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Abstract.

Solar photovoltaic power output is modulated by atmospheric aerosols and clouds and thus contains valuable information

on the optical properties of the atmosphere. As a ground-based data source with high spatiotemporal resolution it has great

potential to complement other ground-based solar irradiance measurements as well as those of weather models and satellites,

thus leading to an improved characterisation of global horizontal irradiance. In this work several algorithms are presented5

that can retrieve global tilted and horizontal irradiance and atmospheric optical properties from solar photovoltaic data and/or

pyranometer measurements. Specifically, the aerosol (cloud) optical depth is inferred during clear sky (completely overcast)

conditions. The method is tested on data from two measurement campaigns that took place in
::
the

:
Allgäu ,

:::::
region

::
in Germany

in autumn 2018 and summer 2019, and the results are compared with local pyranometer measurements as well as satellite and

weather model data. Using power data measured at 1 Hz and averaged to 1 minute resolution , the hourly
:::::::
1-minute

:::::::::
resolution10

::::
along

::::
with

::
a
::::::::
non-linear

:::::::::::
photovoltaic

::::::
module

::::::::::
temperature

::::::
model, global horizontal irradiance is extracted with a mean bias error

compared to concurrent pyranometer measurements of 11.45
:::
5.79

:::
W

::::
m−2

:::::
(7.35 W m−2

:
)
:::::
under

:::::
clear

:::::::
(cloudy)

:::::
skies, averaged

over the two campaigns, whereas for the retrieval using coarser 15 minute power data
::::::::
15-minute

::::::
power

::::
data

::::
with

:
a
::::::

linear

::::::::::
temperature

:::::
model

:
the mean bias error is 16.39

:::
5.88

:::
W

::::
m−2

:::
and

:::::
41.87 W m−2

:::::
under

::::
clear

::::
and

::::::
cloudy

:::::
skies,

::::::::::
respectively.

During completely overcast periods the cloud optical depth is extracted from photovoltaic power using a lookup table method15

based on a one-dimensional radiative transfer simulation, and the results are compared to both satellite retrievals as well as data

from the COSMO weather model. Potential applications of this approach for extracting cloud optical properties are discussed,

as well as certain limitations, such as the representation of 3D radiative effects that occur under broken cloud conditions. In

principle this method could provide an unprecedented amount of ground-based data on both irradiance and optical properties
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of the atmosphere, as long as the required photovoltaic power data are available and are properly pre-screened to remove20

unwanted artefacts in the signal. Possible solutions to this problem are discussed in the context of future work.
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1 Introduction

An accurate determination of incoming solar radiation at the Earth’s surface is important not only for both climate and weather

research, but in future will also be vital for the stable operation of the electricity grid. In Germany alone there are 2.2
:::
2.6 million

photovoltaic (PV) systems installed, with a nominal power of 60 GWp (Bundesverband Solarwirtschaft e.V., 2021)
::
71

:::::
GWp25

:::::::::::
(Holm, 2023), so that accurate forecasts of solar PV power generation are indeed becoming indispensable for cost-effective

grid operation. In this context the proliferation of PV systems provides a unique opportunity to characterise global irradiance

with unprecedented spatiotemporal resolution, which would lead to improvements in both weather and climate models. Solar

panels can in this way be seen as a dense network of sensors for atmospheric optical properties. This new information could

facilitate the development of highly resolved PV power forecasts, as well as play a role in improving climate models, in30

particular since the highly variable nature of cloud cover as well as uncertainties in cloud microphysics result in the greatest

uncertainty in our understanding of the radiative forcing of the climate.

It has been shown by several authors [see for instance Urraca et al. (2018); Ohmura et al. (1998); Frank et al. (2018); Zubler

et al. (2011)] that the estimates of global horizontal irradiance (GHI) from both the global ECMWF (ERA5) and regional

(COSMO-REA6) numerical weather prediction (NWP) model reanalyses deviate from ground-based measurements. In Urraca35

et al. (2018), comparisons were
:::
are made with pyranometer measurements from the Baseline Solar Radiation Network (BSRN)

(Ohmura et al., 1998) as well as from a dense network of pyranometers operated by European meteorological services. In

general the model reanalyses overestimate the irradiance under cloudy skies, which is largely due to an underestimation of

cloud optical depth (COD). The mean positive bias of ERA5 daily mean irradiance is +4.05 W m−2 (3.47%) over Europe and

+4.54 W m−2 (2.92%) worldwide. On the other hand, the regional COSMO-REA6 data set underestimates GHI on clear sky40

days, with a mean bias of -5.29 W m−2 (-3.22%), which can be attributed to the use of an aerosol climatology with a too

large aerosol optical depth (AOD), as discussed in Frank et al. (2018). Although the COSMO-D2 data uses a different aerosol

scheme, these negative biases in the GHI are still present, especially in summer (Zubler et al., 2011). Satellite datasets perform

a lot better, with data from the Solar surfAce RAdiation Heliosat (SARAH) showing a mean bias of only +0.86 W m−2

in the daily mean GHI (compared to +4.22 W m−2 from ERA5) over Europe (Urraca et al., 2018). Interestingly SARAH45

overestimates in most cases, with only some stations showing a negative bias related to snow detection. Overall the satellite

measurements display a smaller absolute error than reanalysis products. The positive bias of the GHI from satellite retrievals

was
:
is confirmed by Yang and Bright (2020): their comprehensive global evaluation of hourly satellite irradiance data reveals a

mean bias error1 of 4.67 W m−2 for hourly SARAH-2 irradiance compared to the nine BSRN stations over Europe (excluding

the Austrian station Sonnblick at 3100 m altitude), compared to 7.93 W m−2 for the Copernicus Atmospheric Monitoring50

Service (CAMS) radiation data (cf. Section 3.3).

The idea of using PV systems as radiation sensors has been explored by several authors. In Engerer and Mills (2014),

Killinger et al. (2016) ,
:::
and

:
Marion and Smith (2017), methods are developed in order to use the output of one PV sys-

tem to predict that of another, which is in essence done by inferring GHI from PV power measurements. In all three cases

1Calculated using Table 3 in Yang and Bright (2020).
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empirical models for the decomposition of irradiance into direct and diffuse components are used, and system parameters55

such as orientation and PV module efficiency are required inputs.
:::::::::::::::::::::
Engerer and Mills (2014)

::::::
achieve

:
a
::::::

mean
::::
bias

::::
error

:::
of

:::::
1.09%

:::
for

:::
the

:::
PV

::::::
power

::::::
output

:::::
under

::::
clear

:::
sky

::::::::::
conditions,

:::
but

:::
the

::::::::
accuracy

:::::::::
diminishes

:::
for

:::::
partly

::::::
cloudy

:::::
skies,

:::
as

::::::::
expected;

::::::::::::::::::
Killinger et al. (2016)

::::::
achieve

::
a

:::::
mean

:::
bias

:::::
error

:::::::
between

::::::
-3.9%

::::
and

:::::
-9.8%

:::
for

:::
the

:::::
GHI,

:::::::::
depending

:::
on

:::
the

::::::::
empirical

::::::
model

::::
used

:::
for

::::::::
irradiance

::::::::::::
transposition;

:::
and

:::::::::::::::::::::
Marion and Smith (2017)

::::::
achieve

::
a
:::::
mean

::::
bias

::::
error

:::
for

:::
the

::::
GHI

::
of

::::::
within

::::::
±1.5%

:::::
using

::::::::::
south-facing

:::
PV

::::::::
modules

::
at

::::
10◦,

::::
25◦

:::
and

::::
40◦

:::
tilt

::::::
angles.

:
A similar approach is taken in Elsinga et al. (2017), in this case60

using a single diode PV model and a different decomposition model. In Halilovic et al. (2019) the authors replaced the original

iterative approach used in Killinger et al. (2016) by an analytical method, to minimise computational cost.
:
,
:::
and

:::::::
achieve

:
a
:::::
mean

:::
bias

:::::
error

::
of

:::::::
between

:::::
0.1%

:::
and

:::::
2.1%

:::
for

:::
the

::::::::
resulting

::::
GHI,

:::::
using

::::
data

:::::
from

::::::
silicon

::::::::
reference

:::
cell

::::::::::::
measurements

::
at
::::::::
different

::
tilt

::::
and

:::::::
azimuth

::::::
angles.

In Nespoli and Medici (2017) a different method is introduced, in this case without the need for system-specific information65

such as orientation or nominal power. A similar approach is taken in Saint-Drenan (2015); Saint-Drenan et al. (2015), where

system parameters are estimated by statistical methods. In addition, Scolari et al. (2018), Laudani et al. (2016), Carrasco et al.

(2014) and Abe et al. (2020) have also described the inference of solar irradiance from PV current and voltage measurements

using an equivalent circuit model. In this case greater accuracy is achievable, provided the module temperature is also measured.

This work builds upon the proof of concept study presented in Buchmann (2018) (for clear sky days only), however it70

is unique in that empirical models for the separation of radiation components are avoided – rather an explicit simulation of

the diffuse radiance distribution is performed using libRadtran (Mayer and Kylling, 2005; Emde et al., 2016). Although this is

computationally more intensive it has several advantages over the usual approach [see for instance Perez et al. (1992)]: by using

a state-of-the-art radiative transfer code one can more accurately model the clear sky irradiance, especially for larger solar zenith

angles, and one can explicitly take into account information on aerosol load or ground albedo from freely available datasets.75

In addition it is possible to include information on the state of the atmosphere from weather models, which is particularly

relevant in including the effects of precipitable water on incoming irradiance. The radiative transfer solvers DISORT (Stamnes

et al., 1988; Buras et al., 2011) and MYSTIC (Mayer, 2009) are used for forward model calibration as well as for inferring

atmospheric optical properties and GHI from ground-based irradiance measurements and/or PV power data.

In order for a PV-based determination of solar irradiance to viably complement the global coverage of state-of-the-art satellite80

measurements, a mean bias error of the order of 5 W m−2 would be desirable , which requires precise calibration of the PV

systems
::::
(see

::
the

:::::::::
discussion

:::
on

::::::
CAMS

:::
and

:::::
other

::::::::::::
satellite-based

:::::::
products

:::::::
above).

::::
This

::::
level

::
of

::::::::
accuracy

::::
also

::::::::::
corresponds

::
to

:::
the

:::::
target

:::::::
accuracy

:::
for

::::::
global

::::::::
radiation

::::::::::::
measurements

::::
from

:::
the

::::::
BSRN

:::::::::::::::
(McArthur, 2005).

:::::::::
However,

::::
even

::
if

:::
this

::
is
::::

not
::::::::
achieved,

:::::::::::
ground-based

::::::::
irradiance

:::::::::::::
measurements

:::::
and/or

::::::::
retrievals

::::
can

::
be

::::
seen

:::
as

:::::::::::::
complementary

::::
since

::::
they

:::::
have

:::
the

:::::
added

:::::::::
advantage

::
of

:::::::
superior

::::::::::::
spatiotemporal

:::::::::
resolution. The first step

:
to

:::::::
achieve

:::
this

:
is to accurately model the generated power as a function of85

system-specific parameters, such as the array’s elevation and azimuth angle, conversion efficiency and temperature dependence,

and then extract those parameters from measured power data using a fitting procedure. In order to remove any biases related

to atmospheric conditions, it makes sense to first calibrate the systems under clear skies. Once this has been done to sufficient
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accuracy one can use measured PV power to infer atmospheric optical parameters such as aerosol or cloud optical depth under

different sky conditions, enabling the inference of GHI as well as in some cases of direct and diffuse irradiance components.90

The more parameters used to model the PV power, the greater the uncertainty in the retrieved irradiance. For this reason it

is of course desirable to obtain as much a priori metadata about the PV systems as possible, such as datasheet parameters and

array orientation. However, this information is not always readily available, especially when considering a large amount of PV

systems over a wide area. In that sense, there will always be a trade-off between quantity and quality of the data, which then

plays itself out in the accuracy of the retrieved irradiance. The advantage of PV systems or any ground-based devices is that95

one can achieve a much higher spatiotemporal resolution compared to satellite data or weather models, which thus allows one

to study high-frequency fluctuations of global irradiance.

In the European context, irradiance variability is dominated by the optical properties of clouds and less by those of aerosols.

Ground-based COD retrievals using broadband measurements from pyranometers have been carried out in several studies (see

for example Leontyeva and Stamnes (1994); Boers (1997); Boers et al. (1999); Deneke (2002)). Indeed, the transmission of100

irradiance through a cloud is most sensitive to its optical depth, and less sensitive to droplet radius, single scattering albedo

or asymmetry factor (Leontyeva and Stamnes, 1994). In most previous studies the clouds are assumed to be horizontally ho-

mogeneous in a plane-parallel atmosphere with 1D radiative transfer, which leads to a bias in the extraction of cloud optical

properties, in particular under broken cloud conditions. By neglecting 3D effects, the horizontal transport of photons is not con-

sidered, which however plays an important role in real life situations. These 3D effects can for example lead to an enhancement105

of solar irradiance (Schade et al., 2007), so that the GHI exceeds the clear sky irradiance due to reflected light from the edges

of clouds. The inherent four dimensional variability of clouds also complicates the comparison of ground-based and satellite

retrievals of cloud properties, since one compares the time average of a point measurement with a spatially averaged quantity.

The goal of this work is to demonstrate that PV systems can indeed be used as ground-based sensors for both GHI as well

as to infer the optical properties of the atmosphere, in particular the COD. First results are presented from two measurement110

campaigns carried out in autumn 2018 and summer 2019 in the Allgäu region in southern Germany, as part of the BMWi-

funded project MetPVNet (Meilinger et al., 2021). In Section 2 the forward model and its calibration are discussed, and the

inversion methods are outlined in detail. Section 3 provides a detailed description of the data from the measurement campaigns.

The results are presented in Section 4, with a focus on both tilted and horizontal irradiance as well as cloud optical depth under

overcast skies, and a summary and conclusions are given in Section 5. Further details of the PV modelling aspects and radiative115

transfer simulation are found in the Appendix.

2 Photovoltaic power model: calibration and inversion

In order to infer local atmospheric optical properties from measured PV data, accurate modelling of both atmospheric radiative

transfer as well as PV power generation is required. In this section both the PV model as well as the libRadtran radiative

transfer model is described, along with the calibration and inversion procedure.120
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2.1 Forward model: from atmospheric properties to photovoltaic power

The power generated by a solar PV module depends primarily on incoming short wave solar irradiance and module temperature,

both of which depend on atmospheric conditions. Once this dependence is properly described in a model, PV power and/or

current measurements can be used to infer the irradiance in the plane of the array, taking into account the geometry of the

system, i.e. the elevation and azimuth angle of the solar panels. After extracting this “global tilted irradiance” (GTI) from PV125

data, one can go on to infer atmospheric optical properties such as cloud optical depth and global horizontal irradiance, by

further inverting the radiative transfer model.

The most physically correct method of modelling the power output of a PV plant is with an equivalent circuit model that

captures the properties of semiconductors, such as the two-diode model (see for instance Mertens (2014)). In this way the

temperature dependence of current and voltage is explicitly defined according to the Shockley equation (Shockley, 1949). A130

drawback of such models is their computational complexity and reliance on parameters found on module datasheets, which are

in the most general case not always available. There are however several parameterised models in the literature that attempt

to reduce the power generation equation to a simple relation between incoming plane-of-array irradiance, module area and

temperature-dependent efficiency, with the latter described as a function of ambient conditions. Several such models exist

(see Skoplaki and Palyvos (2009) for a review), with some of the most popular being that of the “PV Performance Modeling135

Collaborative” from Sandia National Laboratories (King et al., 2004, 2007) or the Huld model used in the online PVGIS tool

(Huld et al., 2011). Since the goal here is an inversion, the choice of model depends on the availability of measured data: in

this work and in the context of the AC power data from the MetPVNet campaign, a simplified parametric power model is

employed. The model is described here briefly, and more details are given in Appendix A.

In order to correctly capture the effects of the variable solar spectrum one also needs to take into account the spectral140

response of the PV technology in question (Alonso-Abella et al., 2014), which in the case of an equivalent circuit model can

then be included in the calculation of the photocurrent [see for instance the libRadtran-based spectral PV model described

in Herman-Czezuch et al. (2022)]. In the case of parametrised PV power models, this so-called “spectral mismatch”, i.e., the

difference between the entire spectrum of incoming radiation and the range utilised by a certain PV module, is usually simply

absorbed into the PV model parameters, leading to a site-specific bias that may not take into account variations in the spectrum145

from local atmospheric conditions. By using libRadtran for calibration and inversion along with information on the state of

the atmosphere from weather models one can take these variations into account in the radiative transfer (RT) simulation and

subsequent inversion, as discussed in 2.2 below. In particular the water vapour column and aerosol optical depth at each site

need to be taken into account (see Section A3 in the Appendix).

It can be shown using the diode model [see for instance Sauer (1994); Abe et al. (2020)] that the maximum power point150

(MPP) current generated by a PV module is linearly dependent on the incident irradiance, and only very weakly dependent on

temperature. However, the dependence of MPP voltage on temperature (which itself is a function of irradiance) is an order of

magnitude greater (roughly -0.4 %/K), so that this simple linear relationship breaks down when considering the PV power. In

this work a parameterised power model was
::
is used [see Buchmann (2018), Skoplaki and Palyvos (2009), as well as Dows and

6
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Gough (1995)], with AC PV power described as2155

PAC,mod 'G∠
tot,PV,τ

(
b1 + b2G

∠
tot,SW,τ + b3Tambient + b4 vwind + b5Tsky

)
, (1)

in the case of the linear temperature model defined in Eq. (A3) (TamizhMani et al., 2003), or as

PAC,mod 'G∠
tot,PV,τ

(
b′1 +

G∠
tot,SW,τ

b′2 + b′4 vwind
+ b′3Tambient + b′5Tsky

)
, (2)

in the case of the non-linear temperature model defined in Eq. (A4) (Faiman, 2008; Barry et al., 2020). This means that

the modelled AC power PAC,mod is a non-linear function of plane-of-array irradiance G∠
tot,PV,τ , together with the effects160

of ambient temperature Tambient, wind speed vwind and sky temperature Tsky that influence module temperature and thus

efficiency. Note thatG∠
tot,PV,τ represents the part of the irradiance that contributes to the photovoltaic effect, whereasG∠

tot,SW,τ

:::::::
subscript

:::::
“PV”

:::
for

:::
the

:::::
tilted

::::::::
irradiance

:::::::::
G∠

tot,PV,τ :::::
refers

::
to

:::
the

::::
fact

::::
that

::::
only

:::
the

:::::::
relevant

:::::::::
wavelength

:::
(in

::::
this

::::
case

:::
300

::::
nm

::
to

::::
about

:::::
1200

:::
nm

::::
for

::::::
silicon

:::
PV

::::::::
modules)

::
is
::::::::::
considered,

::::
and

:::
the

::::::::
subscript

:::
“τ”

::::::::
indicates

::::
that

:::::::::::
transmission

:::::::
through

:::
the

:::::
glass

::::::
surface

::
of

:::
the

:::
PV

::::::
panels

:::
has

:::::
been

:::::
taken

:::
into

:::::::
account

::::
with

:::
an

::::::
optical

::::::
model.

::::::
Further

::::::
details

::
of
::::

the
:::::
model

:::::::::
employed

::::
here

:::
are165

::::
given

::
in
::::::::
Sections

:::
A1

:::
and

:::
A2

::
in

:::
the

:::::::::
Appendix,

::::
and

:::
the

::::::::
refractive

:::::
index

:
n
:::
of

::
the

:::::
glass

:::::::
covering

::
is
::::
one

::
of

:::
the

:::::::::
parameters

::::::
varied

::
in

::
the

:::::::::::
optimisation

:::::::::
procedure.

::::
The

:::::::
subscript

::::::
“SW” refers to all incoming shortwave photons .

:
–
:::
the

::::::::::
dependence

::
of

:::
the

:::::::
spectral

::::::::
mismatch

:::::::
between

:::
the

:::
PV

:::
and

::::
SW

::::::::
irradiance

:::::
bands

:::
on

::::::::::
atmospheric

:::::
water

::::::
vapour

:::
and

:::::
other

::::::
factors

::
is

::::::::
discussed

::
in

::::::
Section

::::
2.3.

The parameters bi(b′i), (i= 1 . . .5)
::
in

::::
Eqs.

::
(1)

::::
and

:::
(2) depend on nominal power, efficiency, the temperature coefficient for170

power as well as the temperature model parameters, and are discussed in more detail in Appendix A, which includes a list of all

parameters in Table 2. In practice the module temperature can either be measured or modelled, depending on the availability

of measurements and/or meteorological data.

Within the PV power models described in Eqs. (1) and (2)
:::::
above, the PV module temperature is a static quantity, i.e., the

heat capacity (C) of the PV system is not taken into account. However, when dealing with high-frequency measurements175

of PV power it is necessary to employ a dynamic temperature model, as discussed in Barry et al. (2020). The characteristic

time constant (= C/J , with J the net thermal energy flux of the PV modules) of typically 10 minutes means that the large

fluctuations in irradiance do not translate directly to module temperature variations, i.e. the temperature response is smoothed

out. For simplicity the dynamic temperature model was
:
is
:

not included in the present study, since most of the systems had

power data collected in 15 minute resolution.180

The subscript “PV” for the tilted irradiance G∠
tot,PV,τ in Eqs. (1) and (2) refers to the fact that only the relevant wavelength

(in this case 300 nm to about 1200 nm for silicon PV modules) is considered, and the subscript “τ” indicates that transmission

through the glass surface of the PV panels has been taken into account with an optical model. Further details of the model

employed here are given in Sections A1 and A2 in the Appendix, and the refractive index n of the glass covering is one of the

parameters varied in the optimisation procedure. The dependence of the spectral mismatch on atmospheric water vapour will185

be discussed in Section 2.3.
2The inverter efficiency is included in the parameter s, see Section A in the Appendix.
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N
System parameters

Simulated clear sky irradiance

System parameters

Input parameters
➢ Location
➢ Atmosphere (COSMO)
➢ Aerosol (AERONET)
➢ Albedo (constant)

libRadtran

Optical model

Input parameters
➢ Ambient temperature
➢ Wind speed
➢ Sky temperature

PV model

Modelled powerCalibrated parameters Measured powerOptimisation

Calibration

Figure 1. Schematic diagram showing the different steps of the calibration procedure, with input data sources in green, model steps/algo-

rithms in blue, simulated parameters in orange and system parameters (cf. Table 2) in dark red. Note that in this case only clear sky days or

time periods are considered.

2.2 Model calibration under clear sky conditions

In order to infer the irradiance in the plane-of-array (GTI) from measured PV power or current, the PV model parameters

need to be determined, either from datasheets or with a forward model calibration. This is accomplished using data under clear

sky conditions, together with an accurate simulation of the irradiance, followed by a multi-parameter optimisation to find the190

parameter values. This section describes the technical details of the clear sky simulation and the relevant atmospheric input

parameters used. Figure 1 displays this procedure graphically, and further explanations are given in the following sections.

2.2.1 Radiative transfer simulation with libRadtran

The clear sky simulation of tilted irradiance G∠
tot,PV,τ is performed with the freely available libRadtran software pack-

age (Mayer and Kylling, 2005; Emde et al., 2016), with the input parameters shown in Table 1 and the wavelength range195

300 nm to 1200 nm for silicon PV applications. The corresponding broadband simulation (G∠
tot,SW,τ ) is also performed, as

an input to the temperature model. Spectral integration is carried out using the Kato parameterisation, in order to simplify the

effects of water vapour absorption by using the so-called correlated-k approximation (Kato et al., 1999). The DISORT solver

8



Table 1. Model parameters for libRadtran simulation of clear sky days, including information on their source.

Parameter Symbol Source

Latitude, longitude, altitude, time ϕ,ϑ,z, t Set by PV data

Solar zenith angle, solar azimuth angle θ0, φ0 Calculated with PyEphem (Rhodes, 2022)

Temperature profile T (z) COSMO (Baldauf et al., 2011)

Pressure profile p(z) COSMO

Water vapour [H2O](z) COSMO

Ozone [O3](z) US standard atmosphere

Albedo ρ(λ) Constant (0.2)

Ångström turbidity coefficient τa,1 AERONET (Holben et al., 1998)

Ångström exponent α AERONET

Other aerosol optical properties - OPAC “continental average” (Hess et al., 1998)

allows for an explicit calculation of the diffuse radiance distribution on a predefined lattice of elevation and azimuth angles,

and the pseudospherical approximation is employed, so that only radiative transfer calculations at solar zenith angles (SZA)200

of up to 80 degrees can be reliably performed. The Python package PyEphem (Rhodes, 2022) is used to accurately determine

the sun position for the corresponding latitude, longitude, time coordinates. COSMO model data (see Section 3.2) are interpo-

lated by the package cosmomystic (see software supplement) in both time and space in order to create atmosphere profile

files suitable as input for libRadtran, in 15 minute resolution. In this way variations in water vapour and other atmospheric

trace gases are taken into account, and the atmospheric layers are cut off at the appropriate altitude of each site. Concurrent205

measurements by an AErosol RObotic NETwork (AERONET) sun photometer (Holben et al., 1998) are used to extract the

Ångström exponent α and turbidity coefficient τa,1 with the aeronetmystic (see software supplement) software package.

Other aerosol optical properties such as the single scattering albedo and asymmetry factor are taken from the Optical Properties

of Aerosols and Clouds (OPAC) species library with the option “continental average” (see Table 3 in Hess et al. (1998)).

In order to speed up the simulation the code is parallelised to run on multiple processors: the simulaton times are divided210

up into batches and libRadtran is then called multiple times as a subprocess from Python. In this way the clear sky simulation

takes approximately 1 second per time step (8 seconds on an 8 core machine), using a diffuse radiance field of 5◦ resolution in

both elevation and azimuth angle, atmosphere files modified from COSMO data and modified aerosol inputs from AERONET

and OPAC.

2.2.2 Non-linear optimisation for PV system parameters215

The simplified parametric model described above can be written as

PAC,mod ≡ y = F (x,h) , (3)

9



Table 2. List of PV model parameters in x. In the calibration procedure, those parameters in x known to a certain degree (from datasheets

or other sources) of accuracy were
::
are

:
fixed, whereas all others were

::
are varied.

Parameter (x) Symbol Source (if available)

Tilt angle θ laser scanning and/or theodolite

Azimuth angle φ laser scanning and/or theodolite

Glass refractive index n optimisation

Scaling factor s optimisation

Temperature coefficient ζ datasheet and/or optimisation

Temperature model parameters ui (i= 0,1,2,3) optimisation and/or model (Barry et al., 2020)

Table 3. List of additional inputs in h used for calibration on clear sky days. The subscripts “PV” and “SW” refer to the different wavelength

bands used for integration, see the discussion in Section 2.2.1.

Parameter (h) Symbol Source

Direct tilted irradiance G∠
dir,PV(SW) libRadtran simulation (see Table 1)

Diffuse tilted irradiance G∠
diff,PV(SW) libRadtran simulation (see Table 1)

2m ambient temperature Tambient COSMO and/or measured

Wind speed at 10m vwind COSMO and/or measured

Longwave downward welling irradiance G↓LW measured

for the forward model F described by Eq. (A1) and state space defined by (cf. Table 2)

x≡ (θ,φ,n,s,ζ,ui) , (4)

so that the calibration procedure is effectively a non-linear, multi-parameter optimisation problem with eight (for the non-220

linear temperature model)3 or nine (for the linear temperature model) unknowns. As shown in Table 3, the parameter space

h in Eq. (3) contains the irradiance proxy from the libRadtran simulation as well as temperature and wind speed data from

either the COSMO model or measurements, which were
:::
are interpolated to 15 minute resolution. In addition the measured sky

temperature (see Section 3.1) was
:
is used. This inversion problem can be solved with the methods detailed in Rodgers (2000).

In this case the Levenberg-Marquardt algorithm was
::
is used, with the Jacobian matrix calculated explicitly at each iteration.225

If one varies all parameters in x it quickly becomes apparent that there are not enough degrees of freedom in the signal to

uniquely determine a solution with the Bayesian formalism, since several parameters are highly correlated with each other, for

instance the inclination angle θ with the scaling factor s, or the orientation angle φ with the temperature model parameters or

the coefficient ζ (cf. the discussion in Section 4.1). It is thus expedient to extract the temperature model parameters separately

3In the non-linear Faiman model there are less temperature parameters as the ambient and sky temperatures are not independent, as is the case in the linear

model, cf. Eqs. (A3) and (A4).
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Simulated clear sky irradianceInput parameters
➢ Location
➢ Atmosphere (COSMO)
➢ Aerosol (AERONET)
➢ Albedo (constant)

libRadtran

Input parameters
➢ Ambient temperature
➢ Wind speed
➢ Sky temperature

Inverted PV model

All sky GTI

Calibrated parameters Interpolated data

Spectral mismatch

Clearness index

Interpolation

Cloud fraction
3D LUTAll sky GHI

Inversion

1D LUTAOD/COD

DNI/DHI/GHI

Clear/Overcast

Broken clouds

Figure 2. Schematic diagram showing the different steps of the inversion procedure, with input data sources in green, model steps/algorithms

in blue, simulated/retrieved parameters in orange and system parameters in dark red. Note that in this case all atmospheric conditions (all

sky) are considered.

using measured module temperature for different PV system configurations (if available) and then fix those parameters in the230

optimisation procedure. In Barry et al. (2020) a dynamic model was developed by fitting the measured and modelled module

temperature using three different PV systems with different mountings. These results (for the static model case) were
:::
are used

in the overall optimisation, where appropriate.

The calibration algorithm is designed to allow certain parameters to be fixed if they are known, whereas unknown parameters

are varied with a given a priori error, which in turn affects the parameter retrieval error and thus propagates into the uncertainty235

in the inferred irradiance.

2.3 Model inversion under all sky conditions

The calibrated PV systems can now be used as sensors to extract information about the state of the atmosphere. This section

describes the different methods used to infer both irradiance and atmospheric optical properties from PV power data, as sum-

marised in the schematic diagram in Figure 2. The method employed depends on the prevailing weather conditions, specifically240

on the amount (and type) of cloud cover. In a nutshell, using a 1D DISORT-based method one can use GTI to extract AOD or

COD during clear or completely overcast periods, respectively, which thus allows the determination of the direct and diffuse
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irradiance components. Under broken cloud conditions, a 3D MYSTIC-based method allows one to determine the GHI from

GTI directly. The DISORT and MYSTIC lookup tables (LUTs) are provided in an open data repository.

2.3.1 Global tilted irradiance from PV model inversion245

Once the PV system has been calibrated under clear sky conditions, the system parameters can be fixed and the measured PV

power can be used to infer the global tilted irradiance (GTI, also denoted asG∠
tot,SW) under all sky conditions. The temperature

model makes use of broadband irradiance [see Eqs. (1) and (2)], whereas the PV power model uses only the relevant spectral

range of silicon PV modules (300 nm-1200 nm), so that the spectral mismatch between the light converted to electricity

(G∠
tot,PV,τ ) and the entire shortwave spectrum needs to be taken into account when inverting the model chain.250

The ratio of PV-relevant (G∠
tot,PV) to broadband (G∠

tot,SW) tilted irradiance is a function of system geometry, time of day

as well as local atmospheric conditions, with the largest contributing factor being the precipitable water in the atmosphere. In

order to take this into account the libRadtran clear sky irradiance simulations (see Section 2.2.1) were
::
are

:
used to characterise

the ratio

ξspec,GTI ≡
G∠

tot,PV,τ

G∠
tot,SW,τ

= f(Θ, [H2O],AOD) , (5)255

as a function of incident angle Θ, precipitable water and aerosol optical depth, for each station and measurement campaign. In

this way the available information on water vapour column and aerosol extinction from the COSMO model and AERONET can

be taken into account in the PV model inversion. Details are given in Section A3 in the Appendix. The fitting function could in

principle be extended to include ozone column abundance, which was
:
is
:
however not included here, since this information was

:
is
:
not available from the COSMO model data. Note that although this method does not take into account the effect of clouds on260

the spectral mismatch it is a good first approximation, which will be improved upon in future work (see also Rivera Aguilar and

Reise (2020) for an alternative method). In addition one could modify this algorithm to include operational satellite retrievals

of atmospheric parameters such as ozone concentration, if required.

Once the spectral mismatch factor ξspec,GTI has been calculated, the next step is to extract the plane-of-the-array irradiance

from PV power, which in the case of the models given in Eqs. (1) and (2) is simply the solution to the quadratic equations in265

G∠
tot,SW,τ , i.e.,

ξspec,GTI b2
(
G∠

tot,SW,τ

)2
+ (b1 + b3Tambient + b4 vwind + b5Tsky)ξspec,GTIG

∠
tot,SW,τ −PAC,meas = 0 , (6)

for the linear temperature model and

ξspec,GTI

(b2 + b4 vwind)

(
G∠

tot,SW,τ

)2
+ (b1 + b3Tambient + b5Tsky)ξspec,GTIG

∠
tot,SW,τ −PAC,meas = 0 , (7)

for the non-linear temperature model. These equations can be solved with the quadratic formula, using the calibrated parameters270

b1,2,3,4,5 (b′1,2,3,4,5) as defined in Eq. (A5) (Eq. (A6)) for the linear (non-linear) temperature model, the available data for

Tambient, vwind and Tsky as well as the spectral mismatch factor for GTI defined in Eq. (5). Note that the inverted G∠
tot,SW,τ

is the irradiance impinging upon the PV module under the glass covering, so that the optical model has not yet been inverted.
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In order to compare this quantity with pyranometers, the transmission of light through the glass τPV,rel(Θ) [also known as

“incidence angle modifier”, see Eq. (A9)] must be taken into account, so that the final GTI is given by [see also Eq. (A15)]275

G∠
tot,SW =

G∠
tot,SW,τ

τPV,rel,eff
. (8)

For the direct extraction of GTI an empirical formulation is used to find the effective indicence
::::::::
incidence

:
angle for the diffuse

component, whereas for the inversion onto optical properties the refractive index is explicitly taken into account within the

radiative transfer simulation. More details are given in Section A2 in the Appendix.

2.3.2 Clearness index and irradiance variability classification280

Using the global tilted irradiance extracted from measured PV power data, different methods are used in order to extract

atmospheric optical properties and global horizontal irradiance, depending on the prevailing weather conditions. By combining

the inverted tilted irradiance with the corresponding clear sky curve one can calculate a clearness index

ki(t) =
G∠

tot,SW,τ,inv(t)

G∠
tot,SW,τ,clear(t)

(9)

for each time step, allowing the data to be separated into clear, overcast and broken cloud time periods. The clearness index is285

then used to estimate the cloud fraction, which will be
:
is
:
discussed in more detail in Section 2.3.3.

On clear days (or during clear time periods) the aerosol optical depth (AOD) can be inferred, whereas under cloudy condi-

tions the cloud optical depth (COD) can be found, depending on the degree of cloud cover. In this work the extraction of COD

using a DISORT-based LUT under completely overcast skies is examined in more detail in Section 2.3.3. An in-depth analysis

of aerosol optical properties will be carried out in future work. For broken cloud conditions, a MYSTIC-based LUT was
::
is290

used to infer the global horizontal irradiance from tilted irradiance measurements, as discussed in Section 2.3.5 [see Chapter 9

of Meilinger et al. (2021)].

2.3.3 Cloud optical depth with DISORT lookup table

Cloud optical properties are functions of microphysical properties such as droplet size distribution, droplet number concen-

tration as well thermodynamic phase. For water clouds, the absorption and scattering of solar irradiance can be efficiently295

characterised (Hu and Stamnes, 1993) by the effective radius reff and cloud liquid water content (LWC), which can be related

to cloud optical depth (COD, τc) through

τc =
3LWP

2reff ρH2O
, (10)

where the liquid water path (LWP) is the integral of the LWC across the height of the cloud.
:::
The

::::::::
derivation

:::
of

:::
this

::::::::
equation

[
::
see

:::
for

:::::::
instance

:::::::::::
Petty (2006)]

:::::::
assumes

:::::
large

::::
Mie

:::::::::
extinction,

:::::
which

::
is
:::::::
justified

:::::
since

::::::
clouds

::::::
appear

::
to
:::

be
:::::::
(mostly)

:::::
white

:::
in300

::
the

:::::
solar

::::::::
spectrum.

:
Although both τc and reff can be accurately retrieved from spectral measurements of reflected radiation,

the transmission of light through clouds is mostly sensitive to the cloud optical depth. This is due to the fact that changes in
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Table 4. Cloud parameters for the DISORT simulation of a continental stratus cloud (Hess et al. (1998)).

Cloud parameter Value

Liquid water content (LWC) 0.28 g m−3

Effective radius (reff ) 7.33 µm

Cloud height (h) 1 – 2 km

transmission due to variations in single scattering albedo and asymmetry factor (which depend on reff ) are small compared to

those due to changes in optical depth (Leontyeva and Stamnes, 1994). For illustration, in the two stream approximation for

conservative scattering (no absorption), the transmittance T can be shown to be [see for instance Petty (2006)]305

T =
1

1 + (1− g)τc
, (11)

where g is the asymmetry factor. For liquid water clouds, scattering is mostly in the forward direction, with g ' 0.85, whereas

for ice clouds g ' 0.7. In both cases the variations in g are small, so that τc is the primary factor influencing T . The hyberbolic

:::::::::
hyperbolic dependency of T on τc means that the transmission curve is rather steep at small optical depths, but flattens out for

COD & 15. This has implications for the accuracy of ground-based retrievals, as will be discussed in detail in Section 4.4. It310

must also be noted that in the algorithm described in Section 2.3.1, spectral variations in cloud optical properties are not taken

into account. In practice this means that variations in the single scattering albedo at higher wavelengths around 1 µm (silicon

PV modules are still sensitive to wavelengths up to 1.2 µm) may be unaccounted for.

In this work a lookup table for the optical depth of a typical stratus cloud is constructed using DISORT in 15 minute time

intervals, under the assumption of a pseudospherical or plane-parallel atmosphere with horizontally homogeneous liquid water315

¸clouds and a completely cloudy sky. This means that 3D effects are not taken into account and the results need to be interpreted

with care, especially in situations with broken clouds. In addition, different cloud types such as thicker cirrus clouds, mixed

phase or multi-layer clouds are not properly represented by the LUT. Due to the pseudospherical approximation only SZA

up to 75◦ are considered (for SZA above 75◦ with cloud cover the pseudospherical DISORT solver is unstable). The cloud

parameters in Table 4 are input into libRadtran and the COD at 550 nm (τc,550nm) is varied on a 16 step logarithmic scale320

between COD = 0.5 and COD = 150, using the default “hu” parameterisation (Hu and Stamnes, 1993) and 16 streams.
::::
Note

:::
that

:::
the

:::::
COD

::::
LUT

::::
also

::::::::
implicitly

:::::::
contains

::::::
aerosol

::::::::::
information

::
as

:::
an

:::::
input,

::::
since

::::
here

:::
the

::::::
aerosol

:::::::::
properties

:::
are

::::
fixed

:::::
using

:::
the

:::::
OPAC

:::::::
database

::::::::::::::::
(Hess et al., 1998),

:::
and

:::
the

:::::::::
Ångström

:::::::::
parameters

:::::
from

:::::::::
AERONET

:::
are

:::::
used.

As described for the clear sky simulation in Section 2.2 the direct irradiance and diffuse radiance field are calculated with

libRadtran, the latter in this case with a coarser resolution of 10 degrees in both azimuth and elevation angles.4 The LUT is325

then used to find the COD by first calculating the plane-of-array irradiance for the corresponding PV system or pyranometer

orientation (cf. Section 2.3.1) and then interpolating the COD in time to match the resolution of the measured data. For this
4Note that for more accurate radiance calculations one could use the “mie” option in libRadtran, which uses pre-calculated tables for Mie scattering and is

however computationally more expensive.
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purpose the original 1 Hz pyranometer and PV data were smoothed to 1 minute
:::
are

::::::::
smoothed

::
to

::::::::
1-minute resolution, whereas

the low frequency PV data was
::
is kept at 15 minute resolution (see Section 3.1).

In order to determine the exact time points at which a cloud is above the sensor, the cloud fraction is determined by creating330

a mask based on the clearness index in Eq. (9) using a threshold of 0.8 and overshoot limit of 1.1, i.e.,

cf(t) =


1 if ki(t)≤ 0.8

0 if 0.8< ki(t)≤ 1.1

nan if ki(t)> 1.1

. (12)

This binary cloud mask (clear = 0, cloudy = 1) is then also smoothed with a moving average function over 60 minutes in order

to create an estimate of the cloud fraction (〈cf〉60)for comparison with cloud camera measurements. .
:::::::
Varying

:::
the

:::::::::
thresholds

::
in

:::
Eq.

::::
(12)

:::::
shows

:::
that

:::
the

:::::
cloud

:::::::
fraction

::::::::
computed

::
in
::::
this

::::
way

:::::::
depends

:::
less

:::
on

:::
the

::::
exact

::::::::
threshold

:::::
used,

:::
but

::::
more

:::
on

:::
the

:::::::
window335

:::
size

::::::
chosen

:::
for

::::
the

::::::
moving

::::::::
average.

::::::
Indeed,

::::::::::
comparison

:::::
with

:::::::::
concurrent

:::::
cloud

:::::::
camera

::::::::
retrievals

:::::
shows

::::
that

:::
60

:::::::
minutes

::
is

:
a
:::::::::
reasonable

:::::::::
averaging

::::
time

::
to
::::

use,
:::::

when
:::::::::

averaging
::
a

:::::
cloud

:::::
mask

::::::
created

:::::
with

::::
data

::
at

::::::::
1-minute

:::::::::
resolution.

:::::::::
However,

:::
the

::::::::
algorithm

::
is

::::::
limited

::
by

:::
the

:::::::
viewing

:::::
angle

:::
of

:::
the

::::::::
respective

:::
PV

::::::
system

:::
or

:::::::::::
pyranometer,

::
so

::
it

:::
can

::
be

:::::::::
inaccurate

:::::
when

:::::
there

:::
are

::::
many

::::::
clouds

:::
on

:::
the

:::::::
horizon,

:::
for

:::::::
instance.

:

The COD is then only extracted for data points for which cf(t) = 1, i.e. by finding the values of τc,550nm for which340

G∠
tot,SW,meas/inv =G∠

dir,SW,cloudy(τc,550nm) +G∠
diff,SW,cloudy(τc,550nm) , (13)

for all points under a cloud, where “meas” or “inv” refer to measured or inverted GTI from pyranometers or PV systems,

respectively. The corresponding direct and diffuse components can then also be extracted from the LUT, although in this case

the direct irradiance is basically zero (beneath a cloud).

As mentioned above, this approach is limited by the fact that a 1D radiative transfer solver such as DISORT cannot take into345

account horizontal transport of photons, so that 3D effects such as radiative enhancement under broken cloud conditions [see

for instance Schade et al. (2007)] are not taken into account. For this reason only situations with overcast conditions will be

considered when applying this method. In situations with low overall cloud cover, the COD is not the main determinant of the

total irradiance received by the sensor or PV system, but rather the cloud fraction and/or the AOD. To this end a complementary

approach using a MYSTIC-based LUT (see Section 2.3.5) was
:
is used, in order translate measured tilted irradiance to horizontal350

irradiance under broken cloud conditions.

2.3.4 Aerosol optical depth with DISORT lookup table

As mentioned above, in this work the extraction of the AOD will not be discussed in detail. However the procedure will be

briefly described here, since this is used as an alternative method for determining the GHI from tilted irradiance measurements.

An AOD-GTI lookuptable
::::::
lookup

::::
table

:
can be created in a similar way to the COD LUT described in Section 2.3.3, where355

in this case the AOD at 500nm is varied on a logarithmic scale in 16 steps between AOD = 0.01 and AOD = 1. In addition,

the aerosol properties are fixed to the so-called “continental average” scheme from the OPAC database Hess et al. (1998)
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:::::::::::::::
(Hess et al., 1998),

::::
and

:::
for

:::
the

::::::::
inversion

:::::::::
procedure

::::
the

:::::::::::::::
AERONET-based

:::::::::
Ångström

:::::::::
parameters

:::
are

::::
not

::::
used

:::
as

:::::
input. In

this way
::::::
context

::
it

::::
must

:::
be

:::::
noted

:::
that

::::
the

::::::
typical

::::
dust

:::::
event

:::::::
reaching

:::::::
Europe

::::
does

:::
not

:::::
have

::::
such

::
a

::::
high

:::::
AOD,

:::
but

::
is
::::::

rather

:::::::::::
characterised

::
by

:::::
small

::::::
values

:::
of

:::
the

::::::::
Ångström

::::::::
exponent

::::
less

::::
than

:::
1,

::::::::
indicating

::::
the

:::::::
presence

:::
of

::::::
coarser

::::
dust

::::::::
particles.

::::
For360

:::::::
example,

::::
one

::::
study

:::
of

::
the

:::::::::::
climatology

::
of

:::
dust

::::::
events

:::::
found

:
a
:::::
mean

:::::
AOD

::
of

::::::
0.155,

::::
0.32

:::
and

:::::
0.122

:::
for

::::
dust

::::::
plumes

::
in

::::::::
southern,

:::::
central

::::
and

:::::::
northern

::::::
Europe

::::::::::::::::::
(Mandija et al., 2018)

:
.

:::::
Using

:::
the

::::::::
AOD-GTI

::::::
lookup

:::::
table, the AOD can be extracted on clear sky days, and thus

:::
from

::::
this

:::
also

:
the direct and diffuse

irradiance as well as the global horizontal irradiance.

::
In

:::
this

::::
way

:::
the

:::::
AOD

:
is
:::::
used

::
as

::
an

:::::::::::
intermediate

:::
step

:::
for

:::
the

::::::
reverse

:::::::::::
transposition

::
of

::::
GTI

::
to

:::::
GHI. In Germany and especially365

in the Allgäu region the AOD is however
:::::
usually

:
very small (almost always lower than

:::::
during

:::
the

:::::::::::
measurement

:::::::::
campaigns

::
it

:::
did

:::
not

::::::
exceed 0.5

::
at

::::::
550nm), so that any errors in the calibration procedure lead to large relative biases in the AOD. This then

leads to biases in the direct and diffuse components, but since there are very few absorbing aerosols, these errors have opposite

signs and largely cancel out in the determination of the GHI. In Section 4, the GHI extracted via both COD and AOD under

different conditions will be
::
is compared to that measured by pyranometers and satellites, as well as the GHI predicted by the370

COSMO weather model. However the inferred AOD itself will be not be
:
is

:::
not examined in detail.

2.3.5 From tilted to horizontal irradiance with MYSTIC lookup table

In order to extract the global horizontal irradiance from the tilted irradiance (from pyranometers or PV systems) a MYSTIC-

based LUT for the GHI was developed using LES cloud fields Črnivec and Mayer (2019)
::::::::::::::::::::::
(Črnivec and Mayer, 2019), taking

into account various factors such as albedo, water vapour, sensor geometry and cloud fraction. Detailed 3D radiative transfer375

simulations were carried out and the most important factors turn out to be simply the sensor and sun geometry as well as

the cloud fraction, which reflects the fact that a pyranometer or PV system sees the entire sky. A detailed description of the

MYSTIC LUT is given in Chapter 9, Section 9.1.5 of Meilinger et al. (2021).

::::
Table

::
5
::::::
shows

:::
the

:::::
limits

:::
of

::::::::::
applicability

:::
of

:::
the

::::::::
MYSTIC

:::::
LUT,

:::
for

::::::
which

:::::
there

:::
are

::::
three

::::::
major

:::::::
reasons.

::::::
Firstly,

:::::::
despite

::::::
several

:::::::::::
optimisations

::::
like

:::
the

::::::::
reduction

::
of

:::
the

:::::::
number

:::
of

:::::::
photons

::::
used

:::
for

:::
the

::::::
Monte

:::::
Carlo

::::::::::
simulations,

::::
the

::::::::::::
computational380

::::::
demand

:::
for

::::::::::
calculating

:::
the

::::
LUT

::
is
:::::
high.

:::
For

::::
this

::::::
reason,

::::
20◦

:
is
:::::::

chosen
::
as

:::
the

:::::
lower

:::::
limit

::
for

::::
the

::::
SZA,

:::::
since

::
in

:::
the

::::::::
latitudes

:::::
under

::::::::::
investigation

:::
no

::::::
smaller

::::::
values

:::::
occur.

:::::::
Similar

::::::::::::
considerations

:::::
apply

::
to

:::
the

:::
tilt

:::::
angle

::
of

:::
PV

::::::
panels

:
–
::
in

:::::::
Allgäu,

::::::::
Germany

:::
one

:::::
rarely

:::::::::
encounters

::::
title

:::::
angles

:::::
larger

::::
than

::::
50◦.

::::
The

::::::
second

::::::
limiting

:::::
factor

::::::
relates

::
to

:::
the

::::::::
derivation

:::
of

:
a
:::::
cloud

::::
mask

::::
and

:::::
cloud

::::::
fraction

:::::
from

:::
the

:::::::
radiation

::::::::::::
measurements

:
[
:::
see

:::
Eq.

::::
(12)]

:
.
::::::
Firstly,

:::
this

::
is
::::
only

:::::::
possible

:::::
when

:::::
there

:
is
::::::
direct

:::
line

::
of

:::::
sight

:::::::
between

::
the

::::
sun

:::
and

:::
the

:::::::
module

::
or

:::::::
sensor,

:::::
which

:::::
limits

:::
the

:::::::
relative

:::::::
azimuth

:::::
angle

:::::::
between

:::
the

::::
sun

:::
and

::::
the

:::
PV

:::::
panel.

:::::::::
Secondly,

:::
the385

::::::::
derivation

::
of

:::::
cloud

:::::::
fraction

::::
from

:::::::::
temporally

:::::::
resolved

::::::::
radiation

:::::::::::
measurements

::::::::
becomes

::::::::
imprecise

::
at

::::
large

:::::
SZAs

:::
for

::::::::::
geometrical

::::::
reasons,

:::
so

:::
that

:::
the

:::::
upper

::::
limit

:::
of

:::
the

::::
SZA

::
is

::
set

::
to
::::
60◦.

:::::::
Finally,

:::
the

:::::
cloud

::::::
fraction

:::::
limits

:::
are

::::::::::
determined

::
by

::::
two

::::::
factors:

::::::
firstly,

::
the

:::::
LUT

::::::
model

:::
was

:::::::::
developed

:::
and

::::::
tested

:::
for

:::::
partly

::::::
cloudy

:::::::::
situations.

::::
The

::::::
special

::::
cases

:::
of

:::
0%

::::
and

:::::
100%

:::::
cloud

:::::::
fraction

:::
are

:::::::::
considered

::::::::
separately

::::
with

:::
the

:::::::::::::
DISORT-based

:::::
LUTs,

:::
as

::::
other

:::::::::
parameters

::::
like

::::
AOD

::::
and

:::::
COD

::::::
become

:::::::
relevant

::::
here.

:::::::::
Secondly,

::
the

:::::
exact

::::::
cloud

:::::::
fraction

:::::
limits

:::::
(0.13

::::
and

:::::
0.82)

:::::
given

::
in

:::::
Table

::
5
:::
are

::::::::::
constrained

:::
by

:::
the

::::::::
available

::::::
cloud

::::::
scenes

::::
from

:::::
LES390

::::::::::
simulations.
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Table 5.
:::::
Limits

::
on

:::
the

::::
input

:::::::::
parameters

::
for

:::
the

:::::::
MYSTIC

::::
LUT.

::::
Input

::::::::
parameter

:::::
Limits

:

::::
SZA

:::
(θ0) [

:::
20◦,

:::
60◦]

:::
Tilt

::::
angle

:::
(θ) [

::
0◦,

:::
50◦]

::::::
Relative

::::::
azimuth

::::::::
(|φ−φ0|): [

::
0◦,

:::
90◦]

:::::
Cloud

::::::
fraction [

:::
0.13,

::::
0.82]

The measured or inverted tilted irradiance, together with the average cloud fraction over the last hour ([as described above)
:
,

::
cf.

:::
Eq

::::
(12)] is fed into the MYSTIC LUT, along with the sensor and sun geometry. In this way the GHI can be extracted from

the GTI under broken cloud conditions. This method can however not be used to determine the optical depth, nor can the direct

and diffuse irradiance components be separated from each other, since the fit was created using the GTI and GHI.395

3 Measurement and validation data

3.1 Ground-based measurements

Model calibration and inversion was
:
is
:
performed with PV power data recorded over two measurement campaigns in autumn

2018 and summer 2019, as part of the MetPVNet measurement campaign [see Chapter 3 of Meilinger et al. (2021)]. There

were a total of 24 stations spread out in the region around Kempten (47.715924◦N, 10.314006◦ E), as shown in Figure 3, with400

22 of them equipped with silicon-based pyranometers measuring both GHI and GTI in the plane-of-array of the PV system.

Two master stations (MS01 and MS02) were also equipped with secondary standard pyranometers and pyrheliometers in order

to measure both components of the incoming short wave radiation, cloud cameras as well as spectrometers to record spectral

information. The station MS01 also contained a sun photometer to determine aerosol properties, as part of AERONET, as well

as a pyrgeometer to measure longwave downwelling irradiance.405

The PV power data was for the most part provided by the local distribution network operator Allgäuer Überlandwerk GmbH

(AÜW), recorded in 15 minute intervals. These data represent the amount of energy generated in the last 15 minutes, so that

care needs to be taken to translate them into a measured power corresponding to a specific time stamp. For this purpose the data

were
:::
are simply shifted by half a period and resampled, since by integration of power over 15 minutes one effectively smooths

the power curve. In addition there were five stations equipped by egrid GmbH with high frequency power measurement devices:410

for these stations the power was recorded in 1 Hz resolution.

Analysis of the measured data revealed a total of twelve clear sky days that occurred between 12 September 2018 and 14

October 2018, as well as nine clear sky days between 25 June 2019 and 13 August July 2019, as shown in Table 6. COSMO

model data for the corresponding days was procured from Germany’s National Meteorological Service, the Deutscher Wet-
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Figure 3. Map showing locations of PV systems used in the MetPVNet measurement campaign (taken from Google Earth). The top left

corner is at 47.85◦ N, 10.09◦ E, the bottom right corner at 47.38◦ N, 10.52◦ E. The yellow line marks the border between Germany and

Austria; the grey line is the border between the states of Bavaria and Baden-Württemberg.

terdienst (DWD), in order to accurately recreate atmospheric conditions using cosmomystic. These days were
:::
are used for415

calibration of each PV system.

The network of PV systems was equipped with low cost silicon-based pyranometers, with two devices per station: one

mounted in the plane of the PV array and one horizontal, with 1 Hz resolution and an overall accuracy of 5%. These sensors had

been absolutely calibrated at the Leibniz Institute for Tropospheric Research (TROPOS) prior to the campaign, by comparing
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Table 6. Dates of clear sky days during the measurement campaigns in autumn 2018 and summer 2019.

1st campaign
12 Sept 2018 17 Sept 2018 20 Sept 2018 27 Sept 2018 30 Sept 2018 4 Oct 2018

5 Oct 2018 8 Oct 2018 10 Oct 2018 12 Oct 2018 13 Oct 2018 14 Oct 2018

2nd campaign
26 Jun 2019 27 Jun 2019 28 Jun 2019 29 Jun 2019 30 Jun 2019 4 Jul 2019

23 Jul 2019 24 Jul 2019 25 Jul 2019

their output to that of a secondary standard pyranometer (2% accuracy). In order to compensate for errors in mounting the420

plane-of-array pyranometers, the calibration algorithm described in 2.2 was
::
is also applied to the pyranometer data, in this case

without an optical model and only using data up to a SZA of 60 degrees. Due to the substantial cosine bias, a correction factor

was
:
is empirically determined:

C(µ) =−3.01µ3 + 5.59µ2− 3.34µ+ 1.45 (14)

where µ= cosθ0 for horizontal sensors and µ= cosΘ for tilted sensors (θ0 is the SZA and Θ the angle of incidence, see425

Eq. A8). The pyranometer data was
:
is
:
used for comparison with the inverted irradiance (both tilted and horizontal), as well as

for finding atmospheric optical properties using the lookup table method.

::
In

:::::
order

::
to

:::::::
validate

:::
the

:::
PV-

::::
and

::::::::::::::::
pyranometer-based

:::::
COD

::::::::
retrievals,

::
it
::::::
would

::
be

::::::::::
appropriate

::
to

::::
use

::::::
another

::::::::::::
ground-based

:::::
source

:::
of

:::::
cloud

::::::
optical

:::::::::
properties,

:::::::
however

::::::::::::
unfortunately

::::
there

:::
are

:::
no

::::::::::
appropriate

:::::::::::::
meteorological

::::::
stations

:::
in

:::
the

:::::::::
immediate

:::
area

::::
that

:::::
could

::::
have

:::::
been

::::
used

:::
for

:::
this

::::::::
purpose.

::::::::
Although

::::
there

:::
are

:::::::
several

:::::
DWD

:::::::
stations

::
in

:::
the

::::::
Allgäu

::::::
region

::
(in

:::::::::
Kempten,430

:::::::::
Oberstdorf

:::
and

:::::::::::::::::
Hohenpeissenberg),

:::::
these

:::::::
provide

::::::::::
information

:::
on

:::::::::
irradiance

::::::
(direct

:::
and

::::::::
diffuse),

:::
but

:::
not

:::
on

:::::
cloud

:::::::
optical

::::::::
properties [

:::
see

::::::::::::::::::::::
Becker and Behrens (2012)].

:::::
Thus,

:
a
::::
true

::::::::
validation

::::::
would

::::
have

::
to

::
be

:::::
done

::
for

:::::::
another

::::::
dataset

::::
with

:::
PV

:::::::
systems

:::::
closer

::
to

::
a
:::::::::::
measurement

::::::
station

::::
that

::::
has

:::::::::::
ground-based

::::::::
retrievals

:::
of

:::::
COD.

::::
For

:::
this

:::::::
reason,

:::
the

:::::
COD

::::::::
retrievals

::::
are

::::::
simply

::::::::
compared

::
to

:::
the

::::::::::::
corresponding

:::::
cloud

::::::::
properties

:::::
from

::::::
weather

:::::::
models

:::
and

:::::::
satellite

::::
data.

:

3.2 Weather model data435

The Consortium for Small-Scale Modelling (COSMO) numerical weather model is a nonhydrostatic regional model developed

by the DWD (Baldauf et al., 2011). Note that this model was recently replaced by the so-called ICOsahedral Nonhydrostatic

(ICON) model, which has been fully operational since January 2021. In
::::
Since

:::
the

::::::::::::
measurement

:::::::::
campaigns

::::
took

:::::
place

:::
in

::::
2018

::::
and

:::::
2019,

::
in

:
this work the COSMO-EU model with a spatial resolution of 2.2km was

::
is used, both as input to the

clear sky irradiance simulation (see Section 2.2.1), for PV model calibration (see Section 2.2.2) as well as for validation440

and/or comparison of the inverted irradiance with weather model predictions. For the clear sky simulation, temperature and

pressure profiles as well as the water vapour column was
:
is

:
extracted from COSMO data, whereas for both the calibration

and inversion procedure the surface temperature and wind speed were
:::
are used. For comparison and validation both direct and

diffuse downward irradiance data was
:
is

:
used.
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For comparison with the cloud optical depth
::::::
depths extracted from the PV systems,

:
a
::::::::::::::
two-dimensional

:::::
COD

::::
field

:::::
must445

::
be

::::::::
computed

:::::
from

:::
the

:::::::::::::::
three-dimensional

:::::
cloud

::::::::
variables

::::::::
generated

:::
by the COSMO modelCOD for both liquid water and ice

cloudswas combined into a total COD, using a cloud overlap scheme to add up τc,w and τc,i in each subcolumn, and this

sum was averaged .
::::
For

::::
each

::::
grid

::::
cell,

:
a
::::::

cloud
::::::
fraction

:::::::
variable

:::
in

:::::::
COSMO

::::::::
indicates

::::::
which

:::::::
fraction

::
of

:::
the

::::
cell

::
is

:::::::
covered

::
by

::::::
clouds.

:::
To

:::::
derive

::
a
::::::::
vertically

::::::::
integrated

::::::
COD,

::
an

::::::::::
assumption

:::::
needs

::
to

::
be

:::::
made

:::
as

::
to

::::
how

::::
these

::::::
clouds

:::::::
overlap

::
in

:
a
::::::
model

:::::::
column.

:::::::::
Following

:::::::::::::::::
Scheck et al. (2018),

::::
the

:::::::::
commonly

::::
used

::::::::::::::::
random-maximum

:::::
cloud

::::::
overlap

::::::::::
assumption

::
is

::::::::
adopted,

:::::
along450

::::
with

:::
the

::::::
method

::
of
::::::::::::::::

Matricardi (2005)
:
in
:::::

order
::
to
::::::::
compute

:::
the

::::::::
vertically

:::::::::
integrated

::::
COD

:::
for

::
a
:::::::
number

::
of

::::::::::
subcolumns

::::::
within

::::
each

:::::
model

:::::::
column.

:::::
From

:::::
these

:::::::::
subcolumn

::::::
values

:
a
:::::
mean

:::::
COD

:::
for

:::
the

::::::
cloudy

:::
part

:::
of

:::
the

::::::
column

::
is

:::::::
derived.

::
A

::::
total

:::::
COD

::
is

:::
then

:::::::::
computed

::
as

:::
the

:::::::
average

::
of

:::
the

::::::
column

:::::
mean

:::::
COD over 5

:
×
:
5 grid boxes

:::::::
columns

:
centred around the grid box closest to

::::::
column

::::::::::
containing the relevant ground station.

3.3 Satellite data455

The Copernicus Atmospheric Monitoring Service (CAMS) radiation service (Qu et al., 2017; Schroedter-Homscheidt et al.,

2022) is an online satellite and numerical model-based service with radiation, cloud and aerosol data available for free down-

load, covering the period from February 2004 to the present. The spatial coverage is Europe/Africa/Middle East/Eastern part

of South America/Atlantic Ocean, interpolated to the point of interest, and with a time resolution of up to 1
:::
one minute. In this

work the global, direct and diffuse components of irradiance were
::
are

:
imported from CAMS (version 4.0), for each station and460

for all days in the two measurement campaigns. These data were
:::
are used as a comparison for the irradiance inverted from PV

systems.

In addition to irradiance, CAMS provides data on cloud and aerosol properties. In this work, the cloud parameters from the

AVHRR (Advanced Very High Resolution Radiometer) Processing scheme Over cLouds, Land and Ocean Next Generation

(APOLLO_NG) analysis (Kriebel et al., 2003; Klüser et al., 2015) were
:::
are used, using data from the Spinning Enhanced465

Visible and InfraRed Imager (SEVIRI) instrument on board the Meteosat Second Generation (MSG) satellite. In this case the

so-called Stephens method (Stephens et al., 1984) is used to determine the COD, using a two-stream solution of the radiative

transfer equation, along with an updated algorithm using a probabilistic approach for cloud detection (Klüser et al., 2015).

For comparison with the COD inferred from the PV systems, APOLLO_NG data was
:
is
:
extracted for the closest pixel to each

station.470

4 Results

The calibration and inversion procedure described in Section 2 was
:
is
:
applied to the data from the measurement campaign

described in Section 3 in order to extract irradiance and optical properties from the PV systems in the Allgäu region. After

a brief summary of the calibration results in Section 4.1, the retrievals of tilted and horizontal irradiance are presented in

Sections 4.2 and 4.3, and the inferred COD results are shown in Section 4.4.475
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4.1 Model calibration and uncertainty

The PV models in Eqs. (1) and (2) were
::
are

:
used together with the clear sky simulation described in Section 2.2.1 and the

clear sky days (in Table 6) in order to calibrate each system. In each individual case those days that turned out not to be clear

were
::
are

:
discarded from the calibration dataset, and the data was

:
is

:
restricted to those time periods in which the required

inputs such as ambient temperature, atmospheric longwave irradiance and wind speed were
:::
are available. In order to validate480

the calibration results the retrieved elevation and azimuth angles were
::
are

:
compared to ground truth data from the Bavarian

Agency for Digitisation, High-Speed Internet and Surveying (LDBV). The so-called “Level of Detail 2” (LoD2) database

contains a 3D building model constructed using airborne laser scanning, so that the roof pitch of individual buildings can be

extracted. Figure 4 shows a comparison of the retrieved orientation angles with the ground truth values, for each system and

using the linear temperature model.485

In most cases the algorithm finds reasonable values for the angles: the larger deviations can usually be explained individual

cases, for instances for PV04 the inverter MPP tracking algorithm distorts the clear sky days, whereas for the systems at PV11

the different PV arrays at the site were
::
are

:
not well characterised. In other cases shading effects played a role: in most cases the

calibration performed better when using both summer and autumn data, since in summer the sun is much higher and shading

effects play a smaller role. In general the model calibration works best when using as much data as possible, since one has for490

instance more variation in temperature in order to find more reliable temperature model parameters.

As discussed in Section 2.2.2, several parameters are correlated with each other: the size of the PV system (captured by

the factor s) correlates with the tilt angle θ, whereas the azimuth angle φ shows a large correlation with the parameters of the

temperature model, since the warming up and cooling down of the PV system is delayed with respect to the diurnal variation

of solar irradiance. In general the use of measured module temperature leads to better calibration results. It turns out that495

the calibration algorithm presented here doesn’t perform well using the non-linear Faiman temperature model and 15 minute

::::::::
15-minute

:
power data, even though this model couples irradiance and windspeed in a more physically correct way [see for

instance Faiman (2008); Barry et al. (2020)]. The benefit of this model is lost for coarsely resolved 15 minute
::::::::
15-minute

:
data,

so that in the end the algorithm proposed here does not always find an optimal solution, specifically if the temperature model

parameters are unknown. The bias that then occurs in the final
::::
tilted

:::::::::
irradiance inversion results can be seen in the plots in500

Section ?? in the Appendix
:::
4.2 as well as in the results in Tables 8 , 9, ??, ?? and ?? in the following sections

:::
and

::
9.

::::::::
However,

:::
this

::::
bias

::
in

:::
the

::::
tilted

:::::::::
irradiance

::::
does

:::
not

::::::
always

:::::::
translate

::::
into

:
a
::::
bias

::
in

::::
GHI,

::
as

::::
will

::
be

::::
seen

:::::
below. Table 7 lists the PV systems

used in this work, along with the corresponding time resolution of their data.

4.2 Global tilted irradiance from PV power data

In this section the plane-of-array irradiance from PV power retrievals is compared to the tilted pyranometer measurements at505

selected stations during the two measurement campaigns. The results were
::
are

:
obtained using two different approaches for

module temperature: (i) the linear temperature model [Eq. (A3)], and (ii) the non-linear Faiman temperature model [Eq. (A4)].

The results are compared in Tables 8 and 9in the main text, and scatter plots using the linear model are also shown, whereas
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Figure 4. Comparison of retrieved azimuth (elevation) angle φopt (θopt) with ground truth (φactual and θactual) from airborne laserscanning

data.

plots using the Faiman model are shownin the Appendix
::
for

::::
both

:::::::
models

:::
are

:::::
shown. Both stations with 15 minute

::::::::
15-minute

power data as well as those with high frequency data (1 Hz data, smoothed to 1 minute
:::::::
1-minute resolution) are included in510

the analysis, and in each case a comparison is made to the measurements from TROPOS silicon-based pyranometers, expect

:::::
except

:
for the master station MS02, where the tilted Kipp&Zonen CMP11 pyranometer is used for validation.

::
In

::
all

:::::
cases

::
a

::::
limit

::
of

::
80

:::::::
degrees

::
is

:::::::
imposed

:::
on

::::
both

::
the

:::::
solar

:::::
zenith

:::::
angle

:::
and

:::
the

:::::::
incident

::::::
angle,

::
in

::::
order

::
to

:::::
avoid

:::::::
possible

:::::
errors

:::::
from

::::
both

::
the

::::::::
radiative

::::::
transfer

:::::::::
simulation

:::
as

::::
well

::
as

:::
the

::::::
optical

::::::
model.

Figures ?? and ??
:
5
::::
and

:
6
:

show a comparison between the retrieved GTI and that measured by pyranometers, for the515

1 minute and 15 minute
:::::::
1-minute

::::
and

:::::::::
15-minute

:
data respectively, for each measurement campaign and using the linear

temperature model. The same results for the Faiman temperature model are shown in figures ?? and ??
::::
both

:::
the

:::::
linear

::::
and

::::::::
non-linear

::::::::::
temperature

:::::::
models. The corresponding statistical measures of mean bias error (MBE), defined by

MBEMBE
::::

=
1

n

n∑
i=1

(Xinv−Xref) , (15)

as well as root mean squared error (RMSE), defined by520

RMSERMSE
:::::

=

√√√√ 1

n

n∑
i=1

(Xinv−Xref)2 , (16)
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Table 7. List of PV systems used for this work (see also the map in Fig. 3). The data resolution column indicates whether a particular system

was
:
is
:

used for this analysis or not, with an explanation given in case the system was
:
is
:
omitted. Note that stations MS01 and PV02 had no

PV systems, only pyranometers and other measurement equipment. PV11 has four separate PV systems.

Station
Data resolution

Mounting Comments
2018 2019

MS02 15 min 15 min / 1 s Ground

PV01 15 min 15 min Rooftop

PV03 - - Rooftop Calibration errors

PV04 - - Rooftop Calibration errors

PV05 - - Rooftop No data

PV06 15 min 15 min Ground

PV07 - - Rooftop Calibration errors

PV08 15 min - Rooftop No data in 2019

PV09 - - Rooftop open Caibration
::::::::
Calibration errors

PV10 15 min 15 min Ground

PV11,1 15 min 1 s Rooftop

PV11,2 15 min 15 min Rooftop

PV11,3 15 min 15 min Rooftop

PV11,4 1 s - Ground No data in 2019

PV12 1 s 1 s Rooftop

PV13 - - Rooftop No 2018 data, calibration problems

PV14 15 min 15 min Rooftop open

PV15 1 s 1 s Rooftop

PV16 15 min 15 min Rooftop

PV17 15 min 15 min Rooftop

PV18 15 min 15 min Rooftop

PV19 1 s 1 s Rooftop

PV20 - - Rooftop No data

PV21 15 min 15 min Rooftop

PV22 - - Rooftop Calibration errors

for the inverted quantities Xinv and the reference quantities Xref are shown in Tables 8 and 9,
:::::
along

:::::
with

:::
the

::::::
relative

:::::
error

::::::
metrics

:::::
rMBE

::::
and

::::::
rRMSE

:::::::::
calculated

::
by

::::::::::
normalising

:::
the

:::::
MBE

:::
and

::::::
RMSE

::::
with

:::
the

:::::
mean

::
of

:::
the

::::::::
reference

:::::::
quantity,

::::::
〈Xref〉. The

scatter plots throughout this work are coloured according to a probability density function calculated using the multi-variate

gaussian
::::::::
Gaussian kernel density function “gaussian_kde” in the Python toolbox scipy, with yellow (light grey) for high and525

blue (dark grey) for low frequency points in the colour (black and white) version. In Figs. ?? and ??
:
5
::::
and

:
6
:
one can see that
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Table 8. Mean bias error (in W m−2)
:::
and

::::::
relative

::::
mean

:::
bias

::::
error

:::
(in

::::::
brackets

::
in

::
%)

:
of GTI retrievals, compared to tilted pyranometers.

:::
The

:::::
values

:::::
marked

::::
with

:
*
:::
are

::::
high

:::
due

::
to

::::::::
calibration

::::
errors

:::::
using

::
the

::::::::
non-linear

:::::::::
temperature

:::::
model

::::
with

::::::::
15-minute

::::
data.

2018 2019

Linear Faiman
::::::::
Non-linear

:
Linear Faiman

::::::::
Non-linear

:

1min 17.95
::::
16.23

::::
(3.2) 7.38

:::
5.29

::::
(1.0) 21.43

::::
21.12

::::
(4.1) 13.44

::::
12.25

::::
(2.4)

15min 25.64
::::
28.74

::::
(5.9) 89.51

:::::
87.55*

:::::
(18.0)* 20.86

::::
40.20

::::
(7.8) 84.82

:::::
96.40*

:::::
(18.6)*

Table 9. Root mean squared error (in W m−2)
::
and

::::::
relative

:::::
RMSE

:::
(in

::::::
brackets

::
in

:::
%) of GTI retrievals, compared to tilted pyranometers.

:::
The

:::::
values

:::::
marked

::::
with

:
*
:::
are

::::
high

:::
due

::
to

::::::::
calibration

::::
errors

:::::
using

::
the

::::::::
non-linear

:::::::::
temperature

:::::
model

::::
with

::::::::
15-minute

::::
data.

2018 2019

Linear Faiman
::::::::
Non-linear Linear Faiman

::::::::
Non-linear

1min 100.29
::::
72.34

:::::
(14.3) 104.23

::::
82.68

::::
(16.4)

:
112.60

::::
73.97

::::
(14.2)

:
115.50

::::
79.71

:::::
(15.3)

:

15min 158.37
:::::
108.27

::::
(22.2)

:
231.24

::::::
172.96*

:::::
(38.1)* 178.42

::::
83.94

::::
(16.3)

:
266.88

::::::
197.83*

:::::
(38.2)*

most points lie close to the 1:1 line, for both campaigns, albeit with a positive bias in all cases. The 1 minute
:::::::
1-minute data

shows a
::::::
slightly

:
larger spread of points than the 15 minute

::::::::
15-minute

:
data, since in the former case there are more outliers

caused by i) temperature effects, ii) 3D radiative transfer effects, and iii) spatial effects due to differences in cloud cover and

sensor position between PV and pyranometer. In addition the slightly different geometry of flat PV arrays compared to glass530

dome-shaped pyranometers could play a role, especially when it comes to their sensitivity to different viewing angles. Another

possible reason for the positive bias could be a systematic bias in the tilted pyranometer measurements, even after the bias

correction described in Section 3.1.

Note that the results using the
:::
The

:::
two

::::::::
different

::::::::::
temperature

::::::
models

:::::::
achieve

::::::
similar

::::::
results

::
for

:::
the

::::::::
1-minute

:::::
data,

::::
with

:::
the

::::::::
non-linear

::::::
model

:::::::
showing

:::
an

:::::
MBE

::
of

::::
5.29

::
W

:::::
m−2

::::::
(12.25

::
W

:::::
m−2)

::
in

:::::::
autumn

::::
2018

::::::::
(summer

::::::
2019),

::::::::
compared

:::
to

::
an

::::::
rMBE535

::
of

:::::
16.23

::
W

:::::
m−2

:::::
(21.12

:::
W

:::::
m−2)

:::
for

:::
the

:::::
linear

::::::
model.

:::
In

::::::
general

:::
the

:::::::::
algorithm

:::::::
performs

::::::
worse

::::
with

:::::::::
15-minute

::::
data,

::::::
which

:::
has

::
to

::
do

::::
with

:::::
errors

:::::
from

:::
the

:::::::::
calibration

::::::::
procedure

::
as

::::
well

::
as

:::::::::::
uncertainties

::
in

:::
the

:::
PV

::::::
power

:::::::::::
measurements

::
–
:::
the

:::::::
systems

::::
with

::::
high

::::::::
frequency

::::::::::::
measurements

:::
are

::::
thus

::
in

::::::
general

:::::
better

:::::::::::
characterised

:::
and

::::::
deliver

:::::
more

:::::::
accurate

:::::::::
irradiance

::::::::
retrievals,

::
as

::::::
shown

::
in

::::::
Section

:::
4.3

::::::
below.

::::
This

:::::
effect

::
is
:::::

quite
:::::::
extreme

:::
for

:::
the

:::::::::
non-linear

:
Faiman temperature model with 15 minute data(see the

values marked with * in Tables 8 and 9 ) show relatively large bias errors (see
::
as

::::
well

::
as

:::
the

::::
plots

::
in

:::
the

:::::
lower

:::::
panels

:::
of Fig. ??540

in Appendix ??), which has to do with
::
6),

::::
since

:::
in

:::::
some

::::
cases

:
the calibration algorithm not finding

::::::
cannot

:::
find

:
an optimal

solution for some of the plants
:::
and

:::
the

:::::::
a-priori

:::::
values

::::
have

:::
to

::
be

:::::
relied

:::::
upon,

::::::
leading

::
to
:::
an

::::::
average

:::::
MBE

::
of

:::::
91.98

:::
W

::::
m−2.
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Figure 5. Combined comparison of GTI retrieved from PV power measurements with that measured by tilted pyranometers, using data in

1 minute
::::::
1-minute

:
resolution from MS02, PV11, PV12, PV15, PV19 (cf. Table 7), for 2018 (left) and 2019 (right), together with the linear

:::
(top)

::::
and

::::::::
non-linear

::::::
(bottom)

:
temperature model see Eq. (A3)

:::::
models. Mean

::::::
Relative

::::
mean

:
bias error (MBE

::::
rMBE) and

:::::
relative root mean

squared error (RMSE
:::::
rRMSE) are shown in the inset, along with the

::::
mean

::
of

:::
the

:::::::
reference

::::
GTI

::
as

:::
well

::
as

:::
the number of data points used,

denoted as
:::::
〈Gref〉:::

and n
:
,
:::::::::
respectively.
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Figure 6. Same as Fig. ??
:
5
:
using data in 15 minute

:::::::
15-minute

:
resolution from MS02, PV01, PV06, PV08, PV10, PV11, PV14, PV16,

PV17, PV18, PV21 (cf. Table 7) for 2018 (left) and 2019 (right).
::::
Note

:::
that

:::
the

::::
large

::::
errors

::
in
:::
the

::::::::
non-linear

:::::
model

::
in

::
the

::::::
bottom

:::
row

:::::
result

:::
from

:::::
errors

::
in

:::
the

::::::::
calibration

:::::::
procedure

::::
(see

::
the

:::::
values

::::::
marked

::::
with

:
*
::
in

:::::
Tables

::
8

:::
and

::
9).

4.3 Global horizontal irradiance from PV power data

In the following the global tilted irradiance (GTI) retrievals are converted to global horizontal irradiance (GHI) and compared

to the measurements from pyranometers as well as to the satellite and weather model data. The GTI is converted to GHI in545

two
:::
This

::::::::::
conversion

::
is

:::::::::
performed

::
in

:::::
three different ways, depending on the prevailing weather conditions, as described in

26



Section 2.3. In the first case
::::
case

::
of

::::
clear

:::::
skies, the DISORT-based LUT is used to find the value of aerosol or cloud optical

depthunder completely clear or completely overcast conditions, respectively. The inferred AOD /COD
::::::
optical

:::::
depth,

::::
and

:::
the

::::::
inferred

:::::
AOD

:
is then used to calculate the direct and diffuse

::::::::
horizontal

:
irradiance components, which result in the GHI.

:::
The

::::
same

:::::::
method

:
is
:::::
used

:::::
under

::::::
cloudy

::::
skies

:::::
using

:::
the

::::::::::::
DISORT-based

:::::
COD

:::::
LUT,

:::
but

::::
only

:::
for

:::::
times

::
at

:::::
which

:::
the

:::::
sensor

::
is
:::::
under

::
a550

:::::
cloud,

:::::
using

:::
the

:::::::
inferred

::::
cloud

:::::::
fraction

:::::::
method

::
as

::::::::
described

::
in

::::::
Section

:::::
2.3.3.

::::
This

::::::
means

::::
that

:
it
::::
may

::::
tend

::
to

::::::::::::
underestimate

:::
the

::::
GHI

:::::
under

::::::
broken

:::::
cloud

:::::::::
conditions,

:::::
which

::::
will

::
be

::::::::
discussed

:::
in

::::
detail

::::::
below.

:

The second approach to
::::
third

::::::::
approach

:::
for finding the GHI is using the MYSTIC-based LUT described in Section 2.3.5,

where the input parameters to the LUT are simply array geometry, sun position and cloud fraction. In this case there are certain

restrictions on these parameters, as shown in detail in Table 5. This means that not all of the retrieved GTI data points can be555

transformed into GHI using this method – in particular the SZA is limited to between 20◦ and 60◦, and the cloud fraction to

between 0.13 and 0.82, so that neither completely overcast nor clear sky conditions are taken into account. This method thus

deals with the case of mixed/broken cloud conditions, in which there are more likely to be errors due to 3D effects and sensor

position. Limits on the input parameters for the MYSTIC LUT. Input parameter Limits SZA (θ0) 20◦, 60◦Tilt angle (θ) 0◦,

50◦Relative azimuth (|φ−φ0|) 0◦, 90◦Cloud fraction 0.13, 0.82560

4.3.1 GHI retrieval validation with pyranometer measurements

The DISORT LUT method performs comparably well for extracting GHI from PV power measurements, which is to be

expected considering that it is only employed in stable (clear or cloudy) atmospheric conditions. Figure ?? shows the results for

the linear temperature model, for both 1 and 15 minute data (top and middle rows) as well as with data averaged over an hour

(bottom row). Note that this plot combines the GHI retrieved under clear skies and completely cloudy skies via the AOD and565

COD, respectively. The same results for the Faiman temperature model are shown
::
As

::::::::
discussed

::
in

:::::::
Section

:::
4.2

::::::
above,

:::
the

:::
PV

::::::
systems

::::
with

::::::::
1-minute

::::
data

:::::
show

::
the

::::
best

:::::::::
calibration

::::::
results

:::
and

:::
the

:::::
most

:::::::
accurate

::::
tilted

:::::::::
irradiance

::::::::
retrievals.

::::
The

:::::
scatter

:::::
plots

in Fig. ??. Combined comparison of GHI retrieved from PV power measurements under clear or completely cloudy conditions

using the optical depth via DISORT 1D LUT with that measured by horizontal pyranometers, using data in 1 minute resolution

(top row) from MS02, PV11, PV12, PV15, PV19, in 15 minute resolution from MS02, PV01, PV06, PV08, PV10, PV11,570

PV14, PV16, PV17, PV18, PV21 (middle row) and averaged to 60 min (bottom row) for all stations, for 2018 (left) and 2019

(right), using the linear temperature model.

:
7
:::::::
compare

:::
the

:::::
GHI

:::::::
retrieved

:::::
from

::::
these

:::::::
systems

::
to

::::
that

::::::::
measured

::
by

:::::::::
horizontal

::::::::::::
pyranometers,

:::::
using

::
all

:::::
three

:::::::
methods

::::
and

::
for

::::
both

:::::::::::
temperature

::::::
models.

:
The statistical measures of the different retrievals are shown in Tables ?? and ??. The

:::::
Table

:::
10,

:::::
where

:
it
::::
can

::
be

::::
seen

::::
that

:::
the mean bias error reaches the goal of 5 W m−2 only in certain cases. Once again, due to calibration575

problems the Faiman model shows a large bias for 15 minute data (marked with *), as discussed in Section 4.1. In general

one would expect the algorithm to perform better under more stable weather conditions in autumn 2018, however this is not

always the case, which can be attributed either to a) cosine bias (even after bias correction) in the pyranometers on clear sky

days or b) errors in the calibration, which increase the mean bias error. That the bias may come from temperature effects is

further corroborated by the good performance of the Faiman model using 1 minute data. The larger flucuations of irradiance580
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Figure 7.
::::::::
Combined

:::::::::
comparison

::
of

:::
GHI

:::::::
retrieved

::::
from

:::
PV

::::
power

:::::::::::
measurements

::::
with

:::
that

:::::::
measured

:::
by

:::::::
horizontal

:::::::::::
pyranometers,

::::
using

::::
data

:
in
::
1
:::::
minute

::::::::
resolution

::::
from

:::::
MS02,

:::::
PV11,

:::::
PV12,

:::::
PV15,

:::::
PV19,

::
for

::::
2018

::::
(left

:::
two

:::::::
columns)

:::
and

::::
2019

::::
(right

:::
two

::::::::
columns),

:::
and

::::
both

::
the

:::::
linear

:::
and

:::::::
non-linear

::::::::::
temperature

::::::
models.

:::
The

:::
top

:::
row

:::::
shows

::::
GHI

::::::
retrieved

:::
via

::::
AOD

:::::
under

::::
clear

::::
skies

::::
using

:::
the

:::::::
DISORT

::::
AOD

:::::
LUT,

::
the

::::::
middle

:::
row

:
is
:::
for

:::::
cloudy

::::::
periods

:::
via

::
the

::::
COD

:::::
using

::
the

:::::::
DISORT

:::::
COD

::::
LUT,

:::
and

::
the

::::::
bottom

:::
row

::
is

::
for

::::::
broken

::::
cloud

::::::
periods

::::
using

:::
the

:::::::
MYSTIC

:::
3D

::::
LUT.

under broken cloud conditions in the summer campaign lead in general to a larger RMSE, however the bias error in summer is

mostly smaller than in autumn.

In the case of the MYSTIC LUT
:::::
Under

:::::
clear

::::::::
conditions

::::
(top

::::
row

::
of

::::
Fig.

:::
7),

:::
the

:::::
linear

:::::
model

:::::::
applied

::
to

::::::::
1-minute

:::
PV

::::
data

:::::::
achieves

::
an

::::::
rMBE

::
for

:::
the

::::
GHI

::
of

:::::
18.15

:::
W

::::
m−2

::::::
(3.9%)

::
in

::::::
autumn

:::::
2018 and

:::
9.44

::
W

:::::
m−2

:::::
(1.4%)

::
in
:::::::
summer

:::::
2019,

:::::::::::
respectively.

::::
Note

:::
that

:::
the

:::::
mean

::::::::
irradiance

::
is

::::::
higher

::
in

:::::::
summer,

:::
but

::::
there

:::
are

:::
less

::::::
points

:::
that

:::
can

:::
be

:::::::
classified

::
as

:::::
clear

::::::::
(n' 9400

:::::::::
compared

::
to585

:::::::::
n' 13400

::
in

:::::::
autumn).

::::
The

::::::::
non-linear

::::::
model

:::::::
performs

:::::::::::
significantly

::::
better

::
in
:::::::
autumn,

::::
with

:::
an

:::::
rMBE

:::
for

::
the

::::
GHI

::
of
::::
1.83

:::
W

::::
m−2

::::::
(0.4%),

:::
but

::
in

:::::::
summer

:::
the

::::
bias

::
is

::::::
similar

::
to

:::
the

:::::
linear

:::::
model

:
[
::::
9.75

::
W

::::
m−2

::::::
(1.5%)]

:
.
::::::::::
Interestingly

:::
the

:::::
linear

::::::::::
temperature

::::::
model

:::::::
performs

:::::
better

::
in
:::::::
summer

::::
than

:::
in

:::::::
autumn,

:::::::
whereas

:::
the

::::::::
non-linear

::::::
model

::::::::
performs

:::::
better

::
in

:::::::
autumn.

::::
This

:::::
could

:::
be

::::::::
attributed

::
to

:::::::::
differences

::
or

:::::::::::
uncertainties

::
in

:::
the

:::::::::
calibration

::
of

:::
the

::::::::::
temperature

::::::
models.

::
In

:::::::
general

::::
these

::::::
results

:::::
show

:::
that

:::
the

:::::::
DISORT

:::::
LUT
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Table 10. Mean bias error
:::
and

:::
root

::::
mean

::::::
squared

::::
error

:
(in W m−2)

:
,
::::
along

::::
with

:::::
rMBE

:::
and

::::::
rRMSE

::
(in

::::::
brackets

::
in
:::
%) of GHI retrievals using

::
the

:::
1D DISORT (1D OD LUT

::::
AOD

:::
and

::::
COD) and MYSTIC (

::
the

:
3D LUT)

::::::
MYSTIC

:::::
LUTs, compared to both horizontal pyranometers,

:::
for

::::::
1-minute

:
and CAMS

:::::::
15-minute

::::
data.

Data Measure LUT
2018 2019

Linear Faiman Linear Faiman Linear Faiman
:::::::
Non-linear

:
Linear Faiman

:::::::
Non-linear

:

1D OD LUT 13.48 5.90 9.41 4.81 -18.05 -25.28 -67.66 -69.36 3D LUT 29.90 0.83 21.19 5.44 45.89 17.35 44.11

1min

29.63

MBE

1D OD LUT 22.19 25.87* 10.58 7.70*
::::
AOD -4.55

::::
18.15

::::
(3.9)

:
-2.34*

:::
1.83

::::
(0.4) -23.75

:::
9.44

::::
(1.4) -26.71*

:::
9.75

::::
(1.5)

:

3D LUT 47.44 67.69* 48.46 65.73* 48.02 64.63* 54.96 71.98* 1D OD LUT -3.35 -3.16 -20.77 -26.33
::::
COD -10.69

::::
18.32

::::
(8.2) -11.46

::::
16.68

::::
(7.4)

:
-46.30

::::
13.85

::::
(4.7)

:
-50.33

:::
8.73

::::
(2.9)

3D LUT 60.63 70.13 58.98 59.25
::
3D

::::
GHI

:
56.59

::::
29.90

::::
(5.6) 65.42

::::
0.60

:::
(0.1)

:
56.52

::::
20.69

::::
(3.1) 58.11

:::
3.39

::::
(0.5)

Root mean squared error (in W m−2) of GHI retrievals, compared to both horizontal pyranometers and CAMS.

RMSE
:::
1D

::::
AOD

::::
30.17

::::
(6.5)

: ::::
33.55

::::
(7.3)

::::
33.81

::::
(5.1)

::::
35.24

::::
(5.3)

Linear Faiman Linear Faiman Linear Faiman Linear Faiman1D OD LUT 68.07 68.89 67.75 70.80
::::
COD

:
95.79

::::
63.10

:::::
(28.2) 95.51

::::
64.70

::::
(28.6)

:
148.19

::::
66.72

:::::
(22.7) 148.99

::::
70.38

:::::
(23.3)

3D LUT
::::
GHI 89.76

:::::
(16.8) 87.98 113.09 120.05 206.97 191.99

::::
87.89

:::::
(16.3)

:
242.66

:::::
102.69

::::
(15.4)

:
237.02

:::::
111.28

::::
(16.5)

:

1D OD LUT 73.50 75.84*

15min

115.33
MBE

117.47*
::
1D

::::
AOD 68.38

::::
10.01

::::
(2.3) 70.22*

:::
1.76

::::
(0.4) 122.54

:::
1.75

::::
(0.3) 126.11*

::::
6.44

:::
(1.0)

:

3D LUT 100.17 128.52* 105.42 142.34*
::
1D

::::
COD 125.40

::::
37.34

::::
(15.5)

:
149.23*

::::
40.65

:::::
(17.5)

:
162.59

::::
46.39

:::::
(15.6) 186.27*

::::
44.55

::::
(15.4)

:

1D OD LUT 67.53 70.06 111.28
RMSE

112.04
::
1D

:::::
AOD 70.54

::::
38.96

::::
(9.0) 72.08

::::
39.59

::::
(9.5) 123.90

::::
35.93

:::
(5.2)

:
125.97

::::
36.89

:::
(5.5)

:

3D LUT 96.39 119.99 98.41 116.52
:::
1D

::::
COD 109.60

::::
78.32

::::
(32.5)

:
124.92

::::
82.74

:::::
(35.6) 135.63

::::
91.96

:::::
(30.8) 148.19

:::::
100.71

::::
(34.8)

:

::::::
method

::::::::
performs

::::::::::
comparably

::::
well

:::
for

::::::::
extracting

:::::
GHI

::::
from

:::
PV

::::::
power

::::::::::::
measurements

:::::
under

:::::
clear

:::::::::
conditions.

::
In

:::
all

:::::
cases

:::
the590

::::::
rRMSE

::
is

::
of

:::
the

:::::
order

::
of

:::
5%

::
to

::::
7%,

::
on

:::::::
average

:::::
33.19

::
W

:::::
m−2.

:

:
It
::
is

::::::
evident

:::::
from

:::
the

::::::
middle

::::
row

::
of

:::
Fig.

::
7
::::
that

:::
the

:::
bias

::
is

::::::
greater

:::::
under

::::::
cloudy

:::::
skies,

::::
with

:::
an

:::::::
average

::::
over

::::
both

:::::::::
campaigns

::
of

:::::
11.29

::
W

:::::
m−2

:::
for

:::
the

:::::::::
non-linear

::::::
model

:::
and

:::::
17.50

:::
W

::::
m−2

:
for the linear temperature model, the retrieved GHI shows a

comparatively large bias error, as shown in Figs. ?? for the 1 minute
::::::
model.

::
In

:::::::
autumn

:::
the

::::::
lower

:::::::
average

::::::::
irradiance

:::
of

:::
225

:::
W

::::
m−2

:::::
leads

::
to

:
a
::::::
higher

:::::::
relative

:::::
MBE

::::
than

::
in

:::::::
summer,

::::::
where

:::
the

:::::::
average

::::::::
irradiance

::
is
::::
298

::
W

:::::
m−2.

:::
At

:::
this

:::::
point

::
it

::
is595

:::::
worth

:::::::::
mentioning

::::
that

:::
the

::::::::
algorithm

::::
only

:::::
finds

:::
the

:::::
COD

:::
and

::::
thus

:::
the

::::
GHI

:::::
when

:::
the

::::::
sensor

:
is
::::::
under

:
a
:::::
cloud,

::::::
hence

:::
the

:::::
lower

::::::
average

:::::::::
irradiance

::
in

::::::::::
comparison

::::
with

::::
that

:::::
under

:::::
clear

:::::
skies,

::::
and

:::
the

::::::
RMSE

::
is
::::::

higher
::::::
(66.23

:::
W

::::
m−2

:::
on

:::::::
average)

::::
than

:::
in

::
the

::::
case

:::
of

::::
clear

:::::
skies,

:::::
where

::
it
::
is

:::::
33.19

::
W

:::::
m−2

::
on

:::::::
average,

::
as

:::::::::
expected.

::::
This

:::
also

::::::
means

:::
that

:::::::::
averaging

::::
these

::::::
results

::::
over

:::
60

::::::
minutes

::::
can

:::
lead

::
to

:::::::::
erroneous

:::::
values

:::
for

:::
the

:::::::::
irradiance,

::::::::
especially

:::::
under

::::::
broken

::::::
clouds,

:::::
since

::
the

:::::::
periods

::
of

:::::
cloud

:::::::::::
enhancement

:::::
within

::::
each

::::
one

::::
hour

:::::::
window

:::
will

:::
not

:::
be

:::::
taken

:::
into

:::::::
account.

:
600

:::
The

::::
GHI

::::::::
retrieved

:::::
from

:::
the

:::
3D

::::::::
MYSTIC

:::::
LUT

::::::
shows

::::::::::
significantly

:::::
lower

::::
bias

:::
in

:::
the

::::
case

::
of

::::
the

::::::::
non-linear

:::::::::::
temperature

:::::
model

:::::
(2.00

::
W

::::
m−2

:::::::::
compared

::
to

:::::
12.71

:::
W

::::
m−2

:::::
using

:::
the

:::::::
DISORT

:::::
COD

:::::::
method,

::::::::
averaged

::::
over

::::
both

::::::::::
campaigns),

::::
but

::
in

:::
the

:::
case

:::
of

:::
the

:::::
linear

::::::::::
temperature

:::::
model

:::
the

::::
bias

::
is

::::::
higher

:::::
(25.30

:::
W

::::
m−2

:::::::::
compared

::
to

:::::
16.09

::
W

::::::
m−2).

:::
The

:::::
good

:::::::::::
performance

::
of

::
the

:::::::::
non-linear

::::::
model

:::::
could

::::::
indeed

::
be

::
a
:::::
result

::
of

:::
the

::::::::
improved

:::::::::
treatment

::
of

:::
the

:::
PV

:::::::
module

::::::::::
temperature

::::::
during

::::::
broken

:::::
cloud

:::::::::
conditions:

:::::::
although

::::::
neither

::::::
model

:::::::
contains

:
a
::::::::
dynamic

::::
term,

:::
the

:::::::::
non-linear

:::::
model

:::::::
couples

::::::::
irradiance

::::
and

:::::::::
windspeed

::
in

:
a
:::::
more605

::::::::
physically

::::::
correct

::::
way.

::::::::
However,

::
it
::::
must

:::
be

::::
noted

::::
that

:::
due

::
to

:::
the

:::::::::
restrictions

:::
on

:::
the

::::::::
MYSTIC

::::
LUT

::::
(see

:::::
Table

::
5),

:::
the

:::::::
number

::
of

::::::
inferred

::::::::::
irradiances

:::::::
included

::
in

:::
the

:::::::
statistics

:::
are

:::
far

:::::
lower

::::
than

:::
for

:::
the

::::
COD

:::::::
method.

:::::::
Another

:::::::::::
confounding

:::::
factor

:::::
could

::
be

::::
that
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Figure 8.
::::::::
Combined

:::::::::
comparison

::
of

:::
GHI

:::::::
retrieved

::::
from

:::
PV

::::
power

:::::::::::
measurements

::::
with

:::
that

:::::::
measured

:::
by

:::::::
horizontal

:::::::::::
pyranometers,

::::
using

::::
data

:
in
::::::::

15-minute
::::::::
resolution

::::
from

:::::
MS02,

:::::
PV01,

::::::
PV06,

:::::
PV08,

:::::
PV10,

:::::
PV11,

:::::
PV14,

:::::
PV16,

:::::
PV17,

:::::
PV18,

:::::
PV21,

:::
for

::::
2018

:::
(left

:::
two

::::::::
columns)

:::
and

::::
2019

::::
(right

:::
two

::::::::
columns),

:::
and

::::
both

:::
the

::::
linear

::::
and

:::::::
non-linear

::::::::::
temperature

::::::
models.

:::
The

:::
top

:::
row

:::::
shows

::::
GHI

:::::::
retrieved

:::
via

::::
AOD

:::::
under

::::
clear

::::
skies

::::
using

:::
the

::::::
DISORT

:::::
AOD

::::
LUT,

:::
the

:::::
bottom

:::
row

::
is
:::
for

:::::
cloudy

::::::
periods

::
via

:::
the

::::
COD

:::::
using

::
the

:::::::
DISORT

::::
COD

:::::
LUT.

::
the

::::
PV

:::::
panels

:::::
show

:::::
better

:::::::::
efficiency

::
at

:::::
higher

:::::::::
irradiance,

::::
and

:::::
since

:::
the

::::::::
MYSTIC

::::::
method

::::
also

:::::
takes

:::::::::
overshoots

::::
into

:::::::
account

::
the

:::::::::
irradiance

::
is

::
on

:::::::
average

::::::
higher:

::::::
603.78

:::
W

::::
m−2

::::::::
compared

:::
to

::::::
261.45

::
W

::::
m−2

:::
for

:::
the

:::::
COD

:::::::
method.

::::
The

:::::
larger

::::::::::
fluctuations

::
of

::::::::
irradiance

:::::
under

::::::
broken

:::::
cloud

:::::::::
conditions

::::
also

::::
lead

::
to

::
a

:::::
larger

::::::
RMSE

::::
than

:::
for

:::
the

::::
case

::
of

::::::
cloudy

:::::
skies,

::::
and

::
in

:::::::
summer

:::
the610

:::::
RMSE

::
is
:::
the

:::::::
highest,

::
as

::::::::
expected.

:

:::::
Figure

::
8

:::::
shows

:::
the

::::
GHI

:::::::
retrievals

:::::
from

:::
the

:::::
AÜW

::::::
systems

::::
with

:::::::::
15-minute

:::
PV

:::::
power

:::::::::::::
measurements,

::::
under

:::::
clear (top row) and

15 minute data (middle row) , respectively. On the other hand, the Faiman temperature model performs better here, especially

for the 1 minute data, as seen in the top row of Fig. ??. In both cases, the 15 minute data shows a large bias, and one reason for

this could be an incorrect determination of
::::::
cloudy

:::::::
(bottom

::::
row)

:::::
skies.

::
In

:::
this

::::
case

:::
the

::::::::
MYSTIC

:::
3D

:::::
LUT

:
is
::::
not

::::
used,

:::::
since

:::
the615

:::::::::::
determination

::
of

:::::
cloud

:::::::
fraction

::::
with

:::::::
coarsely

::::::::
resolved

::::
data

::::
leads

::
to

:::::::::
erroneous

::::::
results,

:::
and

:::
the

:::::
rapid

::::::::::
fluctuations

::
of

:::::::::
irradiance

:::::
under

::::::
broken

:::::
clouds

::
is
:::
not

::::::::
properly

:::::::
captured

::
at

:::::::::
15-minute

:::::::::
resolution.

:::
The

::::::::
DISORT

:::
1D

::::
LUT

::::::::
performs

::::
well

:::::
under

:::::
clear

:::::
skies,

::
as

::
to

::
be

:::::::::
expected,

::::
with

:::
the

:::::
linear

::::::
model

:::::::
showing

:::
an

:::::::
average

:::::
MBE

::
of

::::
5.88

:::
W

::::
m−2

::::
and

:::
the

::::::::
non-linear

::::::
model

::::
4.10

:::
W

:::::
m−2.

::::
Once

:::::
again

:::
the

:::::::::
non-linear

:::::
model

:::::::::::
outperforms

:::
the

:::::
linear

:::
one

::
in
:::::::

autumn
:::::
2018,

:::
but

::::
this

::::
trend

::
is
:::::::
reversed

:::
in

:::::::
summer

:::::
2019.

::::
This

::::::::
systematic

::::::
effect

::
is

::::
most

::::::::
probably

::::
due

::
to

:::::::::::
uncertainties

::
in
::::

the
::::::::::
temperature

::::::
model

::::::::::
calibration.

:::::
Under

::::::
cloudy

:::::
skies

:::
the

:::::
GHI620

:::::::
retrievals

:::::
show

:
a
:::::::::
significant

:::::::
positive

::::
bias

::
of

::
on

:::::::
average

:::::
41.87

::
W

:::::
m−2

:::::
(42.60

:::
W

::::
m−2)

:::
for

:::
the

:::::
linear

::::::::::
(non-linear)

::::::
model,

::::::
which

:::::
means

::::
that

:::
the

:::::::
retrieved

:::::
COD

::
is

:::
too

::::::
small.

::::
This

:::
will

:::
be

::::::::
discussed

::::::
further

::
in

:::::::
Section

:::
4.4.

:::::::::::
Interestingly

:::
the

:::::
large

:::
bias

::::::
errors

::
in
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::::
tilted

:::::::::
irradiance

:::
for

::
the

:::::::::
non-linear

::::::
model

:::
are

:::
not

::::::
evident

::
in

:::
the

:::::::::
horizontal

:::::::::
irradiance

::::::
results,

:::::
which

::
is

::::::::
probably

:::
due

::
to

:::
the

::::
fact

:::
that

:::
far

:::
less

:::::
points

:::
are

:::::
taken

::::
into

::::::
account

::
in

:::
the

::::::::
statistics

::
for

::::
GHI

::::::::
(compare

:::
the

::::::
values

::
of

::
n

::
in

::::
Figs.

:
8
::::
and

::
6).

::
In

:::::
other

::::::
words,

:::
the

::::::
outliers

::::
have

:::::
been

:::::::
removed

:::
by

:::::::
selecting

:::::
either

:::::
clear

:::
sky

::::
days

:::
or

::::::
periods

:::
for

:::::
which

:
the cloud fraction due to insufficient data,625

i.e. coarse resolution. Combined comparison of GHI retrieved from PV power measurements under broken cloud conditions

using the MYSTIC LUT with that measured by horizontal pyranometers, using data in 1 minute resolution (top row) from

MS02, PV11, PV12, PV15, PV19, in 15 minute resolution from MS02, PV01, PV06, PV08, PV10, PV11, PV14, PV16, PV17,

PV18, PV21 (middle row) and averaged to 60 min (bottom row) for all stations, for 2018 (left) and 2019 (right), using the

linear temperature model.
:
is
::::::
100%.

:
630

4.3.2 Comparison to satellite and weather model irradiance data

One of the main aims of this work is to show that PV systems can provide a reliable source of information on global horizontal

irradiance that is complementary to that from satellite and weather models. Figure ?? shows
::::
Figs

:
9
::::
and

::
10

:::::
(with

::::::::::::
corresponding

::::::::
statistical

::::::::
measures

::
in

:::::
Table

:::
11)

:::::
show

:
the comparison between GHI retrieved from PV power using the cloud and aerosol

optical depth
::::::
aerosol

::::
and

:::::
cloud

::::::
optical

::::::
depths

:
and that from the CAMS retrieval,

:::
for

::::::::
1-minute

::::
and

:::::::::
15-minute

:::::
power

:::::
data,635

::::::::::
respectively.

::::::
Under

::::
clear

:::
sky

:::::::::
conditions

:::
the

::::::::
retrieved

::::
GHI

:::::
shows

:::
an

:::::::
average

:::::
MBE

::
of

:::::
15.95

::
W

:::::
m−2

:::
for

:::
the

:::::
linear

:::::
model

::::
and

::::
7.54

::
W

::::
m−2

:::
for

:::
the

::::::::
non-linear

::::::
model.

::::::
These

:::::
values

:::
are

::::::
similar

::
to

:::::
those

:::::
found

::
by

:::::::::
comparing

:::::
with

:::::::::::
ground-based

::::::::::::
pyranometers,

:::::::::
confirming

:::
the

:::::::
accuracy

:::
of

::
the

:::::::
CAMS

::::
data.

:::
On

:::
the

:::::
other

:::::
hand,

::
the

:::::
GHI

:::::::
retrieved

:::::
using

:::
the

::::::::
DISORT

::::
COD

:::::
LUT

:::::
under

::::::
cloudy

::::
skies

::::::
shows

:
a
:::::::::
significant

::::::::
negative

::::
bias

::::::::
compared

:::
to

:::
the

::::::
CAMS

:::::::
retrieval

:::::::
(-37.77

:::
W

::::
m−2

::
in

:::::::
autumn

::::
and

:::::
-86.87

:::
W

::::
m−2

:::
in

::::::::
summer).

:::::
There

:::
are

::::
two

:::::::
possible

:::::::
reasons

:::
for

::::
this:

:::::
firstly

::::
the

:::::::::::
simplification

:::
to

:::
one

:::::
cloud

::::
type

::::::
means

::::
that

::::::
thinner

::::::
clouds

:::
or640

:::::::::
multi-layer

:::::
cloud

::::::::
situations

:::
are

::::
not

:::::::
properly

::::::::::
represented

::
in

:::
the

::::::
model

::::
(see

:::
the

:::::::::
discussion

:::
on

:::::
COD

::::::::
retrievals

::
in

:::::::
Section

:::
4.4

::::::
below).

::::::::
However,

:::
the

::::
main

::::::
reason

::
is

::::::
related

::
to

:::
the

:::::::
retrieval

::::::::
algorithm:

:::
by

::::
only

::::::::::
considering

::::::::::::
measurements

:::::
where

:::
the

:::
PV

::::::
system

:
is
:::::
under

::
a
:::::
cloud,

::::
only

:::::
those

:::::::
periods

::::
with

:::::
lower

::::::::
irradiance

::::::
values

:::
are

:::::::
retrieved

::::
and

:::::::::
overshoots

:::
are

:::::::
ignored,

::
so

::::
that

::
at

::::::::
1-minute

::::::::
resolution

:
a
:::::
large

:::::::
negative

::::
bias

::
in

::::::::
irradiance

::
is
::::::
found.

:::::
Since

:::
the

::::::
CAMS

::::::::
irradiance

::::::::
retrieval

:
is
:::::
based

:::
on

:::
the

:::::::::
Heliosat-4

:::::::
method,

::
in

:::::
which

:::::
cloud

:::::::::
properties

::::
from

:::
the

::::::::::::
APOLLO_NG

:::::::
method

:::
are

:::::::
updated

:::::
every

::
15

:::::::
minutes

::::::::::::::
(Qu et al., 2017)

:
,
:::
one

::::::
should

::::::
expect645

:::
this

::::
bias

::
to

:::::
reduce

::
at
:::::::
coarser

:::::::::
resolution.

::::::
Indeed,

:::
the

:::::::::
15-minute

:::
data

::
in

:::
the

::::::
bottom

::::
row

::
of

::::
Fig.

::
10

::::::::
confirms

::::
this:

::
the

:::::::
average

::::
bias

:
is
:::::::
reduced

::
to

:::::
-3.73

:::
W

::::
m−2

::
in

::::::
autumn

::::
and

::::::
-15.07

::
W

::::
m−2

::
in
::::::::

summer.
::::
Note

::::
that

::
an

:::::::::
averaging

::
to

::
60

:::::::
minutes

::
is
:::
not

::::::::::
performed,

:::
due

::
to

:::
the

:::::::::
limitations

::
of

:::
the

::::::::
DISORT

::::
COD

:::::::::
algorithm,

::
as

::::::::
discussed

:::
in

::::::
Section

:::::
4.3.1.

:

:::
The

:
comparison with COSMO model data is shown in Fig. ??, in both cases with the linear temperature model. For the latter

comparison the data was
::
11

::::
and

::::
Table

:::
12,

::::::
where

::
in

:::
this

::::
case

:::
the

::::
data

::
is averaged over a 60 minute period. It is evident that the650

COSMO model shows a bias under clear sky conditions: here the assumed AOD is too high so that the irradiance turns out to

be too small,
::::
with

:::
an

::::::
average

::::
bias

::
of

:::::
60.92

::
W

:::::
m−2. On the other hand, under cloudy conditions and especially under low light

conditions in summer the irradiance from COSMO is larger than that retrieved from PV plants, which means that the COD
::
in

:::::::
COSMO

:
is too small.

::::
Here

:::
the

::::::
average

::::
bias

::
is

:::::
-38.36

:::
W

::::
m−2.

:
These results confirm the findings of Frank et al. (2018); Zubler

et al. (2011), and are discussed further in connection with the cloud optical depth in Section 4.4 below.655
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Figure 9.
::::::::
Combined

:::::::::
comparison

::
of

::::
GHI

::::::
retrieved

::::
from

:::
PV

:::::
power

:::::::::::
measurements

::::
with

:::
that

::::
from

::::::
CAMS,

:::::
using

:::
data

::
in

:::::::
1-minute

::::::::
resolution

:::
from

::::::
MS02,

:::::
PV11,

:::::
PV12,

::::::
PV15,

:::::
PV19,

:::
for

::::
2018

::::
(left

:::
two

:::::::
columns)

::::
and

::::
2019

::::
(right

::::
two

::::::::
columns),

:::
and

::::
both

:::
the

::::
linear

::::
and

::::::::
non-linear

:::::::::
temperature

::::::
models.

:::
The

:::
top

::::
row

:::::
shows

::::
GHI

:::::::
retrieved

::
via

:::::
AOD

:::::
under

::::
clear

::::
skies

::::
using

:::
the

:::::::
DISORT

:::::
AOD

::::
LUT,

:::
the

::::::
bottom

:::
row

::
is

:::
for

:::::
cloudy

::::::
periods

::
via

:::
the

::::
COD

:::::
using

::
the

:::::::
DISORT

::::
COD

:::::
LUT.

Table 11.
::::
Mean

::::
bias

::::
error

:::
and

:::
root

::::
mean

::::::
squared

::::
error

:::
(in

::
W

:::::
m−2),

::::
along

::::
with

:::::
rMBE

:::
and

::::::
rRMSE

::
(in

::::::
brackets

::
in
:::
%)

::
of

:::
GHI

:::::::
retrievals

:::::
using

::
1D

:::::::
DISORT

:::::
(AOD

:::
and

:::::
COD)

:::
and

::
the

:::
3D

:::::::
MYSTIC

:::::
LUT,

:::::::
compared

::
to

::::::
CAMS,

:::
for

:::::::
1-minute

:::
and

:::::::
15-minute

::::
data.

Data Measure LUT
2018 2019

:::::
Linear

: ::::::::
Non-linear

: :::::
Linear

::::::::
Non-linear

:

1min

MBE ::
1D

:::::
AOD

::::
18.07

:
(see also statistical measures in Tables ?? and ??), for 13 stations and both measurement campaigns, whereas the

:::
3.9)

: :::
1.16

::::
(0.3)

::::
13.83

::::
(2.1)

: ::::
13.91

::::
(2.1)

:

::
1D

:::::
COD

::::
-37.68

::::::
(-13.4)

:::::
-37.86

:::::
(-13.5)

: :::::
-85.85

:::::
(-22.1)

: :::::
-87.88

:::::
(-22.3)

:

RMSE ::
1D

:::::
AOD

::::
23.51

::::
(5.1)

::::
32.19

::::
(7.0)

: ::::
31.99

::::
(4.8)

: ::::
32.48

::::
(4.9)

:

::
1D

:::::
COD

:::::
112.68

:::::
(40.2)

:::::
112.78

:::::
(40.2)

: :::::
163.15

:::::
(42.0)

: :::::
163.61

:::::
(41.6)

:

15min

MBE ::
1D

:::::
AOD

:::
5.74

::::
(1.3)

: ::::
-1.25

::::
(-0.3)

: :::
1.31

::::
(0.2)

:::
5.78

::::
(0.9)

::
1D

:::::
COD

:::
-6.09

:::::
(-2.1)

::::
-1.37

::::
(-0.5)

: ::::
-13.70

:::::
(-3.8)

::::
-16.44

:::::
(-4.7)

RMSE ::
1D

:::::
AOD

::::
28.74

::::
(6.5)

::::
30.95

::::
(7.3)

: ::::
29.26

::::
(4.3)

: ::::
25.43

::::
(3.8)

:

::
1D

:::::
COD

::::
75.78

:::::
(26.6)

: ::::
79.69

:::::
(29.0)

:::::
114.36

:::::
(32.1)

: :::::
117.01

:::::
(33.6)

:
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Figure 10.
:::::::

Combined
:::::::::
comparison

::
of

::::
GHI

:::::::
retrieved

::::
from

:::
PV

:::::
power

:::::::::::
measurements

::::
with

::::
from

::::::
CAMS,

::::
using

::::
data

::
in

::::::::
15-minute

::::::::
resolution

:::
from

::::::
MS02,

:::::
PV01,

:::::
PV06,

:::::
PV08,

:::::
PV10,

:::::
PV11,

:::::
PV14,

:::::
PV16,

:::::
PV17,

::::
PV18,

:::::
PV21,

:::
for

::::
2018

:::
(left

:::
two

::::::::
columns)

:::
and

::::
2019

::::
(right

:::
two

::::::::
columns),

:::
and

:::
both

:::
the

::::
linear

:::
and

::::::::
non-linear

:::::::::
temperature

::::::
models.

:::
The

:::
top

:::
row

:::::
shows

::::
GHI

:::::::
retrieved

::
via

::::
AOD

:::::
under

::::
clear

::::
skies

::::
using

:::
the

:::::::
DISORT

::::
AOD

::::
LUT,

::
the

::::::
bottom

:::
row

::
is

::
for

::::::
cloudy

::::::
periods

::
via

:::
the

::::
COD

::::
using

:::
the

:::::::
DISORT

::::
COD

::::
LUT.

Table 12. Combined comparison
::::
Mean

:::
bias

::::
error

:::
and

::::
root

::::
mean

::::::
squared

::::
error

:::
(in

::
W

:::::
m−2),

:::::
along

:::
with

::::::
rMBE

:::
and

::::::
rRMSE

::
(in

:::::::
brackets

::
in

::
%)

:
of GHI retrieved from 60 minute averaged PV power measurements under clear or completely cloudy conditions

::::::
average

::::
GHI

:::::::
retrievals

using the optical depth via
::
1D

:
DISORT LUT with that from the COSMO model, for all stations and for 2018 (left)

::::
AOD and 2019 (right

::::
COD)

, using
:::
and the linear temperature

::
3D

:::::::
MYSTIC

::::
LUT

:::::::
compared

::
to
:::::::
COSMO

:
model

:::
data.

Data Measure LUT
2018 2019

::::
Linear

: ::::::::
Non-linear

::::
Linear

: ::::::::
Non-linear

60 min average

MBE ::
1D

:::::
AOD

::::
65.90

::::
(16.2)

: ::::
57.72

::::
(14.7)

: ::::
58.74

::::
(9.9)

::::
61.33

::::
(10.5)

:

::
1D

:::::
COD

::::
14.34

::::
(5.2)

::::
16.77

::::
(6.1)

::::
-37.50

:::::
(-9.4)

::::
-39.21

:::::
(-9.8)

RMSE ::
1D

:::::
AOD

::::
72.71

::::
(17.9)

: ::::
67.70

::::
(17.2)

: ::::
65.65

::::
(11.1)

: ::::
67.32

::::
(11.5)

:

::
1D

:::::
COD

:::::
124.16

:::::
(44.8)

:::::
125.12

:::::
(45.4)

:::::
143.86

:::::
(36.1)

:::::
144.96

:::::
(36.4)

4.4 Cloud optical depth retrievals

As discussed in Section 2.3.3, the cloud optical depth was
:
is

:
retrieved from both PV systems and pyranometers, using a

DISORT-based LUT. In order to avoid errors due to 3D effects, in this work only data with
:
a
:
cloud fraction of 1 were

:::
are
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Figure 11. Combined comparison of GHI retrieved from
:
60

::::::
minute

:::::::
averaged PV power measurements under clear

:::
(top

::::
row)

:
or completely

cloudy
::::::
(bottom

::::
row) conditions using the optical depth inferred via DISORT LUT with that from CAMS, using data in 1 minute resolution

(top row) from MS02, PV11, PV12, PV15, PV19, in 15 minute resolution from MS02, PV01, PV06, PV08, PV10, PV11, PV14, PV16,

PV17, PV18
::
the

:::::::
COSMO

:::::
model, PV21 (middle row) and averaged to 60 min (bottom row) for all stations ,

::
and

:
for 2018 (left

:::
two

::::::
columns)

and 2019 (right
::

two
:::::::
columns), using

:::
both the linear

:::
and

::::::::
non-linear temperature model

:::::
models.

considered, in other words only completely overcast conditions. The results for the linear temperature model are shown in

Figs. 12 and 13, compared to the APOLLO_NG and COSMO data respectively. As can also be seen in Table ??
:::::
Tables

::
13

::::
and660

::
14, in most cases a smaller COD is extracted from PV systems, except for the comparison between the summer campaign and

COSMO data, in which case a positive mean bias of approximately seven
:::::
COD

:
=
::
8
:
is found. Overall, the COD is mostly in

the range between 1 and 10, for both campaigns.
:::::
Taken

::
at

::::
face

:::::
value,

:::
the

:::::::
negative

::::
bias

::::
with

:::::::
respect

::
to

::::::::::::
APOLLO_NG

::::::
would

:::::
imply

:
a
:::::::
positive

:::
bias

::
in
::::
GHI

::::
with

:::::::
respect

::
to

::::::
CAMS,

::::::
which

:
is
:::
not

::::
seen

::
in
:::
the

::
1-
::::
and

:::::::::
15-minute

::::::::
retrievals.

:::::::
However

:::::
these

::::::
results

:::::
cannot

:::
be

::::::
directly

:::::::::
compared,

::::
due

::
to

:::
the

:::::
effect

::
of

::::
both

::::::
spatial

:::
and

::::::::
temporal

::::::::
averaging

::
as

::::
well

:::
as

:::
the

::::::::
limitation

::
of

:::
the

::::::::
DISORT665

::::
COD

:::::
LUT

::::::::
algorithm,

::::::
which

::::::
ignores

:::
3D

::::::
effects.

:

Figures 14 and 15 show the same results using measured pyranometer data to infer the COD. These retrievals show the same

:
a
::::::
similar

:
trend as the PV-based ones: once again it is evident that the COD is mostly below 10, and in this range the retrieved
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Table 13. Mean bias error and root mean squared error (in W m−2)
:
,
::::
along

::::
with

:::::
rMBE

:::
and

::::::
rRMSE

::
(in

::::::
brackets

::
in

:::
%) of COD retrievals from

PV systems, compared to both
:::
the APOLLO_NG dataand COSMO model predictions.

Data Measure
2018 2019

::::
Linear

: ::::::::
Non-linear

:::::
Linear

::::::::
Non-linear

60min average ::::
MBE Linear

::::
-3.22

:::::
(-25.0)

:
Faiman

::::
-3.57

:::::
(-27.2)

:
Linear

::::
-3.58

:::::
(-15.4)

:
Faiman

::::
-3.24

:::::
(-13.6)

:

Linear
::::::
RMSE Faiman

::::
15.20

::::::
(117.9) Linear

::::
15.66

::::::
(119.3)

:
Faiman

::::
18.99

::::
(81.7)

:
MBE

::::
19.30

::::
(81.2)

:

Table 14.
::::
Mean

::::
bias

::::
error

:::
and

:::
root

::::
mean

::::::
squared

::::
error

:::
(in

::
W

:::::
m−2),

::::
along

::::
with

:::::
rMBE

:::
and

::::::
rRMSE

::
(in

::::::
brackets

::
in

:::
%)

::
of

::::
COD

:::::::
retrievals

::::
from

::
PV

:::::::
systems,

:::::::
compared

::
to
:::
the

:::::::
COSMO

:::::
model

:::::::::
predictions.

Data
-2.51

Measure
-3.13 2018 -2.68 2019

-2.56 -8.31
:::::
Linear -9.04

:::::::
Non-linear

:
7.37

::::
Linear

:
7.89

::::::::
Non-linear

:

60min average
RMSE

::::
MBE 15.26

::::
-8.78

:::::
(-47.6)

:
15.53

::::
-9.16

:::::
(-49.0)

:
19.17

:::
7.32

:::::
(59.3) 19.11

:::
8.06

:::::
(64.6)

25.40
:::::
RMSE 25.81

::::
25.77

:::::
(139.7)

:
22.99

::::
26.06

:::::
(139.2)

:
24.01

::::
22.22

:::::
(180.1)

: ::::
23.52

:::::
(188.6)

:

data has a large positive relative bias. There are several possible reasons for this: firstly it is evident from Eq. (11) that the

retrieval is more sensitive to errors in inverted irradiance (transmission) for smaller COD.
:::
On

:::
the

::::
other

:::::
hand,

::
it
::::
must

::::
also

:::
be670

::::
noted

::::
that

:::
the

::::::::
efficiency

:::
of

::::
both

:::
PV

:::::::
modules

::::
and

:::::::::::
silicon-based

:::::::::::
pyranometers

::::::
shows

:
a
::::::::::
logarithmic

::::::::::
dependence

:::
on

:::::::::
irradiance,

::
so

:::
that

::::
any

::::::::::
inaccuracies

:::
in

:::
the

:::
PV

:::::
model

::::::::::
parameters

::
or

:::
the

:::::::::::
pyranometer

:::::::::
calibration

::::
will

::::
have

::
a

:::::
larger

:::::
effect

:::
on

:::
the

:::::::
inverted

::::::::
irradiance

:::::
under

::::
low

::::
light

:::::::::
conditions

:::::::
(higher

::::::
COD).

:
In addition, since the LUT was

::
is constructed with water clouds, the

effect of optically thinner ice clouds was
:::
thin

:::
ice

::::::
clouds

::
is

:
not properly taken into account. Since ice particles scatter slightly

less in the forward direction, 1− g ' 0.3 is larger than for water clouds (1− g ' 0.15) and thus a smaller optical depth could675

lead to similar irradiance at the ground [cf. Eq. (11)]. Thirdly, since clouds become more absorbing in the near infrared and

considering that silicon PV is sensitive to wavelengths up to 1200 nm, spectral effects could also lead to a bias in the results. In

general it must be said that even with measurements at two different wavelengths there exists an ambiguity in the determination

of effective radius and COD (Nakajima and King, 1990), so that in the case of spectrally integrated PV-inverted irradiance one

cannot expect to have enough information to accurately determine cloud optical properties in all situations.680

Notwithstanding the bias in COD retrievals, the ground-based method presented here can still complement satellite retrievals,

in particular due to the potentially higher spatiotemporal resolution achievable with large amounts of high frequency data spread

over a large area. Once again, for the summer months the COSMO data show a large mean bias error of 7.37
::::
COD

::
=
::::
7.69, even

for large values of COD, confirming the findings of Frank et al. (2018).
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Figure 12. Combined comparison of COD retrieved from PV power measurements under completely cloudy conditions using the DISORT

LUT with that from APOLLO_NG, for all stations and for 2018 (left) and 2019 (right), using the linear temperature model and averaged

over 60 minutes.

5 Conclusions and Outlook685

In summary, in this work a framework for extracting both global tilted and horizontal irradiance from PV power data has

been presented and a first test for retrieving cloud optical depth was
:
is carried out. The algorithm makes use of state-of-the-art

radiative transfer solvers in libRadtran, in conjunction with different sources of data for the state of the atmosphere, in particular

the aerosol and water vapour content. The calibration procedure uses an explicit calculation of diffuse and direct irradiance,

taking into account the spectral response of the relevant PV technology as well as the optical properties of the glass surface.690

Where necessary the module temperature is modelled using weather model data for ambient temperature and wind speed input.

The PV systems are calibrated using a libRadtran clear sky simulation with the DISORT solver, with inputs from the COSMO

model and AERONET, and the algorithm can be adapted to each system and situation, depending on which parameters are

known and which need to be determined by non-linear optimisation.

Once calibrated, the measured PV data is used to extracted global tilted irradiance under all sky conditions. In order to695

take into account the spectral mismatch between the spectral response of PV modules and the entire broadband spectrum,
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Figure 13. Same as 12, compared to the total COD from the COSMO model.

a situation-dependent fit for the dependence of this mismatch on atmospheric conditions is performed, using simulated data

for clear sky conditions and the water vapour and aerosol load of each site. The GTI is then compared to that measured

by tilted pyranometers: the retrieved GTI at 1 minute (15 minute
:::::::
1-minute

:::::::::
(15-minute) resolution has a mean bias error of

19.69
::::

18.68 W m−2 (23.25
:::::
34.47 W m−2) averaged over the two measurement campaigns, using the linear temperature model.700

The non-linear Faiman temperature model achieves a mean bias error of 10.41
:::
8.77 W m−2 for those systems with 1 minute

:::::::
1-minute

:
data, but for those with 15 minute

::::::::
15-minute

:
the calibration algorithm fails to find an optimal solution in several

cases, so that in the end the mean bias error is 87.17
::::
91.98 W m−2. This shows that an accurate calibration is essential in order

to accurately extract irradiance.

The inverted GTI is used to find the global horizontal irradiance using two
::::
three different methods: (i) under persisting clear705

or cloudy conditions (either completely clear or completely cloudy skies)
:::
(ii)

::::::
cloudy

:::::::::
conditions a lookup table based on a 1D

DISORT simulation is used in order to find either the AOD or COD, and thus the global horizontal irradiance; (ii
::
iii) under

broken cloud conditions a LUT based on 3D MYSTIC simulations is used to translate the tilted to horizontal irradiance, using

the geometry of the system, sun position and cloud fraction as inputs. The retrieved GHI is then compared to pyranometer

measurements: in the case of the 1D LUT methodand with 1 minute data und clear or completely cloudy
:
,
::::
with

::::::::
1-minute

::::
data710
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Figure 14. Combined comparison of COD retrieved from tilted (plane-of array = “poa”) pyranometer measurements under completely

cloudy conditions using the DISORT LUT with that from APOLLO_NG, for all stations and for 2018 (left) and 2019 (right), using the linear

temperature model and averaged over 60 minutes.

:::::
under

::::
clear

:::::::
(cloudy)

:
skies, the mean bias error is 11.45

::::
13.79 W m−2

:::::
(16.09

::
W

:::::
m−2)

:
for the linear model and 5.36

:::
5.79 W m−2

:::::
(12.71

:::
W

::::
m−2)

:
for the non-linear

::::::::::
temperature

:
model. Comparison

::
of

::
the

:::::::::
15-minute

::::
GHI

::::::::
retrievals

:
with CAMS data reveals a

negative bias: the 60 minute data shows a bias of -10.69
::::::
positive

::::
bias

:::::
under

::::
clear

::::
skies

:::
of

::::
3.53 W m−2 in autumn (mostly clear

skies) and -46.30
::::
(2.27 W m−2in summer (mostly cloudy skies) ,

:
) for the linear temperature model. As discussed in Section 1,

this confirms the results in Yang and Bright (2020), who showed that both CAMS and SARAH tend to slightly overestimate715

GHI. However, considering that the inferred GHI has a positive bias with respect to pyranometers
::::::::::
(non-linear)

::::::
model,

:::::::
whereas

:::::
under

::::::
cloudy

::::
skies

:::::
there

::
is

:
a
::::::::
negative

:::
bias

:::
of

:::::
-9.90

::
W

::::
m−2

::::
and

:::::
-8.91

::
W

:::::
m−2

::::::::::
respectively.

:::::::::::
Considering

:::
the

::::::::
difference

:::::
been

::::
point

::::::::::::
measurements

::::
and

::::::
satellite

::::::
pixels,

::
as

::::
well

:::
as

:::
the

:::::::
inherent

::::
bias

::::
from

::::::::::
considering

::::
only

:::::::
periods

::::
with

:::::
100%

:::::
cloud

:::::::
fraction

::
for

:::
the

::::::::
DISORT

::::::
method, these results must be interpreted with care. In the case of clear skies, small errors in the temperature

model can lead to large errors in extracted irradiance, and the case of cloudy skies, simplifying assumptions on cloud type can720

lead to errors in COD and extracted irradiance.
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Figure 15. Same as 14, compared to the total COD from the COSMO model.

The retrieved GHI shows a large bias when comparing it with COSMO model data, thus confirming the results of Frank

et al. (2018); Zubler et al. (2011): in autumn the 60 minute
::::
under

:::::
clear

::::
skies

:::
the

:::::::::
60-minute averaged GHI has a mean bias error

of 31.61
::::
60.92 W m−2, since COSMO has in general a too large aerosol load, whereas

:::::
under

::::::
cloudy

::::
skies in summer the MBE

is -16.69
:::::
-38.36 W m−2, since under cloudy conditions the COSMO model

:::::::
generally

:::::
tends

::
to overestimates the irradiance. The725

latter result is also confirmed by the COD retrievals: in summer there is a positive bias of 7.37
:::
7.69

:
for the retrieved COD

relative to COSMO – the COD in the weather model is thus on average too small.

Overall, the largest source of error in the model chain comes from the PV model itself – an accurate calibration is vital

in order to be able to extract irradiance reliably. In
::::::
general

:::
the

:::::::::
non-linear

::::::::::
temperature

::::::
model

::::::::
performs

:::
the

::::
best

::::
with

:::::
high

::::::::
frequency

:::
PV

::::
data.

:::
In this regard it is helpful to use measured module temperature rather than relying on temperature models.730

More accurate results could
::::
also be achieved by using PV current measurements, since in this case the temperature dependence

is almost negligible. This will be explored in future work.

The DISORT LUT was
::
is only employed during periods of persistent cloudy or clear sky conditions in order to infer COD

or AOD, respectively, whereas the effect of 3D transport of photons was
:
is
:
only taken into account with the MYSTIC LUT for

the GHI. This means that the algorithm in its present form can only extract direct and diffuse components reliably under stable735
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conditions for which 1D radiative transfer is still a reasonable approximation. A possible extension to this will be studied in

future work, in which explicit 3D simulated cloud fields will be used in conjunction with the 1D DISORT simulation in order

to quantify the error that results from neglecting 3D radiative transfer. It is only once the three dimensionality of atmospheric

radiative transfer as well as additional information on cloud type is taken into account that one can accurately extract the direct

and diffuse irradiance components under broken cloud conditions.740

Another aspect not taken into account in this study is the possible gain in using several different PV systems that are close

enough to each other so as to be able to see the same or similar portions of the sky. In this case it is conceivable that one could

extract more information about cloud properties and irradiance compared to that obtained from just one system. Indeed, the

rapid proliferation of PV installations could make such multi-sensor inversions an interesting future prospect.

The ultimate goal of this work is to show that PV power data can be used to infer global horizontal irradiance and optical745

properties of the atmosphere
:
,
:::
and

:::
the

::::::::
algorithm

:::::::::
presented

::::
here

::
is

:::
the

:::
first

::::
step

::
in

::::
this

::::::::
direction.

::::::::
Although

::
it

::
is

::::
clear

:::::
from

:::
the

:::::
above

:::
that

:::
this

::
is
:::::::
feasible,

:::::::
moving

:::::::
towards

:::::::::
operational

:::
use

::::::
would

::::::
require

::::::
several

::::::
further

::::
steps.

::::
The

::::::
largest

:::::
source

:::
of

:::
bias

::::::
comes

::::
from

:::
the

:::::::::
calibration

::::
step,

::
in

::::::::
particular

:::
the

:::::
effect

::
of

:::::::::::
temperature.

::::::
Access

::
to

:::::
direct

::::::
current

:::::
(DC)

::::
data

::
on

:::
the

:::::::
inverter

::::
level

::::::
would

::::
allow

::
a
:::::
much

::::
more

::::::::
accurate

::::::::
extraction

::
of

:::
the

:::::::::
irradiance,

:::::::
without

:::
the

::::::::::
confounding

:::::
effect

:::
of

::::::::::
temperature,

:::::
since

:::
the

::::::::::
dependence

::
of

::::
MPP

:::::::
current

::
on

::::::::::
temperature

::
is
:::
an

:::::
order

::
of

:::::::::
magnitude

:::::::
smaller

::::
than

:::
that

::
of
:::::

MPP
:::::::
voltage

:::
and

::::::
power.

:::::
Since

:::::::
inverter

::::
data

::
is750

:::::::::
commonly

:::::::
available

::
in
::::::::

industry,
:::
this

::::::
should

:::
be

:::::::
possible

::::::::
provided

:::
one

:::
has

:::
the

:::::
legal

::::
right

::
to
::::::

access
:::
the

:::::
data.

:::::::::::
Additionally,

:::
the

:::
data

:::::::::::::
pre-processing

:::::
needs

::
to

:::
be

:::::::::
automated.

::::
For

::::::::
instance,

:::
one

:::::
needs

:::
to

:::::::
exclude

:::
PV

:::::::
systems

::::::
and/or

::::
data

::::::
subsets

::::
that

::
do

::::
not

::::
meet

::::::
certain

::::::
criteria

::::
such

:::
as

::::::
shading

:::
of

:::
PV

:::::::
modules

::
or

:::::::
inverter

::::::::
clipping,

:::
and

:::
one

::::::
needs

::
to

::
be

::::
able

::
to

::::::
detect

::::
clear

:::
sky

:::::::
periods

:::::::::::
automatically,

:::::
even

::
if

:::
the

::::::
system

:::::::::
orientation

::
is
:::::::::

unknown.
::::
This

:::::
could

:::
be

:::::
done

::
by

::::::::::
developing

:
a
::::::

hybrid
::::::::

approach
:::::

using
:::::

both

:::::::
physical

::::::::
modelling

::::
and

:::::::
artificial

::::::::::
intelligence

:::::
(AI)

:::::::::
algorithms

:::
for

::::::
pattern

::::::::::
recognition.

:::
In

::::::::
addition,

:::
the

:::::::::
calibration

:::::::::
procedure755

::::
itself

:::::
could

::
be

::::::::::
augmented

::::
with

:::
AI,

::
to

:::
find

:::
the

::::::::
unknown

::::::::::
parameters

::::
more

:::::::::
effectively.

:

::::
Once

:::::
these

::::::
aspects

:::
are

:::::::::
overcome

:::
and

::::::::::
appropriate

::::::::::
agreements

::::
with

:::::::
industry

:::::::
partners

:::
are

:::::
made

:::
for

::::::
access

::
to

:::
the

::::
data,

:::::
there

:::::
should

:::
be

:::::::
nothing

:::::::
standing

::
in
::::

the
::::
way

::
of

::::::::::
operational

:::
use. If this could be achieved at a large scale it would allow a better

characterisation of solar irradiance at the ground and open up several possibilities for improving PV power forecasts at different

time horizons. At shorter time (sub-hourly) scales one could use the additional information on irradiance variability as further760

input to empirical forecasts based on statistical methods, whereas at longer time scales (more than three hours) these data could

be assimilated into weather models. In order for this to make a difference one needs a much larger data set of PV systems for

the analysis. This in itself will require more of the algorithm to be automated, in particular the pre-processing of the data,

removing unwanted artefacts, clear sky detection, as well as the separation of data into different weather conditions,
::::::
which

:::
then

:::::::
requires

::::::
further

::::::::::
automation. First steps in this direction are currently being explored.765

Code and data availability. Data is available for download from Zenodo (Barry et al., 2023), and code is available for download as part of

the supplementary information.
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Appendix A: Modelling details

A1 Parametric power model

In Buchmann (2018) a simple model was
:
is

:
proposed, based on the combination of several different modelling steps from the770

literature (see for instance Skoplaki and Palyvos (2009) or Dows and Gough (1995)). Here the PV power output is written as

PAC,mod =AηDCAC ηmodule(T,G∠
tot,SW,τ ,vwind)G∠

tot,PV,τ =AηDCAC ηmodule(T,G∠
tot,SW,τ ,vwind)

[
G∠

dir,PV,τ+G∠
diff,PV,τ

]
,

(A1)

where A is the surface area of the PV system, ηDCAC is the converter efficiency, and the direct and diffuse components of

the irradiance in the plane-of-array and underneath the glass covering (see Sect. A2) are given by G∠
dir,PV,τ and G∠

diff,PV,τ

respectively. The temperature-dependent module efficiency is defined by (Evans and Florschuetz, 1977)775

ηmodule(T,G∠
tot,SW,τ ,vwind) = ηmodule,n

[
1− ζ(Tmodule−Tn)

]
, (A2)

where ηmodule,n and ζ are the module efficiency and temperature coefficient at STC, i.e. at Tn = 25◦C,G∠
tot,SW,n = 1000 W m−2

and air-mass of 1.5.
::::
Note

::::
that

::
in

::::::::
principle

:::
one

:::::
could

::::::
include

::
a
::::::::::
logarithmic

::::::::::
dependence

::
of

:::
the

::::::
module

:::::::::
efficiency

::
on

:::::::::
irradiance

:::::::::::
(Sauer, 1994),

::::::
which

:
is
::::::::
however

::
not

::::::::::
considered

::::
here. The module temperature is modelled using both the linear model (Tamizh-

Mani et al., 2003) defined by780

Tmodule = u0Tambient +u1G
∠
tot,SW,τ +u2vwind +u3Tsky, (A3)

as well as the non-linear model (Barry et al., 2020; Faiman, 2008) defined by

Tmodule = Tambient +
G∠

tot,SW,τ

u1 +u2 vwind
+u3 (Tsky−Tambient) , (A4)

where vwind is the wind speed at 10m above the ground, T 4
sky =G↓LW/(εσ) defines the sky temperature and u0,1,2,3 are model

parameters. Here an emissivity of ε= 1 is assumed and σ is the Stefan-Boltzmann constant. Note that Eqs. (A1), (A2) and785

(A3) ((A4)) can be combined into the general non-linear expressions given in Eq. (1) (Eq. (2)) (see for instance Skoplaki and

Palyvos (2009); Dows and Gough (1995)), where in this special case the coefficients are given by

b1 = s(1 + ζ 25), b2 =−u1sζ, b3 =−u0sζ, b4 =−u2sζ, b5 =−sζu3 (A5)

for the linear and

b′1 = s(1 + ζ 25), b′2 =−u1

sζ
, b′3 = sζ(u3− 1), b′4 =−u2

sζ
, b′5 =−sζu3 . (A6)790

for the non-linear temperature model, where s≡AηDCAC ηmodule,STC is a constant scaling factor. The model equations in

Eqs. (1) and (2) are used in this work, and the coefficients u0,1,2,3, ζ,s are allowed to vary freely, unless their a priori values are

known from datasheets and/or from temperature modelling. In cases where measured temperature is available the parameters

u0,1,2,3 fall away.
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A2 Optical model of glass covering795

A2.1 Model formulation

In order to model the optics of the glass surface of the PV modules the following equation for the transmission of photons as a

function of the incident angle Θ is used (De Soto et al., 2006; Sjerps-Koomen et al., 1996)

τPV(Θ) = exp

(
− κL

cosΘr

) (
1− 1

2

[
sin2(Θr−Θ)

sin2(Θr + Θ)
+

tan2(Θr−Θ)

tan2(Θr + Θ)

])
, (A7)

where Θr is the angle of refraction from Snell’s law (nsinΘr = sinΘ), n is the index of refraction of glass, κ is the glazing800

extinction coefficient and L is the glazing thickness. The incident angle Θ is the angle between the solar position vector and

normal vector of the PV array, defined by

cosΘ = cosθ0 cosθ+ sinθ0 sinθ cos(φ0−φ) , (A8)

where θ is the angle of inclination of the PV array, φ is its orientation, θ0 is the solar zenith angle and φ0 is the solar azimuth.

In principle one should take into account the wavelength dependence of n and κ, however for most materials they are805

relatively constant, with n increasing slightly at lower wavelengths, and since in practice the exact properties of the glass

covering for each system are unknown it suffices to use the effective values for all wavelengths.

The so-called incidence angle modifier (see also Duffie and Beckman (2013)) is defined by the ratio of the transmission

τPV(Θ) and the transmission at normal incidence, i.e.,

τPV,rel(Θ)≡ τPV(Θ)

τPV(0)
, (A9)810

where

τPV(0) = e−κL

[
1−

(
n− 1

n+ 1

)2
]

(A10)

= e−κL
4n

(n+ 1)2
. (A11)

The use of a relative transmission coefficient is justified from the fact that the absolute transmittance is already taken into

account when characterising the solar cell under standard conditions (Sjerps-Koomen et al., 1996). The normalisation with815

τPV(0) means that the result is less sensitive to the product κL and more on the angle of incidence. In the forward model the

wavelength-integrated direct irradiance as well as the diffuse radiance beams are each multiplied with the factor τPV,rel(Θ)

in order to take into account the attenuation due to the glass surface. The values of the extinction coefficient and thickness of

the glass were
:::
are fixed to (De Soto et al., 2006) κ= 4 m−1 and L= 0.002 m, respectively, whereas the effective refractive

index n was
::
is allowed to vary (n= 1.526 with an a-priori error of 1%). In principle one could also vary the product κL that820

controls the absorption, but as mentioned above the incident angle modifier approach is applicable for a wide range of glass

covers (Duffie and Beckman, 2013; Klein, 1979).
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A2.2 Optical model in forward model calibration

In the forward model calibration, the transmission function can then be used to calculate the direct and diffuse irradiance,

G∠
dir,PV,τ and G∠

diff,PV,τ as825

G∠
dir,PV,τ =

cosΘ

cosθ0
G↓dir τPV,rel(Θ), (A12)

and

G∠
diff,PV,τ =

2π+φ∫
φ

π/2−θ∫
−θ

LΩ
diff cosΘ′ τPV,rel(Θ

′)dΩ , for cosΘ′ ≥ 0, (A13)

where LΩ
diff is the diffuse radiance distribution calculated by DISORT. In this way there is no need for an empirical incidence

angle modifier, since the direction of each diffuse photon is explicitly described. The same formulation was
:
is used to calculate830

G∠
dir,SW,τ and G∠

diff,SW,τ , i.e. over the whole wavelength range.

A2.3 Inversion of the optical model

For the inversion of the PV model, two different methods were
:::
are used: for the extraction of cloud optical depth with DISORT

the optical model can be explicitly taken into account in the radiative transfer simulation, whereas for the direct extraction of

GTI and its translation to GHI with the MYSTIC lookup table the empirical formulation (Duffie and Beckman, 2013) for the835

effective angle for diffuse photons as a function of tilt angle θ,

Θdiff = 59.7− 0.1388θ+ 0.001497θ2 (A14)

was
:
is used for all time points with clearness index below 0.3, so that the final inverted GTI is given by

G∠
tot,SW,inv =

G∠
tot,SW,inv,τ

τPV,rel,eff
, (A15)

where840

τPV,rel,eff =

τPV,rel(Θdir) if ki ≥ 0.3

τPV,rel(Θdiff) if ki < 0.3
(A16)

is the effective incidence angle modifier for clearness index ki.

A3 Spectral mismatch fitting procedure

The ratio of silicon PV irradiance to broadband irradiance as defined in Eq. (5) is a function of atmospheric composition

(primarily water vapour content) and angle of incidence of the incoming solar beam. Indeed, the shape of the diurnal variation845

in ξspec,GTI is dependent on the azimuth angle of the PV plant, as shown in Figs. A1 and A2, where the ratio is plotted for
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(a) 2018 campaign (b) 2019 campaign

Figure A1. Spectral mismatch ratio at PV12 (azimuth angle φ' 135◦) as a function of time, mean incident angle as well as water vapour

column (upper plots) and AOD (lower plots), both (a) 2018 and (b) 2019 measurement campaigns. Θmin is the minimum incident angle.

both GHI and GTI, for two different PV systems with different orientation, using libRadtran clear sky simulations from the

different measurement campaigns. The points in the upper (lower) plots in each figure are coloured according to precipitable

water (AOD), and it is evident that for a given incident angle the water vapour plays the largest role in determing the ratio.

The mismatch ratio remains at roughly 0.83 throughout the day, depending on water vapour column. In the case of PV12 in850

Fig. A1, one can see that in the mornings the ratio is smaller, i.e. more red light, whereas in the evenings the ratio is larger, since

the panel is facing more to the south east. This means that the panel detects more diffuse light in the evenings. The behaviour

at PV15 (Fig. A1) is the opposite – in the morning the ratio is larger, since the panel looks more to the south west (mornings

higher diffuse component, i.e. more blue light), whereas in the evenings it is smaller. However in the summer time when the

sun goes down far to the north, the diffuse component again plays a role, so that the ratio becomes larger (right hand plot).855

As shown in the Figures above, the data was
::
is first grouped by time of day in order to calculate the mean value, then split

into two halves on either side of the minimum incident angle (Θmin). Each branch can then be fitted with the function

〈ξspec,GTI〉= x0 exp
(
− x1

cosΘ
− x2

cosΘ2

)
, (A17)

shown as the red dashed line in Figs. A1 and A2. This shows the general form of the diurnal variation in spectral mismatch,

and that for silicon PV the ratio is about 83% for most of the day.860

44



(a) 2018 campaign (b) 2019 campaign

Figure A2. Same as A1, for PV15 (azimuth angle φ' 226◦)

In order to capture the effect of precipitable water and AOD, the function

ξspec,GTI = p0 exp(−p1w− p2a) (A18)

is fitted to the irradiance data for each time step (averaged over all days of the respective measurement campaign), where w

is the precipitable water from COSMO and a the AOD at 500nm from AERONET. The fit coefficients are then interpolated

over the entire dataset in order to calculate ξspec,GTI at any time of day. Future work will examine the effects of clouds on the865

spectral mismatch factor – here the clear sky fit was
:
is
:

applied to all data, which due to whitening of the skylight by clouds

could lead to a bias in the final result.

Appendix B: Results using Faiman temperature model

In this section more retrieval plots using the Faiman temperature model are shown for completeness, for GTI (Figs. ?? and ??)

and GHI (Figs. ??, ?? and ??). The corresponding statistical quantities are shown in the main text, together with those from870

the linear temperature model in Tables ??, ?? and ??.

Here the result of errors in the calibration procedure using 15 minute data with the Faiman model can be clearly seen. For

instance if there is a large correlation between temperature model parameters and orientation angles, the optimisation may find

a local minimum with an incorrect azimuth angle, leading to incorrect results for the irradiance. If the algorithm cannot find a

45



satisfactory solution then the a-priori values are used, which then leads to a large error in the extracted tilted irradiance as seen875

in Fig. ??.

Combined comparison of GTI retrieved from PV power measurements with that measured by tilted pyranometers, using data

in 1 minute resolution from MS02, PV11, PV12, PV15, PV19, for 2018 (left) and 2019 (right), and the Faiman temperature

model. Same as Fig. ?? using data in 15 minute resolution from MS02, PV01, PV06, PV08, PV10, PV11, PV14, PV16,

PV17, PV18, PV21 for 2018 (left) and 2019 (right). GHI from DISORT LUT compared to horizontal pyranometers, as in ??,880

for the Faiman temperature model. GHI from MYSTIC LUT compared to horizontal pyranometers, as in ??, for the Faiman

temperature model. GHI using DISORT LUT compared to satellite measurements, as in ??, for the Faiman temperature model.
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