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Abstract. Remote sensing of water vapor using the Global Navigation Satellite System (GNSS) is a well-established technique
and reliable data source for Numerical Weather Prediction (NWP). However, one of the phenomena rarely studied using
GNSS are foehn winds. Since foehn winds are associated with significant humidity gradients between two sides of a mountain
range, tropospheric estimates from GNSS are also affected by their occurrence. Time series reveal characteristic features
like distinctive minima/maxima and significant decrease in correlation between the stations. However, detecting such signals
becomes increasingly difficult for large data sets. Therefore, we suggest the application of machine learning algorithms for the
detection and prediction of foehn events from GNSS troposphere products. This initial study develops a new, machine learning-
based method for detection and prediction of foehn events at the Swiss station Altdorf, by utilizing long-term time series of
high-quality GNSS troposphere products. Data from the Automated GNSS Network Switzerland (AGNES) and various GNSS
sites from neighbouring countries, as well as records of an operational foehn index are used to investigate the performance
of several different classification algorithms based on appropriate statistical metrics. The two best-performing algorithms are
fine-tuned and tested in four dedicated experiments using different feature setups. The results are promising, especially when
reprocessed GNSS products are utilized and the most dense station setup is used. Detection- and alarm-based measures reach
levels between 66-80% for both tested algorithms and thus are comparable to those from studies using data from meteorological
stations and NWP. For operational prediction, limitations due to the availability and quality of GNSS products in near-real time
(NRT) exist. However, they might be mitigated to a significant extend by provision of additional NRT products and improved
data processing in the future. Results also outline benefits for the results when including geographically relevant stations (e.g.

high-altitude stations) in the utilized data sets.

1 Introduction

Global Navigation Satellite Systems (GNSS) are used extensively for positioning and navigation applications worldwide. Ad-
ditionally, they enable users to retrieve information about the state of the Earth’s atmosphere, in particular the distribution of
water vapor. This technique, commonly referred to as GNSS Meteorology, was first proposed three decades ago (Bevis et al.,

1992) and is still gaining increasing interest from the scientific community as well as meteorological institutions. The retrieval
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of atmospheric information from GNSS is based on the fact that electromagnetic signals (such as GNSS signals) are delayed
when traveling through specific layers of the atmosphere. The delay experienced by a GNSS signal in the lowest part of the
atmosphere (troposphere) is proportional to the water vapor content along the signal path. This fact is typically exploited in
GNSS Meteorology by introducing GNSS-derived atmospheric parameters like the Zenith Wet Delay (ZWD) or the Zenith
Total Delay (ZTD) in data assimilation schemes. In numerous studies, a positive impact has been demonstrated, especially on
precipitation forecasts (see e.g. de Haan (2008), Brenot et al. (2013), Bennitt and Jupp (2012), Yan et al. (2009)). However,
while mostly precipitation-related studies represent the current focus of research (see Guerova et al. (2016) for a comprehensive
summary), other meteorological phenomena can also be investigated by means of GNSS. The number of studies on other mete-
orological processes is relatively small, covering phenomena such as thunderstorm activity (de Haan (2013)) or fog formation
(Stoycheva and Guerova (2015), Aichinger-Rosenberger (2018)). Stoev and Guerova (2018) represent the only investigation
on foehn winds using GNSS products to our knowledge, in an initial study for Bulgaria based on observations of Integrated
Water Vapor (IWV).

Foehn winds are a characteristic weather phenomenon in mountainous regions all over the world, especially in the vicinity
of prominent mountain ranges like the Alps (where it is typically referred to as Alpine foehn). In general, foehn can be char-
acterized as ‘a wind (which is) warmed and dried by descent, in general on the lee side of a mountain’ (WMO, 1992). This
definition already includes its major characteristics observed in affected areas: strong gusty winds, increasing temperatures and
decreasing humidity. While there are many other effects of foehn winds (from social to economic impacts), large wind speeds
and gusts are the most critical features from the perspective of operational forecasting and warning systems. In typical foehn
valleys like the Reuss Valley (Switzerland) or the Wipp Valley (Austria) wind speeds up to 100 km/h are common, and even
up to 200 km/h gusts can be observed at high altitude stations.

Foehn research denotes one of the major topics of (alpine) mountain meteorology (Steinacker, 2006). Despite the fact that the
underlying physical processes of foehn have been studied for over a century, still some gaps in knowledge, especially con-
cerning small-scale features, exist. As the classical thermodynamic foehn theory is not able to sufficiently explain all observed
foehn events (especially those lacking precipitation), a number of different theories and extensions have been proposed. Fur-
thermore, large observation campaigns like the Mesoscale Alpine Program (MAP) have been conducted and combined with
NWP results in order to assess small-scale effects (Gohm and Mayr (2004), Lothon et al. (2006), Drobinski et al. (2007), Mayr
et al. (2007)).

Despite these substantial efforts in research, classification and forecasting of foehn both are still challenging tasks. Classifica-
tion by human expertise still provides the most accurate results, as dedicated experiments, comparing subjective and objective
methods, reveal (Mayr et al., 2018). The ability of NWP models to predict foehn is limited by the fact that small-scale features
still cannot be modelled with sufficient accuracy due to coarse representation of real-world topography (Wilhelm, 2012).
Machine learning (ML) techniques have been a major research topic in atmospheric sciences over the last decade. ML-based
approaches of post-processing NWP output, known as model output statistics (MOS), have been shown to significantly en-
hance operational weather forecasts, see e.g. Glahn and Lowry (1972), Wilks and Hamill (2007) or Hess (2020). ML has also

been used to assign uncertainty estimates to forecasts based on deep learning methods applied to previous forecasts (Scher
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and Messori, 2018). Furthermore, the classification and detection of different weather types has been advanced and automated
for different kinds of weather phenomena such as thunderstorms (Perler and Marchand (2009), Manzato (2005)), temperature
forecasts (Yalavarthi and Shashi (2009)), wind systems (Kretzschmar et al. (2004), Otero and Araneo (2021)) or large-scale
weather regimes in general (Deloncle et al., 2007). Common ML methods for such classification problems investigated in

former studies are e.g.:

Random forests: Deloncle et al. (2007)

Adaptive boosting (AdaBoost): Perler and Marchand (2009), Sprenger et al. (2017)

Support vector machines : Yalavarthi and Shashi (2009)

Neural networks: Manzato (2005), Kretzschmar et al. (2004), Otero and Araneo (2021)

Only few authors have used ML approaches for detection and prediction of Alpine foehn yet. Initial studies were carried out by
Sprenger et al. (2017), who applied the AdaBoost algorithm to a data set combining weather station observations with NWP
output fields from the Consortium for Small-scale Modeling (COSMO) model. They found good performance of the algorithm,
obtaining high values for probability of detecting foehn events (88%) and ratio for correct alarms of the algorithm (66%). The
most recent study by Mony et al. (2021) showed the feasibility of using ERAS reanalysis and climate model output instead
of NWP output in a similar way as Sprenger et al. (2017). In addition, statistical mixture models were also applied for foehn

diagnosis, e.g. by Plavcan et al. (2014).

The presented study represents an initial investigation on the usability of GNSS troposphere product time series for the de-
tection and prediction of foehn events at the meteorological observation site Altdorf, Switzerland. Therefore we make use of
state-of-the-art ML-based classification algorithms trained and tested on a data set spanning eleven years (2010-2020), derived
from GNSS observations at sites all over Switzerland and neighbouring countries as well as a long-term record of foehn obser-
vations at Altdorf.

Although foehn diagnosis might be characterized an unsupervised learning problem (no universal truth exists and even forecasts
from human experts vary considerably (Mayr et al., 2018)), we apply supervised learning methods in this initial study. This
choice is motivated by the fact that reference data of proven quality is available (see Section 3.1.2 for details), results are easier
to interpret and our only reference study by Sprenger et al. (2017) also uses this approach. On the other hand, unsupervised
learning is typically used to cluster data in order to discover something that is not visible otherwise. For our investigation,it is
doubtful that a clear cluster would emerge solely corresponding to foehn events, considering the highly imbalanced data set
and the multitude of phenomena affecting GNSS tropospheric delays.

The average performance of different ML algorithms is assessed via a cross-validation procedure. The two best-performing
algorithms are trained over an eight-year and tested over a two-year period for different study setups (feature setups). These
feature setups cover the usage of reprocessed troposphere products as well as NRT products, which could be used for oper-

ational prediction and detection of foehn events. Furthermore, we explore the performance of an extended station network,
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with the disadvantage of a shorter period of availability for algorithm training. Finally, we analyse the performance of our

newly-developed method in detail over a week-long period covering two major foehn events at Altdorf.

2 GNSS Meteorology

As already outlined in the introduction, the concept of GNSS Meteorology is based on the fact that electromagnetic signals
are delayed by the presence of the Earth’s atmosphere. The signal delay is directly proportional to the refractive index n of the
atmosphere. In the neutral atmosphere, the refractive index or refractivity N is composed of a dry (/Ng) and wet part (V,,),
which depend on temperature 7" (K), as well as the dry P,; (hPa) and water vapor partial pressure e (hPa) respectively (Riieger,
2002):

77.6890- Py .71.2952-€ n 3.75463 x 10° - e

— 6 _ —
N=(n—-1)x10"=Ng+ N, = T [ T T2 J

)]

The total tropospheric delay experienced by a GNSS signal observed at an elevation el and azimuth direction « is referred to

as the Slant Total Delay (STD)
STD(a,el) = ZHD - m fy(el) + ZWD - m f,, (el) + m fqy(el) - [GN - cos(a) + GE - sin(a)], (2)

where ZHD (Zenith Hydrostatic Delay) represents the hydrostatic part, and ZWD the wet part of the signal delay in the
zenith direction. In addition, horizontal gradients GN (north-south direction) and GE (east-west direction), accounting for
the asymmetry of the atmospheric layers passed by the signal, can be estimated in GNSS processing. In order to map the
delays and gradients estimated for the zenith direction to the correct elevation, mapping functions for both parts of the delay
(mfn(el),mfy(el)) and the gradients (m fy(el)) are used.

The total delay in the zenith direction, i.e. the Zenith Total Delay (ZTD), is the sum of the hydrostatic and wet part

ZTD = ZHD + ZWD. 3)

ZHD accounts for the major part of the total delay and is largely determined by the atmospheric pressure. It can be modelled
with sufficient accuracy from surface pressure observations using, e.g., the formula of Saastamoinen (Saastamoinen, 1972):

0.0022767 - p,

ZHD =
1—0.00266 - cos(20) — 0.00028 - H

“4)

where pj is the surface pressure, 0 the station latitude, and H is the station height above the geoid.
ZWD represents the main signal of interest for meteorological purposes, as it is directly related to the water vapor content in

the air column above the GNSS receiver, and therefore to IWV, via
IWV =k(Ty,) - ZWD, @)

where x denotes a semi-empirical function depending on the integrated mean temperature 7,,,. Thus, it shows the same high

temporal and spatial variability as water vapor, making precise modelling from meteorological surface observations practically
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impossible. As a consequence, ZWD is commonly estimated as an unknown in GNSS parameter estimation alongside of station

coordinates and the receiver clock error.
2.1 Influence of hydrometeors on GNSS signal delays

Since foehn events can occur with and without simultaneous precipitation, the influence of hydrometeor formation on GNSS
signal delays should also be described in the following. In an initial investigation over two decades ago, Solheim et al. (1999)
quantified propagation delays induced in GPS signals by different types of molecular constituents such as dry air, water vapor,
hydrometeors, and sand particles. They were able to show that the influence of water in both solid and liquid form on GNSS
signals is significantly smaller than for its gaseous form (water vapor). However, in cases of extreme amounts of precipitation
(especially in liquid form, i.e. extreme amounts of rain in very intense thunderstorms) a considerable influence for high-
precision applications (as troposphere estimation) can be expected. In the framework of this study, we do not expect such
severe events occurring with foehn events. Nevertheless, these events might lead to problems for our classification method

(misclassification through degraded GNSS products due to high hydrometeor influence), especially in the summer months.

3 Methodology
3.1 Data
3.1.1 GNSS station network and tropospheric products

All investigations presented in this study are based on GNSS troposphere products from the Automated GNSS Network
Switzerland (AGNES). The AGNES network, which currently consists of 31 GNSS stations, was established in 2001 and
is maintained by the Swiss Federal Office of Topography (swisstopo) (Brockmann et al., 2002). The capabilities of the network
were extended to multi-GNSS in 2015 (Brockmann, 2016).

Reprocessed, long-term time series of hourly tropospheric delays and gradients, available for the period 2010-2020, are used
in this study. A description of the data set as well as details on the reprocessing of GNSS data can be found in e.g. Brock-
mann (2015). Parts of this reprocessing were carried out in the framework of the second EUREF (International Association
of Geodesy Reference Frame Sub-Commission for Europe) Permanent Network (EPN) reprocessing campaign in 2014, where
GNSS data from a large number of European stations were reprocessed (Pacione et al., 2017). Therefore, also some interesting
stations (from neighbouring countries such as Italy and Austria) are available and incorporated. More details on the actual
selection of GNSS stations utilized for different experiments are given in Section 3.2. For this study, we use hourly GNSS
troposphere products originating from reprocessing campaigns as well as operational NRT processing. The delay products
are estimated every hour from 30-second measurements together with station coordinates (in this case using least-squares
adjustment). Gradient products are typically estimated only every 12 hours and hourly values in between results from linear

interpolation/extrapolation.
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3.1.2 Foehn observations at Altdorf

In order to train a specific ML algorithm and evaluate its performance, a reference data set of foehn observations is needed
as the target variable. This study uses time series of 10-minute estimates of foehn index (FI) calculated at the station Altdorf,
following the approach presented by Diirr (2008). Altdorf is located at the exit of the Reuss Valley, between the Gotthard pass
and the Lake Lucerne (see Figure 2), at a height of 449 m above mean sea level (amsl). The station has the longest time series
of foehn observations in the Alps (spanning over 150 years of total observations) and FI data is provided back to 1981, for
10-minute intervals. It is also part of the National Meteorological Ground-level Monitoring Network (SwissMetNet, SMN)
operated by MeteoSwiss. Currently, not only data from Altdorf but of about ten sites, frequently experiencing foehn winds,
are available on an operational level. The FI introduced by Diirr (2008) is designed for operational nowcasting and relies
on typical foehn predictors such as wind speed and direction, pressure and temperature gradients, and humidity observations
at the respective measurement site and surrounding stations. It returns three different integer values: 0 (no foehn), 1 (foehn-
mixed air) and 2 (foehn), which are distinguished based on the predictors mentioned above. In an extensive validation against
classifications by human experts, the index showed good performance for indices re-calculated back to 1981 (Gutermann et al.,
2012). For a detailed description of the calculation algorithm we refer to Diirr (2008) and Gutermann et al. (2012). As we
aim for a binary classification (no foehn or foehn), the cases of FI = 1 are treated as nonfoehn events and therefore mapped to
value 0. Furthermore, we map the cases of foehn (FI = 2) to the value 1 for the sake of simplicity in all results shown in the
following. Then, each hour in the whole data set where at least one 10-minute value indicates foehn is treated as an hour of

foehn appearance, and thus a foehn event.
3.2 GNSS station selection criteria

The final selection of GNSS stations, whose data we use as input features, is a difficult task for a number of reasons. The

following list gives an overview of the main problems to keep in mind:

— Not every GNSS station provides a continuous data set of troposphere products. In fact, almost all of the available
stations have data gaps over the chosen study period (2010-2020) and a large number of stations was only established
after 2010.

— The ML-based detection/prediction can only be applied for foehn events where troposphere products from all selected
GNSS stations (i.e. all features/predictors) are available. Since not all GNSS stations have data gaps at the same periods,

the actual amount of possibly missed events can add up.

In order to document and cope with these challenges, we calculated detailed statistics for data availability for each sta-
tion/feature setup used within this study, which are given in the respective result sections. Using these statistics, we try to
balance the need to incorporate important stations (e.g. because of their geographic location) and still cover a sufficient amount
of foehn events (for both training purposes and performance assessment). In the following, we therefore introduce the rules for

the selection of GNSS stations applied in this study:



185

190

195

200

205

210

— Selected stations need to be relevant for the foehn classification, in terms of their geographical location. Based on
previous studies we define an area of interest with latitude and longitude borders of [44.9°, 48.2°] and [5.9°, 10.75°]

respectively, which is also shown in Figure 2.

— Time series from a selected station (of all troposphere products used) should cover at least 95% of all foehn events (hours

of FI = 1) in the study period (2010-2020).

— The overall feature setup (GNSS stations and available products) should be available for at least 50% of all foehn events

in the study period.
3.3 Feature selection from GNSS time series

The selection of features from GNSS troposphere time series is based on previous investigations on visual detection from time
series of different parameters as well as on obvious choices which are expected to be impacted most by foehn conditions. Two
obvious choices are visualized for December 2019 in Figure 1, namely ZWD at stations north (KALT, shown in blue) and south
(LOMO, shown in red) of the Alpine ridge and its difference (bottom section, shown in black). In addition, foehn events at
Altdorf are shown as color-coded periods (orange). Strong correlation between the contrary trends in ZWD at the two stations
and the onset of foehn in Altdorf can be observed. Furthermore, the difference in ZWD between the stations reaches minima
in the two extended foehn periods observed (~ 15.-18. and 19.-21.12.2019). These time series give a first impression how (and
from which parameters) foehn events can be detected using GNSS data sets. As this becomes a very demanding task for longer
periods (both visually and analytically), ML techniques are a promising tool to extend and automate such a detection process,

with the additional benefit of possibly providing the ability to also predict upcoming events.
3.4 Default study setup

In the following the default feature setup for the algorithm comparison (cross-validation) and the first (reference) experiment

is introduced. In general, the definition of a specific setup concerns the following points:

— GNSS station network: The selection of GNSS stations, from which data is utilized for training and testing the ML

algorithms used, should be compliant with the criteria outlined in Section 3.2.

— Study period: In combination with the chosen station selection, a sufficient time period must be chosen to match the

criteria outlined in Section 3.2.
— Features: This point defines which troposphere products should (or could) be used for this specific setup.

The detailed setup and statistics of data availability for the cross-validation and the first feature setup (FS1) are given in Table
1. It includes ZWD (absolute values and all possible differences between stations) and gradient products (GN and GE) from the
chosen station network (Figure 2) as well as a selection of four ZHD differences which are representative differences between

north-south stations in the network. Tests have also been conducted using all possible differences in ZHD (as for ZWD), but
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Figure 1. Time series of promising foehn predictors for December 2019. Top: ZWD (12-hour moving-averaged for visualization) from
stations KALT (north of Alpine ridge, blue) and LOMO (south of Alpine ridge, red), Bottom: ZWD difference between KALT and LOMO

(black). Observed foehn events at Altdorf (based on FI) are visualized as orange areas.

no improvement was found using this setup. This might be explained by the fact that ZHD is largely depending on pressure,
which typically does not show such small-scale variations as water vapor (and thus ZWD). Therefore, a small number of ZHD
differences (i.e. pressure differences) across the Alpine ridge might be sufficient. Figure 2 provides a visualization of the full
station network utilized in this study. The different colored triangles represent different station setups for the feature setups
introduced later (red triangles represent stations used in the default setup, blue triangles represent stations which are added for
the last feature setup). In addition, a complete list of utilized stations (including geographical coordinates) can be found in the

Appendix A.
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Table 1. Default setup used for the cross-validation and feature setup 1 (FS1). For features not outlined in a specific row, by default all

stations and combinations of stations are used.

Training period 2010-2018

Test period 2019-2020

Station setup Post-processed: red triangles in Figure 2

Feature setup ZWD, GN, GE, ZWD_diff, ZHD_diff

ZHD_diff combinations KALT-STA2, LUZE-STA2, BOU2-STA2, SIGM-TORI, ETHZ-TORI
Total number of features 564

Foehn events (FI == 1) 5642 hours

Foehn events without GNSS data 2049 hours (36.3%)

3.5 Data preparation

One of the main challenges for ML-based classification algorithms are imbalanced data sets. This imbalance is also strongly
present in data sets of foehn observations, since foehn is a rather rare meteorological phenomenon. For the utilized FI data
set, the average foehn probability over the 11-year period (2010-2020) amounts to only ~ 4%. Thus, the ratio of under-

representation of the minority class (foehn event) compared to the majority class (no foehn event) is as large as 1:25.
3.5.1 Oversampling

A common approach to overcome problems originating from high imbalance in a data set is to oversample the minority class
for the training data set. One possible approach to achieve this is the Synthetic Minority Over-sampling Technique (SMOTE)
(Chawla et al., 2002), which we use in this study. The technique creates new (synthetic) instances of the minority class within
the training data. For this study, an oversampling of observed foehn hours in the training data set by 25% was conducted
using SMOTE, which improves the performance of the applied algorithms by about 20%. The value of 25% oversampling
was chosen to achieve a reasonable balance between the advantage of having more usable training events (larger percentage of
oversampling) and the fact that foehn is still a rather rare phenomenon (therefore also rare in possible test data sets). All results

shown in the following sections are based on pre-processing using this approach.
3.5.2 Shifting of FI time series

In order to assess the suitability of the GNSS troposphere products for operational prediction, a time shift of one hour is applied
to the target vector (i.e. FI time series at Altdorf). As operational usage is considered a future goal of the proposed method,
the shift is applied for all feature setups investigated in this study (also those using post-processed GNSS products). Therefore,

each prediction of a foehn event is based on GNSS observations collected one hour before a possible onset of foehn at Altdorf.
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Figure 2. GNSS station network utilized for this study. Stations included in the default setup (cross-validation and all feature setups) are
marked as red triangles. Stations explicitly used in Feature setup 3 (FS3) are marked as blue triangles. The SMN-station Altdorf is marked
with a yellow star. In addition, the black lines represent the ZWD differences between stations which serve as the top predictors in FS3,

shown in Section 4.3.

3.6 Performance metrics

As already outlined in the last section, the imbalance in data sets of foehn observations is a major obstacle for the application of
ML algorithms and the assessment of their performance. For highly imbalanced data, performance metrics typically used in ML

studies might not be representative and therefore other options have to be explored. In the case of the present data set, a typical

10
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performance measure such as precision alone would not be suitable as it simply compares detected/predicted foehn hours with
the observed data for all time steps. Thus, it might happen that an algorithm with optimal precision predicts (almost) no foehn
events at all, since this will still result in an optimal performance with regards to precision. In order to overcome these issues
we adapt the following performance metrics (see e.g. Barnes et al. (2007)), the same ones as in Sprenger et al. (2017). These
can be formulated as conditional probabilities P(l) and calculated using the so-called confusion matrix. The matrix reports the
number of false negatives (FNs), false positives (FPs), true negatives (TNs), and true positives (TPs) and thus allows for the
calculation of common performance measures in ML such as precision, recall.

The measures used in this study can be separated into detection-based:
— Probability of Detection (POD) = P(predicted | observed)
— Probability of False Detection (POFD) = P(predicted | not observed)
— Missing Rate (MR) = P(not predicted | observed)
and alarm-based metrics:
— Correct Alarm Ratio (CAR) = P(observed | predicted)
— False Alarm Ratio (FAR) = P(not observed | predicted)
— Missing Alarm Rate (MAR) = P(observed | not predicted).

As already visible from the formulations above, POD and CAR are directly connected to each other via the Bayes Theorem.
This also implies that there is always a trade-off between those two parameters and therefore only one of them can be optimized,
while decreasing the respective other one. Which metric should be optimized strongly depends on the actual application, as
already outlined by Sprenger et al. (2017), who argued that alarm-based measures might be more relevant from a forecaster’s
perspective.

In addition, we adopt two measures which represent a kind of mean performance in terms of both CAR and POD for describing
the results presented in the next sections. The first one is just the simple average of those two parameters combined, therefore
referred to as COMB in the following:

POD + CAR
> .

COMB = (6)

The second adopted metric is based on the F-beta score Fg (Baeza-Yates and Ribeiro-Neto, 1999), which can also be formulated
using the confusion matrix. Using precision and recall measures, the F3 score can be computed for varying :

precision - recall

Fy=(1+5%).
p=U+5) (3% - precision) + recall

)

The classical F-beta score (Fi, using 5 = 1) represents the weighted harmonic mean of precision and recall, with a range

between 0 (worst case) and 1 (optimal value). As already discussed above, a precision measure might not be representative for

11
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results of this study as this might result in our algorithm predicting no foehn events at all. Thus, we use the F2 score (beta = 2)
which weights the recall measure two times larger than precision measure, instead of F} in order to put more emphasis on the

recall, i.e. on the detection of all foehn events:

precision - recall
Fy=5- . 8
2 (4 - precision) + recall ®

3.7 Algorithm selection and tuning

This section gives an overview on tested algorithms and the process of algorithm selection using a cross-validation approach.
Details on this approach are given in the following Section 3.7.1. Furthermore Section 3.7.2 presents the means how the chosen

algorithms are optimized via a grid search procedure.
3.7.1 Machine learning algorithms

In the course of this study, several different ML algorithms are tested in order to investigate their usability for this specific
problem and to compare their performance relative to each other. The following algorithms, which have already been applied

for classification of foehn or other meteorological phenomena (as listed in the introduction), are tested:

Adaptive Boosting (AdaBoost) (Freund and Schapire, 1997)

Gradient Boosting (GB) (Friedman, 2001)

Multilayer Perceptron (MLP) (LeCun et al., 2012)

Random Forest Classifier (RF) (Breiman, 2001)

Support Vector Classifier (SVC) (Platt, 1999)

K-Nearest Neighbor (KNN) (Cover and Hart, 1967)

As a detailed discussion of all algorithms would go beyond the scope of this study, we focus on the chosen ones at the end of
this section. For a comprehensive overview of all of them, we refer to Hsieh (2009).

Before carrying out experiments using a specific ML algorithm, the most promising one(s) have to be identified from the list
of algorithms given above. Therefore, a cross-validation over the training data set (2010 - 2018) was performed and evaluated
using the performance metrics introduced in Section 3.6. For the cross-validation, single years of data are iteratively taken out
of the training data set, serving as validation data in order to assess the performance of the outlined algorithms. This is repeated
until every year serves once as validation data set. The actual implementation is carried out using the Python package scikit-
learn (version 1.1.2) (Pedregosa et al., 2011). For these cross-validation runs, the default settings from the algorithm routines
are used in order to get an objective, initial picture of their performance for this problem. More sophisticated approaches like
including more (complex) algorithms or running grid searches for each algorithm separately before the comparison were not

followed due to the "proof-of-concept"” focus of the study. However, these approaches might be used in future studies on this

12
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topic, in order to optimize the overall performance (see also the future ideas described in the outlook (Section 6)).

Resulting statistics of the cross-validation are summarized in Table 2. These results indicate best performance for the SVC
algorithm in terms of combined measures (COMB and F5 score). For detection-based measures (POD), the KNN algorithm
achieves the highest value on average but falls short in terms of CAR and POFD. The same holds for the RF algorithm in
terms of alarm-based measures (CAR), but its detection-based performance is significantly degraded compared to e.g SVC.
Ultimately, we decided to use the GB and SVC algorithms for evaluation in the feature setup experiments, as these are the only

ones providing average combined measures of over 70% (see Table 2). Based on the results of the cross-validation, the GB

Table 2. Averaged performance metrics of the cross-validation for all tested algorithms over the nine year training period 2010-2018.

Algoritm POD CAR COMB Fy POFD MAR
AdaBoost  0.575 0.504 0540 0559 0.039 0.030

GB 0.757 0.664 0.711 0.736  0.027 0.016
MLP 0.702 0.686 0.694 0.696 0.024 0.021
RF 0579 0.789  0.684  0.610 0.011 0.029
SvC 0.764 0.721  0.742  0.754 0.021 0.016
KNN 0.791 0.407  0.599 0.665 0.080 0.015

and SVC algorithm are chosen for the experiments shown in Sections 4 and 5. In the following we give a brief introduction of

those two algorithms.

1. Gradient Boosting (GB): Introduced by Friedman (2001), GB represents a technique of ensemble learning. It builds a
prediction model by an additive combination of weak learners. Typically decision trees, which are built sequentially in
an iterative manner, are used. GB represents a supervised model which can deal with both classification and regression

problems. The main hyperparameters of the algorithm (tuned in the next section) are:

— n_estimators:number of boosting stages to perform

— max_depth: maximum depth of the individual regression estimators that limits the number of nodes in the tree

— learning_rate: limits the contribution of each tree

2. Support Vector Classifier (SVC): The SVC (Platt, 1999) also denotes a supervised model which classifies samples by

searching for the best hyperplane separating data points of one class from those of the other class. The basic version of
SVC is a linear classifier, finding the best linear separation between two classes. In order to solve non-linear problems,
one can make use of the kernel formulation, which uses a radial basis function (RBF) in our study. Through the combi-

nation of several binary classifiers, binary problems can be extended to multiclass classification.

The main hyperparameters for SVC are:

— C: regularization parameter
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— gamma: represents the kernel coefficient

— kernel: kernel type to be used in the algorithm, set to radial basis function (RBF) in this study.
3.7.2 Hyperparameter tuning

In order to optimize the performance of the chosen algorithms, dedicated tuning of their hyperparameters is carried out. There-
fore, a (small-scale) grid search procedure is conducted, which is an exhaustive search over a subset of manually selected
values. The performance of all hyperparameter value combinations is evaluated based on a three-fold cross-validation. There-
fore, the training data set (2010-2018) is randomly divided into three folds, where two thirds are used for training while the
last third serves for validation. This procedure is repeated three times until each third is used once for validation. All tested

hyperparameter values, as well as the best performing value combinations, are summarized in Table 3. We waive to do a

Table 3. Tuned hyperparameters of both algorithms with their best, tested and default values.

Algorithm  Hyperparameter Best Value Tested Values Default Value

GB n_estimators 300 [100, 300, 500] 100
max_depth 5 [3, 5, 8] 3
learning_rate 0.1 [0.05, 0.1, 0.2] 0.1

SVC C 0.1 [0.1, 1, 10, 100, 1000] 1
gamma ’scale’ [1,0.1,0.01, 0.001, 0.0001,’scale’] ’scale’

more intensive grid search procedure for reasons already mentioned in the cross-validation section ("proof-of-concept” study),

although we plan to optimize the performance of the method through this in future studies.

4 Results: Feature setup experiments

As the major performance test of the proposed method, four experiments are performed. Within these experiments, different

setups regarding utilized GNSS stations and tropospheric parameters in the feature matrix are investigated.
4.1 Feature setup 1: Reprocessed products

Feature setup 1 (FS1) investigates the performance of the chosen algorithms for an optimal combination of the largest station
network and longest study period, still compliant to the selection criteria from Section 3.2. For this setup, the reprocessed time
series of GNSS troposphere products are used, thus also tropospheric gradients can be utilized.

Resulting statistics for FS1 from both algorithms are given in Table 4. Both algorithms show a promising performance, which,
on average, is comparable to the results reported by Sprenger et al. (2017). For the GB algorithm, POD values significantly
(13%) lower than for the reference study, are balanced by an improvement in CAR by ~ 10%. The SVC algorithm tends
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to predict more events (higher POD) and therefore also produces more false-alarms (higher POFD, lower CAR), somewhat
similar to the AdaBoost algorithm of Sprenger et al. (2017). Combined measures (COMB and F5) indicate very similar overall
performance for both tested algorithms, with GB having the advantage of more balanced (almost equal) values for detection-
and alarm-based measures. Furthermore, the actual probability of foehn events predicted by both algorithms over the test period
(3.7/4%), lies within one percentage point of the actual observed probability (4.7%) for all events where GNSS-based results

could be generated. Table 8 provides the confusion matrix statistics of the GB and SVC algorithm for all setups investigated

Table 4. Performance metrics for the proposed models using post-processed troposphere products and the full feature setup (as shown in

Table 1).

Algorithm POD CAR COMB Ey POFD MAR P_predicted P_observed
GB 0.753 0.764 0.758 0.7555 0.011 0.012 0.037 0.047
SvC 0.804 0.663  0.733 0.771  0.020 0.010 0.040 0.047

in this study. The uppermost two lines provide the values of TN, FP, FN and TP for FS1. First of all, the results show the large
imbalance of the classification problem, with TN values being approximately 30 times larger than TP values. Furthermore it
can be seen, that SVC produces a significantly larger amount of FP values (false alarms), which is also reflected in the statistics
given in Table 4. On the other hand, it also misses less events compared to the GB algorithm, resulting in a lower number of
FNs and thus lower MAR. GB shows an approximately equal number of FP and FN values, but providing more TN values than
SVC.

In addition to the statistics provided in Table 4 and 8, Figure 6 shows observed (red) and predicted (orange=GB and blue=SVC)
foehn events for FS1 (top left corner), as well as the results for all other FS experiments. It should be noted that all observed
events are shown, including those where no GNSS data is available and thus no prediction could be made. This fact also has
to be kept in mind when looking at the results in Table 4, otherwise they might look to optimistic. Nevertheless, some overall
conclusions such as SVC predicting more events than GB (higher POD but lower CAR) is still visible from Figure 6.

Another major advantage of the GB algorithm is its ability to assess the importance of the used features for the prediction
result. In Figure 3, we show the 20 most important predictors (features) for the classification carried out for FS1. By far the best
predictor is the ZWD difference between the stations FLDK and FALE, which is surprising due to the fact that both stations
are not as close to Altdorf as others in the utilized network. Interestingly, also features from stations even further away from
Altdorf have significant impact, most prominently ZWD and also gradient products (even for east-west direction), e.g. in the
Valais area (WEHO and HOH?2 stations). This is reasonable due to the fact that typical wind trajectory in the Rhone valley is
east-west oriented. ZHD differences, representing larger-scale pressure gradients (such as LUZE-STA2 or ETHZ-TORI) are
also found in Figure 3. This is consistent with the study from Sprenger et al. (2017), where the pressure difference between

Ziirich and Locarno was the single most important predictor.
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Figure 3. Feature importance score of the 20 top predictors for the GB algorithm for the setup used in FS1.

4.2 Feature setup 2: NRT products

Feature setup 2 (FS2) addresses the major question to what degree the proposed method can be used for (or incorporated into)
operational forecasting of foehn events. Therefore, the investigations presented for FS1 are extended by using NRT troposphere
products for the two-year test period. This way, we investigate the suitability of the proposed ML algorithms for operational
prediction. NRT troposphere products are currently available in form of tropospheric delays (ZHD, ZWD and ZTD), which are
typically provided with a latency of approximately 30-40 minutes after each full hour. Unfortunately, no atmospheric gradients
are currently delivered in NRT mode, but an extension is possible and aimed for in the near future. The missing gradient
information makes it necessary to train the GB and SVC algorithms again for the dedicated period (2010-2018 of reprocessed
products), but this time only using features related to tropospheric delays (ZWD, ZTD, ZWD differences, ZHD differences).
The detailed setup used for FS2 is again aligned with the criteria outlined before and given in Table 5. Resulting statistics

of the prediction using NRT products can be found in Table 6. In comparison to FS1, a general performance decrease in all
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Table 5. Default setup used for FS2. For features not outlined in a specific row, by default all stations and combinations of stations are used.

Training period 2010-2018

Test period 2019-2020

Station setup Default network: Red triangles in Figure 2

Feature setup ZWD, ZTD, ZWD_diff, ZHD_diff

ZHD_diff combinations KALT-STA2, LUZE-STA2, BOU2-STA2, SIGM-TORI, ETHZ-TORI
Total number of features 501

Foehn events (FI == 1) 5642 hours

Foehn events without GNSS data 2004 hours (35.5%)

measures is apparent for both algorithms. For the SVC algorithm, the degradation is more pronounced for the alarm-based (~
-6% in CAR) than for detection-based measures (almost equal performance). The GB algorithm shows equal degradation for

both types. Rows three and four of Table 8 give the confusion matrix entries for FS2. Results for the different algorithms are

Table 6. Performance metrics for FS2 using NRT GNSS products.

Algoritm POD CAR COMB F> POFD MAR P_predicted P_observed
GB 0.694 0.693 0.694 0.694 0.014 0.014 0.0428 0.0432
SvcC 0.799 0.612 0.706  0.753 0.023 0.010 0.0564 0.0432

almost identical to those of FS1. As for FS1, SVC produces a larger amount of FP values, but misses less events compared to
the GB algorithm. GB again shows an approximately equal number of FP and FN values and provides more TP values.
The top right corner of Figure 6 shows observed vs. predicted foehn events for FS2, in a similar way as already described for
FS1. It also confirms the conclusions drawn from statistics given in Tables 6 and 8, namely that using NRT products increases
the number of false alarms (lowering CAR) compared to post-processed data (FS1). This holds true especially for the GB
algorithm, where significantly more predicted events are visible for FS2 compared to FS1.

This indicates the importance of gradient parameters for the proposed method, as already visible in feature importances of
FS1 (Figure 3). Furthermore, lower quality of ZWD estimates must be taken into consideration as well for the NRT solution,
since lower-quality orbit and clock products have to be used for GNSS processing. Nevertheless, combined measures (F» and
COMB) are still reaching values around 70%, which might qualify the method as a potentially beneficial additional tool for
operational forecasting, if efficient mitigation strategies for missing GNSS data can be applied. Some possible strategies will
be discussed in the outlook section (Section 6).

In the absence of gradient parameters, ZWD differences dominate the top 20 of most important features of the GB algorithm as

to be expected (see Figure 4). The dominance of the top predictor (again ZWD difference between FALE and FLDK) is even
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Figure 4. Feature importance score of the 20 top predictors for the GB algorithm for FS2.

more pronounced than for FS1. Nevertheless, also ZHD differences and DOY are again present and absolute ZWD for certain

stations also shows up.
4.3 Feature setup 3 and 4: Shorter period/more stations

This additional experiments investigate the question if the time period of training data can be reduced when at the same
time new stations (and therefore features) are introduced. This is especially important since it allows for the introduction of
geographically interesting stations (e.g. located at higher altitudes such as SANB or OALP, see Appendix A for more details),
which might be beneficial for the algorithm performance. The details of the feature setup for both experiments are given in
Table 7. The utilized GNSS parameters remain unchanged from the default setup, but in addition four stations (marked in blue
in Figure 2) are added to the station setup. The study period is adjusted to 2015-2019 in order to again be aligned with the

selection criteria and this period is split into training and test period by 80/20% proportion.
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In order to make a direct comparison possible, a fourth feature setup (FS4) is introduced in addition. It uses the station setup
of the former experiments (FS1 and FS2) but the study period of FS3. Resulting statistics for both experiments (FS3 and

FS4) are given in Table 9. The results for FS3 show improvements for both algorithms, especially for alarm-based measures,

Table 7. Default setup used for FS3/FS4. For features not outlined in a specific row, by default all stations and combinations of stations are

used.

Training period 2015-2018

Test period 2019

Station setup Post-processed: Red+blue / red triangles in Figure 2

Feature setup ZWD, GN, GE, ZWD_diff, ZHD_diff

ZHD_diff combinations KALT-STA2, LUZE-STA2, BOU2-STA2, SIGM-TORI, ETHZ-TORI
Total number of features 738/564

Foehn events (FI == 1) 2650 hours

Foehn events without GNSS data 1244 hours (46.9%) / 745 hours (28.1%)

compared to FS4. This outlines the importance of including geographically relevant stations (especially stations at the crest,
i.e. higher altitudes) for the performance of the methods. Confusion matrix elements for FS3 and FS4 can be found in the lower
half of Table 8. Overall, they show the same behaviour as already observed for the other experiments. However, it should be
noted that e.g. the relative amount of FNs is lower for this feature setup, which is also reflected in the (improved) resulting
statistics. One major reason for this is the higher probability of foehn events during 2019 in general. This is evident from both
Table 9 (probability only considering events which are also covered by GNSS data) as well as from Figure 6 (showing all
observed events). Another reason is that introducing new stations also leads to a significant decrease in foehn events, for which
results are available. This is clearly visible by comparing time series for FS3 and FS4, e.g. for the GB algorithm in November
2019 (around DOY 315-320). Still, benefits can be attributed of the newly introduced stations, as they are also reflected in the
feature importances of the GB algorithm, visualized in Figure 5. In this case, the top predictor of FS1 and FS2 (ZWD difference
between FLDK and FALE) is superseded by the ZWD difference between FLDK and SANB (station at San Bernadino pass,
1702 masl). The station SANB, as well as other high-altitude stations (such as OALP), are present a few times in the top 20 for
FS3. ZHD differences are actually no longer among the top predictors for FS3, which might be explained by the fact that ZWD
observations (and having them at relevant location) still provides significantly more valuable information. Feature importances
for FS4 are not shown as they are excepted to be fairly similar to those obtained for FS1, for which the same station setup
and products are used. Overall, it can be concluded that benefits from additional stations can be excepted, although for future

applications of the method it will be crucial to ensure data availability, especially for the top predictors shown in Figure 5.
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Figure 5. Feature importance score of the 20 strongest predictors for the GB algorithm, when using the FS3 setup.

Table 8. Confusion matrix statistics for all four feature setup experiments.

Setup  Algorithm TP TN FP FN

FS1 GB 324 8643 100 106
SvC 346 8567 176 84
FS2 GB 277 8714 123 122
SvC 319 8635 202 80
FS3 GB 222 3797 57 71
SvVC 249 3778 76 44
FS4 GB 258 4249 71 105
SvC 294 4214 106 69

5 Results: Performance analysis for distinctive foehn events

The performance statistics shown in the last section give an overview of the average performance over the test period. In order
to gain more insight on the performance of our method for specific events, we look at a week-long period (including two foehn

events) at Altdorf in the year 2019 in more detail. Therefore we make use of results from both algorithms for FS3, and evaluate
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Table 9. Performance metrics for FS3 and FS4.

Setup Algorithm POD CAR COMB Fy POFD MAR P_predicted P_observed

FS3 GB 0.758 0.796  0.777 0.765 0.015 0.018 0.065 0.071
SvC 0.850 0.766  0.808 0.832 0.019 0.012 0.078 0.071
FS4 GB 0.711 0.784 0.747 0.724 0.016 0.024 0.070 0.078
sSvC 0.810 0.735 0.772 0.794 0.025 0.016 0.070 0.078
Fs1 Fs2
FI
GB
sve
T - - e -— .- T —-———— ———— R
001 091 182 274 001 092 183 275 001 091 182 274 001 092 183 275
DOY 2019/2020 DOY 2019/2020
Fs3 Fs4
1 .- - - - - o1 .- - - - -
001 032 060 091 121 152 182 213 244 274 305 335 001 032 060 091 121 152 182 213 244 274 305 335
DOY 2019 DOY 2019

Figure 6. Time series of observed (red) and predicted (orange = GB, blue = SVC) foehn events for all FS experiments and their respective
time periods (2019-2020 or 2019). Note that (1): curves for GB/SVC are shifted by -0.01/+0.01 with respect to the observed events (FI ==

1) and (2): all observed foehn events are shown here, also those for which no prediction could be made due to missing GNSS data.
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their performance for this specific week against the operational FI.

Between 15.-21.12.2019, two major (south) foehn events were observed at Altdorf, for which we analyse the performance of
our method in the following. Relevant meteorological parameters describing the situation are visualized in the upper two panels
of Figure 7. The upper part shows observations of temperature (red) and relative humidity (green) as well as wind speed (black)
and direction (grey) for the time period 15.-21.12.2019 (DOY 349-355). The first major event started around midnight at DOY
350 (16.12.2019), as visible in significant increase/decrease in temperature/relative humidity as well as the onset of a strong
southerly flow (up to 60 km/h). This situation persisted over 48 hours, until the early morning hours of DOY 352 (18.12.2019).
After a short break during daytime, the second major event started in the late evening of that same day and again lasted close to
48 hours until the evening of DOY 354 (20.12.2019), again accompanied by similar conditions observed at the SMN station.
The bottom part of Figure 7 shows the classification results of our method for GB (orange) and SVC (blue) algorithm as well
as the reference FI index (red) from MeteoSwiss. First of all, it must be noted that for both the initial hours of the first major
event and the last hours of the second event, no full feature matrix was available and therefore no classification was possible.
This highlights the major drawback/limitation of the introduced method. However, as soon as all necessary data is available,
the event is captured by both algorithms.

An overall assessment of the results shows a good average performance of the GNSS-based classification, especially for the
GB algorithm. The SVC algorithm tends to over-predict foehn during the break period and therefore issues a large number of
false alarms. This fact is also reflected in the statistics of all feature setups shown in Section 4 (higher POD but also higher
POFD/lower CAR).

However, the transition from foehn to non-foehn and vice versa is not as accurately captured as in the operational FI index.
One possible reason might be a slightly longer (or shorter) response time of the GNSS-based parameters at a specific station
to a change in synoptic conditions, relative to the classical meteorological parameters observed at Altdorf. Therefore, it might
be beneficial to introduce different time lags on some of the predictors depending on the actual physical parameter and the

geographical location of the contributing stations.

In order to analyse the performance of the methods in more detail, and increase understanding of the physical processes
captured in the GNSS products, we additionally analyse the time series of the most important predictors (features) of the in-
troduced method. Figure 8 shows the six top predictors of the GB classification for FS3, as shown in Figure 5 as well as the
observed foehn periods (color-coded in red). Most of them show distinctive patterns for foehn as well as non-foehn periods,
which are consistent with the physical relationships between GNSS observations and meteorological conditions (as introduced
in Sections 2 and 3.3) experienced for the respective period. ZWD differences show local minima or maxima for the major
foehn periods, as already suspected in Section 3.3. Whether minima or maxima are observed depends on the actual location
of the stations and on how the difference is built. Most of the (ZWD difference) features shown in Figure 8 are built as a
north-south station difference, which was expected to be a good predictor for foehn. Typically, low ZWD values are observed
at stations north of the Alpine ridge (such as FLDK here) and high ZWD values at stations south of the Alpine ridge (e.g.
LOMO). The north gradient observed at station WEHO (GN_WEHO) is also consistent with the physical understanding,
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Figure 7. Time series of meteorological observations (top: temperature (red) and relative humidity (green), middle: wind speed (black) and

direction (grey)). Bottom: classification results of SVC (blue) and GB (orange) and the reference FI index (red)

showing a southward (negative) trend for the observed foehn periods. The only feature which might not be intuitive is the
ZWD difference between the stations ZIMM (near Bern) and HABG (located a bit north of the main Alpine rigde). Although
the extreme values are not as pronounced as for other predictors, they are still visible in the shown time series. This suggests

that in the majority of cases, humid air reaches also the station HABG, which is located further north of the main Alpine ridge.
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Figure 8. Time series of the six top predictors of the GB algorithm (most important features as shown in Figure 5) for the analysed time

period (15.-21.12.2019). Observed foehn events (FI = 1) are color-coded in red.
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6 Conclusions and outlook

In the present study, we introduced a new method for the detection and prediction of foehn events at the Swiss station Altdorf
based on GNSS troposphere products and ML-based classification. We showed the performance of the introduced method by
making use of an eleven-year-long data set of GNSS tropospheric parameters from a dedicated station network, namely the
Swiss AGNES GNSS network as well as additional sites in neighbouring countries. Furthermore, we made use of FI obser-
vations at the SMN-station Altdorf for the chosen time period, provided by MeteoSwiss. In the course of an extensive cross-
validation over the training data set (2010-2018), six different classification algorithms were tested. The two best-performing
algorithms were the GB and SVC algorithms, which were then used in the following feature setup experiments. In a first ex-
periment (FS1), we evaluated results of foehn classifications/predictions from those two algorithms over a two-year test period
(2019-2020) at Altdorf. The second experiment (FS2) investigated the usability of NRT GNSS products for foehn prediction,
in order to assess the feasibility of these low-latency (~ 30-40 minutes) data for operational forecasting. By comparing results
from a third and fourth experiment (FS3 vs. FS4), we assessed the benefit of including single, geographically relevant, GNSS
stations such as high-altitude sites. Additionally, the performance of the method was tested in a detailed investigation of a
weekly period including two strong foehn events in December 2019.

The following main conclusions can be drawn from the presented results:

— The introduced ML-based method using GNSS troposphere products can provide encouraging results. It achieves equal
performance in terms of both detection-based (POD = 75-80%, POFD = 1-2% ) and alarm-based (CAR = 66-76%, MAR
= 1-2% ) metrics. On average, the results of both utilized algorithms are comparable to those obtained by Sprenger et al.

(2017).

— The most promising results can be obtained if the full station network (shown in Figure 2) can be utilized. This incorpo-

rates also stations from neighbouring countries (Austria, Italy, Germany).

— When using NRT troposphere products instead of reprocessed data, e.g. for operational prediction, some degradation of
the results has to be accepted. This shows differently for the two used algorithms. For SVC, the performance loss mainly
concerns alarm-based measures whereas for the GB algorithm both performance metric types are affected similarly.
There are two apparent reasons for the experienced degradation related to the GNSS products. First, the NRT products
do not include tropospheric gradients which show up in the top predictors for the other case studies, at least for dedicated
stations. Second, it can be expected that the quality of the prediction results also is influenced by the quality of the
troposphere products. For NRT products, this quality is lower due to lower-quality (but also lower latency) products used
in GNSS processing (such as satellite orbits and clocks). In order to confirm this assumption, we plan to compare results

using the NRT setup (using only delay-products) on both NRT and reprocessed products in a possible future study.

— The final decision on which algorithm (GB or SVC) to use is left to the actual users. Both algorithms show equal perfor-

mance for combined measures (COMB and F3), with GB providing a more balanced performance in terms of detection-
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and alarm-based statistics. Another major advantage of the GB algorithm is the availability of feature importance infor-
mation, which can provide valuable insight in the physical relations and meaningfulness of the results. Furthermore, its
performance for the detailed event analysis presented in Section 5 was clearly better (significantly lower number of false

alarms).

As expected from the physical background of GNSS troposphere products, ZWD differences from geographically im-
portant stations serve as the most important predictors. Still, also other chosen parameter types such as north and east
gradients as well as ZHD differences (representing pressure gradients) show up in the list of top features for all ex-
periments. Furthermore, it is worth to note that not only stations in the vicinity of Altdorf, but also further away (e.g.
the Valais area or the Rhine valley) play an important role. Therefore also stations from neighbouring countries can be
crucial for a good performance (such as station Feldkirch (FLDK), Austria). Using the special setup of FS3, the benefits
of having additional data from high-altitude stations (SANB, OALP, ZERM) was outlined. Having the positive impacts
of these stations on the result could also allow for shortening the amount of data for training (from nine to four years in

this case), but lost foehn events due to missing data at added stations have to be kept in mind.

Choosing the optimal performance metrics and appropriate pre-processing is a key task in ML-based classification algo-
rithms, especially when working with such a highly imbalanced data set as in this study. The actual choice for the most
important metric(s) strongly depends on the actual application of the prediction method, deciding whether detection-
or alarm-based measures should be preferred. Within this study we tried to tune the algorithms for an optimal balance
between both metric-types and leave a possible decision to the potential users. However, as already outlined before,
there exists a trade-off between POD and CAR and therefore an optimization towards one metric will always result in a

shortcoming towards the other.

Overall, these initial results are promising, and the developed method might aid the meteorological community as an additional
tool for foehn detection and/or prediction as soon as the current major limitations can be mitigated. These limitations of the

introduced method include:

— The most apparent limitation is that the availability of results from our method directly relies on the availability of GNSS

data from all incorporated stations. As soon as data from only one station of the training network is missing, no results
can be provided. This leads to a significant amount of periods (up to half of events in some cases) for which no results

can be produced, as seen e.g. in Section 5.

— Station specificity: This study only shows the applicability of the method for the FI station Altdorf. The performance

achieved at this location cannot be generalized for other stations or a whole region. Tests for other meteorological
stations that regularly experience foehn, both in Switzerland and neighbouring countries, are planned for future studies

(see possible improvements below).

— Supervised learning/dependence on target observations: As we use supervised learning techniques in this study, the

results produced by our method will always be worse in comparison to the FI provided by MeteoSwiss, as this serves
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as our target observation. However, this might change when both GNSS-based FI and operational FI are compared to

another, independent reference data set (such as human forecasts).

Detection-based measures are not yet at the level of studies with meteorological data. However, alarm-based measures

were higher for our study, so a combination of data sets is expected to be beneficial for the overall performance.

Looking into specific foehn events, the introduced method shows weaknesses in terms of capturing the exact periods of
foehn onset and decay, compared to the standard FI algorithm. As only a one-week period (including two major foehn
events) was analysed here, this result cannot be generalized yet. Therefore, further studies are needed to look into more
events in detail and, if needed, develop ways to increase the accuracy of the methods in terms of event start and end

prediction.

Some of these limitations might be overcome by enhancements which can still be achieved through more detailed investigations

in future studies. Possible improvements of the method we aim to investigate in the future would be:

— As stations from neighbouring countries are found to be important for the performance of the methods, extending the

utilized station network for several more of them is expected to benefit the results. Especially having a denser station

distribution on the southern side of the Alps (Italy) should have a positive impact on the performance of the methods.

Introduce time lags of specific predictors, accounting for the response time of the actual parameter at a specific station to
changes in the synoptic conditions indicating a foehn event or not. Pressure-related parameters (ZHD) might be applied
a greater time lag (response in advance), compared to humidity/temperature-related parameters (such as ZWD). As same
relation holds for the geographic location of contributing stations (south stations should response in advance). Such

approaches might help to overcome the limitations in terms of exact onset/decay prediction.

Use the developed method at other foehn locations in Switzerland and neighbouring countries. For some of those loca-
tions, the currently used setup might even provide better results than for Altdorf, based on a denser station network in

those areas (e.g. Valais area).

Enhance the nowcasting capabilities of the proposed method by including GNSS atmosphere gradients in the NRT
products. If possible, gradient parameters should also be estimated at the same rate as delay products (every hour).
Currently, this is done only every 6-12 hours and hourly estimates in between are interpolated linearly. This adaption

might make the detection of smaller foehn events (lasting only a few hours) easier or even possible.

— Mitigation of data gaps in GNSS time series: Actually a number of different strategies can be investigated such as:

— Interpolation techniques: should be explored at least for shorter gaps.

— Training a set of different algorithms, iteratively excluding GNSS data from one station in the feature setup each

time. This could provide a continuous solution under the assumption that only data from one station is missing.
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— Using alternate features in the case of a particular feature missing, which is possible for ML algorithms relying on

weak learners.

570 — Optimization of the methods’ performance by carrying out a more extensive grid search for hyperparameter tuning of

the used algorithms or try new (possibly more sophisticated deep learning) algorithms.

— Test the incorporation of GNSS products (especially from stations showing large impact in this study already) into algo-
rithms based on meteorological data (as Sprenger et al. (2017)). As mentioned before, this might allow for a performance

increase, especially for alarm-based statistics.

575 — Comparison to independent reference data: As mentioned in the list of limitations, the GNSS-based FI will always
perform worse than the opertional FI in direct comparison. Therefore, it would be of interest to compare GNSS-based

results with other, independent methods such as forecasts by human experts.

Code and data availability. Source code, trained algorithms and test data sets are available on request from the corresponding author.

Appendix A: List of GNSS stations

580 This section provides the full GNSS station network which is utilized for this study.
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Table A1l. Full list of GNSS stations utilized for this study. Indicated are Name, geographical location (Longitude, Latitude and Height),

Network to which a station belongs to as well as the Feature setup in which it is used.

Name Longitude [°]  Latitude [°]  Height [masl] Network Feature setups
AIGE 6.128259 46.247775 473.8768 AGNES All
BOU2 7.230437 47.394055 941.9955 AGNES All
DAV2 9.843516 46.812917 1645.5747 AGNES All
EPFL 6.567896 46.521467 460.4702 AGNES All
ETHZ 8.510532 47.407070 594.8398 AGNES All
FALE 9.230295 46.804491 1344.1583 AGNES All
FLDK 9.580601 47.231347 570.3447 BEV All
HABG 8.182777 46.747459 1147.8459 AGNES All
HOH2 7.762704 46.319408 985.7388 AGNES All
HOHT 7.762704 46.319408 985.7388 AGNES All
HUTT 7.834883 47.141075 779.1001 AGNES All
KALT 9.008414 47.217961 477.0371 AGNES All
KOPS 10.115432 46.973951 1906.5541 BEV All
KREU 9.160039 47.641294 529.9748 AGNES All
LECH 10.139078 47.224056 1822.8005 BEV All
LOMO 8.787428 46.172565 437.9931 AGNES All
LUZE 8.300642 47.068204 542.2217 AGNES All
MAR2 7.070694 46.122154 644.1085 AGNES All
NEUC 6.940483 46.993829 504.6724 AGNES All
OALP 8.673724 46.660062 2139.4693 AGNES FS3
PAYE 6.943941 46.812141 548.7010 AGNES All
PFA2 9.784663 47.515328 1090.0990 EUREF All
SAAN 7.301290 46.515572 1419.5502 AGNES All
SANB 9.184548 46.463831 1702.2351 AGNES FS3
SCHA 8.655846 47.737566 638.1986 AGNES All
SIGM 9.223912 48.083589 645.2889 SAPOS All
STA2 8.941636 45.855855 417.2265 AGNES All
STCX 6.501172 46.822386 1155.4289 AGNES FS3
STGA 9.345949 47.441769 753.7296 AGNES All
TORI 7.661280 45.063367 310.7408 EUREF All
WEHO 7.472834 46.382054 2966.9314 COGEAR All
ZERM 7.731996 46.001444 1931.1722 AGNES FS3
ZIMM 7.465275 46.877097 956.3256 AGNES/EUREF/IGS All
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