
Atmos. Meas. Tech., 16, 1–23, 2023
https://doi.org/10.5194/amt-16-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Validation of MUSES NH3 observations from AIRS and CrIS
against aircraft measurements from DISCOVER-AQ and
a surface network in the Magic Valley
Karen E. Cady-Pereira1, Xuehui Guo2, Rui Wang3, April B. Leytem4, Chase Calkins1, Elizabeth Berry1, Kang Sun5,6,
Markus Müller7, Armin Wisthaler7, Vivienne H. Payne8, Mark W. Shephard9, Mark A. Zondlo2, and
Valentin Kantchev8,10

1Atmospheric and Environmental Research Inc., Lexington, MA, USA
2Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
3Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
4United States Department of Agriculture-Agricultural Research Service, Kimberly, ID, USA
5Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
6Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, NY, USA
7Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
8Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
9Environment and Climate Change Canada, Toronto, ON, Canada
10Instrument Software and Science Data Systems, Pasadena, CA, USA

Correspondence: Karen E. Cady-Pereira (kcadyper@aer.com)

Received: 19 December 2022 – Discussion started: 31 January 2023
Revised: 2 August 2023 – Accepted: 2 October 2023 – Published:

Abstract. Ammonia is a significant precursor of PM2.5 par-
ticles and thus contributes to poor air quality in many re-
gions. Furthermore, ammonia concentrations are rising due
to the increase of large-scale, intensive agricultural activities,
which are often accompanied by greater use of fertilizers and5

concentrated animal feedlots. Ammonia is highly reactive
and thus highly variable and difficult to measure. Satellite-
based instruments, such as the Atmospheric Infrared Sounder
(AIRS) and the Cross-Track Infrared Sounder (CrIS), have
been shown to provide much greater temporal and spatial10

coverage of ammonia distribution and variability than is pos-
sible with in situ networks or aircraft campaigns, but the val-
idation of these data is limited.

Here we evaluate MUSES (multi-spectra, multi-species,
multi-sensors) ammonia retrievals from AIRS and CrIS15

against ammonia measurements from aircraft in the Califor-
nia Central Valley and in the Colorado Front Range. These
are small datasets taken over high-source regions under very
different conditions: winter in California and summer in Col-
orado. Direct comparisons of the surface values of the re-20

trieved profiles are biased very low in California (∼ 40 ppbv)
and slightly high in Colorado (∼ 4 ppbv). This bias appears
to be primarily due to smoothing error, since applying the in-
strument operator effectively reduces the bias to zero; even
after the smoothing error is accounted for, the average un- 25

certainty at the surface is in the 20 %–30 % range. We also
compare 3 years of CrIS ammonia against an in situ network
in the Magic Valley in Idaho We show that CrIS ammonia
captures both the seasonal signal and the spatial variability
in the Magic Valley, although it is biased low here also. In 30

summary, this analysis substantially adds to the validation
record but also points to the need for more validation under
many different conditions and at higher altitudes.

1 Introduction

Ammonia (NH3) is one of the most common forms of reac- 35

tive nitrogen and the primary alkaline gas in the atmosphere.
Intended and unintended releases of NH3 into the environ-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2 K. E. Cady-Pereira et al.: MUSES NH3

ment over the past century have significantly altered the nat-
ural nitrogen cycle (Erisman et al., 2008), so that the current
emission levels of NH3 are about 4 times higher than in pre-
vious centuries (Battye et al., 2017). The main sources of
NH3 are agricultural emissions, namely, from livestock rais-5

ing and fertilizer application (EDGAR [database] – Emis-
sions Database for Global Atmospheric Research, 2016),
which account for 80 % of all emissions globally (Sutton et
al., 2013; Behera et al., 2013). There are also some locally or
seasonally significant sources of NH3, the most notable being10

biomass burning events, which can generate large amounts
of NH3 (Coheur et al., 2009; Whitburn et al., 2015, 2016). In
urban areas automobiles with three-way catalytic converters
(Sun et al., 2017) can be a major source of NH3. Nowak et
al. (2012) estimate that in the Los Angeles Basin cars con-15

tribute as much as 50 % of the total NH3 emissions.
NH3 is the dominant base in the atmosphere, and it plays

a significant role in the formation of fine particulate matter
(PM2.5) (e.g., Aneja et al., 2003), which can penetrate deep
into the lungs and severely impact the respiratory and circu-20

latory systems (Pope et al., 2009). Paulot and Jacob (2014)
have shown that the costs linked to the health impacts of NH3
associated with food production for export in the United
States offset half the revenue from these exports. Long-term
exposure to ambient PM2.5 is the leading environmental25

risk factor for premature mortality worldwide, leading to
an estimated 2.5–3.4 million premature deaths annually
(Cohen et al., 2017), 20 % of which is estimated to stem
from NH3 emissions (Lelieveld et al., 2015). NH3 emissions
are regulated by the European Union (EU) and it is a criteria30

pollutant in Canada, but not yet in the US. However, the
Environmental Protection Agency (EPA) has published
established regulations (https://www.nsrlaw.com/single-
post/2017/06/19/EPA-NSR-Chief-Outlines-
NSR-Changes-at-2017-AWMA-Conference35

https://www.nsrlaw.com/single-post/2017/06/19/EPA-NSR-
Chief-Outlines-NSR-Changes-at-2017-AWMA-Conference,
last access: 24 August 2016) mandating that every state must
set area-specific significant emission rates (SERs) for NH3.
Since the emissions of NH3 are a key factor in the formation40

of PM2.5, reducing emissions can be an effective path to
reduce air pollution (Liu et al., 2021).

Given the rapid growth of industrial-scale agriculture (e.g.,
increase in egg, milk and meat consumption), especially in
Asia (e.g., Xu et al., 2016), NH3 emissions are projected to45

increase greatly over the next few decades in many parts of
the world. The reduction of NOx emissions due to more strin-
gent controls will reduce the contribution of NOx to the de-
position of reactive nitrogen, but Paulot et al. (2013) suggest
that an increase in NH3 emissions will likely compensate50

for this reduction. NH3 and its derivatives are also quickly
deposited in the ecosystems, increasing their eutrophication
and reducing biodiversity (Erisman et al., 2008).

There is thus growing recognition that NH3 is an impor-
tant pollutant, and that it will likely play a greater role in air55

quality and ecosystem health over the next few decades, due
to both the essential role NH3 plays in feeding the world’s
population, and to the fact that the atmospheric emission po-
tential of NH3 is directly linked to increasing temperatures
(Skjøth and Geels, 2013; Sutton et al., 2013). However, in 60

situ measurements remain a challenge. NH3 is easy to detect,
but it is hard to measure accurately, especially for concentra-
tions below 10 ppbv (von Bobrutzki et al., 2010). There are
many in situ techniques used to detect atmospheric NH3 with
varying time resolution and precision, but the main issue af- 65

fecting precision is the inlet rather than the instrument. NH3
is sticky, and thus it is challenging to get it into a given instru-
ment quantitatively and quickly (Roscioli et al., 2016; Pol-
lack et al., 2019). This feature is critical for characterizing the
abundance of NH3 in the background atmosphere, for mak- 70

ing measurements of NH3 fluxes, and for deploying instru-
ments on aircraft. New open-path sensors avoid this issue, but
they cannot be deployed in many situations (e.g., Berkhout et
al., 2017; Müller et al., 2014). Consequently, the emissions
of NH3 outside of a limited set of well-instrumented loca- 75

tions remain poorly constrained, reducing the accuracy with
which models can represent concentrations and variability.
The high spatial and temporal variability of NH3 (surface
values can range from less than 0.1 to 200 ppbv or more) ex-
acerbates the lack of continuous, spatially well-sampled data 80

over extensive regions. This also contributes to bottom–up
inventories often underestimating emissions due to scaling
difficulties (Nowak et al., 2012).

Satellite data, despite having their own uncertainties, pro-
vide by virtue of their spatial and temporal density, an- 85

other option for quantifying these emissions. Currently there
are multiple NH3 datasets, with varying data record lengths
and spatial coverage, obtained from the following instru-
ments: the three Infrared Atmospheric Sounding Interferom-
eter (IASI) instruments flying in a 09:30 orbit, the Green- 90

house Gases Observing Satellite (GOSAT) in a 13:30 or-
bit, along with the Tropospheric Emission Spectrometer
(TES), the Atmospheric Infrared Sounder (AIRS), and the
three Cross-Track Infrared Sounder (CrIS) instruments, all
flying in a 13:30 orbit. The data obtained from these in- 95

struments have had numerous applications. Multiple stud-
ies (Van Damme et al., 2015a; Shephard et al., 2011; Shep-
hard and Cady-Pereira, 2015; Warner et al., 2016; Shephard
et al., 2020; Wang et al., 2021) have shown that NH3 mea-
surements from infrared sensors capture NH3 hotspots, such 100

as the Indo-Gangetic Plain, eastern China and the Ameri-
can Midwest, as well as the expected regional seasonal vari-
ability and fire activity. Warner et al. (2017) used retrievals
from AIRS to show definite positive trends in NH3 con-
centrations over the US, the EU and China, which the au- 105

thors ascribe to declines in SO2 and NO2 emissions in all
three regions due to more stringent controls. Van Damme
et al. (2018) used nearly a decade of IASI (ANNI-NH3-
v2.1R-I) data to show that the emissions listed in the EDGAR
(EDGAR, 2016) inventory for large-source regions were 110
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wrong by as much as a factor of 3; furthermore, emissions
from smaller sources were often underestimated by an order
of magnitude. Dammers et al. (2019) found similar results
using CrIS (CFPR-v1.0) and IASI (ANNI-v2.2) NH3 data.
Zhu et al. (2013) have demonstrated that Tropospheric Emis-5

sion Spectrometer (TES) NH3 data over North America in
the 2006–2009 period, although relatively sparse, could be
used in an inverse modeling framework to constrain emis-
sions sufficiently in order to improve agreement between
GEOS-Chem output and surface measurements from the Na-10

tional Atmospheric Deposition Program (NADP) Ammo-
nia Monitoring Network (AMoN) network ((https://nadp.slh.
wisc.edu/networks/ammonia-monitoring-network/, last ac-
cess: 6 December 2023). Using NH3 measurements from
CrIS (multi-spectra, multi-species, multi-sensors: MUSES)15

and NO2 measurements from TROPOMI, Cao et al. (2022)
demonstrated that NH3 emissions decreased substantially
over downtown Los Angeles during the 2019 March COVID-
19 lockdown; this result is in agreement with the conclusion
from Nowak et al. (2012) that in urban areas traffic can be a20

major source of NH3 and consequently greatly increase ex-
posure to PM2.5.

Yet, in spite of the increasing use of NH3 data from space-
based instruments, validation of these data remains rather
limited. Sun et al. (2015) compared a small set of NH3 total25

columns from the TES instrument against columns derived
from surface and aircraft measurements during the NASA
Deriving Information on Surface conditions from Column
and Vertically Resolved Observations Relevant to Air Qual-
ity (DISCOVER-AQ) California 2013 campaign, and found30

small differences (less than 6 %) and high correlation (R =
0.82); however, note that TES, which is no longer opera-
tional, had much higher spectral resolution (0.06 cm−1) and
thus greater sensitivity to surface NH3 and less interference
from water vapor than the infrared sensors (AIRS, CrIS,35

IASI) currently providing data for NH3 retrievals. Shephard
et al. (2015) compared TES profiles against aircraft measure-
ments taken during the 2013 Joint Canada–Alberta Imple-
mentation Plan for Oil Sands Monitoring (JOSM) campaign
and showed that the TES profiles were unbiased. Warner et40

al. (2016) compared four NH3 retrievals from AIRS against
aircraft profiles obtained during DISCOVER-AQ California
and found good qualitative agreement. Dammers et al. (2017)
compared 218 IASI (IASI-LUT and IASI-NN) and CrIS
(CFPR-v1.0) total columns and CrIS profiles against cor-45

responding data from ground-based Fourier transform in-
frared (FTIR) observations at seven FTIR sites in the Net-
work for the Detection of Atmospheric Composition Change
(NDACC): the FTIR and CrIS total columns from the com-
bined data were well correlated (R = 0.77) and mainly un-50

biased. Correlations at the individual sites ranged from 0.28
(Mexico City) to 0.86 (Bremen).

Van Damme et al. (2015b) carried out what is likely the
most extensive evaluation of NH3 measured from space,
comparing IASI (IASI-LUT) NH3 against data from six55

different monitoring networks in North America, Europe,
Africa and China and from the California Research at the
Nexus of Air Quality and Climate Change (CalNex) cam-
paign in California. Most of the data from the surface net-
works were provided on bi-weekly or monthly scales: when 60

IASI columns were converted to surface concentrations and
averaged over the corresponding time period, they showed
qualitative agreement in space and time with the surface data.
The correlations in general were not high, although still sig-
nificant (R = 0.25–0.49). Recently Guo et al. (2021) (here- 65

after Guo2021) compared NH3 columns from IASI (ANNI-
v3) with integrated profiles obtained from aircraft data dur-
ing the Colorado 2014 DISCOVER-AQ campaign: the IASI
columns were unbiased and significantly correlated (R =
0.57). Guo2021 do point out that the instruments currently 70

used to measure NH3 from aircraft have large uncertainties
due to limited accuracy and slow response to changing NH3
concentrations.

To a varying degree all the aforementioned studies cite the
same factors that complicate the validation of satellite NH3 75

products:

– Different measurement time scales (weeks or days vs.
instantaneous), especially for surface networks.

– High in situ instrument noise.

– Validation results are strongly influenced by local atmo- 80

spheric conditions and the vertical distribution of NH3,
which highlights the need for further validation cam-
paigns under diverse conditions.

– Sub-pixel inhomogeneity due to the high spatial–
temporal variability of NH3 driven by its short lifetime; 85

thus the point data from an in situ instrument will only
be partially correlated with the pixel scale data obtained
from a satellite instrument.

Our objective is to add to the validation record at the single-
pixel scale with retrievals from L1B radiances from both the 90

AIRS and CrIS instruments. The retrieved profiles here are
obtained with the MUSES (Fu et al., 2013, 2016, 2018) al-
gorithm, which provides profiles, total columns and uncer-
tainty estimates, all of which can also be evaluated against
in situ data. AIRS and CrIS NH3 will be compared against 95

PTR-MS (proton-transfer-reaction mass spectrometer) data
from the P-3B aircraft flown during DISCOVER-AQ cam-
paigns in California and Colorado. Warner et al. (2016) also
compared AIRS with DISCOVER-AQ, but their retrievals
used cloud-cleared radiances and extended over nine AIRS 100

pixels (∼ 45 km footprints at nadir). Using single-pixel radi-
ances provides several advantages over “cloud-cleared radi-
ances”: the propagation of uncertainties from the radiances
is simpler (see Sect. 2.2) and the retrieved information is ob-
tained on smaller spatial scales, which is important for NH3 105

(see Sect. 5). This will be the first comparison of single-pixel
NH3 profiles from either AIRS or CrIS against aircraft data.
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Aircraft campaigns are valuable in that they profile the verti-
cal distribution of NH3, allowing us to evaluate the perfor-
mance of retrieval algorithms and to provide models with
more realistic profiles; however, they are by nature limited
in their temporal coverage. In order to test the capability of5

MUSES NH3 to capture temporal and spatial variability over
an extended period, surface-level CrIS NH3 concentrations
will also be evaluated against 3 years of data from a small
monitoring network in the Magic Valley in Idaho. Section 2
briefly reviews the NH3 retrieval algorithm, Sect. 3 gives an10

overview of the instruments, Sect. 4 presents the analysis of
the DISCOVER-AQ data and Sect. 5 follows with the analy-
sis of the Magic Valley data; finally, Sect. 6 summarizes our
conclusions and discusses future work.

2 MUSES NH3 retrieval algorithm and data15

2.1 MUSES algorithm

The first nadir retrievals of NH3, obtained using a proto-
type retrieval with data from the TES instrument (Beer et
al., 2008), exploited the NH3 ν2 vibrational band between
960 and 970 cm−1 to demonstrate that TES could measure20

the variability in NH3 along a transect in China. Shephard
et al. (2011) implemented a full optimal estimation (OE) ap-
proach (Rodgers, 2000), which sought to reduce the differ-
ence between the measured CrIS radiances in the ν2 band
and the calculated radiances from a radiative transfer model25

(Moncet et al., 2008). Before the OE algorithm was run, an
a priori profile was chosen from one of three possible pro-
files (Fig. S1 in the Supplement), representing background,
moderate and enhanced NH3 concentrations. These profiles
were derived by binning global distributions of NH3 (Shep-30

hard et al., 2011) from the chemical transport model GEOS-
Chem (Zhu et al., 2013). The profile is selected by applying
an online/offline brightness temperature (BT) difference test
centered around the 967 cm−1 line. The OE algorithm is then
run as a refinement step, in which the a priori and the initial35

guess profiles are identical except for the background profile,
for which the moderate profile is chosen as the initial guess,
in order to provide Jacobians with some sensitivity.

The algorithm developed for the TES NH3 retrievals has
since been adapted with minor changes for CrIS (Shephard40

and Cady-Pereira, 2015; Shephard et al., 2020) and AIRS
(this paper). The spectral retrieval window and the frequen-
cies for the online/offline BT test were slightly modified for
the CrIS and AIRS spectral resolutions, and a preliminary re-
trieval step to adjust the surface temperature and emissivity45

was introduced. This algorithm forms the core of the NH3
component of the MUSES software used here and also of the
CrIS Fast Physical Retrieval (CFPR) code, whose product
has been used in a number of previous studies (e.g., Shep-
hard and Cady-Pereira, 2015; Dammers et al., 2017; Shep-50

hard et al., 2020; Cao et al., 2022; Marais et al., 2021). The

two products have much in common (the same spectral mi-
crowindows, a priori selection, constraint matrices and for-
ward model), but obtain temperature and water profiles and
surface properties from different sources and use different 55

software to carry out the optimal estimation (Table S2 in
the Supplement). Preliminary comparisons have shown good
agreement on average between the two algorithms (Fig. S2),
but a full comparison is beyond the scope of this paper, as
the objective here is the validation of the MUSES AIRS and 60

CrIS NH3 retrievals.
The MUSES algorithm is an end-to-end optimal estima-

tion process that provides a complete characterization of the
parameters involved in the radiative transfer processes in the
infrared region, using a multi-step approach. Before the NH3 65

retrieval step is reached, the atmosphere has been well char-
acterized by the previous retrieval steps: temperature and
water vapor profiles, surface properties and cloud absorp-
tion are thus known and can be accounted for in the NH3
retrieval, significantly reducing errors from radiatively in- 70

terfering species. Other species, such as carbon monoxide
and ozone, are also retrieved in separate steps. This ensures
that the atmospheric state is derived using the same forward
model and radiance data that are used in the NH3 retrieval,
reducing possible sources of error. Since cloud optical depth 75

is retrieved, cloud-clearing algorithms (Susskind et al., 2003)
are not needed and retrievals can be performed on every
pixel, or field of view (FOV), rather than on the 9-pixel field
of regard (FOR). This allows for retrievals from AIRS with a
15 km rather than 45 km minimum footprint, which was the 80

resolution for the earlier NH3 retrievals from AIRS obtained
by Warner et al. (2016) using cloud-cleared radiances.

MUSES uses the optimal spectral sampling (OSS) model
(Moncet et al., 2008) as its forward model; OSS is a fast and
accurate radiative transfer method designed specifically for 85

the modeling of radiances measured by sounding radiome-
ters in the infrared, although it is applicable throughout the
microwave, visible, and ultraviolet regions.

Since the retrieval is non-linear, an a priori constraint is
used for estimating the true state (Bowman et al., 2006). If 90

the estimated (retrieved) state is close to the actual state, then
the estimated state can be expressed in terms of the actual
state through the linear retrieval (Rodgers, 2000):

x̂ = xa+A(x− xa)+Gn+GKb (b− ba) , (1)

where x̂ , xa, and x are the retrieved, a priori, and the “true” 95

state vectors, respectively, G is the gain matrix, b is the vector
that contains parameters not retrieved in the current step and
ba the a priori values for these parameters if they are retrieved
in another step.

The averaging kernel, A, describes the sensitivity of the 100

retrieval to the true state:

A=
∂x̂

∂x
=

(
KTS−1

n K+S−1
a

)−1
KTS−1

n K=GK, (2)
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where Sn is the instrument noise covariance matrix, and Sa
is the a priori covariance matrix for the retrieval. The Jaco-
bian, K, is the sensitivity of the forward model radiances to
the true state vector, K = ∂L/∂x. The rows of A are func-
tions with a finite width corresponding to the vertical reso-5

lution of the retrieved parameter. The sum of each row of A
provides a measure of retrieval information that comes from
the measurement (Rodgers, 2000) at the corresponding alti-
tude, provided that the retrieval is quasi-linear. The trace of
the averaging kernel matrix gives the number of degrees of10

freedom for signal (DOFS) from the retrieval.
The total a posteriori error covariance matrix Sx for a given

retrieved parameter x̂ is given by

Sx = (A− I)Sa (A− I)T+GSnGT
+GKbSb (GKb)

T , (3)

where Sb is the expected covariance of the non-retrieved pa-15

rameters. The total error (or uncertainty) for a retrieved pro-
file is expressed as the sum of: (i) the smoothing errors (first
term on the right-hand side), i.e., the uncertainty due to un-
resolved fine vertical structure in the profile; (ii) the mea-
surement errors (second term) originating from random noise20

in the spectrum; and (iii) the systematic errors (last term)
due to uncertainties in the forward model parameters not
retrieved in the NH3 step, some of which are constant and
some of which change from retrieval to retrieval (Worden et
al., 2006). The MUSES NH3 retrieval step includes the esti-25

mated errors in water vapor and temperature in the systematic
errors. For the retrieved profiles used in this study the mea-
surement error ranged from 3 % to 23 %, the systematic er-
rors mainly from 1 % to 60 %, and the smoothing errors from
24 % to 130 %. Example retrieved profiles and correspond-30

ing errors are shown in Fig. S3. By providing the expected
error covariance and the averaging kernels, this approach fa-
cilitates the use of the retrieved profiles in inverse modeling
efforts, since both terms are used to weight the information
coming from the retrieval. The error covariance gives users35

an uncertainty estimate for each retrieved profile, which can
be utilized to screen the data or be included in a statisti-
cal analysis. Furthermore, the estimated uncertainty derived
from the error covariance can be compared with measured
uncertainties, obtained by calculating the spread of the dif-40

ferences between satellite and in situ data, as will be shown
in Sects. 4.1 and 4.2; this analysis can indicate whether there
are error terms missing from the optimal estimation formu-
lation. Note that the estimated error cannot account for sam-
pling errors, i.e., differences between the air masses sampled45

by the satellite and by the in situ instruments, or for sub-pixel
variability.

Rodgers and Connor (2003) presented a method for com-
paring satellite profiles of trace gases with limited vertical
resolution with in situ profiles obtained on a much finer grid.50

This approach is often described as “applying the instrument
operator” or “applying the averaging kernel”. It attempts to
estimate how the space-based instrument would “see” an in

situ profile by applying the equation below to the in situ data:
55

X =Xapriori+A
(
Xaircraft−Xapriori

)
. (4)

The estimated profile X has been smoothed by the opera-
tor, simulating the smoothing due to the coarser resolution of
the satellite observation. WhenX is compared with the satel-
lite observations it is assumed that the smoothing error has 60

been accounted for and can be ignored, which is not the case
when satellite observations are compared directly with mea-
sured profiles; the remaining errors will be due to instrument
noise and temporal and spatial sampling differences; the lat-
ter can be especially large for NH3, due to its large variabil- 65

ity, as was discussed earlier. We will follow the Rodgers and
Connor (2003) approach as described earlier, as it is the op-
timal method for taking into account the sensitivity of the
instruments; however, as a way of introducing the data while
also demonstrating the pitfalls of not considering the differ- 70

ent vertical resolution of the satellite and aircraft data, we
will also show simple differences between the aircraft and
satellite data.

A note on applying the operator: AIRS and CrIS profiles
extend to the top of the atmosphere, while the aircraft profiles 75

used here rarely go above 700 hPa in California and 500 hPa
in Colorado. We have extended the aircraft profiles by blend-
ing in the MUSES a priori profile above the top of the air-
craft profile, then applied the instrument operator to these
extended profiles. 80

2.2 MUSES data

2.2.1 AIRS single-pixel NH3 retrievals

AIRS is a nadir-viewing, scanning thermal infrared (TIR)
spectrometer launched on board the Aqua satellite on 4 May
2002, into a sun-synchronous polar orbit at an altitude of 85

705 km with a 01:30 local solar time (LST) Equator in the
descending node and 13:30 LST in the ascending node (Au-
mann et al., 2003). The daytime overpass is an ideal time for
NH3 retrievals, as thermal contrast is high and emissions are
usually peaking, driven by higher temperatures. AIRS mea- 90

sures the thermal radiance between 3 and 12 µm with a spec-
tral resolution of ∼ 0.75 cm−1 and a noise level of ∼ 0.15 K
at 270 K (Zavyalov et al., 2013) in the 970 cm−1 NH3 ab-
sorption window. A single AIRS FOV has a circular footprint
with ∼ 15 km diameter at nadir and the AIRS swath width is 95

∼ 1650 km, which enables near global coverage twice daily.

2.2.2 CrIS single-pixel NH3 retrievals

CrIS is a Fourier transform infrared radiometer (FTIR)
launched on the Suomi National Polar Orbiter Preparatory
(SNPP) platform in October 2011 into sun-synchronous or- 100

bits (824 km altitude) with the same LST crossing times as
AIRS (13:30 and 01:30 LST). CrIS was also deployed on

https://doi.org/10.5194/amt-16-1-2023 Atmos. Meas. Tech., 16, 1–23, 2023
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the Joint Polar Satellite System (JPSS-1) in November 2017
and on JPSS-2 in November 2022, but in this paper only
CrIS data from the SNPP platform have been used. CrIS is a
cross-track scanning instrument with a 2200 km swath width
(±50◦) with 14 km circular pixels (at nadir), a spectral res-5

olution of 0.625 cm−1 and low spectral noise (∼ 0.04 K at
270 K) (Zavyalov et al., 2013) in the NH3 spectral window.
CrIS also provides twice daily global coverage. Note that in
this paper there is a data gap in the SNPP-CrIS record be-
tween March and June 2019, corresponding to a malfunction10

in the electronics during that time.
While both AIRS and CrIS have the same equatorial cross-

ing time, this does not imply that both instruments are ob-
serving the same location at the same time at the same angle.
For example, on 22 January 2013, CrIS flew almost directly15

over the Central Valley around 21:00 UTC, while AIRS had
its closest observation 15◦ to the west around 22:00 UTC,
near the edge of its swath. Therefore, the set of aircraft pro-
files co-located with each instrument is not identical.

3 Data20

3.1 Aircraft data

The NASA DISCOVER-AQ (Crawford and Pickering, 2014)
campaigns were designed to validate collocated satellite ob-
servations of atmospheric pollutants over four regions in the
United States: (Maryland/Washington DC, California, Texas25

and Colorado), but NH3 was only measured in California
and Colorado. Vertical profiles of NH3 were obtained by the
PTR-MS instrument (Müller et al., 2014) deployed aboard
the NASA P3B aircraft during the California campaign in
January and February 2013 and in Colorado in July and Au-30

gust 2014. The P3B flight pattern was specifically designed
for satellite validation: the aircraft flew repeated upward and
downward spirals, typically 5 km wide connected by tran-
sects. An example trajectory, overlaid on the locations of
CrIS NH3 retrievals, is shown in Fig. 1: the aircraft alti-35

tude is indicated by the colors, and the locations of the spi-
rals are marked with letters. Note that the PTR-MS instru-
ment samples the atmosphere at 1 Hz but the data in Fig. 1
were binned over 100 m to improve visibility. The estimated
instrument uncertainty is 35 % (Müller et al., 2014). How-40

ever, the PTR-MS NH3 data were a side product of the PTR-
MS measurements during DISCOVER-AQ, which were de-
signed to obtain data on volatile organic compounds (VOCs).
NH3 is sticky and accumulates in the instrument inlet, slow-
ing the instrument response. This effect leads to biases if45

the NH3 amounts are changing rapidly (Sun et al., 2015);
when the aircraft is leaving the boundary layer on upward
spirals, the instrument does not respond quickly enough to
the sharp decrease in NH3 and overestimates the NH3 con-
centration; similarly, when entering the boundary layer on50

downward spirals, the response to the increase in NH3 is

Figure 1. Sample aircraft track during DISCOVER-AQ in the Cen-
tral Valley, CA; colors indicate altitude, letters locations of aircraft
spirals; CrIS pixels are shown as gray ellipses.

slow, and NH3 is underestimated (see Fig. 9 in Guo2021).
Furthermore, the detection limits for NH3 were much higher
than for the VOCs that were the primary target of the PTR-
MS measurements: 7.0 ppbv in California and 3.0 ppbv in 55

Colorado (Armin Wisthaler, personal communication, 2023).
These limits imply that any aircraft observations below these
values are effectively noise.

3.2 Ground data

The USDA-ARS Northwest Irrigation and Soils Research 60

Laboratory established a regional NH3 monitoring network
in the Magic Valley region of south-central Idaho, USA, uti-
lizing the NADP AMoN (Puchalski et al., 2015) network
technology and protocols, but with much greater spatial den-
sity. The network measured ambient NH3 concentrations 65

along two transects of the Magic Valley (north–south and
west–east) utilizing passive diffusive NH3 samplers collected
on a bi-weekly basis from February 2018 through Decem-
ber 2020. The objective of the project was to determine the
spatial variability of ambient NH3 concentrations across the 70

region, which is dominated by agricultural production and
high-density dairy operations, to better understand the po-
tential for NH3 transport within and downwind of the region.

4 DISCOVER-AQ analysis

The DISCOVER-AQ campaigns in California and Colorado 75

provide the most comprehensive set of in situ NH3 profile
data available (as opposed to retrievals from FTIR instru-
ments). Both locations have many strong sources and each
campaign carried out multiple flight days over a 2-month
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period. These datasets demonstrate the strengths and limita-
tions of satellite data in areas of great interest to the air qual-
ity community; additionally, they allow for the evaluation of
the accuracy of the retrieval estimated error, as calculated
from Eq. (3). During each flight the aircraft flew multiple5

up and down spirals. The satellite profiles were co-located
with aircraft profiles taken within 1 h of the satellite over-
pass time and 15 km of the pixel center, the same criteria
used by Guo2021. This co-location criterion is much stricter
than is usual for satellite validation (see Hegarty et al., 202210

for an example with CO retrievals from AIRS, which used
9 h and 50 km) but is necessary given the short lifetime of
NH3 (on the order of hours to days) due to its high reactiv-
ity and fast deposition. In fact, Tournadre et al. (2020) used
an even stricter time requirement of 30 min for comparing15

FTIR and IASI NH3 retrievals over Paris, but we found that
such a limited time window drastically reduced the available
data. Given the chosen criteria, each CrIS or AIRS profile
was compared with data from at most two spirals. Retrievals
were checked for quality by ensuring that for all retrievals the20

root mean square error (RMSE) of the residuals was less than
5.0. The MUSES cloud optical depth (COD) values were also
evaluated but since the maximum COD for the retrieved pro-
files was 0.25, no retrievals were rejected due to large COD.
Four CrIS profiles over Colorado were rejected due to very25

high estimated uncertainties. The DOFs ranged between 0.8
and 1.1, except for two CrIS profiles over California, four
AIRS profiles in California and six AIRS profiles in Col-
orado, for which the DOFS were smaller (0.2–0.7). Given the
small number of profiles in each dataset, we did not exclude30

any profiles based on the DOFs.
Comparing the aircraft and satellite profiles requires re-

gridding the aircraft data to the satellite vertical grid. This
was accomplished by defining layers centered around each
AIRS/CrIS level, then finding the median value of the air-35

craft profile in each layer. The lowest layer extended from
the surface to the mid-point between the surface and the first
AIRS/CrIS level above the surface. The CrIS retrieval layers
are fairly coarse and therefore the median value of the PTR-
MS is derived from a set of hundreds of measurements span-40

ning the layer, and from both up and down flight paths, thus
possibly reducing to some degree the biases from entering
and leaving the boundary layer discussed earlier. In the Cal-
ifornia campaign the average height of the mixed layer was
around 500 m and never exceeded 1 km (∼ 900 hPa), and thus45

these biases were only present in the layer centered around
this level, where levels of NH3 (5–40 ppbv) are still high. On
the other hand, in Colorado the average height of the bound-
ary layer was around 3 km (∼ 700 hPa), and therefore the bi-
ases were present in a layer with lower levels of NH3 (0–50

5 ppbv). Example plots of the distribution of the aircraft data
in each layer (Fig. S4) demonstrate the variability in these
data, and show that the median and mean do not always coin-
cide, indicating a non-Gaussian distribution of the measure-

ments in these cases and therefore suggesting the use of the 55

median as the most appropriate metric.

4.1 California

DISCOVER-AQ in California took place during January and
February 2013. The Central Valley is one of the strongest
NH3 source regions in North America (e.g., Clarisse et 60

al., 2009; Shephard et al., 2020), and this was reflected in the
aircraft data, which registered near-surface amounts as high
as 100 ppbv (Fig. 2a). There were thermal inversions over
the entire period (Fig. 2b), which led to increased uncertain-
ties in the retrieval, as they effectively created an emission 65

layer above the surface, i.e., a layer that is warmer than the
surface and therefore emits more than it absorbs. Inversions
also limit the vertical extent of the boundary layer, with con-
sequently lower NH3 concentrations at altitudes where the
retrieval has greater sensitivity. Nevertheless, evaluating the 70

AIRS and CrIS NH3 profiles against the aircraft data is a
useful exercise, as the combination of inversions and strong
sources is not a rare occurrence, and this analysis demon-
strates both the capabilities and limitations of retrievals under
these conditions. 75

A total of 43 AIRS and 58 CrIS profiles met the afore-
mentioned co-location criteria. Before applying the instru-
ment operator as described in Sect. 2.1, we directly compare
the satellite data against the aircraft profiles (Fig. 3a and b).
This is done to introduce the satellite data, and to demon- 80

strate to users unfamiliar with the instrument operator the
importance of accounting for the different vertical resolution
of the remote and in situ instruments through the use of the
operator. Both instruments showed large negative biases near
the surface, as low as−80 ppbv for AIRS and−100 ppbv for 85

CrIS, while the average bias at this level was ∼−38 ppbv
for AIRS and ∼−44 ppbv for CrIS, with a spread of ∼ 24
and 38 ppbv, respectively (see Table 1). This large negative
bias is likely due to a combination of sub-pixel heterogene-
ity (Sun et al., 2015; Kille et al., 2019), the inherent diffi- 90

culties of carrying out retrievals over thermal inversions, and
systematic and smoothing errors (due to the different verti-
cal resolution). Note that the mean CrIS value at the surface
(∼ 16 ppbv) is 60 % greater than the AIRS value (∼ 10 ppbv),
while the reverse is true at 908 hPa (7.6 ppbv vs. 9.7 ppbv). 95

This difference can be attributed to the greater number (24
out of 43) of moderate (green curves) or background (blue
curves) a priori profiles selected by the MUSES algorithm
for the AIRS retrievals, when compared with CrIS (4 out of
58). The moderate and background a priori profiles and con- 100

straints drive the retrieval to distribute NH3 more uniformly
over the vertical range, rather than concentrating it near the
surface. For either instrument the surface mean value is much
lower than the PTR-MS mean (∼ 37 ppbv), consistent with
the large biases noted earlier, although the CrIS mean value 105

(∼ 16 ppbv) is just within the standard deviation of the PTR-
MS data. Clouds are accounted for in the MUSES retrieval
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Figure 2. NH3 profiles (a, c) obtained from aircraft during DISCOVER-AQ in California (a, b) and Colorado (c, d); only profiles co-located
with CrIS data are shown; corresponding temperature profiles (b, d). Solid black line indicates the mean, dashed black lines the standard
deviation.

(Kulawik et al., 2006) and thus cloudy conditions should not
significantly impact the NH3 retrievals. Both the bias and the
spread drop significantly with increasing altitude, as do the
measured concentrations; while the biases decrease, they be-
come positive and are not insignificant at 825 hPa (∼ 30 % at5

825 hPa), and the spread is quite large (∼ 100 %). However,
at this level, which is above the mixed layer height (MLH)
for all flight days, many of the aircraft observations are be-
low the detection limit of the PTR-MS (see Fig. S5) and are
thus highly uncertain.10

Therefore it become impossible to make any quantitative
statements about the differences between the satellite and air-
craft data at these higher altitudes.

The sum of the rows of the averaging kernels (SRAK)
(Fig. 4), which provides an estimate of the retrieved infor- 15

mation at each level originating from the measurement rather
than from the a priori, shows for both AIRS and CrIS that
while the information from the radiance data peaks just be-
low 700 hPa, it also significantly contributes to the retrieved
surface values. This is driven by the structure of the co- 20

variance matrix (Sa). As noted in the introduction of the
DISCOVER-AQ section, the DOFS for AIRS and CRIS NH3
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Figure 3. Difference between AIRS and aircraft NH3 profiles (a, c) and CrIS and aircraft (b, d) during DISCOVER-AQ in California (a, b)
and Colorado (c, d); solid line indicates mean bias and dashed lines standard deviations. Colors indicate choice of a priori profile.

ranged mostly between 0.8 and 1.0, signifying the retrieval
provides only one piece of information, basically a column
amount. By building off-diagonal correlations in a priori co-
variance matrix between the surface level and a few levels
above, this information is vertically distributed in such a way5

that it restricts unphysical oscillations in the retrieved pro-
file and deviations in the a priori profile shape. Each of the
three a priori profiles is associated with a different covariance
matrix. The enhanced a priori retrieval tends to load the pro-
files at the surface, while the moderate and background pro-10

files push NH3 to the free troposphere. The maximum SRAK
(∼ 1.2–1.3) is similar for both sensors, as is the mean SRAK
at the surface (∼ 0.6). However, there is much greater vari-
ability in the AIRS SRAK, possibly due to higher instrument
noise.15

Applying the instrument operators following Eq. (4)
(Fig. 5a and b, red and black curves) eliminates the smooth-
ing error, which reduces the bias at all levels to close to or
less than 1.0 ppbv (Table 1, top section), roughly 7 %–10 %

of the surface value, increasing to 20 % at 825 hPa, indicat- 20

ing that the large differences seen in the direct comparison
are due mainly to the inability of the satellite instruments to
resolve the fine vertical structure of the profile. The standard
deviation is also reduced, especially at the lower levels, but
is not eliminated, which suggests that other error sources are 25

present. If instead the a priori profiles are compared with the
aircraft data, we see a large negative bias near the surface
(∼−9 ppbv for AIRS and ∼−18 ppbv for CrIS). This result
demonstrates that the retrieval process adds significant infor-
mation and reduces the a priori error. 30

A great benefit of the optimal estimation approach is that is
provides both retrieved profiles and estimated errors. If these
errors are lower than the error relative to the in situ or model
data, they indicate that some error sources have not been ac-
counted for in the retrieval. Here we compare the sum of 35

the measurement and systematic errors from Eq. (3) (Fig. 6a
and b, red and blue curves) against the measured uncertain-
ties (the fractional standard deviation derived from the stan-
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10 K. E. Cady-Pereira et al.: MUSES NH3

Figure 4. Sum of the row of the averaging kernels (SRAK) for AIRS (a, c) and CrIS (b, d); California (a, b) and Colorado (c, d).

dard deviations of the differences in the “Satellite-Aircraft
with AK” column in Table 1) (Fig. 6a and b, black curve),
which have the smoothing error removed by the application
of the averaging kernel, A. Since the measurement error is
usually quite low (see Fig. S3 for examples) the estimated5

uncertainties are nearly equivalent to the systematic errors,
and thus represent the estimate of the error in NH3 due to er-
rors in temperature and water vapor. The average estimated
uncertainties are below the measured uncertainties for both
AIRS and CrIS, confirming that some error sources are not10

accounted for in the optimal estimation process.
A possible candidate is the sampling difference: AIRS and

CrIS sampled three-dimensional columns, 15–50 km wide,
while aircraft instruments sampled in two dimensions, ver-
tically and along a spiral line with a 5 km width. Sub-pixel15

variability likely also contributes to these errors. The esti-
mated uncertainties range in general from 5 % to 50 % at the
surface, although five cases had significantly larger errors.

At 850 hPa the variability in the uncertainties is much larger,
ranging from 10 % to 250 %, strengthening the argument that 20

it is not possible to carry out a meaningful comparison at this
altitude or higher with this dataset.

Much of the work on validating NH3 from space-based
infrared sensors has been done using IASI data, which pro-
vide total columns rather than profiles (e.g., van Damme 25

et al., 2015a; Dammers et al., 2017; Guo2021), although
Dammers et al. (2017) estimated IASI profiles by using two
fixed vertical profiles to convert column amounts to profiles
and thus to also obtain surface values. Guo2021 explored
four approaches (see Fig. 5 in Guo2021) to account for the 30

NH3 amount above the mixed layer height (MLH) and ob-
tained the best agreement with IASI data by assuming zero
NH3 above the MLH (R = 0.57 and slope= 1.0). This is
a fairly reasonable assumption, since NH3 has a short life-
time (on the order of hours or days), and is rarely trans- 35

ported to the middle or upper troposphere, except during
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Figure 5. Difference between AIRS and aircraft NH3 profiles (a, c) and CrIS and aircraft (b, d) during DISCOVER-AQ in California (a, b)
and Colorado (c, d). The averaging kernel has been applied to the aircraft data; red lines show differences between the retrieved profiles and
the aircraft data, solid black lines indicate mean bias and dashed black lines standard deviations; gray lines show differences between the a
priori profiles and the aircraft, solid green lines indicate mean bias and dashed green lines standard deviations.

strong fires; it has been measured above the mixed layer, but
at low levels (less than 1 ppbv; e.g., Höpfner et al., 2019;
Nowak et al., 2010). Here we compare AIRS and CrIS to-
tal columns with aircraft total columns calculated following
two approaches. First we used the zero NH3 above the MLH5

approach adopted by Guo2021. In this procedure the in situ
NH3 total column is estimated by integrating the aircraft NH3
profile to the top of the mixed layer; above this level, NH3
amounts are assumed to be zero.

The MUSES total columns are compared against the in-10

tegrated aircraft columns, using orthogonal linear regression
(Fig. 7a and b), again colored by the choice of the a priori
profile; the intercept has been allowed to vary, as both AIRS
and CrIS have detection limits, (∼ 1.0 ppbv, for thermal con-
trast above 5 K), as does IASI (3.0× 1015 molec. cm−2, for15

thermal contrast above 5 K). Note that in this approach the
instrument operators have not been applied to the aircraft col-
umn data. The correlation coefficients are 0.58 for AIRS and
0.62 for CrIS, within the range of results from previous stud-
ies (e.g., Dammers et al., 2017), found correlations ranging20

from 0.28 to 0.81 when comparing surface FTIR and CrIS
columns. However, the slopes are very much greater than 1
(1.9 for AIRS and 1.6 for CrIS), which was not the case in
the IASI evaluation of Guo2021. If this assumption of zero
amounts of NH3 above the mixed layer is no longer valid at 25

the later (13:30 LST) CrIS and AIRS overpass times, the air-
craft columns would be biased low with respect to CrIS and
AIRS; the profile differences shown in Table 1 also suggest
that AIRS and CrIS are measuring more NH3 above 910 hPa.
Given the uncertainty in the aircraft measurements at these 30

higher altitudes, it is not possible to currently determine the
true NH3 amounts above the mixed layer.

In the second approach (Fig. 8) we calculate partial
AIRS/CrIS columns by integrating the profiles to the MLH
only. The results are interesting: the AIRS correlation 35

(Fig. 8a) decreases (from 0.58 to 0.46), and the slope drops
from 1.9 to 1.4. These changes occur because many of the
columns decrease substantially (note large group of values
below 1.0× 1016 molec. cm−2). We found that these obser-
vations derive from profiles for which the retrieval selected a 40
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Figure 6. Fractional standard deviation between AIRS (a, c) and CrIS (b, d) and aircraft profiles with the averaging kernel applied (black)
during DISCOVER-AQ in California (a, b) and Colorado (c, d); estimated uncertainty (red) and mean of estimated uncertainty (blue).

background or moderate prior. When a background or mod-
erate prior is chosen, the retrieval distributes the NH3 dif-
ferently than if the enhanced prior is used (see Fig. S3, two
rightmost panels): in the moderate case the retrieval creates a
profile that peaks around 900 hPa, while in the polluted case5

the peak is at the surface. By limiting the integration to the
top of the MLH, a substantial fraction of the retrieved col-
umn from the AIRS observations is excluded for the profiles
derived from the moderate prior. The slope of the CrIS com-
parison drops dramatically from 1.6 to 0.6, but the correlation10

actually increases slightly from 0.61 to 0.64. Visual inspec-
tion suggests that truncating the CrIS integration had a large
impact on a few outliers but overall reduced most columns
only slightly, since the bulk of the NH3 is below the MLH,
and thus did not substantially affect the correlation. Both the15

AIRS and CrIS results demonstrate that the retrievals are
showing a non-negligible amount of NH3 above the mixed
layer, more so for AIRS than for CrIS, but at present it is not
possible to determine whether these values are real, given the
uncertainties in the aircraft data at these altitudes, or whether20

they are the result of redistribution of NH3 to higher altitudes
driven by the a priori profile shape and error covariance.

4.2 Colorado

DISCOVER-AQ Colorado took place during July and Au-
gust 2014, in the Colorado Front Range. While this is also 25

a region with strong NH3 sources, the aircraft data showed
lower values than in the California Central Valley (Fig. 2c);
maximum values are on the order of 20 ppbv, with most near-
surface values ranging from 5 to 10 ppbv, above the uncer-
tainty in the aircraft data, which was∼ 3ppbv in the Colorado 30

campaign. In contrast to the Central Valley there were no
thermal inversions during this period (Fig. 2d) and the MLH
was much higher, about 3 km (∼ 700 hPa) on average. Ap-
plying the co-location criteria yielded 46 AIRS profiles but
only 34 CrIS profiles, in part due to some poor quality CrIS 35

retrievals. Direct comparisons of the AIRS and CrIS profiles
with aircraft data (Fig. 3c and d) show both AIRS and CrIS
biased high by 3.8 ppbv (AIRS) and 3.4 ppbv (CrIS) near the
surface (∼ 844 hPa) and by 2.2 ppbv (AIRS) and 1.9 ppbv
(CrIS) at 825 hPa, but the bias is close to zero at 750 hPa. 40

Note that this is in direct contrast to the California results,
which showed both AIRS and CrIS NH3 biased very low at
and near the surface and biased slightly high at greater al-
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Table 1. Statistical analysis of the DISCOVER-AQ data from AIRS, CrIS and the aircraft over California in 2013 and Colorado in 2014.

California

Profile Satellite–Aircraft: no AK Satellite–Aircraft: with AK

Mean SD Bias SD Bias SD

Pressure AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS
hPa ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv

1008.486 9.69 16.211 10.785 6.027 −38.03 −43.799 23.972 37.988 1.124 −0.279 5.6 6.723
1000 9.342 14.443 9.875 5.44 −25.049 −22.746 19.995 17.106 0.664 −0.89 5 6.046
908.514 9.693 7.63 8.634 4.101 0.238 1.956 9.81 5.582 0.691 −0.159 7.08 5.015
825.402 5.742 4.883 5.401 3.372 1.471 1.266 5.327 4.345 1.511 0.593 4.169 3.815
749.893 3.083 2.958 3.47 2.311 −1.96 −0.801 4.815 3.101 0.883 0.729 2.605 2.446
681 0.979 1.195 0.814 0.664 −1.78 −1.083 1.597 1.111 0.156 0.21 0.551 0.689
618.966 0.244 0.357 0.149 0.083 0.046 0.038 0.057 0.076 0.008 0.014 0.046 0.078

Colorado

Profile Satellite–Aircraft: no AK Satellite–Aircraft: with AK

Mean SD Bias SD Bias SD

Pressure AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS
hPa ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv

844.469 10.341 9.805 3.415 3.801 3.817 3.387 3.741 3.871 −0.89 −0.5026 2.884 2.133
825.402 8.214 7.529 3.064 3.595 2.19 1.902 3.377 4.006 −0.978 −0.292 3.355 2.723
749.893 3.889 3.852 2.173 2.101 −0.12 0.102 2.431 2.292 −0.592 −0.108 2.375 2.021
681.291 2.324 2.703 1.143 1.207 0.084 0.338 1.684 1.465 −0.315 −0.046 1.29 1.652
618.966 1.474 1.858 0.943 0.974 −0.356 −0.102 1.41 1.228 −0.099 0.262 1.115 0.983
562.342 1.07 1.104 1.444 0.548 −0.538 −0.535 1.764 0.724 0.084 0.159 1.557 0.498
510.898 0.521 0.552 0.231 0.212 −0.695 −0.687 0.523 0.374 −0.068 0.008 0.278 0.189

titudes. However, here too the mean AIRS (10.3 ppbv) and
CrIS (9.8) surface values are within the standard deviation of
the aircraft data.

The sum of the rows of the averaging kernel plots (Fig. 4c
and d) present similar maximum and surface values as in5

California, and again applying the instrument operator re-
duced the bias to below 1.0 ppbv (∼ 10 %), but did not reduce
the spread in the satellite–aircraft differences dramatically
(Fig. 5a and b), while the large bias at the surface seen against
the a priori profiles (∼−12 ppbv for AIRS and ∼−10 ppbv10

for CrIS) is removed by the retrieval, confirming again that
the retrieval process provides information content beyond the
a priori.

The uncertainty analysis (Fig. 6a and b) shows that in the
region where both the satellite and aircraft observations are15

reasonably robust, the estimated uncertainty is quite close to
the measured uncertainty below 700 hPa. Finally, the total
column comparisons also indicate that the AIRS and CrIS
NH3 (Fig. 7c and d) columns are correlated with the aircraft
values (with correlation coefficients of 0.56 for AIRS and20

0.42 for CrIS), but are biased high, most notably for CrIS,
for which the regression presents a slope of 2.3. The AIRS
total columns (Fig. 7c) and partial columns (Fig. 8c) are very
similar, indicating the most of the retrieved NH3 is below

the MLH; since all AIRS retrievals used the enhanced prior, 25

which concentrates NH3 in the surface layer, this is to be
expected. The CrIS partial columns (Fig. 8d) show marked
reductions in the smaller column values, which increase the
slope from 2.3 to 3.5, and reduce the correlation to 0.31.
These smaller columns correspond to retrievals that used 30

background or moderate a priori profiles, and, as was de-
scribed in the California section, push NH3 higher up in the
column, and are thus more sensitive to truncation. The fact
the columns from the satellite instruments are much higher
than the aircraft columns is possibly due to NH3 produced by 35

fires and lofted above the MLH, which were not measured by
the PTR-MS but would be detected by AIRS/CrIS and redis-
tributed downward by the retrieval, leading to the high biases
seen in the surface values before applying the instrument op-
erator. 40

5 Magic Valley analysis

5.1 USDA network

The USDA-ARS established and maintained an NH3 mon-
itoring network along two transects (north–south and west–
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Figure 7. Total NH3 columns from AIRS (a, c) and CrIS (b, d) versus aircraft columns during DISCOVER-AQ in California (a, b) and
Colorado (c, d); dashed line shows the 1 : 1 line, solid black line the linear fit; vertical and horizontal lines.

east) across the Magic Valley region of south-central Idaho
during the period February 2018–December 2020 (Fig. 9).
The Magic Valley region is heavily dominated by irrigated
agriculture and is one of the most concentrated dairy produc-
tion regions in the United States. Research in this region has5

reported that NH3 emissions from agricultural and dairy pro-
duction contribute approximately 44 000 MT N yr−1 to the
atmosphere (Leytem et al., 2021) and that NH3 emissions
fluctuate by season following trends in temperature (Leytem
et al., 2011, 2013). The network was established to gain10

a better understanding of the spatial variability of ambient
NH3 concentrations and transport within the region. The net-
work consisted of eight sampling locations (seven until 2020,
when an additional site was added), and also utilized data
from the NADP AMoN site located to the north of the re-15

gion at Craters of the Moon National Monument. NH3 con-
centrations were measured with passive diffusive NH3 sam-
plers (Radiello), which were deployed bi-weekly, and gen-
erated 2-week mean surface NH3 concentrations. Radiello
samplers have been shown to be approximately 9 % biased20

low (Puchalski et al., 2015). These data provided a unique

opportunity to evaluate the seasonal signals measured by
CrIS NH3, as well as its capability to capture small-scale (on
the order of a few kilometers) spatial variability.

5.2 Evaluating CrIS NH3 against the surface data 25

CrIS SNPP NH3 data are available for most of the 2018–2020
period, with a gap in the spring of 2019 due to an instru-
ment malfunction. Surface CrIS data within 15 km of each
site were compared with the ground data at that site. Profiles
with RMSE greater than 5.0 were excluded from the time 30

series, as were clouds with COD greater than 1.0. Only the
CrIS observations at ∼ 13:30 LST were analyzed. The NH3
retrievals at 01:30 LST have weaker signals (due to lower
thermal contrast), and would add uncertainty to the results.
While there are strong diurnal cycles in the NH3 emitted 35

from the dairy facilities (Leytem et al., 2011, 2013) the aver-
age daily emissions and temperatures, which strongly control
the emissions, are close to the early afternoon values. Ideally
one would use measurements of the daily cycle in NH3 con-
centrations, to estimate the ratio between the concentration 40

at 13:30 LST and daily mean concentrations, as was done by
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Figure 8. Same as Fig. 7, but AIRS/CrIS columns are partial columns, extending only to the top of the MLH.

Figure 9. USDA Magic Valley network showing the nine measurement sites.
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Pinder et al. (2011), but such data are not available for the
Magic Valley site. Figure 10 shows the individual CrIS ob-
servations (small red triangles), the 2-week averages of the
CrIS data (large red triangles connected with a red line) and
the ground data (blue triangles) at each site.5

The time series in Fig. 10 are sorted by the peak values
of the ground data. At every site, CrIS clearly captures the
seasonal cycle, although winter values are usually underesti-
mated: this can be attributed to weak radiative signals due to
low temperatures and low thermal contrast. The CrIS level of10

detectability is normally cited as ∼ 1.0 ppbv (Shephard and
Cady-Pereira, 2015), but at low thermal contrast this level in-
creases significantly. A few strong warm season peaks in the
ground data are also not captured. At Craters of the Moon, a
national monument, and at Rogerson, in land administered15

by the Bureau of Land Management, CrIS returns consis-
tently higher values than the ground site during the warmer
months (May to October). At present we have no definitive
explanation for this high bias. At the next four sites (Glenns
Ferry, Richfield, Lake Walcott and Kimberly), which are in20

areas of mixed agricultural activity, CrIS and the ground data
are in good agreement during the warmer months, although
CrIS underestimates the June 2018 maximum at the Kim-
berly site. At all four sites there is a peak in the ground data
in November 2019 that is either matched in the CrIS data25

(Glenns Ferry) or at least visible (Richfield, Kimberly, Lake
Walcott). This peak is also evident in the data from Paul
and possibly Wendell, although the variability at this latter
site makes it difficult to confirm. This suggests an area-wide
change in meteorological conditions, such as an inversion,30

that led to increased NH3 near the surface: however, there
is no evidence in the meteorological data for such an inver-
sion. The last three sites (Paul, Jerome and Wendell) are close
to and/or downwind of multiple dairies, which likely leads
to greater sub-pixel inhomogeneity. CrIS underestimates the35

warm season maximum, and does not capture many of the
peaks in the ground data, most notably at the Wendell site,
where CrIS did not observe the peaks over 80 ppbv in 2018
and 2019.

Analyzing these data in aggregate, first spatially then tem-40

porally, provides some useful insights. Plotting the CrIS 2-
week averages against all the ground data values (Fig. 11),
and excluding CrIS data with cloud OD greater than 2.0,
along with the data from the Wendell site, which are ex-
treme outliers, shows a correlation of 0.6, at the high end45

of the values reported in the literature (e.g., see van Damme
et al., 2015b, as noted in Introduction) and a slope of 0.66,
indicating that CrIS NH3 is biased low overall. This result is
in line with the low biases found in the surface values of the
AIRS and CrIS California data, although here not necessar-50

ily caused by thermal inversions, and with the low biases in
the CFPR results at high NH3 FTIR values seen by Dammers
et al. (2017). It provides a quantitative measure of the agree-
ment seen in the seasonal cycles shown in Fig. 10.

Three years of fairly dense data over a region with many 55

sources with fixed locations are an excellent candidate for
spatial oversampling algorithms, which trade temporal reso-
lution for greater information on spatial variability. Here we
applied the physics-based oversampling algorithm developed
by Sun et al. (2018), which uses the instrument spatial re- 60

sponse function to weight the contributions of each satellite
observation to a fine grid (here 0.002◦), to each of the 3 years
of CrIS data taken over the Magic Valley region (Fig. 12).
The in situ data are overlaid on the CrIS maps; note that the
Wendell values are shown in the upper-right corner of the 65

maps, as otherwise they would distort the color scale; note
also that the Jerome data are blank in 2018 and 2019, when
this site was not operational.

The location of the CrIS NH3 “hotspots” and the gradi-
ents in NH3 are very consistent from year to year, although 70

NH3 concentrations are lower in 2019, possibly due to the
CrIS data gap between March and June. There is good qual-
itative agreement with the in situ data, with the exception
of the Wendell site, which was discussed earlier. Moreover,
the hotspots are very well correlated with the areas of high 75

dairy density (Fig. 11, upper right). These maps illustrate the
power of the CrIS data to provide context to in situ measure-
ments and far more information on the spatial variability in
NH3 than is normally available from emissions databases in
the United States, which are frequently at county level. Data 80

from these gridded maps could be used to constrain emis-
sion inventories over much larger areas and at more frequent
intervals than is currently possible. This oversampling anal-
ysis demonstrates the utility of providing users with Level 2
products, since they then choose the sampling periods and 85

resolution that are most appropriate for their purposes and
are best suited to the times and regions under investigation.
For example, a user might want to study the variability of
NH3 over only the urban area of Mexico City (e.g., Herrera
et al., 2022). Level 3 products provide no such flexibility. 90

6 Conclusions and future work

The comparison between the DISCOVER-AQ aircraft
datasets and the co-located AIRS and CrIS data provide use-
ful information for end-users who would like to use CrIS and
AIRS data over strong-source regions. Given the large uncer- 95

tainties in the aircraft data above the MLH, the profiles can
only be evaluated within the mixed layer. Average biases in
this layer, after smoothing errors are accounted for, are below
or close to 1 ppbv. The AIRS and CrIS profiles individually
have large estimated uncertainties, ranging from 5 % to 50 %. 100

On average in California, as the error analysis in Fig. 6a and b
indicate, the a posteriori estimated error underestimates the
actual uncertainties, probably due to the thermal inversions
and high sub-pixel variability, which is expected, since these
two factors are not accounted for in the error estimate. On- 105

going work is attempting to quantity the effect of sub-pixel
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Figure 10. Time series of the in situ data (blue triangles) and the collocated CrIS surface values; red dots indicate daily values, red triangles
2-week means.
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Figure 11. Two-week means of surface NH3 from CrIS and the in
situ instruments; dashed line shows the 1 : 1 line, red line the linear
fit.

variability by analyzing data from multiple aircraft passes
over the same CrIS pixel; these data were obtained during
the TRANSAM (http://catalog.eol.ucar.edu/trans2am/, last
access: 6 December 2023) campaign in 2022. Further data
from the HYTES (https://hytes.jpl.nasa.gov/, last access:last5

access: 6 December 2023) instrument flown over the Imperial
Valley in California are also being evaluated. Over Colorado
the estimated uncertainty is very close to measured uncer-
tainty within the mixed layer, suggesting the error sources
are properly accounted for in this region.10

This study has not attempted to untangle the impact of the
errors in the retrieved water vapor from those of tempera-
ture on the NH3 errors. Such an analysis is an important and
ongoing task, as global maps of CrIS NH3 have revealed ar-
tificial hotspots of NH3 over tropical oceans, where humidity15

is high. There is a weak water vapor line in the spectral re-
gion used in the NH3 retrievals, which is possibly leading to
these artifacts.

The column data analysis suggests that either there is non-
negligible NH3 above the top of the aircraft profile, or the re-20

trievals are overestimating NH3 above this altitude, because
the a priori profile shape is very different from the true profile
shape. More in situ measurements of NH3 in this altitude re-
gion, with increased accuracy, and improved NH3 retrievals
with different a priori profile shapes (e.g., longer tails and a25

faster vertical decay), are required to resolve this issue.
The Magic Valley analysis clearly demonstrates the im-

portance of having more than a few dozen data point mea-
surements to obtain useful information from space-based re-
trievals of NH3. With 464 observations over 3 years, over30

a limited region, it was possible to obtain a clear picture of

the source distribution in the Magic Valley through the appli-
cation of a physics-based oversampling algorithm. Further
work will apply this approach to other regions and times and
use the resulting maps to estimate emissions and to improve 35

reactive nitrogen deposition estimates.
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Figure 12. CrIS surface NH3 data from the May–October period oversampled onto a 0.002◦ grid for each of 3 years: 2020 (a), 2019 (c),
2018 (d); number of dairies per square kilometer (b).
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