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Abstract.  25 

Ammonia is a significant precursor of PM2.5 particles and thus contributes to poor air quality in 

many regions. Furthermore, ammonia concentrations are rising due to the increase of large scale, 

intensive agricultural activities, which are often accompanied by greater use of fertilizers and 

concentrated animal feedlots. Ammonia is highly reactive, and thus highly variable and difficult 

to measure. Satellite based instruments, such as the Atmospheric Infrared Sounder (AIRS), and 30 

the Cross-Track Infrared Sounder (CrIS) sensors, have been shown to provide much greater 

temporal and spatial coverage of ammonia distribution and variability than is possible with in situ 

networks or aircraft campaigns, but the validation of these data is limited. 

Here we evaluate ammonia retrievals from AIRS and CrIS against ammonia measurements from 

aircraft in the California Central Valley and in the Colorado Front Range. The satellite datasets 35 

were small and in California were obtained under difficult conditions. We show that the surface 

values of the retrieved profiles are biased very low in California and slightly high in Colorado, and 

that the bias appears to be primarily due to smoothing error. We also compare three years of CrIS 

ammonia against an in situ network in the Magic Valley in Idaho We show that CrIS ammonia 
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captures both the seasonal signal and the spatial variability in the Magic Valley, though it is biased 40 

low here also. In summary, analysis adds to the validation record but also points to the need for 

more validation under different conditions. 

 

 
1. Introduction 45 

 
Ammonia (NH3) is one of the most common forms of reactive nitrogen and the primary alkaline 

gas in the atmosphere. Intended and unintended releases of NH3 into the environment over the 

last century have significantly altered the natural nitrogen cycle (Erisman et al., 2008), so that the 

current emission levels of ammonia are about four times higher than in previous centuries 50 

(Battye et al., 2017). The main sources of NH3 are agricultural emissions, namely from livestock 

raising and fertilizer application (EDGAR-Emission Database for Global Atmospheric Research, 

2014), which account for 80% of all emissions globally (Sutton et al., 2013; Behera et al., 2013). 

There are also some locally or seasonally significant sources NH3, the most notable being 

biomass burning events, which can generate large amounts of NH3 (Coheur et al., 2009; 55 

Whitburn et al., 2015, 2016).  In urban areas automobiles with three-way catalytic converters 

(Sun et al., 2017) can be a major source of NH3. Nowak et al. (2012) estimate that in the Los 

Angeles basin cars contribute as much as 50% of the total NH3 emissions.  

Ammonia is the dominant base in the atmosphere, and it plays a significant role in the formation 

of fine particulate matter (PM2.5) (e.g., Aneja et al., 2003), which can penetrate deep into the 60 

lungs and severely impact the respiratory and circulatory systems (Pope et al., 2009).  Paulot and 

Jacob (2014) have shown that the costs associated with the health impacts of NH3 associated 

with food production for export in the US offset half the revenue from these exports. Long-term 

exposure to ambient PM2.5 is the leading environmental risk factor for premature mortality 

worldwide, leading to an estimated 2.5–3.4 million premature deaths annually (Cohen et al., 65 
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2017), 20% of which is estimated to stem from NH3 emissions (Lelieveld et al., 2015). Ammonia 

is not yet a criteria pollutant in the US (its emissions are regulated by the European Union (EU) 

and it is a criteria pollutant in Canada), but the EPA has published established regulations 

(http://www.nsrlaw.com/single-post/2017/06/19/EPA-NSR-Chief-Outlines-NSR-Changes-at-

2017-AWMA-Conference) mandating that every state must set area specific significant emission 70 

rates (SERs) for NH3.  Since the emissions of NH3 are a key factor in the formation of PM2.5, 

reducing emissions can be an effective path to reduce air pollution (Liu et al., 2021). 

Given the rapid growth of industrial-scale agriculture (e.g., increase in egg, milk and meat 

consumption), especially in Asia (e.g., Xu et al., 2016), NH3 emissions are projected to increase 

greatly over the next few decades in many parts of the world. The reduction of NOx emissions 75 

due to more stringent controls will reduce the contribution of NOx to the deposition of reactive 

nitrogen, but Paulot et al. (2013) suggest that an increase in NH3 emissions will likely 

compensate for this reduction. NH3 and its derivatives are also quickly deposited in the 

ecosystems, increasing their eutrophication and reducing biodiversity (Erisman et al., 2008). 

There is thus growing recognition that NH3 is an important pollutant, and that it will likely play a 80 

greater role in air quality and ecosystem health over the next decades, due to both the essential 

role NH3 plays in feeding the world’s population, and to the fact that the atmospheric emission 

potential of NH3 is directly linked to increasing temperatures (Skjøth et al., 2013; Sutton et al., 

2013). However, in situ measurements remain a challenge. NH3 is easy to detect, but it is hard to 

measure accurately. There are many in situ techniques used to detect atmospheric NH3 with 85 

varying time resolution and precision, but the main issue affecting precision is the inlet rather 

than the instrument. NH3 is sticky, and so it is challenging to get it into a given instrument 

quantitatively and quickly (Roscioli et al., 2016), (Pollack et al., 2019). This feature is critical for 

https://doi.org/10.5194/amt-2022-336
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



4 
 

characterizing the abundance of NH3 in the background atmosphere, for making measurements 

of NH3 fluxes, and deploying instruments on aircraft. New open-path sensors avoid this issue, 90 

but they cannot be deployed in many situations. Consequently, the emissions of NH3 outside of a 

limited set of well-instrumented locations remain poorly constrained, reducing the accuracy with 

which models can represent concentrations and variability. The high spatial and temporal 

variability of NH3 exacerbates the lack of continuous, spatially well sampled data over extensive 

regions. This also contributes to bottom-up inventories often underestimating emissions due to 95 

scaling difficulties (Nowak et al., 2012).  

Satellite data, even though they come with their own uncertainties, provide by virtue of their 

spatial and temporal density, another option for quantifying these emissions. Currently there are 

multiple NH3 datasets, with varying data record lengths and spatial coverage, obtained from the 

following instruments:  the three Infrared Atmospheric Sounding Interferometer (IASI) 100 

instruments flying in a 9:30 am orbit, the Greenhouse Gases Observing Satellite (GOSAT) in a 

1:30 pm orbit, along with the Tropospheric Emission Spectrometer (TES), the Atmospheric 

Infrared Sounder (AIRS), and the three Cross-Track Infrared Sounder (CrIS) instruments, all 

flying in a 1:30 pm orbit. The data obtained from these instruments has had numerous 

applications. Multiple papers (Van Damme et al., 2015; Shephard et al., 2011; Shephard and 105 

Cady-Pereira, 2015; Warner et al.; 2016; Shephard et al., 2020, Wang et al., 2021) have shown 

that NH3 measurements from infrared sensors capture NH3 hotspots, such as the Indo-Gangetic 

plain, eastern China and the American Midwest, as well as  the expected regional seasonal 

variability and fire activity. Warner et al. (2017) used retrievals from AIRS to show definite 

positive trends in NH3 concentrations over the US, the EU and China, which the authors ascribe 110 

to declines in SO2 and NO2 emissions in all three regions due to more stringent controls. Van 
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Damme et al. (2018) used nearly a decade of IASI data to show that the emissions listed in the 

EDGAR (EDGAR, 2016) inventory for large source regions were wrong by as much as a factor 

of three; furthermore, emissions from smaller sources were often underestimated by an order of 

magnitude. Dammers et al. (2019) found similar results using CrIS and IASI NH3 data. Zhu et al. 115 

(2013) have demonstrated that Tropospheric Emission Spectrometer (TES) NH3 data over North 

America in the 2006–2009 period, though relatively sparse, could be used in an inverse modeling 

framework to constrain emissions sufficiently to improve agreement between GEOS-Chem 

output and surface measurements from the National Atmospheric Deposition Program (NADP) 

Ammonia Monitoring Network (AMoN) network. Using NH3 measurements from CrIS and NO2 120 

measurements from TROPOMI, Cao et al. (2022) demonstrated that NH3 emissions decreased 

substantially over downtown Los Angeles during the 2019 March COVID-19 lockdown; this 

result is in agreement with the conclusion from Nowak et al. (2012) that in urban areas traffic 

can be a major source of NH3 and consequently greatly increase exposure to PM2.5.  

Yet in spite of the increasing use of NH3 data from space-based instruments, validation of these 125 

data remains rather limited. Sun et al. (2015) compared a small set of NH3 total columns from 

the TES instrument against columns derived from surface and aircraft measurements during the 

NASA Deriving Information on Surface conditions from Column and Vertically Resolved 

Observations Relevant to Air Quality (DISCOVER-AQ) California 2013 campaign, and found 

small differences (less than 6%) and high correlation (R=0.82); however, note that TES, which is 130 

no longer operational, had much higher spectral resolution (0.06 cm-1) and thus greater 

sensitivity to surface NH3 and less interference from water vapor than the infrared sensors 

(AIRS, CrIS, IASI) currently providing data for NH3 retrievals. Shephard et al. (2015) compared 

TES profiles against aircraft measurements taken during the 2013 Joint Canada–Alberta 

https://doi.org/10.5194/amt-2022-336
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



6 
 

Implementation Plan for Oil Sands Monitoring (JOSM) campaign and showed that the TES 135 

profiles were unbiased. Warner et al. (2016) compared four NH3 retrievals from AIRS against 

aircraft profiles obtained during DISCOVER-AQ California and found good qualitative 

agreement. Dammers et al. (2017) compared 218 IASI and CrIS total columns and CrIS profiles 

against corresponding data from ground based Fourier Transform Infrared (FTIR) observations 

at seven FTIR sites in the Network for the Detection of Atmospheric Composition Change 140 

(NDACC): overall the FTIR and CrIS data were well correlated (R=0.77) and mainly unbiased. 

Most of these FTIR stations in this analysis were located in high source regions, which 

somewhat limits the applicability of these results to the regions of greatest interest to the air 

quality community. 

Van Damme et al. (2015) carried out what is likely the most extensive evaluation of NH3 145 

measured from space, comparing IASI NH3 against data from six different monitoring networks 

in North America, Europe, Africa and China and from the California Research at the Nexus of 

Air Quality and Climate Change (CalNex) campaign in California. Most of the data from the 

surface networks were provided on bi-weekly or monthly scales: when IASI columns were 

converted to surface concentrations and averaged over the corresponding time period, they 150 

showed qualitative agreement in space and time with the surface data: the correlations in general 

were not high, though still significant. Recently Guo et al. (2021) (hereafter Guo2021) compared 

NH3 columns from IASI with integrated profiles obtained from aircraft data during the Colorado 

2014 DISCOVER-AQ campaign: the IASI columns were unbiased and significantly correlated. 

However, Guo2021 point out that the instruments currently used to measure NH3 from aircraft 155 

have large uncertainties due to limited accuracy and slow response to changing NH3 

concentrations. 
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To a varying degree all the studies above cite the same factors that complicate the validation of 

satellite NH3 products: 

• Sub-pixel inhomogeneity due to the high spatial-temporal variability of NH3 driven by its short 160 

lifetime; thus the point data from an in situ instrument will only be partially correlated with the 

pixel scale data obtained from a satellite instrument 

• Different measurement time scales (weeks or days vs instantaneous), especially for surface 

networks 

• High instrument noise 165 

• Validation results are strongly influenced by local atmospheric conditions and the vertical 

distribution of NH3, which highlights the need for further validation campaigns under diverse 

conditions 

Our objective is to add to the validation record at the single pixel scale with retrievals from L1B 

radiances from both the AIRS and CrIS instruments. The retrieved profiles here are obtained 170 

with the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) (Fu et al., 2013, 2016, 2018) 

algorithm. which provides profiles, total columns and uncertainty estimates, all of which can also 

be evaluated against in situ data. AIRS and CrIS NH3 will be compared against aircraft data from 

the P-3B aircraft flown during DISCOVER-AQ campaigns in California and Colorado. Warner 

et al. (2016) also compared AIRS with DISCOVER-AQ, but their retrievals used cloud cleared 175 

radiances and covered nine AIRS pixels (~45 km footprints at nadir). Using single pixel 

radiances provides several advantages over “cloud cleared radiances”: the propagation of 

uncertainties from the radiances is simpler (see section 2.2) and the retrieved information is 

obtained on smaller scales, which is important for NH3 (see section 5). This will be the first 

comparison of single pixel NH3 profiles from either AIRS or CrIS against aircraft data. While 180 

aircraft campaigns can provide snapshots in time, they do not provide sustained measurements 
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over strong point sources. In order to test the capability of MUSES NH3 to capture temporal and 

spatial variability over an extended period, surface level CrIS NH3 concentrations will also be 

evaluated against three years of data from a small monitoring network in the Magic Valley in 

Idaho. Section 2 will briefly review the NH3 retrieval algorithm, section 3 will give an overview 185 

of the instruments, section 4 will present the analysis of the DISCOVER-AQ data and section 5 

will follow with the analysis of the Magic Valley data; finally, section 6 will summarize our 

conclusions and discuss future work. 

 

2.  MUSES NH3 Retrieval Algorithm 190 

The first nadir retrievals of NH3, obtained using a prototype retrieval with data from the TES 

instrument (Beer et al., 2008), exploited the NH3 n2 vibrational band between 960 and 970 cm-1 

to demonstrate that TES could measure the variability in NH3 along a transect in China. 

Shephard et al. (2011) implemented a full optimal estimation (OE) approach (Rodgers, 2000), 

which sought to reduce the difference between the measured CrIS radiances in n2 band and the 195 

calculated radiances from a radiative transfer model (Moncet et al., 2008).  Before the OE 

algorithm was run an a priori profile was chosen from one of three possible profiles, representing 

background, moderate and enhanced NH3 concentrations. These profiles were derived by binning 

global distributions of NH3 (Shephard et al., 2011) from the chemical transport model GEOS-

Chem (Zhu et al., 2013). The profile is selected by applying an online/offline brightness 200 

temperature (BT) difference test centered around the 967 cm-1 line. The OE algorithm is then run 

as a refinement step, in which the a priori and the initial guess profiles are identical except for 

the background profile, for which the moderate profile is chosen as the initial guess, in order 

provide Jacobians with some sensitivity. 
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The algorithm developed for the TES NH3 retrievals has since been adapted with minor changes 205 

for CrIS (Shephard and Cady-Pereira, 2015; Shephard et al., 2020) and AIRS (this paper). The 

spectral retrieval window and the frequencies for the online/offline BT test were slightly 

modified for the CrIS and AIRS spectral resolutions, and a preliminary retrieval step to adjust the 

surface temperature and emissivity was introduced. This algorithm forms the core of the NH3 

component of the MUSES software used here and also of the CrIS Fast Physical Retrieval code, 210 

whose product has been used in a number of previous studies (e.g., Shephard and Cady-Pereira, 

2015; Shephard et al., 2020; Dammers et al. (2017); Cao et al. (2022), Marais et al. (2021)). The 

two products have much in common (the same spectral microwindows, a priori selection, 

constraint matrices and forward model), but obtain temperature and water profiles and surface 

properties from different sources and use different software to carry out the optimal estimation. 215 

Preliminary comparisons have shown excellent agreement between the two algorithms, but a full 

comparison is beyond the scope of this paper, as the objective here is the validation of the 

MUSES AIRS and CrIS NH3 retrievals. 

AIRS and CrIS NH3 retrievals were both obtained by applying the MUSES algorithm to AIRS or 

CrIS L1B single footprint radiances. The MUSES algorithm is an end-to-end optimal estimation 220 

process that provides a complete characterization of the parameters involved in the radiative 

transfer processes in the infrared region, using a multi-step approach. Before the NH3 retrieval 

step is reached, the atmosphere has been well characterized by the previous retrieval steps: 

temperature and water vapor profiles, surface properties and cloud absorption are known and can 

be accounted for in the NH3 retrieval, significantly reducing errors from radiatively interfering 225 

species. Since cloud optical depth is retrieved, cloud clearing algorithms (Susskind et al., 2003) 

are not needed and retrievals can be performed on every pixel, or field of view (FOV), rather 

https://doi.org/10.5194/amt-2022-336
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



10 
 

than on the nine pixel field of regard (FOR). This allows for retrievals from AIRS with a 15 km 

rather than 45 km minimum footprint, which was the resolution for the earlier NH3 retrievals 

from AIRS obtained by Warner et al. (2016) using cloud cleared radiances. 230 

MUSES uses the Optimal Spectral Sampling (OSS) model (Moncet et al., 2008) as its forward 

model; OSS is a fast and accurate radiative transfer method designed specifically for the 

modeling of radiances measured by sounding radiometers in the infrared, although it is 

applicable throughout the microwave, visible, and ultraviolet regions.  

Since the retrieval is non-linear, an a priori constraint is used for estimating the true state 235 

(Bowman et al., 2006). If the estimated (retrieved) state is close to the actual state, then the 

estimated state can be expressed in terms of the actual state through the linear retrieval (Rodgers, 

2000): 

 

  (1) 

 240 

where x" , xa, and x are the retrieved, a priori, and the “true” state vectors respectively, G is the 

gain matrix, b is the vector that contains parameters not retrieved in the current step and ba the a 

priori values for these parameters if they are retrieved in another step. 

The averaging kernel, A, describes the sensitivity of the retrieval to the true state: 

 245 
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where Sn is the instrument noise covariance matrix, and Sa is the a priori covariance matrix for 

the retrieval. The Jacobian, K, is the sensitivity of the forward model radiances to the true state 

vector, .The rows of A are functions with a finite width corresponding to the vertical 

resolution of the retrieved parameter.  The sum of each row of A provides a measure of retrieval 250 

information that comes from the measurement (Rodgers, 2000) at the corresponding altitude, 

provided that the retrieval is quasi-linear.  The trace of the averaging kernel matrix gives the 

number of degrees of freedom for signal (DOFS) from the retrieval.   

The total a posteriori error covariance matrix Sx for a given retrieved parameter x" is given by: 

 255 

  (3) 

 

where Sb is the expected covariance of the non-retrieved parameters. The total error (or 

uncertainty) for a retrieved profile is expressed as the sum of: i) the smoothing errors (first term 

on the right-hand-side), i.e. the uncertainty due to unresolved fine structure in the profile; ii) the 

measurement errors (second term) originating from random noise in the spectrum; and iii) the 260 

systematic errors (last term) due to uncertainties in the forward model parameters not retrieved in 

the NH3 step, some of which are constant and some of which change from retrieval-to-retrieval 

(Worden et al., 2006).  For the current CrIS NH3 algorithm this last term is not calculated and is 

not included in the total error estimate. By providing the expected error covariance and the 

averaging kernels, this approach facilitates the use of the retrieved profiles in inverse modeling 265 

efforts, since both terms are used to weight the information coming from the retrieval. The error 

covariance gives users an uncertainty estimate for each retrieved profile, which can be utilized to 

screen the data or be included in a statistical analysis. Furthermore, the estimated uncertainty 

K = ∂L / ∂x

Sx = (A− I)Sa(A− I)T +GSnG
T +GKbSb(GKb )

T
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derived from the error covariance can be compared to measured uncertainties, obtained by 

calculating the spread of the differences between satellite and in situ data, as will be shown in 270 

sections 4.1 and 4.2; this analysis can indicate if there are error terms missing from the optimal 

estimation formulation. 

Rodgers and Connor (2003) presented a method for comparing satellite profiles of trace gases 

with limited vertical resolution with in situ profiles obtained on a much finer grid.  This approach 

is often described as “applying the instrument operator” or “applying the averaging kernel”.  It 275 

attempts to estimate how the space based instrument would “see” an in situ profile by applying 

the equation below to the in situ data: 

																			𝐗  = Xapriori + A ( Xaircraft  - Xapriori )                                               (4)   

The estimated profile X has been smoothed by the operator, simulating the smoothing due to the 

coarser resolution of the satellite observation. When X is compared to the satellite observations it 280 

is assumed that the smoothing error has been accounted for and can be ignored, which is not the 

case when satellite observations are compared directly to measured profiles; the remaining errors 

will be due to instrument noise and temporal and spatial sampling differences; the latter can be 

especially large for NH3, due to its large variability, as was discussed above. While we present 

comparisons using the Rodgers and Connor approach, we will also show simple differences 285 

between the aircraft and satellite data; there are many end-users who will want to use the data as 

is in their own analysis and will want to know the corresponding uncertainties.       

A note on applying the operator: AIRS and CrIS profiles extend to the top of the atmosphere, 

while the aircraft profiles used here rarely go above 700 hPa in California and 500 hPa in 

Colorado. We have therefore truncated the averaging kernels to these altitude ranges. 290 

3.  Data 
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3.1 Aircraft Data 
 

Vertical profiles of NH3 were measured by 295 

the PTR-MS instrument (Muller et al. 2014) 

deployed aboard the NASA P3B aircraft 

during the NASA DISCOVER-AQ 

(Crawford and Pickering, 2014) campaigns in 

California in 2013 and Colorado in 2014. 300 

These campaigns were designed to validate 

collocated satellite observations of 

atmospheric pollutants over four regions in 

the United States: (Maryland/Washington D.C, California, 

Texas and Colorado), but NH3 was only measured in 305 

California and Colorado. The P3B flight pattern was specifically designed for satellite validation: 

the aircraft flew repeated upward and downward spirals, typically 5 km wide connected by 

transects. An example trajectory, overlaid on the locations of CrIS NH3 retrievals, is shown in 

Figure 1: the aircraft altitude is indicated by the colors, and the locations of the spirals are 

marked with letters. The PTR-MS instrument samples the atmosphere at 1Hz and the data were 310 

binned over 100 m to reduce noise. The estimated instrument uncertainty is 35% (Müller et al., 

2014). Note that PTR-MS NH3 data were a side product of the PTR-MS measurements during 

DISCOVER-AQ, which were designed to obtain data on volatile organic compounds (VOCs); 

this resulted in a higher detection limit and a slower response; the latter drawback leads to larger 

uncertainties when the NH3 amounts are changing rapidly, as is the case when the aircraft is 315 

Figure 1: Sample aircraft track during 
DISCOVER-AQ in the Central Valley, CA; 
colors indicate altitude, letters locations of 
aircraft spirals; CrIS pixels are shown as 
grey ellipses 
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leaving the boundary layer on upward spirals and entering the boundary layer on downward 

spirals. 

 
3.2 Ground Data 
 320 
The USDA-ARS Northwest Irrigation and Soils Research Laboratory established a regional NH3 

monitoring network in the Magic Valley region of south-central Idaho, USA utilizing the NADP 

AMoN network technology and protocols, but with much greater spatial density.The network 

measured ambient NH3 concentrations along two transects of the Magic Valley (North-South) 

and West-East) utilizing passive diffusive NH3 samplers collected on a bi-weekly basis from 325 

February of 2018 through December of 2020. The objective of the project was to determine the 

spatial variability of ambient NH3 concentrations across the region, which is dominated by 

agricultural production and high-density dairy operations, to better understand the potential for 

NH3 transport within and downwind of the region.  

 330 

3.3 Satellite data 

 
3.3.1 AIRS single pixel NH3 retrievals  
AIRS is a nadir-viewing, scanning thermal infrared (TIR) spectrometer launched on board the 

Aqua satellite on May 4, 2002, into a sun synchronous polar orbit at an altitude of 705 km with a 335 

1:30 am local solar time (LST) Equator in the ascending node and 1:30 pm (LST) in the descending 

node (Aumann et al., 2003). The daytime overpass is an ideal time for NH3 retrievals, as thermal 

contrast is high and emissions are usually peaking, driven by higher temperatures. AIRS measures 

the thermal radiance between 3–12 microns with a spectral resolution of ~ 0.75 cm-1 and a noise 

level of ~ 0.15K at 270 K (Zavyalov et al., 2013) in the 970 cm-1 NH3 absorption window. A single 340 
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AIRS FOV has a circular footprint with ~15 km diameter at nadir and the AIRS swath width is 

~1650, km which enables near global coverage twice daily.   

3.3.2 CrIS single pixel NH3 retrievals  
CrIS is a Fourier Transform Infrared Radiometer (FTIR) launched on the Suomi National Polar 

Orbiter Preparatory (SNPP) platform in October 2011 and on the Joint Polar Satellite System 345 

(JPSS-1) in November 2017, into sun-synchronous orbits (824 km altitude) with the same LST 

crossing times as AIRS; CrIS is a cross track scanning instrument with a 2200 km swath width 

(+/- 50 degrees) with 14 km circular pixels (at nadir), a spectral resolution of 0.625 cm-1 and low 

spectral noise (~0.04 K at 270K) (Zavyalov et al., 2013) in the NH3 spectral window. CrIS also 

provides twice daily global coverage. Note that in this paper only CrIS data from the SNPP 350 

platform have been used. There is a data gap in the SNPP-CrIS record between March and June 

2019, corresponding to a malfunction in the electronics during that time. 

 

4. DISCOVER-AQ Analysis  

The DISCOVER-AQ campaigns in California and Colorado provide the most comprehensive set 355 

of in situ NH3 profile data (as opposed to retrievals from FTIR instruments) available. Though 

limited to short (two month) periods in two strong source regions, these datasets can be used to 

demonstrate the strengths and limitations of satellite data; additionally, they allow for the 

evaluation of the accuracy of the retrieval estimated error, as calculated from Equation 3. During 

each campaign the aircraft flew multiple up and down spirals. The satellite profiles were co-360 

located with aircraft profiles taken within one hour and 15 km of the satellite retrievals, 

following the approach described in Guo2021. This co-location criterion is much stricter than is 

usual for satellite validation (see Hegarty et al., 2022 for an example with CO retrievals from 

AIRS) but is necessary given the variability in NH3 (Guo2021). In consequence, each CrIS or 
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AIRS profile was compared with data from at most two spirals. Retrievals were checked for 365 

quality by examining the root mean square (RMS) of the residuals and the retrieved cloud optical 

depth. Comparing the aircraft and satellite profiles requires regridding the aircraft data to the 

satellite vertical grid. This was accomplished by defining layers centered around each AIRS/CrIS 

level, then finding the median value of the aircraft profile in each layer. The lowest layer 

extended from the surface to the mid-point between the surface and the first AIRS/CrIS level 370 

above the surface. 

While both AIRS and CrIS have the same equatorial crossing time (~ 1:30pm local solar time), 

this does not imply that both instruments are observing the same location at the same time at the 

same angle. For example, on January 22, 2013, CrIS flew almost directly over the Central Valley 

around 2100 UTC, while AIRS had its closest observation 15 degrees to the west around 2200 375 

UTC, near the edge of its swath. Therefore, the set of aircraft profiles co-located with each 

instrument is not identical. 

4.1 California 
DISCOVER-AQ in California took place during January and February of 2013. The Central 

Valley is one of the strongest NH3 source regions in North America (e.g., Clarisse et al., 2009, 380 

Shephard et al., 2020), and this was reflected in the aircraft data, which registered near surface 

amounts as high as 100 ppbv (Figure 2, upper left panel). However, the observing conditions 

were not ideal for satellite infrared retrievals, as there were thermal inversions over the entire 

period (Figure 2, upper right). Inversions lead to increased uncertainties in the retrieval, as they 

effectively create an emission layer above the surface, i.e., a layer that is warmer than the surface 385 

and therefore emits more than it absorbs. Inversions also limit the vertical extent of the boundary 

layer, with consequently lower NH3 concentrations at altitudes where the retrieval has greater 
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sensitivity. Nevertheless, evaluating the AIRS and CrIS NH3 profiles against the aircraft data is 

still a useful exercise, as the combination of inversions and strong sources is not a unique 

occurrence, and this analysis demonstrates the limitations of retrievals under these conditions. 390 

However, when averages over long periods and/or broad regions are desired, it would be 

reasonable to exclude cases with inversions. 

43 AIRS and 58 CrIS profiles met the co-location criteria described above. When compared 

directly against the aircraft profiles (Figure 3, top panels), both instruments showed large 

negative biases near the surface, as low as -80 ppbv for AIRS and -100 ppbv for CrIS, while the 395 

average bias at this level was ~-38 ppbv for AIRS and ~44 ppbv for CrIS, with a spread of ~ 24 

ppbv and 38 ppbv, respectively (Table I).  This large negative bias is likely due to a combination 

of sub-pixel heterogeneity (Sun et al., 2015; Kille et al., 2019), the inherent difficulties of 

carrying out retrievals over thermal inversions, and smoothing errors. Clouds are accounted for 

in the MUSES retrieval (Kulawik et al., 2006) and thus cloudy conditions should not 400 

significantly impact the NH3 retrievals. Both the bias and the spread drop significantly with 

increasing altitude, as do the measured concentrations; while the biases decrease, they become 

positive and are not insignificant at 825 hPa (~30% at 825 hPa), and the spread is quite large 

(~100%) suggesting that at this altitude some of retrievals are overestimating the NH3 

concentrations with respect to the aircraft. The mean CrIS value at the surface (~16 ppbv) is 60% 405 

greater than the AIRS value (~10 ppbv); the lower CrIS noise level (0.04) vs AIRS (0.15) could 

allow for greater sensitivity to surface changes, in spite of the inversions. 
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Figure 2: NH3 profiles (left) obtained from aircraft during DISCOVER-AQ in California (top) and Colorado (bottom); only 410 
profiles co-located with CrIS data are shown; corresponding temperature profiles (right) 
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Figure 3: Difference between AIRS and aircraft NH3 profiles (left) and CrIS and aircraft (right) during DISCOVER-AQ in 
California (top) and Colorado (bottom); solid line indicates mean bias and dashed lines standard deviations.  415 

The sum of the rows of the averaging kernels (SRAK) (Figure 4, top two panels), which provides 

an estimate of the retrieved information at each level originating from the measurement rather 

than from the a priori, shows for both AIRS and CrIS that while the information from the data 

peaks just below 700 hPa, the data also significantly contribute to the retrieved surface values. 

The maximum SRAK (~1.2-1.3) is similar for both sensors, as is the SRAK at the surface (~0.6).  420 
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Figure 4: Sum of the row of the averaging kernels (SRAK) for AIRS (left panels) and CrIS (ritght panesls);California (upper 
panels) and Colorado (lower panels)  

However, there is much greater variability in the AIRS SRAK, possibly due to higher instrument 

noise. Applying the instrument operators following equation 4 (Figure 5 (top panel), red and 425 

black curves) reduces the bias at all levels to close to or less than 1.0 ppbv (Table 1, top section) 
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and dramatically reduces the spread at lower levels. These results indicate that the retrievals do 

not have significant systematic biases and that the bias in the direct comparisons originates from 

the a priori. If instead the a priori profiles are compared with the aircraft data, we see a large  

  

  

 430 

Figure 5: Difference between AIRS and aircraft NH3 profiles (left) and CrIS and aircraft (right) during DISCOVER-AQ in 
California (top) and Colorado (bottom); the averaging kernel has been applied to the aircraft data; red lines show differences 
between the retrieved profiles and the aircraft data, black  solid lines indicate mean bias and black dashed lines standard 
deviations; grey  lines show differences between the a priori profiles and the aircraft, green solid lines indicate mean bias and 
green dashed lines standard deviations. 435 

negative bias near the surface (~-9 ppbv for AIRS and ~-18 ppbv for CrIS). It has been argued 

that the a priori selection for these retrievals already uses all the information available in the 
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radiance data; this result demonstrates that the retrieval process does add significant information 

and reduces the a priori error. 

The average estimated uncertainties from equation 3 (Figure 6, top panels, blue curves) are 440 

significantly lower than the measured uncertainties (the fractional standard deviation derived 

from the standard deviations of the differences in the “Satellite-Aircraft with AK” column in 

Table 1) (Figure 6, top panels, black curves) for both AIRS and CrIS, indicating that some error  

  

  

 

Figure 6: Fractional standard deviation between AIRS (left) and CrIS (right) and aircraft profiles with the averaging kernel 445 
applied (black) during DISCOVER-AQ in California (top panels) and Colorado (bottom panels); estimated uncertainty (red) and 
mean of estimated uncertainty (blue). 

sources are not accounted for in the optimal estimation process. The most likely source is the 

sampling difference: AIRS and CrIS sampled three dimensional columns, 15 to 50 km wide, 
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while aircraft instruments sampled in two dimensions, vertically and along a spiral line with a 5 450 

km width.  Systematic retrieval errors, such as errors in water vapor, may also contribute. These 

fractional differences increase with altitude, but this is likely due to the rapid decrease in NH3 

above the mixed layer, a case of large differences in small numbers. The measured uncertainties 

range from 5% to 50% in California. These large values point to the need for averaging over time 

or space to obtain less noisy information. 455 

Table 1: Statistical analysis of the DISCOVER-AQ data from AIRS, CrIS and the aircraft over California in 2013 and Colorado 
in 2014. 

 

Since much of the work on validating NH3 from space-based infrared sensors has been done 

using IASI data, which provide total columns rather than profiles (e.g., van Damme et al., 2015; 460 

Dammers et al., 2017; Guo2021), here we also compare AIRS and CrIS total columns with 

aircraft total columns calculated using the mixed layer height approach described by Guo2021.  

 

Pressure AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS
hPa ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv

1008.486 9.69 16.211 10.785 6.027 -38.03 -43.799 23.972 37.988 0.684 -0.171 4.593 6.716
1000 9.342 14.443 9.875 5.44 -25.049 -22.746 19.995 17.106 0.396 -0.89 4.003 5.973

908.514 9.693 7.63 8.634 4.101 0.238 1.956 9.81 5.582 0.344 -0.112 6.714 4.99
825.402 5.742 4.883 5.401 3.372 1.471 1.266 5.327 4.345 1.186 0.653 3.328 3.854
749.893 3.083 2.958 3.47 2.311 -1.96 -0.801 4.815 3.101 0.992 0.738 2.802 2.442

Pressure AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS AIRS CrIS
hPa ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv
844.469 10.341 9.805 3.415 3.801 3.817 3.387 3.741 3.871 -0.803 -0.42 2.868 2.085
825.402 8.214 7.529 3.064 3.595 2.19 1.902 3.377 4.006 -0.902 -0.193 3.368 2.687
749.893 3.889 3.852 2.173 2.101 -0.12 0.102 2.431 2.292 -0.543 -0.031 2.392 1.994
681.291 2.324 2.703 1.143 1.207 0.084 0.338 1.684 1.465 -0.288 0.012 1.3 1.626
618.966 1.474 1.858 0.943 0.974 -0.356 -0.102 1.41 1.228 -0.083 0.304 1.119 0.972
562.342 1.07 1.104 1.444 0.548 -0.538 -0.535 1.764 0.724 0.091 0.179 1.557 0.494
510.898 0.521 0.552 0.231 0.212 -0.695 -0.687 0.523 0.374 -0.065 0.016 0.279 0.182

Satellite-Aircraft: no AK
Bias Std Dev

Std Dev

California

Colorado
Profile Satellite-Aircraft: no AK Satellite-Aircraft: with  AK

Satellite-Aircraft: with  AK
Bias Std Dev

Profile
Mean Std Dev

Mean Std Dev Bias Std Dev Bias 
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Figure 7: total NH3 columns from AIRS (left) and CrIS (right) versus aircraft columns during DISCOVER-AQ in California (top 465 
panels) and Colorado (bottom panels); dashed line shows the 1:1 line, red line the linear fit; vertical and horizontal lines 
indicate the uncertainties in the aircraft and satellite data, respectively. 

In this method the in situ NH3 total column is estimated by integrating the aircraft NH3 profile to 

the top of the mixed layer; above this level, NH3 amounts are assumed to be zero. This is a 

reasonable assumption, since NH3 has a short lifetime (on the order of hours or days), and is 470 

rarely transported to the middle or upper troposphere; it has been measured above the mixed 

layer, but at low levels (less than 1 ppbv; e.g., Höpfner et al., 2019; Nowak et al., 2010). 

Furthermore, as stated in section 3.1, there are large uncertainties in the PTR-MS measurements 

above the mixed layer. 
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 The MUSES total columns are compared against the integrated aircraft columns, using 475 

orthogonal linear regression (Figure 7, top panels); the intercept has been allowed to vary, as 

both AIRS and CrIS have detection limits, as does IASI. Note that the instrument operators have 

not been applied to the aircraft column data. The correlation coefficients are 0.58 for AIRS and 

0.62 for CrIS, within the range of results from previous studies. However, the slopes are very 

much greater than one (1.9 for AIRS and 1.6 for CrIS), which was not the case in the IASI 480 

evaluation of Guo2021. That study showed that assuming NH3 concentrations are zero above the 

mixed layer led to slopes close to the 1:1 line. If this assumption of zero amounts NH3 above the 

mixed layer is no longer valid at the later (13:30 LST) CrIS and AIRS overpass times, the 

aircraft columns would be biased low with respect to CrIS and AIRS; on the other hand, the 

profile differences shown in Figure 3 suggest that AIRS and CrIS are overestimating NH3 above 485 

910 hPa. Given the uncertainty in the aircraft measurements at these higher altitudes it is not 

possible to currently resolve this issue. 

4.2 Colorado 
 

DISCOVER-AQ Colorado took place during July and August of 2014, in the Colorado Front 490 

Range; while this is also a region with strong NH3 sources, the aircraft data showed lower values 

than in the California Central Valley (Figure 2, lower left panel); maximum values are on the 

order of 20 ppbv, with most near surface values ranging from 5 to 10 ppbv. Also, in contrast to 

the Central Valley there were no thermal inversions during this period (Figure 2, lower right 

panel). Applying the co-location criteria yielded 46 AIRS profiles but only 34 CrIS profiles, in 495 

part due to some poor quality CrIS retrievals. Direct comparisons of the AIRS and CrIS profiles 

with aircraft data (Figure 3, lower panels) show both AIRS and CrIS biased high by 3.8 ppbv 

(AIRS) and 3.4 ppbv (CrIS) near the surface (~844 hPa) and by 2.2 ppbv (AIRS) and 1.9 ppbv 
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(CrIS) at 825 hPa, but the bias is close to zero at 750 hPa. Note that this is in direct contrast to 

the California results, which showed both AIRS and CrIS NH3 biased very low at and near the 500 

surface and biased slightly high at greater altitudes.  

The sum of the rows of the averaging kernel plots (Figure 4, lower panels) present similar 

maximum and surface values as in California, and applying the instrument operator again 

eliminates the bias, but does not reduce the spread in the satellite-aircraft differences 

dramatically (Figure 5, lower panels), while the large bias seen against the a priori profiles (~-12 505 

ppbv for AIRS and ~-10 ppbv for CrIS) is removed by the retrieval, confirming again that the 

retrieval process provides information content beyond the a priori. 

 The uncertainty analysis (Figure 6, lower panels) shows that the estimated uncertainty is quite 

close to the measured uncertainty below 700 hPa, but is less than the measured value above this 

level, indicating an unaccounted for error source. Finally, the total column comparisons also 510 

indicate that the AIRS and CrIS NH3 (Figure 7, lower panels) columns are correlated with the 

aircraft values (with correlation coefficients of 0.56 for AIRS and 0.42 for CrIS), but are biased 

high, most notably for CrIS, for which the regression presents a slope of 2.3. In this region the 

high column biases are likely due to the bias in the retrieved surface and near surface values seen 

in Figure 10, rather than differences between the retrieved and aircraft profile shape. Again, sub-515 

pixel heterogeneity and water vapor retrieval errors could also contribute to the differences. 

5.0 Magic Valley Analysis 
 

5.1 USDA network  
The USDA-ARS established and maintained an NH3 monitoring network along two transects 520 

(North-South and West-East) across the Magic Valley region of south-central Idaho during the 

February 2018-December 2020 period (Figure 8). The Magic Valley region is heavily dominated  
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 530 

 

 

Figure 8: USDA Magic Valley network showing the nine measurement sites  

 
by irrigated agriculture and is one of the most concentrated dairy production regions in the US 535 

Research in this region has reported that NH3 emissions from agricultural and dairy production 

contribute approximately 44,000 MT N yr-1 to the atmosphere (Leytem et al., 2021) and that NH3 

emissions fluctuate by season following trends in temperature (Leytem et al., 2011, 2013). The 

network was established to gain a better understanding of the spatial variablity of ambient NH3 

concentrations and transport within the region. The network consisted of 8 sampling locations (7 540 

until 2020, when an additional site was added), and also utilized data from the NADP AMoN site 

located to the north of the region at Craters of the Moon National Monument. Ammonia 

concentrations were measured with passive diffusive NH3 samplers (Radiello), which were 

deployed bi-weekly, and generated two week mean surface NH3 concentrations.  Radiello 

samplers have been shown to be approximmately 9% biased high (Puchalski et al., 2015)These 545 

© 
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data provided a unique opportunity to evaluate the seasonal signals measured by CrIS NH3, as 

well as its capability to capture small scale (on the order of a few kilometers) spatial variability. 

5.2 Evaluating CrIS NH3 against the surface data 

CrIS NH3 data are available for most of the 2018-2020 period, with a gap in the spring of 2019 

due to an instrument malfunction. CrIS data within 15 km of each site were compared with the 550 

ground data at that site. Only the CrIS observations at CrIS ~13:30 LST were analyzed. The NH3 

retrievals at 1:30 LST have weaker signals (due to lower thermal contrast), and would add 

uncertainty to the results; furthermore, while there are strong diurnal cycles in the NH3 emitted 

from the dairy facilities (Letyem et al., 2011, 2013) the average daily emissions are close to the 

early afternoon value. Figure 9 shows the individual CrIS observations (small red triangles), the 555 

two-week averages of the CrIS data (large red triangles connected with a red line) and the ground 

data (blue triangles) at each site. 

The time series in Figure 9 are sorted by the peak values of the ground data. At every site, CrIS 

clearly captures the seasonal cycle, though winter values are usually underestimated (possibly, 

and a few strong warm season peaks in the ground data are not observed. At Craters of the 560 

Moon, a National Monument, and at Rogerson, in land administered by the Bureau of Land 

Management, CrIS returns consistently higher values than the ground site during the warmer 

months (May to October).  At present we have no explanation for this high bias. At the next four 

site (Glenns Ferry, Richfield, Lake Wolcott and Kimberley), which are in areas of mixed 

agricultural activity, CrIS and the ground data are in good agreement during the warmer months, 565 

though CrIS underestimates the June 2018 maximum at the Richfield site. At all four sites there 

is a peak in the ground data in November 2019 that is either matched in the CrIS data (Glenns 

Ferry) or at least visible (Richfield, Kimberley, Lake Wolcott). This peak is also evident in the 
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data from Paul and possibly Wendell, though the variability at this latter site makes it difficult to 

confirm. This suggests an area wide change in meteorological conditions, such as an inversion, 570 

   

   

   

 

Figure 9: Time series of the in situ data (blue triangles, and the collocated CrIS surface values; red dots indicate daily values, 
red triangles two week means. 

that led to increased NH3 near the surface: however, there is no evidence in the meteorological 

data for such an inversion. The last three sites (Paul, Jerome and Wendell) are close to and/or 575 

downwind of multiple dairies, which likely leads to greater sub-pixel inhomogeneity. CrIS 
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underestimates the warm season maximum, and does not capture many of the peaks in the 

ground data, most notably at the Wendell site, where CrIS did not observe the over 80 ppbv 

peaks in 2018 and 2019; these extremely high concentrations were not observed in 2020. The 

sudden change suggests that a strong source that was dominating the signal in the ground data 580 

stopped emitting in 2020. 

Analyzing these data in aggregate, first spatially then temporally, provides some useful insights. 

Plotting the CrIS two week averages against 

all the ground data values (Figure 10), 

excluding those from the Wendell site, which 585 

are extreme outliers, shows a correlation of 

0.6, at the high end of the values reported in 

the literature and slope of 0.65, indicating that 

CrIS NH3 is biased low overall.  This result is 

in line with the low biases found in the surface 590 

values of the AIRS and CrIS California data, 

though here not necessarily caused by thermal 

inversions, and with the low biases in the CFPR results at high NH3 FTIR values seen by 

Dammers et al. (2017). It provides a quantitative measure of the agreement seen in the seasonal 

cycles shown in Figure 9. 595 

Three years of fairly dense data over a region with many sources with fixed locations are an 

excellent candidate for spatial oversampling algorithms, which trade temporal resolution for 

greater information on spatial variability. Here we applied the physics based oversampling 

algorithm developed by Sun et al. (2018), which uses the instrument spatial response function to 

Figure 10: two week means of surface NH3 from CrIS and the 
in situ instruments; dashed line shows the 1:1 line, red line 
the linear fit. 
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weight the contributions of each satellite observation to a fine grid (here 0.002 deg), to each of 600 

the three years of CrIS data taken over the Magic Valley region (Figure 11).  The in-situ data are 

overlaid on the CrIS maps; note that the Wendell values are shown in the upper right corner of 

the maps, as otherwise they would distort the color scale; note also that the Jerome data are blank 

in 2018 and 2019, when this site was not operational. 

 605 

  

  

 

Figure 11: CrIS surface NH3 data from the May to October period oversampled onto a 0.002 deg grid for each of three years: 
2020 (upper left), 2019 (lower left), 2018 (lower right); number of dairies per square kilometer (upper right) 

The location of the CrIS NH3 “hotspots” and the gradients in NH3 are very consistent from year 

to year, though NH3 concentrations are lower in 2019, possibly due to the CrIS data gap between 610 

March and June. There is good qualitative agreement with the in situ data, with the exception of 
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the Wendell site, which was discussed above. Moreover, the hotspots are very well correlated 

with the areas of high dairy density (Figure 11, upper right). These maps illustrate the power of 

the CrIS data to provide context to in situ measurements and far more information on the spatial 

variability in NH3 than is normally available from emissions databases, which are frequently at 615 

county level. Data from these gridded maps could be used to constrain emission inventories over 

much larger areas and at more frequent intervals than is currently possible. This oversampling 

analysis demonstrates the utility of providing users with Level 2 products, since they then choose 

the sampling periods and resolution that are most appropriate for their purposes and are best 

suited to the times and regions under investigation.  For example, a user might want to study the 620 

variability of NH3 over just the urban area of Mexico City. Level 3 products provide no such 

flexibility. 

6.0 Conclusions and future work 

While the DISCOVER-AQ datasets are limited in their temporal and spatial coverage, and in 

challenging conditions in California, they do provide some useful information for end-users who 625 

would like to use CrIS and AIRS data over strong source regions. The AIRS and CrIS profiles 

individually have large uncertainties, which are driven by local conditions, most significantly 

temperature profiles and sub-pixel heterogeneity. However, average biases, after smoothing 

errors are accounted for, are below or close to 1 ppbv. The error analysis in Figures 7 and 13 

indicates that the a posteriori estimated error underestimates the actual uncertainties: this is likely 630 

caused by differences in the air masses sampled by the satellite and the aircraft measurements., 

and to a lesser extent by unaccounted for error sources. The column data suggest that either there 

is more NH3 than expected above the mixed layer, or the retrievals are overestimating NH3 above 
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this layer, maybe because the a priori profile shape is very different from the true profile shape. 

More measurements of NH3 in this altitude region are required to resolve this issue.  635 

The Magic Valley analysis clearly demonstrates the importance of having more than a few dozen 

data point measurements to obtain useful information from space-based retrievals of NH3. With 

464 observations over three years, over a limited region, it was possible to obtain a clear picture 

of the source distribution in the Magic Valley through the application of a physics based 

oversampling algorithm. Further work will apply this approach to other regions and times and 640 

use the resulting maps to estimate emissions and to improve reactive nitrogen deposition 

estimates. 
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NASA Tropospheric Ozone and Precursors from Earth System Sounding (TROPESS) project at 
https://disc.gsfc.nasa.gov/datasets/TRPSDL2NH3AIRSFS_1/summary?keywords=tropess%20nh
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