale weather patterns, as for any given grid box, there

might be a difference of several days in observations from the two sensors. However, a direct comparison in XCO2 on a small

set of collocated observations is provided in Appendix B3.
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Figure 6. Monthly maps of quality-filtered and bias corrected XCO2 for OCO-2 (top) and OCO-3 (bottom) for April 2020 (left) and August

2020 (right) at 2.5◦ latitude by 5.0◦ longitude resolution. The number of single soundings (SS) are given by N, while the mean (µ) and

standard deviation (σ) of the gridded (bin) data are reported. Grid cells with less than 10 soundings are colored gray.
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To further demonstrate the agreement between the two sensors, panels (a) and (c) of Fig. 7 show the meridional behavior of

XCO2 for both sensors and observation modes for April and August 2020, respectively. Here, the resolution is 5◦ latitude bins,

and the monthly median OCO-2 XCO2 has been subtracted. In April, when XCO2 concentrations are near their annual maxi-

mums in the extra-tropical northern hemisphere, the meridional gradients are strong over both land and ocean. In August, when

the northern hemisphere biosphere is fully active, XCO2 is within ≈ 1 ppm of the global median for latitudes below approxi-445

mately 40◦ N, but much lower than the global average at higher northern latitudes. The difference plots (OCO-3 − OCO-2),

shown in panels (b) and (e), indicate that OCO-3 ocean-glint is generally biased low relative to OCO-2 by about 0.3 to 0.4 ppm

with uncertainty, σ, of approximately 0.2 ppm. For land observations, the differences vary significantly with latitude, making

inferences difficult. Panels (c) and (f) show the zonally averaged differences between land and ocean observations, which are

expected to be close to zero for both sensors. Based on the results for these particular months, OCO-2 and OCO-3 are in ap-450

proximate agreement, with land/ocean biases ranging ≈± 2 ppm, with significant variation by latitude. These same behaviors

were observed for most months in 2020. This latitudinally-dependent land/ocean bias is an unexpected feature of the data set

that requires further investigation. The analysis for April and August 2021 (not shown) was qualitatively very similar.

Figure 8 shows XCO2 binned at 10 day by 10◦ latitude for the overlapping time period August 2019 through February 2022455

for OCO-2 (top row) and OCO-3 (middle row). Results are shown separately for land (left column) and ocean (right column).

Qualitatively, the XCO2 patterns at this spatiotemporal resolution look very similar, as expected, with maximum XCO2 in NH

spring just before the biospheric drawdown begins, and minimums in NH summer. The plots highlight the secular trend of

≈ 2.2 ppm/year, and the seasonal variation in the latitudinal gradient of XCO2, both important features of the carbon cycle.

Again, the substantial time periods where no ocean data is collected by OCO-3 are evident in panel (e).460

Due to the vastly different sampling strategies of OCO-2 and OCO-3, coupled with spatial changes in XCO2 over short time

periods, a direct comparison of observed XCO2 at a global scale is extremely difficult, and can only be used to obtain a rough

idea of how the sensors agree. Using the gridded values, the differences for land observations (c) have a mean value of 0.0 ppm,

standard deviation of 0.67 ppm, and a range of +5 to −4 ppm. The ocean observations (f) exhibit a mean bias of −0.26 ppm465

(OCO-3 lower than OCO-2), with significantly lower uncertainty (0.45 ppm) and min/max (−1.9/+1.7 ppm), compared to land.

A more direct and accurate comparison between the two sensors, reported on a small subset of observations with tight spatial

and temporal collocation, is discussed in Appendix B3.

6 Evaluation of OCO v10 XCO2 estimates versus truth-proxies470

This section discusses the evaluation of the OCO v10 good quality-flagged XCO2 estimates against the truth-proxies used in

the quality filtering and bias correction procedure. Although there is some circularity in evaluating the satellite data against the

same truth-proxies used for filtering and bias correction, the multi-parameter parametric bias correction is general enough so
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Figure 7. Meridional XCO2 gradients at 5◦ latitude resolution by sensor and observation mode for April 2020 (a), and August 2020 (d). Only

latitude bins containing at least 1000 soundings are shown. The total number of soundings (N) for each sensor and observation mode is given

in the legend. Panels (b) and (e) show the differences in the monthly binned values (OCO-3 − OCO-2) for both land (pink diamonds) and

ocean (purple circles) observations. Panels (c) and (f) show the differences in the monthly binned values (land − ocean) to demonstrate the

land/ocean bias. The mean (µ) and standard deviation (σ) of the binned differences are given in the legend. Here, land observations include

land-nadir, land-glint, land-TG and land-SAM, while ocean includes ocean-glint observations.
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Figure 8. Good quality-flagged and bias corrected XCO2 gridded at 10◦ latitude by 10 days for the overlapping time period August 2019

through February 2022 for OCO-2 land (a) and OCO-3 land (b). The gridded differences for land observations (includes land-nadir, land-

glint, land-TG and land-SAM) are shown in panel (c). Panels (d), (e), (f) are the same, except for ocean-glint observations. The ordinate axis

is scaled by the cosine of the latitude to elucidate the decreasing fractional surface area of the earth with increasing latitude. Data cells with

less than 10 soundings are colored gray. In panels (c) and (f) the number of valid grid cells (N) is given, along with the mean (µ), standard

deviation (σ), and maximum (max) and minimum (min) differences in the gridded values.

as to not over-fit the OCO data. Furthermore, the truth-proxies used for evaluation have been extended in time compared to the

data sets used to train the filtering and bias correction. Although it is outside the scope of the current work, OCO-2 data have475

been validated against a range of other datasets, including in-situ, and NOAA and Aircore vertical observations (Rastogi et al.,

2021), aircraft campaigns, e.g. ATom (Kulawik et al., 2019) and ACT-America (Bell et al., 2020), ship-borne and airborne

measurements (Müller et al., 2021), and EM27/SUN measurements (Jacobs et al., 2020).

6.1 OCO v10 XCO2 estimates versus TCCON480

Section 3.3.1 introduced and discussed the TCCON data as used in the OCO v10 quality filtering and bias correction. Both

OCO-2 and OCO-3 were quality filtered and bias corrected against TCCON GGG2014 data, while here TCCON GGG2020

XCO2 estimates are used in the comparison. Key changes to the retrieval algorithm between GGG2014 and GGG2020 are

available on the TCCON wiki page (TCCON). The OCO quality-filtering and bias corrections were trained using data through

December 2018 for OCO-2 and December 2020 for OCO-3, whereas the validation data extends through February 2022 for485

OCO-2 and August 2022 for OCO-3. This provides some degree of independence in the evaluation.
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Figure 9 shows one-to-one correlation plots of the OCO-2 and OCO-3 v10 XCO2 estimates versus TCCON GGG2020 es-

timates, as well as the direct correlation between OCO-2 and OCO-3 using the collocated soundings that are presented in

Appendix B. Each point on the graphs represents, for OCO, the mean XCO2 of the individual soundings acquired on a single490

overpass within a box 2.5◦ latitude by 5.0◦ longitude around a TCCON station. Only overpasses with at least one hundred

good quality-flagged OCO soundings within the 2.5◦ latitude by 5.0◦ longitude grid box were retained. The TCCON values

are the median of the XCO2 acquired within ± 1 h of the OCO overpass.

For the 1121 OCO-2 land collocations (includes land-nadir, land-glint, and land-target) shown in panel (a), and the 259 OCO-3495

land collocations (includes land-nadir and land-target) shown in panel (b), the mean biases versus TCCON are 0.24 ppm and

0.12 ppm, respectively, while the uncertainties are 0.77 ppm and 0.90 ppm, respectively. In comparison, the OCO-3 vs. OCO-2

results, using the satellite collocations described in Appendix B, show a mean bias of 0.16 ppm with uncertainty of 0.74 ppm

for land (panel (c)). This suggests that OCO-2 and OCO-3 agree with each other about as well as they agree with TCCON for

land observations.500

For the ocean-glint observations, OCO-2 exhibits a relatively high bias against TCCON of 0.43 ppm, with uncertainty of

0.73 ppm (panel d), while for OCO-3, the bias is 0.09 ppm with uncertainty of 0.90 ppm (panel e). It is important to note

however that several of the TCCON stations that provide the bulk of the ocean-glint collocations had not yet processed their

measurements through the GGG2020 version of the algorithm to provide estimates of XCO2. These stations include Ascension505

Island, Darwin, and Wollongong. When those data are available, more robust statistics will be calculated. Comparison of the

OCO-2/3 ocean-glint collocations in panel (f) indicates that the bias between OCO-3 and OCO-2 ocean-glint is -0.34 ppm, with

uncertainty 0.44 ppm. This again suggests that the two sensors agree with each other in ocean-glint viewing approximately as

well as they agree with TCCON.

510

6.2 OCO v10 XCO2 estimates versus models

To assess the impact of OCO XCO2 estimates on atmospheric inverse models, it is useful to compare the v10 product to re-

sults generated by an ensemble of carbon flux inverse models constrained by in situ measurements alone (e.g., O’Dell et al.,

2018). This is done by calculating the difference between OCO retrievals from a reference XCO2 field, where this difference

is referred to as the “signal”. In the current work, the reference field is computed as the median of posterior concentrations515

from multiple models constrained by in-situ measurements, and is hereafter referred to as the multi-model-median (MMM).

The MMM provides a reasonable representation of XCO2 with seasonality and trends consistent with information derived

from in-situ measurements of atmospheric CO2, and does not necessarily represent the actual atmosphere at all spatiotemporal

scales. This technique for looking at differences between satellite retrievals and modeled fields over broad, zonal regions is not

new, and has been employed in the literature for sanity checks (e.g., Chahine et al., 2008; Buchwitz et al., 2017; Zhang et al.,520
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TCCON XCO2: µ=407.16, σ=0.54
OCO-2 XCO2: µ=407.40, σ=0.84
∆XCO2 (ss): N=1121
µ= 0.24 ppm
σ=0.77 ppm
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TCCON XCO2: µ=407.12, σ=0.53
OCO-2 XCO2: µ=407.56, σ=0.49
∆XCO2 (ss): N= 298
µ= 0.43 ppm
σ=0.73 ppm
RMSE=0.84 ppm
R2=0.99

TCCON XCO2: µ=412.46, σ=0.53
OCO-3 XCO2: µ=412.59, σ=0.99
∆XCO2 (ss): N= 259
µ= 0.12 ppm
σ=0.90 ppm
RMSE=0.91 ppm
R2=0.92

TCCON XCO2: µ=414.12, σ=0.48
OCO-3 XCO2: µ=414.21, σ=0.43
∆XCO2 (ss): N= 119
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Figure 9. One-to-one XCO2 correlation plots for land (top row) and ocean (bottom row) observations. Panels (a) and (d) show OCO-2

v10 versus collocated TCCON GGG2020 estimates, while panels (b) and (e) show OCO-3 v10 versus TCCON. Panels (c) and (f) show the

correlation in OCO-3 versus OCO-2 XCO2, respectively, for the set of collocated soundings described in Appendix B3. In each panel, the top

two rows of statistics give the mean (µ) of the XCO2 from all of the collocations, and the mean standard deviation in the XCO2 (σ) from all

of the collocations. The third through seventh rows of statistics give the number of collocations (N), the mean ∆XCO2, the standard deviation

of the ∆XCO2, the RMSE (
√
µ2 +σ2), and the coefficient of determination (R2 = the squared Pearson linear correlation coefficient).

27



2017).

One of the contributions of satellite XCO2 estimates, such as those from OCO-2 and OCO-3, towards improving atmospheric

flux inversion estimates is their ability to increase the density of global observations. A well-calibrated and precise satellite

data record should offer the potential to reduce some of the uncertainties in the flux estimation associated with sparse sampling.525

However, the global atmospheric transport models used in current-generation inversion studies have spatial resolutions of order

2◦ to 6◦ of latitude and longitude. Such models cannot provide information with variability finer than several hundred kilome-

ters. Rather than ingesting each individual OCO-2 XCO2 estimate falling inside a model grid box, down sampling of the data

into ten-second-averages (10-sec-avg) prior to assimilation into inversion systems has become common, e.g., (Crowell et al.,530

2019; Peiro et al., 2022; Byrne et al., 2023). This provides an even more compact data set with reduced random sounding-to-

sounding errors in the XCO2 estimates and mitigates the potential impact of correlated errors on≈ 10 km spatial scales, such as

those driven by surface features or the presence of aerosols and clouds (Massie et al., 2021; Mauceri et al., 2023; Massie et al.,

2023). Care is taken to specify an appropriate measurement uncertainty, calculated as a function of the number of soundings

within the 10-sec-avg bin, individual uncertainties associated with the soundings, coverage across the grid box and correlations535

between their individual errors (Baker et al., 2022). In this study, XCO2 from the 10-sec-avg files is used to compare against

the relatively spatially coarse model fields.

The models chosen for evaluation of the OCO v10 signal, identified in Section 3.3 and Table 6, all fit the following criteria: (i)

each is constrained only by in-situ measurements of CO2 concentrations in the atmosphere, (ii) each has been evaluated and540

vetted against independent data in the peer-reviewed literature, (iii) the simulated CO2 fields and surface fluxes are publicly

available, and (iv) each simulation uses different atmospheric transport models and unique inverse modeling framework (Ta-

ble 5), thus sampling the full range of uncertainties in our present-day state-of-the-art knowledge of the atmospheric CO2 field.

Figure 10 shows maps of the signal at 2.5◦ by 5◦ lat/lon resolution for April (top row) and August (bottom row), 2020, for545

OCO-2 (right column) and OCO-3 (middle column). Both sensors exhibit spatially coherent biases against models on the order

of half of a ppm. Over oceans, the satellite estimates of XCO2 are generally biased low relative to the models in the SH and

biased high in the NH. However, in the OCO-2 data, which extends further pole-ward compared to OCO-3, the high bias seems

to occur at higher latitudes, both north and south. Following expectations, the uncertainty in the gridded data for both sensors

in both months is higher for land (≈ 1 ppm) due to biases associated with topographic and surface albedo variability than it is550

for ocean (≈ 0.5 ppm), where these effects are minimal.

The differences in the gridded sensor signals are shown in Fig. 10 panel (c) for April and panel (f) for August. Mathematically,

the calculation is expressed as ∆signal = signalOCO-3 − signalOCO-2 . Since the satellites sample the models at different times

for individual soundings within a grid box, this calculation is not equivalent to a direct difference in the XCO2 between the555
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sensors. Rather, it quantifies how different the satellite signals are from the MMM. The ∆signal values demonstrate that the

two sensors agree better with each other than they do with the model suite in the region of overlap, as seen by the reduction

in uncertainty to ≈ 0.45 ppm, with mean biases around 0.25 ppm in both months. Generally, OCO-3 is biased slightly higher

against the MMM over land compared to OCO-2, while over ocean, OCO-3 is biased low against the MMM compared to

OCO-2.560
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Figure 10. Maps of XCO2 signal (XCOOCO
2 − XCOMMM

2 ) at 2.5◦ latitude by 5◦ longitude resolution for April 2020 (top row) and August

2020 (bottom row), for OCO-2 (left) and OCO-3 (middle). The number of single soundings (N SS) for all observation modes combined (all),

combined land-nadir, land-glint, land-TG and land-SAM (land), and water-glint (water) are given. The mean (µ) and standard deviation (σ)

of the binned values (bin) are also given for each observation mode. Grid cells containing less than 5 soundings are colored gray. Panels (c)

and (f) show the ∆signal (OCO-3 − OCO-2), for grid cells in which both sensors have valid data. Here, the statistics are given only for all

observation modes combined.

A useful way to investigate the characteristics of the signal is by binning values into zonal (10◦ latitude) and 10 day bands, as

seen in Fig. 11. Here, land observations, which include land-nadir, land-glint, land-TG, and land-SAM, are shown in the left

column, and ocean-glint observations on the right, with OCO-2 on the top row and OCO-3 in the middle. The model suite runs

only through December of 2020, so the graphs cover a 16 month period, starting in August, 2019. While the zonal mean tends565

to de-emphasize certain spatial features visible in the global maps, it brings out the temporal variations in the signal. Based

on these results, coherent seasonal and latitudinal patterns in the signal are observed for both sensors. For land observations,

both sensors tend to have positive signals in the NH and negative signals in the SH, while for ocean-glint observations, the

signals tend to be positive poleward of the tropics in both hemispheres, and negative in the tropics. The statistics calculated

on the gridded signal data indicate that OCO-3 has higher uncertainty than OCO-2 (0.62 ppm vs. 0.46 ppm) and a larger bias570
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(-0.30 ppm vs. -0.15 ppm) than OCO-2 for land observations, as seen in panels (a) and (b). The statistics for ocean-glint signals

indicate similar uncertainties between the two sensors of 0.53 ppm and 0.59 ppm for OCO-2 and OCO-3, respectively, with

mean biases of 0.24 and -0.23 ppm, as seen in panels (d) and (e).

The lower two panels of Fig. 11 show the differences in the gridded values (∆ signal) between the two sensors for land obser-575

vations in panel (c) and for ocean-glint observations in panel (f). The gridded mean difference between the two sensors for land

observations is -0.08 ppm. The largest differences for land occur in December 2019, immediately following the OCO-3 PMA

calibration that was described in Sec. 2.1.2 of Taylor et al. (2020), and continuing through January 2020 when the next OCO-3

decontamination cycle occurred. The origin of this feature in the OCO-3 v10.4 XCO2 record is not currently understood. The

gridded differences for ocean-glint observations, shown in panel (f) indicate a mean low bias of -0.3 ppm for OCO-3 relative580

to OCO-2. Overall, as was demonstrated with the maps in Fig. 10, these plots suggest that the two sensors tend to agree better

with one another than they do with the model suite.
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Figure 11. The XCO2 signal (XCOOCO
2 − XCOMMM

2 ) gridded at 10◦ latitude by 10 days for the time period August 2019 through December

2020 for OCO-2 land (a) and OCO-3 land (b). The ∆signal for land observations (includes land-nadir, land-glint, land-TG and land-SAM)

are shown in panel (c). Panels (d), (e), (f) are the same, except for ocean-glint observations. The ordinate axis is scaled by the cosine of the

latitude to elucidate the decreasing fractional surface area of the earth with increasing latitude. Data cells with less than 10 soundings are

colored gray. In panels (a), (b), (d), and (e) the number of single soundings (N SS) is given, along with the mean (µ), standard deviation (σ),

and maximum (max) and minimum (min) values of the gridded (bin) values. In panels (c) and (f) the number of valid grid cells (N) is given,

along with the mean (µ), standard deviation (σ), and maximum (max) and minimum (min) differences in ∆signal.
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6.3 OCO v10 XCO2 estimates over small areas

Small areas, as introduced in Sec. 3.3.1, were used as XCO2 truth-proxies in the development of the v10 quality filtering and585

bias correction. Small areas can also be used to derive realistic estimates of XCO2 uncertainties for assimilation into inversion

systems (Baker et al., 2022; Peiro et al., 2022). For each small area, the “theoretical” uncertainty is calculated as the median

value of the XCO2 uncertainties, which are described in Appendix B of O’Dell et al. (2012) and recorded in the L2Lite files.

The “actual” uncertainty is calculated as the standard deviation of the retrieved XCO2 in each small area. A minimum of

40 OCO soundings are required for each small area. Ideally, the actual uncertainties are highly correlated to the theoretical590

uncertainties, with the relationship having a one-to-one dependence (slope, m=1), and the y-intercept falling at zero (y=0).

Figures 12 and 13 show the results of an analysis on the small area XCO2 uncertainties for land-nadir and ocean-glint obser-

vations, respectively.

The frequency distributions of the XCO2 uncertainties over land-nadir small areas, as shown in panels (a) and (c) of Fig. 12 for595

OCO-2 and OCO-3, respectively, indicate that the actual uncertainties (green curves) are slightly larger with a wider distribu-

tion of values compared to the L2FP noise-driven theoretical uncertainties (blue curves). Although the actual uncertainties tend

to be biased high, they are highly correlated with the theoretical uncertainties, having R values of 0.95 and 0.98 for OCO-2

and OCO-3, respectively, as seen in panel (b) and panel (d) for OCO-2 and OCO-3, respectively. Here, the median binned

values are shown, rather than the uncertainties for individual small areas, to highlight deviations from the expected one:to:one600

relationship. These results imply that there are additional spatially-correlated systematic uncertainties in the ACOS retrieval

over small areas, and these additional uncertainties are similar for both sensors.

For ocean-glint observations, shown in Fig. 13, XCO2 uncertainties in small areas have different characteristics compared to

land observations. The frequency distributions of the XCO2 uncertainties, shown in panels (a) and (c) for OCO-2 and OCO-3,605

respectively, indicate that the actual uncertainties (green curves) are often lower than the L2FP noise-driven theoretical un-

certainties (blue curves), especially for OCO-3. Furthermore, even though the actual uncertainty correlates reasonably well

with the theoretical uncertainty (R=0.53 for OCO-2 and R=0.89 for OCO-3), the line-of-best-fit falls well off of the expected

one:to:one relationship, with a slope of 0.18 for OCO-2 and 0.31 for OCO-3. For the lowest theoretical uncertainties, the

actual uncertainty is near or somewhat higher than anticipated, but when the theoretical uncertainties are large, the actual610

uncertainties are significantly lower than anticipated. This is unexpected for a well-characterized retrieval, and indicates that

there is some non-linearity or other systematic behavior in the v10 ocean-glint retrieval. Early efforts to develop the OCO-2 v11

product suggest this is due to the parameterization of the ocean surface reflectance model. Additional investigation is underway.
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Figure 12. Analysis of XCO2 uncertainties for land-nadir small areas for OCO-2 (top) and OCO-3 (bottom). Panels (a) and (c) provide

the frequency distributions of both the theoretical uncertainties (blue curves) of the retrieved XCO2 as reported in the L2Lite file product

(variable xco2_uncertainty) and the actual uncertainties (green curves) calculated from the standard deviation in the XCO2 for individual

small areas. The number of small areas (N) and the mean (µ) and standard deviation (σ) of the theoretical and actual uncertainties are given

in the legend. Panels (b) and (d) show the correlation of the actual uncertainties against the theoretical uncertainties, using binned median

values (black filled circles) to highlight deviations from the one-to-one line (dashed black line). A least-squares linear fit to the binned data

is shown (dotted red line), along with the correlation coefficient (R), the slope of the fit (m) and the fit offset (y).
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Figure 13. Same as Fig. 12, but for ocean-glint small areas.
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6.4 OCO v10 XCO2 estimates along coastal crossings615

Although not used in the parametric bias correction, the continuity of XCO2 estimates across coastlines (coastal crossings) pro-

vides a metric for detecting and correcting biases between land and ocean estimates of XCO2. Barring strong carbon sources or

sinks, the true XCO2 should not change significantly at this transition, so the retrieved estimates should agree quite well. Here,

a coastal crossing is defined as a set of contiguous soundings, spanning approximately 50 km on either side of a land/water

interface. The XCO2 values are quality filtered and bias corrected and include only glint viewing mode observations for both620

land and water. For OCO-2 v10, the coastal crossings were used, along with TCCON collocations and model fields, to de-

termine the ocean-glint global scaling factor of 0.995, as described in Section 3.2.3 of the DUG (Osterman et al., 2020). For

OCO-3 v10, the coastal crossings alone were used to determine the ocean-glint global scaling factor of 0.9997, as described in

Section 4.2.3 of the DUG (Payne et al., 2022).

625

Figure 14 shows analysis of the coastal crossings data set for the v10 OCO-2 (top row) and OCO-3 (bottom row), containing

≈ 20×103 and 0.5×103 crossings, respectively. Panels (a) and (c) show ∆XCO2 in 5◦ latitude bins with one standard deviation

error bars as thin vertical lines. The mean land-ocean difference tends to be positive (negative) in the southern (northern) extra-

tropical latitudes for both sensors. Panels (b) and (d) show the frequency distributions of ∆XCO2 for the individual coastal

crossings. The means are biased -0.10± 0.83 and -0.11± 0.88 ppm for OCO-2 and OCO-3, respectively. The uncertainties are630

due presumably to local geometry, aerosol, and surface effects. In the future, an assessment should be made as to whether these

biases can be explained by any retrieved parameters or other independent information such as population centers, which may

help to shed light on the cause of these ubiquitous land-ocean XCO2 differences.

7 Summary

This work presents updates to the ACOS v10 retrieval algorithm used to derive estimates of XCO2 from the data collected by635

both the NASA OCO-2 and OCO-3 sensors. Four substantial changes were made to the L2FP code to provide better estimates

of XCO2 relative to v9: (i) use of the ABSCO v5.1 absorption tables, (ii) calculation of more realistic prior aerosol infor-

mation derived from daily GMAO GEOS-5 FP-IT model output, (iii) an update to the calculation of the CO2 vertical priors

based on the GGG2020 algorithm, and (iv) implementation of a new solar continuum model based on TSIS-SIM measurements.

640

The quality filtering and bias correction implemented in the post-processing of the raw XCO2 estimates for v10 were briefly

described. Overall, both the quality filtering and bias correction parameters selected from the training were similar to previous

versions. It was shown that, while the efficacy of the quality filtering was similar for both sensors, the bias correction is more

effective for OCO-2 than it is for OCO-3 for land observations. The remaining OCO-3 v10 pointing errors (median value of

≈ 0.5 km), coupled with residual instrument calibration errors, may introduce a less accurate surface pressure prior, which645

affects the efficacy of the dP bias correction term. The cause of a less effective CO2 grad del term in the OCO-3 v10 bias
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Figure 14. Analysis of the coastal crossings data set for OCO-2 v10 (top row) and OCO-3 v10 (bottom row). Panels (a) and (c) show ∆XCO2

(land-glint − ocean-glint) in 5◦ latitude bins with one standard deviation error bars as thin vertical lines. The number of latitude bins (N),

and the mean (µ) and standard deviation (σ) of the binned values are given in the legend. Panels (b) and (d) show the frequency distributions

of ∆XCO2 for the individual coastal crossings. The number of coastal crossings (N), and the mean (µ) and standard deviation (σ) of the

XCO2 values for the individual crossings are given in the legend.

correction is still not understood.

Although the OCO-2 and OCO-3 sensors are similar, they provide different spatiotemporal coverage from their polar, sun-

synchronous (OCO-2) and precessing (OCO-3) orbits. In particular, OCO-2 provides nearly full latitudinal coverage with a650

local sampling time of ≈ 1:36PM± 0.25 h, while OCO-3 is limited to latitudes ≈ ≤ 52◦ with variable local sampling time

across a 63-day cycle. This work demonstrates, however, that the number of good quality XCO2 estimates from the two sen-

sors are approximately equal, albeit with different spatiotemporal coverage and quite different splits in observation modes. The

OCO-3 sensor provides a larger fraction of good quality soundings in nadir viewing over land, especially around 50◦ N latitude

at the orbit inflection point. In addition, for OCO-3, nearly 10% of its good quality-flagged XCO2 estimates are taken in TG or655

SAM observation mode, allowing additional opportunities for targeting sites of interest, such as mega-cities and power plants
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(Wu et al., 2022; Roten et al., 2022; Lei et al., 2021; Nassar et al., 2022; Chevallier et al., 2022).

In this work, it has been demonstrated that the spatial and temporal distributions of XCO2 estimates from the OCO-2 and OCO-

3 v10 products display the well-known features of the atmospheric distribution of CO2, including the northern hemisphere660

spring draw-down, the expected seasonal meridional gradients, and the secular trend of ≈ 2.2 ppm/year. After application of

an ad-hoc bias correction to the OCO-3 XCO2 by way of an L2 Lite file reprocessing to account for a time-dependent drift

due to an L1b calibration artifact, the OCO-3 product agrees with OCO-2 within a few tenths of a ppm for a set of collocated

soundings. This agreement is of a similar magnitude as the agreement of either sensor with the two truth proxies, TCCON

and the multi-model-median, for which RMSEs are on the order of 0.5 to 1 ppm. An analysis against small areas, contiguous665

regions smaller than 100 km over which the real uncertainty in XCO2 is expected to be less than ≈ 0.1 ppm, shows that the re-

trieval posterior uncertainties are underestimated by 20-40% for land observations, while the uncorrelated relationship between

actual and theoretical uncertainties for ocean-glint observations suggests deficiencies in the ACOS L2FP v10 ocean surface

model. These deficiencies are expected to be mitigated in the next ACOS algorithm version. Additionally, a set of aggregated

land-ocean XCO2 estimates from coastal crossings, used to deduce the global land and ocean scaling factors during the bias670

correction procedure, show a global mean land-ocean difference of ≤ 0.1 ppm for both sensors, suggesting that the land-ocean

bias has been mitigated.

As the science community continues work to better constrain the global carbon cycle (Crisp et al., 2022; Friedlingstein et al.,

2022), top-down flux and inventory estimates utilizing XCO2 observations from space have demonstrated promise for answer-675

ing key questions about the present and future response of the system to continued human activities and climate change (e.g.,

Byrne et al., 2021, 2022; Philip et al., 2022; Kong et al., 2022; Chevallier et al., 2022). The need for an international fleet of ro-

bust, dedicated carbon monitoring satellites is paramount to this effort (Ciais et al., 2014; Crisp et al., 2018; Janssens-Maenhout

et al., 2020; Palmer et al., 2022). The OCO-2 and OCO-3 records, which began in September 2014 and August 2019, respec-

tively, will only gain in significance over time as an early baseline for globally monitoring CO2 concentrations from space.680

Overall, the results presented in this work indicate that a set of consistent estimates of XCO2 from OCO-2 and OCO-3, derived

from a single retrieval algorithm (ACOS v10), compare well with one another. This suggests that the simultaneous assimilation

of the two data records into atmospheric inversion systems has the potential to provide additional constraints on carbon fluxes,

relative to assimilating a single sensor.

685
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Appendix A: OCO-2 v10 full data record and comparison to v9

While the discussion in Sections 4 and 5 focused on the two and half year overlap period with OCO-3, here, the full seven

and a half year OCO-2 v10 data record is examined. The use of the OCO-2 v10 data record has already begun to appear in

the published literature. Examples include an evaluation of the CO2 concentrations against the NOAA in situ network (Rastogi

et al., 2021), quantification of power plant emissions (Nassar et al., 2021, 2022), detection of urban XCO2 gradients (Rißmann690

et al., 2022), a global and regional carbon budget analysis (Kong et al., 2022; Byrne et al., 2022), and an evaluation of global

net carbon exchange based on a multi model inter-comparison project (Byrne et al., 2023).

Figure A1 shows a bar chart of the good quality-flagged data volume for the full OCO-2 v10 data record, spanning 6-Sep-2014

through 28-Feb-2022. Here only 1 of the 8 footprints per frame is represented. This figure highlights the stability in the data695

volume over the seven and a half year OCO-2 v10 record. During approximately the first year of operations, prior to the op-

timization of the scanning strategy implemented on 12-Nov-2015 as detailed in Section 5.2 of Crisp et al. (2017), the volume

of good quality-flagged data tended to be lower. Overall, the fractions of ocean-glint and land observations match those of

the Earth proportions (≈ 70% and 30%, respectively). Due to the alternating nadir/glint viewing pattern, there is an even split

between land-glint and land-nadir. The fraction of TG data is ≈ 1% of the full science record. The most substantial instrument700

anomaly took place in August and September 2017 due to the temporary failure of the instrument baffle calibrator assembly

door. However, regular planned decontamination cycles often interrupt OCO-2 science data acquisition for several days at a

time.

Figure A2 shows the OCO-2 v10 XCO2 binned by latitude (10◦) and time (10 day) from September 2014 through February705

2022 for both land (A) and ocean (B). The dominant features of the atmospheric carbon cycle are observed, namely the secular

increase of ≈ 2.2 ppm per year (> 15 ppm over 7.5 years), the seasonal cycle with higher CO2 concentrations in the NH win-

ter/spring, and lower values in the summer/autumn. In addition, the latitudinal dependence of the seasonal cycle is observed.

The seven and a half year OCO-2 v10 XCO2 data record has the potential to allow for examinations of near-decadal long

carbon cycle phenomena, as has been done with the eleven and a half year GOSAT v9 record (Jiang et al., 2022).710

Figure A3 provides a brief analysis of the CO2 concentrations and atmospheric growth rates (AGR) calculated from the OCO-2

v10 seven year record. This figure is a reproduction of Fig. 2 in Buchwitz et al. (2018). Shown in panel (a) are the globally

averaged, monthly values of XCO2 for OCO-2 land observations (orange), along with the most recent ACOS GOSAT XCO2

(v9, Taylor et al. (2022)) in grey, and the global monthly mean marine surface values reported by NOAA GML (Dlugokencky715

and Tans, 2022) in blue. Here, a cosine of latitude factor has been applied to the satellite data to weight individual soundings

for surface area, i.e., higher (lower) weighting in the tropics (high latitudes). It is important to distinguish differences in the

NOAA and satellite products. NOAA’s values are calculated from precisely calibrated surface observations at a few select

locations (Conway et al., 1994), while OCO-2 and GOSAT provide full column measurements with much larger random errors
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Figure A1. Bar plots of the monthly number of good quality-flagged soundings for a single footprint (4 of 8, 1-based) for the full OCO-2

v10 data record, spanning 6-Sep-2014 through 28-Feb-2022. Observation modes are distinguished by colors. The fractional percent for each

observation mode is listed in the legend, along with the total number of soundings (N).
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Figure A2. OCO-2 v10 XCO2 gridded at 10◦ latitude by 10 days for the time period September 2014 through February 2022. Panel (a)

includes land-nadir, land-glint, land-TG and land-SAM (Land) soundings, while panel (b) is for ocean-glint soundings. The ordinate axis

is scaled by the cosine of the latitude to elucidate the decreasing fractional surface area of the earth with increasing latitude. Grid cells

containing less than 10 soundings are colored gray.
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(instrument plus retrieval), and spatial and temporal sampling biases, but for hundreds to thousands of samples per day.720

Panel (b) of Fig. A3 shows the monthly calculated AGRs from the OCO-2 v10 (orange) and GOSAT v9 (gray) data sets. Here

the vertical error bars are calculated as the mean of two individual error terms, divided by the number of valid months within a

given calendar year. The error terms are (i) the mean value of the XCO2 uncertainty for individual soundings within the month,

and (ii) the mean of the standard deviation of the calculated AGRs within the calendar year. The monthly average OCO-2 AGR725

over the 7.5 year record is 2.53± 0.42 ppm, shown here as a solid line. The dashed lines indicate the ± 2-σ level. The sharp

increase in AGR during the middle of 2015 due to the strong El Niño is observed (Chatterjee et al., 2017; Liu et al., 2017),

followed by a slow decreasing period from early 2016 to early 2017. The AGR was then stable through the end of 2018, when

a second sharp increase was observed due to the weak 2019 El Niño. After some decline through early 2020, the AGR has

remained relatively constant through the end of the reported record (autumn 2021). The GOSAT v9 AGRs agree quite well730

with the OCO-2 v10 for the overlapping time period.

Panel (c) of Fig. A3 compares the annual growth rates of OCO-2 v10 and GOSAT v9 (the annual mean of the monthly values

shown in panel b) to the NOAA GML annual marine surface values. The satellite AGRs generally agrees to within a tenth of a

ppm or less. The correlation coefficient across the seven year OCO-2 record is 0.98 with a mean difference of 0.02± 0.08 ppm.735

The maximum difference of 0.13 ppm occurred in 2019, presumably due to the high AGR peak seen by OCO-2 in the first

quarter.

To get a sense of the improvement in the OCO-2 v10 XCO2 product relative to v9, Fig. A4 shows maps of XCO2 signal

(XCOOCO
2 − XCOMMM

2 ) at 2.5◦ latitude by 5◦ longitude resolution for April (top row) and August (bottom row), 2019 for740

OCO-2 v9 (left) and OCO-2 v10 (middle). The right column shows the ∆signal (OCO-2 v10 − OCO-2 v9) for grid cells in

which both v9 and v10 have valid data. Generally, for April and August 2019, the global bias against models is smaller for

OCO-2 v10 (≤ 0.3 ppm) than it was for v9 (≥ 0.5 ppm), with a slight reduction in uncertainty from > 0.65 ppm to ≈ 0.60 ppm.

The ∆signal values indicate that OCO-2 v10 XCO2 is shifted ≈ 0.6 ppm higher than v9. Most of the difference is in the ocean,

whereas the changes in land XCO2 were relatively small between versions. Although the details vary, corresponding plots for745

other months and years (not shown) look similar.
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(a) Monthly CO2 concentrations
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(b) Annual CO2 atmospheric growth rate (monthly)

µ
+2σ

−2σ

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Time [year]

0

1

2

3

4

[p
p

m
 y

ea
r−1

]

(c) Annual mean CO2 atmospheric growth rate
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Figure A3. CO2 concentrations and calculated atmospheric growth rates (AGR) from the OCO-2 v10 data record (orange), with a comparison

to ACOS GOSAT v9 (gray) and NOAA GML marine surface values (blue), similar to Fig. 2 in Buchwitz et al. (2018). Panel (a) shows the

monthly CO2 concentrations for each product. Panel (b) shows the calculated monthly values of the AGR with vertical error bars (see text for

description of how the error is calculated). The mean (µ) monthly AGR is indicated with corresponding standard deviation. Panel (c) shows

the calculated annual AGRs. The linear Pearson correlation coefficient (R) of the satellite versus the NOAA GML values is given, along with

the mean difference in the annual AGR (µ∆AGR) with corresponding standard deviation.
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Figure A4. Maps of XCO2 signal (XCOOCO
2 − XCOMMM

2 ) at 2.5◦ latitude by 5◦ longitude resolution for April 2019 (top row) and August

2019 (bottom row), for OCO-2 v9 (left) and OCO-2 v10 (middle). The number of single soundings (N SS) for all observation modes combined

(all), combined land-nadir, land-glint, land-TG and land-SAM (land), and water-glint (water) are given. The mean (µ) and standard deviation

(σ) of the binned values (bin) are also given for each observation mode. Grid cells containing less than 5 soundings are colored gray. Panels

(c) and (f) show the ∆signal (OCO-2 v10 − OCO-2 v9) for grid cells in which both sensors have valid data. Here, the statistics are given

only for all observation modes combined.

Appendix B: OCO-3 v10

B1 OCO-3 operations

As was discussed in Taylor et al. (2020), the collection of science data by OCO-3 is often interrupted by either the Hun-750

stville Operations Support Center (HOSC) or the Mission Operations System (MOS) at JPL. The former are generally due to

arriving or departing vehicles from the ISS, or other ISS activities such as spacewalks or instrument out-gassing events. OCO-

3 also suffers from data drop-outs in ocean-glint viewing due to physical obstructions within the field of view, e.g., solar panels.

Table B1 shows the statistics at a per-granule (orbit) level for OCO-3 from August 2019 through February 2022. Over the course755

of these 31 months, HOSC interrupts occurred for≈ 9% (1329) of the total number of granules (14,527), while MOS interrupts

occurred for ≈ 8% (1038) of the observable granules (13,198), yielding 12,160 granules containing science measurements

(≈ 92% of the observable, 84% of total). This well exceeds the mission requirement of 50% data acquisition.
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Table B1. Monthly statistics of the OCO-3 collection for the period August 2019 through February 2022.

Total Orbits containing Number of Orbits containing Number of

Month Number of HOSC interrupts Observable Orbits MOS interrupts Collected Orbits

Orbits (% of total) (% of total) (% of observable) (% of observable)

Aug (2019) 402 99 ( 24.6%) 303 ( 75.4%) 34 ( 11.2%) 269 ( 88.8%)

Sep (2019) 465 34 ( 7.3%) 431 ( 92.7%) 60 ( 13.9%) 371 ( 86.1%)

Oct (2019) 481 176 ( 36.6%) 305 ( 63.4%) 127 ( 41.6%) 178 ( 58.4%)

Nov (2019) 465 40 ( 8.6%) 425 ( 91.4%) 382 ( 89.9%) 43 ( 10.1%)

Dec (2019) 481 92 ( 19.1%) 389 ( 80.9%) 0 ( 0.0%) 389 (100.0%)

Jan (2020) 480 90 ( 18.8%) 390 ( 81.2%) 16 ( 4.1%) 374 ( 95.9%)

Feb (2020) 449 74 ( 16.5%) 375 ( 83.5%) 21 ( 5.6%) 354 ( 94.4%)

Mar (2020) 480 34 ( 7.1%) 446 ( 92.9%) 6 ( 1.3%) 440 ( 98.7%)

Apr (2020) 465 33 ( 7.1%) 432 ( 92.9%) 8 ( 1.9%) 424 ( 98.1%)

May (2020) 480 21 ( 4.4%) 459 ( 95.6%) 9 ( 2.0%) 450 ( 98.0%)

Jun (2020) 464 0 ( 0.0%) 464 (100.0%) 46 ( 9.9%) 418 ( 90.1%)

Jul (2020) 480 31 ( 6.5%) 449 ( 93.5%) 0 ( 0.0%) 449 (100.0%)

Aug (2020) 480 8 ( 1.7%) 472 ( 98.3%) 0 ( 0.0%) 472 (100.0%)

Sep (2020) 465 2 ( 0.4%) 463 ( 99.6%) 8 ( 1.7%) 455 ( 98.3%)

Oct (2020) 480 31 ( 6.5%) 449 ( 93.5%) 2 ( 0.4%) 447 ( 99.6%)

Nov (2020) 465 7 ( 1.5%) 458 ( 98.5%) 0 ( 0.0%) 458 (100.0%)

Dec (2020) 480 11 ( 2.3%) 469 ( 97.7%) 4 ( 0.9%) 465 ( 99.1%)

Jan (2021) 480 16 ( 3.3%) 464 ( 96.7%) 56 ( 12.1%) 408 ( 87.9%)

Feb (2021) 433 36 ( 8.3%) 397 ( 91.7%) 26 ( 6.5%) 371 ( 93.5%)

Mar (2021) 480 11 ( 2.3%) 469 ( 97.7%) 0 ( 0.0%) 469 (100.0%)

Apr (2021) 465 25 ( 5.4%) 440 ( 94.6%) 26 ( 5.9%) 414 ( 94.1%)

May (2021) 480 0 ( 0.0%) 480 (100.0%) 31 ( 6.5%) 449 ( 93.5%)

Jun (2021) 464 13 ( 2.8%) 451 ( 97.2%) 1 ( 0.2%) 450 ( 99.8%)

Jul (2021) 480 71 ( 14.8%) 409 ( 85.2%) 0 ( 0.0%) 409 (100.0%)

Aug (2021) 480 63 ( 13.1%) 417 ( 86.9%) 48 ( 11.5%) 369 ( 88.5%)

Sep (2021) 464 13 ( 2.8%) 451 ( 97.2%) 0 ( 0.0%) 451 (100.0%)

Oct (2021) 480 38 ( 7.9%) 442 ( 92.1%) 0 ( 0.0%) 442 (100.0%)

Nov (2021) 465 81 ( 17.4%) 384 ( 82.6%) 0 ( 0.0%) 384 (100.0%)

Dec (2021) 480 65 ( 13.5%) 415 ( 86.5%) 50 ( 12.0%) 365 ( 88.0%)

Jan (2022) 480 88 ( 18.3%) 392 ( 81.7%) 31 ( 7.9%) 361 ( 92.1%)

Feb (2022) 434 26 ( 6.0%) 408 ( 94.0%) 46 ( 11.3%) 362 ( 88.7%)

Grand Total 14527 1329 ( 9.2%) 13198 ( 90.8%) 1038 ( 8.3%) 12160 ( 91.7%)
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B2 OCO-3 v10 pointing correction

Although the first public release of OCO-3 XCO2 (vEarly) was derived using the v10 L2FP algorithm, the data set suffered760

from significant geolocation errors (Taylor et al., 2020). Here, an update in the geolocation for v10 is described.

Precise geolocation of OCO-3 footprints requires knowledge of (i) the position and attitude of the instrument in space, (ii)

the position and control of the PMA, and (iii) the effective alignment of the OCO-3 detectors with respect to the instrument

reference. Improvements were made in all three areas for v10, as described in Section 2.2 of the OCO-3 v10.4 data qual-765

ity statement (Chatterjee et al., 2022). OCO-3 attitude data are now taken primarily from the on-board stellar reference unit

(SRU), which was not possible for vEarly due to a systems timing error that yielded large geolocation errors early in the mis-

sion. When the SRU is not available for attitude information, the OCO-3 processing stream relies on stellar reference data from

the CALorimetric Electron Telescope (CALET) (Torii and Marrocchesi, 2019), another instrument aboard the ISS JEM-EF.

During early operations, the PMA was calibrated using measurements from the on-board internal context camera (ICC), and770

an external look-up table was derived for azimuth and elevation angle offsets. For v10, a model fit to the PMA calibration

data was implemented directly into the geolocation algorithm. Finally, for OCO-3 v10, the effective alignment of the detectors

to the instrument reference was empirically determined using a best-fit static alignment adjustment. An additional rotation

element was added to the geolocation algorithm, and the relative alignment space was systematically explored using a metric

derived from minimizing surface pressure errors and albedo differences. This removed a systematic pointing error of 1 to 2 km.775

Overall, adjustments to the OCO-3 geolocation led to an improvement in the pointing errors from 1-2 km in vEarly down to

typically less than 1 km in v10. Further refinements to OCO-3 geolocation are expected in future versions.

To confirm the v10 pointing errors, a pointing optimization code was developed to examine the residual errors for individual

swaths within a collection of SAMs. The code minimizes a cost function using the difference in retrieved and modeled surface780

pressure (the L2FP prior), coupled with differences in the weak CO2 surface albedo between the retrieved values from the

IDP and the black-sky albedo from MODIS Band 6, using the closest-in-time available MODIS Albedo file (1 km resolution,

product MCD43A3, Schaaf (2022)). The primary result of the code is an optimal shift in latitude and longitude for each swath

in a given OCO-3 SAM or Target observation, to bring it into alignment with the ancillary data. Note that SAM swaths are not

actually displaced by the suggested optimization values within the v10.4 data products, and thus geolocation errors typically up785

to 1 km remain in OCO-3 v10 data. However, for future reprocessing, a final optimization on all SAMs in the data collection

prior to public release may be considered, depending on the residual errors. In specific instances, the project has supported

requests to optimize individual SAMs in support of science analysis, as was done for Nassar et al. (2022).

Figure B1 shows analysis of the OCO-3 v10 pointing offset optimization results for a set of a few hundred SAMs collected790

over an approximate one year period. As each SAM consists of between 4 and 6 swaths, the total swath count is 372, after

several quality assurance criteria are applied based on the certainty of the results for each fit. Panel (a) provides the frequency
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distribution of the optimization distance (∆ d) for vEarly (pink) and v10 (blue). While the mean/median ∆ d was ≈ 1.5 km in

vEarly, for v10 the optimization distance has been reduced to ≈ 0.5 km.

795

Panel (b) of Fig. B1 shows the cumulative frequency distribution, which indicates that for vEarly ≈65% of the swaths had ∆ d

> 1.25 km, while for v10 the fraction of swaths with ∆ d > 1.25 km has been reduced to ≈ 15%. In the vEarly product, more

than 7% of the swaths had ∆ d < 2.5 km, while for v10, less than 1% of the swaths have a pointing error greater than 2.5 km.

Recall that the nominal size of an OCO-3 footprint is 1.6 by 2.2 km. Additional reductions in the OCO-3 pointing error to the

sub 0.5 km level, on order with OCO-2 (Kiel et al., 2019) is the nominal goal for a future reprocessing.800

B3 OCO-3 v10 ad hoc XCO2 bias correction

The ad hoc correction to OCO-3 v10 XCO2 using collocated OCO-2 data is predicated upon the hypothesis that two sensors

measuring the same column of air at the same time should produce the same XCO2 estimate when derived using the same

retrieval algorithm. Therefore, a set of spatiotemporal collocations between the OCO-2 and OCO-3 sensors was identified over805

the time period 6-Aug-2019 through 31-Oct-2021. If the XCO2 from the two sensors are in good agreement, the expectation is

for a mean bias close to zero, with low variability, and no time trend.

Each OCO-2/3 collocation consists of a cluster of soundings for each of the two sensors measured within a 25 km radius and

± 4 h time, and containing at least 15 good quality flagged soundings per sensor. The difference in the mean bias corrected810

XCO2 (µ) for each collocated cluster of soundings (∆XCO2 = µOCO-3− µOCO-2) provides a reasonably direct comparison

between the sensors.

Figure B2 provides two example visualizations of overlapping orbit tracks from OCO-2 and OCO-3 as measured over eastern

Europe on 12-August-2019 (A) and over the southwest coast of Africa on 22-September-2021 (B). In example (A) the time815

difference between the overpasses was < 5 minutes, with a ∆XCO2 of 0.17 ppm. In example (B), the time difference was 25

minutes, with a ∆XCO2 of 0.01 ppm. The variability in XCO2 for the entire scene was about 0.5-0.8 ppm for both sensors.

Time series plots of the ∆XCO2, as shown in panel (a) of Fig. B3 suggests a significant divergence in ∆XCO2 between orbits

4339 to 9719 (February 2020 through January 2021). This time period corresponds to a long interval with no instrument de-820

contamination, which are indicated by the shaded areas in the plot. Upon investigation, it was found that the diverging ∆XCO2

correlates with an OCO-3 L1b calibration artifact: the instrument stray light, or zero-level-offset (ZLO), as shown in panel (b).

The band-dependent ZLO is derived from measurements of the on-board calibration lamps on the unilluminated pixels of the

detector, and is found to increase non-linearly in time since the last decontamination cycle, as shown against the left ordinate

in panel (c).825
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vEarly
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Figure B1. Comparison of OCO-3 pointing optimization for vEarly (pink) and v10 (blue) spanning an approximately one year time pe-

riod. Panel (a) shows the frequency distribution of the optimization distance. The orbit ranges and number of swaths are indicated in the

legend, along with the mean, median, and maximum optimization distances (dx) in kilometers. Panel (b) shows the cumulative frequency

distributions. The percent of the swaths (Frac N) with optimization distances greater than 1.25 km, 2.5 km, and 5.0 km are indicated in the

legend.
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Figure B2. XCO2 from simultaneous nadir overpasses (SNOs) between the OCO-2 and OCO-3 over eastern Europe on 12-August-2019

(A) and over the southwest coast of Africa on 22-September-2021 (B). In example (A) the time difference between the overpasses was 282 s

(< 5 m) and the difference in the average XCO2 from the two sensors was 0.17 ppm. In example (B), the time difference was 1519 s (25 m) and

the difference in the average XCO2 from the two sensors was 0.01 ppm. The uncertainty in XCO2 for the entire scene was about 0.5 to 0.8 ppm

for both sensors. The background for these image comes from ArcGIS, available at https://server.arcgisonline.com/ArcGIS/rest/services. Note

that the collocation criteria used in this work (25 km radius and ± 4 h) means that not all collocations were direct simultaneous overpasses,

and a mixture of both nadir and glint viewing was used.

A correction to the OCO-3 XCO2 values (right ordinate of panel (c)) is derived from a linear fit of the ∆XCO2 (at a given

orbit) versus the WCO2 ZLO at the same orbit (panel b). After application of this ad hoc correction, the time dependence of

∆XCO2 between OCO-2 and OCO-3 is largely mitigated, as shown in panel (d). Fit coefficients were determined separately

for each OCO-3 FP and for land and ocean-glint observations. A reprocessing of the OCO-3 L2 Lite product was performed830

to correct the XCO2 for all reported soundings. The new v10.4 L2 Lite XCO2 files were delivered to the NASA GES DISC in

April of 2022 (Chatterjee et al., 2022). The files contain a new variable field, Retrieval/xco2_zlo_bias, giving the size of the

additive correction made to the XCO2 values. Researchers are urged to use these files, and avoid use of the XCO2 reported in

the L2 Standard product which do not have the ad hoc bias correction applied.

835

Figure B5 shows a verification of the OCO-3 XCO2 ad hoc correction as compared to the multi-model-median (MMM) that

was discussed in Section 6.2. The top row shows results prior to the ad hoc correction for land-nadir (a) and for ocean-glint

(b). Although early in the record, the agreement is quite good, a strong, unexpected time divergence is seen in the uncorrected
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(a) v10 ∆XCO2 prior to ad hoc correction :: Land :: FP-4
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(b) v10 ∆XCO2 vs OCO-3 WCO2 ZLO
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(c) OCO-3 v10 WCO2 zero-level-offset vs OCO-3 orbit number
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(d) v10 ∆XCO2 after ad hoc correction
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Figure B3. Ad hoc bias correction of OCO-3 v10 XCO2 for footprint 4 (FP-4) land measurements. Panel (a) shows the ∆XCO2 (OCO-3

− OCO-2) for a set of collocated clusters of soundings versus the OCO-3 orbit number. The number of collocations (N), and the mean (µ)

and standard deviation (σ) of the ∆XCO2 are given in the legend. Panel (b) shows the correlation between the ∆XCO2 and the OCO-3

WCO2 ZLO used to determine the correction. Panel (c) shows the OCO-3 WCO2 ZLO (left) and magnitude in ppm of the ad hoc XCO2 bias

correction (right) versus OCO-3 orbit number. Panel (d) is similar to panel (a), except with the OCO-3 XCO2 ad hoc correction applied. In all

panels, the small grey dots indicate individual collocations, while the large black dots are binned median values. The vertical shaded regions

in panels (a), (c), and (d) indicate the time period during which the OCO-3 instrument was powered down for a decontamination cycle.
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(a) v10 ∆XCO2 prior to ad hoc correction :: Ocean :: FP-4
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(b) v10 ∆XCO2 vs OCO-3 WCO2 ZLO
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(c) OCO-3 v10 WCO2 zero-level-offset vs OCO-3 orbit number
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(d) v10 ∆XCO2 after ad hoc correction
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Figure B4. Same as Fig. B3, but for ocean-glint collocations.

data in the second half of 2020. After application of the ad hoc bias correction, as seen in (c) for land and (d) for ocean-glint,

the OCO-3 XCO2 is in better agreement with the MMM, and is on par with expectations based on previous results from both840

OCO-2 and GOSAT, e.g., Section 6.2 of this work and Section 4.4 of Taylor et al. (2022).

B4 OCO-3 v10 XCO2 diurnal signal

The orbit of OCO-3 aboard the ISS precesses in time such that the equator crossing occurs approximately 20 minutes earlier

each day. This yields observations spanning all daylight hours over the course of a 63-day repeat cycle (Eldering et al., 2019).845

The semi-diurnal nature of the OCO-3 data has potential to allow for interesting science investigations (e.g., Xiao et al., 2021),
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Figure B5. The XCO2 signal (OCO-3 − MMM) gridded at 15◦ latitude by 10 days for the time period August 2019 through December

2020. Panels (a) and (c) show results before and after the ad hoc XCO2 bias correction for land-nadir observations, while panels (b) and (d)

are for ocean-glint observations. The ordinate axis is scaled by the cosine of the latitude to elucidate the decreasing fractional surface area of

the earth with increasing latitude. Data cells with less than 10 soundings are colored gray.

that are not possible with data from polar orbiters with a fixed overpass time.

Analysis of OCO-3 XCO2 from a set of more than two thousand same-day paired intersecting orbits, i.e., self-crossings, over

land are shown in Fig. B6. The time separation between intersecting orbits ranges from 1.5 h up to approximately 10 h, with850

a spatial coincidence of 25 km radius. The difference in observed XCO2 between overpasses is a combination of random un-

certainty driven by instrument calibration and retrieval uncertainties, plus real changes in XCO2. Over a time scale of hours,

local variations in XCO2 are due to a combination of (i) synoptic scale transport, i.e., CO2 weather (Parazoo et al., 2008), (ii)

biospheric diurnal effects, i.e., draw down by the terrestrial biosphere (Keppel-Aleks et al., 2011), or (iii) local point source

emissions (e.g., Nassar et al., 2021).855

Panel (a) of Fig. B6 shows the one to one correspondence in XCO2 between the 2218 pairs of orbits. The mean difference

is 0.04 ppm with a 1.1 ppm uncertainty. About one quarter of the samples have a difference smaller than 0.25 ppm, while one

quarter have a difference larger than 1 ppm, near the upper end of expected diurnal changes in the column (Torres et al., 2019).

The maximum observed difference is > 6.6 ppm! A test using a tighter spatial collocation of 10 km radius yielded indistin-860

guishable differences, but a reduction in the number of collocations to ≈1850 (Results not shown).

Panel (b) of Fig. B6 shows the ∆XCO2 versus the time difference between self-crossings. It might be expected that if the

self-crossings were detecting real changes in the column CO2 between overpasses driven by smooth diurnal variations due to
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biospheric draw down, then larger ∆XCO2 would be seen at larger ∆time. However, no significant correlation in ∆XCO2 with865

∆time is observed. The largest differences in XCO2 are about as likely to occur between two orbits 1.5 h apart as they are to

occur between two orbits 8 or 9 h apart.

An effort was made to explore geophysical and retrieval covariates in the observed XCO2 differences. Any significant corre-

lations between ∆XCO2 and L2FP retrieval variables, as is done in the bias correction procedure, could help to understand870

physical processes. As aerosols are a known source of error in the L2FP (Nelson and O’Dell, 2019; Bell et al., 2023), Panel

(c) shows the correlation in ∆XCO2 with the L2FP retrieved total aerosol optical depth (combined for the two overpasses).

Although there is modest increase in spread for higher values of AOD, the median ∆XCO2 values (heavy filled circles with

one sigma error bars) shows no significant correlation. No other L2FP retrieval variables, e.g., albedos, geometries, were found

to correlate with ∆XCO2 (results not shown).875

Although additional analysis is warranted, the general conclusion is that the variability in the ∆XCO2 from the self-crossing

analysis is dominated by random uncertainties in the measurements and/or the L2FP retrieval. This conclusion stands in line

with reported XCO2 errors on the order of 0.5 ppm, and with the fidelity of the comparisons against truth proxies.

880
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Figure B6. Analysis of OCO-3 XCO2 from a set of paired intersecting orbits, i.e., self-crossings, over land. Panel (a) shows the one to one

correspondence in XCO2 between the early and late orbits. The number of collocations (N) and the mean (µ), standard deviation (σ) and

maximum ∆XCO2 (∆max) are given in the legend. Also shown in the legend are the percent of the collocations having ∆XCO2 greater than

0.25, 0.5, 1.0, 2.0, and 3.0 ppm. Panel (b) shows the ∆XCO2 versus the time difference between self-crossings. Panel (c) shows the ∆XCO2

versus the L2FP retrieved total aerosol optical depth (combined for the ascending and descending nodes).
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Data availability

The OCO XCO2 and other retrieval properties are publicly available at the NASA Goddard Earth Science Data and Informa-

tion Services Center (GES-DISC). The full suite of retrieval products in the standard per-orbit format can be obtained at (OCO

Science Team et al., 2020b, https://doi.org/10.5067/6SBROTA57TFH) and (OCO Science Team et al., 2021, https://doi.org/

10.5067/D9S8ZOCHCADE) for OCO-2 and OCO-3, respectively. The Lite files, which include the quality flag and bias cor-885

rected estimates of XCO2, can be obtained at (OCO Science Team et al., 2020a, https://doi.org/10.5067/E4E140XDMPO2) and

(OCO Science Team et al., 2022, https://doi.org/10.5067/970BCC4DHH24) for OCO-2 and OCO-3, respectively. For OCO-3,

researchers are urged to use the v10.4 Lite files, and avoid use of the XCO2 reported in the v10 L2 Standard product which do

not have the ad hoc bias correction applied.

890

The TCCON data for individual stations are available on the CaltechDATA site (https://data.caltech.edu/). CarbonTracker

CT-NRT.v2019-2 and CT-NRT.v2021-3 results provided by NOAA ESRL, Boulder, Colorado, USA from the website at

https://carbontracker.noaa.gov. The Jena-Carboscope model data are available at http://www.bgc-jena.mpg.de/CarboScope.

The Copernicus Atmosphere Monitoring Service (CAMS) CAMS-INV model data were obtained from https://ads.atmosphere.

copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview, while the CAMS-REAN data were ob-895

tained from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=overview. The UoL

model data are available at https://www.geos.ed.ac.uk/~lfeng/. The GEOS data used in this study were provided by the Global

Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center.
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