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Abstract. Wind turbine applications that leverage nacelle-mounted Doppler lidar are hampered by several sources of 

uncertainty in the lidar measurement, affecting both bias and random error. Two problems encountered especially for nacelle-

mounted lidar are solid interference due to intersection of the line of sight with solid objects behind, within, or in front of the 

measurement volume, as well as spectral noise due primarily to limited photon capture. These two uncertainties can be reduced 

with high-fidelity quality assurance/quality control (QA/QC) processing techniques. Our work compares three QA/QC 10 

techniques, including conventional thresholding, advanced filtering, and a novel application of supervised machine learning 

with ensemble neural networks, based on their ability to reduce uncertainty introduced by the two observed non-ideal spectral 

features. The approach leverages data from a field experiment involving a continuous-wave (CW) SpinnerLidar from the 

Technical University of Denmark (DTU) that provided scans of a wide range of flows both unwaked and waked by a field 

turbine. Independent measurements from an overlapped meteorological tower permit experimental validation of the 15 

instantaneous velocity uncertainty remaining after QA/QC processing that stems from solid interference and strong spectral 

noise, which is a validation that has not been performed previously. All three methods perform similarly for non-interfered 

returns, but the advanced filtering and machine learning techniques perform better when solid interference is present, which 

allows them to produce overall standard deviations of error between 0.2 and 0.3 m/s, or a 1-22% improvement versus the 

conventional thresholding technique, over the rotor height for the unwaked cases. Between the two improved techniques, the 20 

advanced filtering produces 3.5% higher overall data availability, while the machine learning offers a faster runtime (i.e, ~1 

second to evaluate) that is therefore more commensurate with the requirements of real-time turbine control. The QA/QC 

techniques are described in terms of application to CW lidar, though they are also relevant to pulsed lidar. Previous work by 

the authors (Brown and Herges, 2020) explored a novel attempt to quantify uncertainty after a lidar QA/QC process using 

simulated lidar returns; this article provides true uncertainty quantification versus independent measurement and does so for 25 

three rather than one QA/QC techniques.

1.Introduction

Despite the continuing growth of wind energy technology, several sub-fields of wind energy are still not mature (Veers et al., 

2019). Real-time control of turbines within the stochastic atmosphere and better understanding of turbine-to-turbine wake 
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interactions represent two areas needing further advances and areas for which accurate wind-field sensing around the turbine 30 

is imperative. Such sensing is enabled through Doppler lidar instruments, and nacelle-mounted lidar, in particular, have made 

recent inroads with applications in monitoring and control (Harris et al., 2006; Mikkelsen et al., 2013; Simley et al., 2014; 

Simley et al., 2018) and model validation (Doubrawa et al., 2020; Brown et al., 2020; Hsieh, 2021). Continuing investment in 

such lidar technology includes efforts to reduce the uncertainty of wind field measurements over the whole field of view, which 

is critical for both forward-mounted lidar used in feedforward control applications and rear-mounted lidar used in wake 35 

measurements for model validation. Uncertainties in lidar measurements stem both from the lidar line-of-sight velocity, 𝑢 
𝑙𝑜𝑠, 

readings themselves and from inaccuracies in modeling approaches for reconstruction of the velocity vector (Lindelöw-

Marsden, 2009; Van Dooren, 2021). This work focuses on quantification of the former, more fundamental source of lidar 

uncertainty that is present in all lidar measurements regardless of any flow reconstruction approach that is later applied to the 

data. 40 

An example of the raw return from a line-of-sight reading is given in Figure 1. The fast-Fourier-transformed power spectral 

density, 𝑠, returned from the scattering along the laser path is distributed across a range of Doppler shift frequencies, 𝑓, which 

are related to line-of-sight velocity according to 

𝑢 
𝑙𝑜𝑠 = 𝜆𝑓/2, where 𝜆 is the wavelength of the 

laser. Some aspects of the uncertainty in 𝑢 
𝑙𝑜𝑠 45 

have been found to be small for typical setups 

such as the accuracy of the positioning of the 

line of sight itself (Herges et al., 2017) and 

beam motion during data capture (i.e., the 

blurring effect) (Simley et al., 2014). Other 50 

aspects are well documented and can be 

quantified 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖  through virtual lidar 

techniques. Most notably, there is significant 

broadening of the lidar spectra (and thus 

alteration of the mean and fluctuating 55 

components of the time series of 𝑢 
𝑙𝑜𝑠 ) from 

flow inhomogeneities such as mean gradients 

and turbulence within the measurement volume 

(Stawiarski et al., 2013; Simley et al., 2014; 

Wang et al., 2016; Forsting et al., 2017; Sekar 60 

et al., 2020). This broadening, which is also a 

function of the line-of-sight weighting 

distribution for a CW lidar, is observed as the 

Figure 1. Example power spectral density, 𝒔, distribution versus line-of-

sight velocity, 𝒖𝒍𝒐𝒔, of a raw lidar return illustrating the contamination of 

the region of interest (RoI) by solid interference and amplitude noise. The 

raw geometric median contains bias error due to the solid interference as 

well as random error due to the amplitude noise. Figure adapted from 

Brown and Herges (2020).  

Noise floor 

RoI Solid 

interference 

Raw spectrum 

Random error 
Bias error 

𝑠 

𝑢𝑙𝑜𝑠 

https://doi.org/10.5194/amt-2022-35
Preprint. Discussion started: 9 May 2022
c© Author(s) 2022. CC BY 4.0 License.



3 

 

width of the region of interest (RoI) in Figure 1. On the other hand, we find several error sources in measured lidar results 

whose impact cannot be known 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖. These sources are due to spectral features embedded in the lidar signal that stem 65 

both from instrument error and from non-aerosol returns as shown in Figure 1, and these are especially prevalent for nacelle-

mounted lidar as described below. 

Amplitude noise in the spectrum, which is depicted by the localized peaks as well as the presence of a flat noise floor 

(Harris et al., 2006) in Figure 1, results in a loss of precision (i.e., larger spread from the true value) in the velocity estimation 

from the RoI. The intensity of the noise, which for modern lidar is due primarily to shot noise (Peña and Bay Hasager, 2013), 70 

depends on the range-resolved intensity of the backscatter (Liu et al., 2006). Therefore, appropriate shot-noise error analyses 

should account for the unique noise content observed in each lidar return, which cannot be determined a priori (Simley et al., 

2014). A particular configuration of interest to our work is fast-scanning (i.e., ~500 Hz) CW lidar as have been mounted on 

turbine nacelles (Mikkelsen et al., 2013). One drawback of this configuration, however, is that the high temporal resolution 

trades with shorter averaging times that yield higher instrument error due to low carrier to noise ratio, 𝐶𝑁𝑅 (Angelou et al., 75 

2012). 

Interference from solid surfaces that intersect the probe volume introduces a source of bias in lidar readings, and the severity 

of the interference again cannot be determined a priori. For nacelle-mounted lidar, such interference is common and stems 

from the surrounding terrain, optical windows (i.e., boresight interference, which occurs near the center of the field of view 

(Brown and Herges, 2020)), neighboring turbines, meteorological towers, and the turbine’s own blades for the case of a 80 

forward-facing lidar mounted on the top of the nacelle (rather than on the spinner). A characteristic spike shape in the Doppler 

return near zero velocity indicates the presence of solid interference. 

The first tactic against spectral noise and solid interference is QA/QC processing. In the context of non-stationary 

atmospheric measurements, the most simplistic QA/QC approach is thresholding (Angelou et al., 2012; Peña and Bay Hasager, 

2013) where spectral bins with 𝑠 magnitudes less than a specified threshold are nulled (if no signal remains below this 85 

threshold, then the lidar data can be rejected (Frehlich, 1996)). Signal strength can be increased by accumulating the spectra 

over multiple laser pulses along a single line of sight (Rye and Hardesty, 1993), and this approach has become mainstream in 

both pulsed and CW lidar technologies. Conversely, if the spectrum peak magnitude is too high, the data may be rejected on 

the grounds that a solid return has been captured. Rather than reject such a solid return outright, Godwin et al. (2012) worked 

to mitigate ground interference bias for airborne pulsed lidar, though their approach was admittedly subject to a large degree 90 

of subjectivity in defining certain thresholds and was also unable to handle wind speeds near the interference velocity. Herges 

and Keyantuo (2019) developed another technique that employs a user-defined set of filters to carefully estimate the bounds 

of the RoI, thus removing the impact of features due to solid interference and spectral noise away from the RoI. 

The next step in lidar processing is the mean frequency estimation (i.e., estimation of the Doppler frequency shift, which 

yields the line-of-sight velocity estimate). Mean frequency estimators (MFEs) have long been studied for radar and lidar 95 

applications including recent work with parameter estimation on spectra from fast-Fourier-transformed signals. Specific to 

pulsed lidar measurements, Lombard et al. (2016) examined five such estimators including the maximum, centroid, matched 
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filter, maximum likelihood, and polynomial fit MFEs and found that all estimators save the first offer suitable accuracy 

compared to the theoretical ideal performance of the Cramer-Rao lower bound. Specific to CW lidar measurements, Held and 

Mann (2018) examined the maximum, centroid, and median MFEs and found the highest accuracy when validating lidar results 100 

against sonic anemometer measurements for the median MFE followed by the centroid and finally maximum MFEs. Thus, the 

median MFE has become the most common estimator used in wind energy. 

After the frequency estimation, another layer of QA/QC can be applied through despiking techniques that reject outliers in 

a time series, such as the classical standard deviation filter, iterative standard deviation filter (Hojstrup, 1993; Vickers and 

Mahrt, 1997; Newman et al., 2016), or inter-quartile range filter (Hoaglin et al., 1984; Wang et al., 2015). Leveraging 105 

assumptions related specifically to lidar configurations, Forsting and Troldborg (2016) describe a finite-difference-based 

despiking technique that importantly considers spatial as well as temporal gradients. Beck and Kühn (2017) introduced an 

adaptive filtering technique, though it relies on the assumption of self-similar flow over a span of time. 

Above we have reviewed how the type of QA/QC processing as well as mean frequency estimation have bearing on the 

accuracy of the final quantities of interest (QoIs). All the described techniques work to mitigate amplitude noise and solid 110 

interference but involve a degree of subjectivity in defining certain processing parameters. While appropriate selections of 

these parameters can be found for specific conditions and Doppler return shapes, there does not exist a universal set of optimal 

parameters even for the selection of the simple noise threshold (Angelou et al., 2012; Gryning et al., 2016), which makes the 

application of the de-noising techniques prone to over- or under-estimating QoIs. Working towards a solution, Brown and 

Herges (2020) quantified residual uncertainty in QoIs after the QA/QC process by processing synthetic spectra with known 115 

ground truth properties that mimicked the shape of measured spectra. 

The ultimate test of the accuracy of the QoI estimation, however, is experimental validation against an independent 

measurement. In terms of validation of the uncertainty of lidar techniques, most work has been performed on time-averaged 

samples, typically over a 10-minute window as specified in the industry standard for power performance assessment 

(Commission, 2005). For instance, Smith et al. (2006), Albers et al. (2009), Slinger and Harris (2012), Gottschall et al. (2012), 120 

Hasager et al. (2013), Wagner and Bejdic (2014), Giyanani et al. (2015), and Cariou et al. (2013) all compare lidar-derived 

velocities to traditional anemometer-derived velocities over 10-minute bins, often returning regression slopes and coefficients 

of determination within 0.01 of unity. 

For turbine control and model validation purposes, however, the uncertainty of interest is the instantaneous one, for which 

values are significantly larger and the volume of previous work is significantly smaller. Courtney et al. (2008) reported 125 

instantaneous errors between co-located lidar probe volumes and cup anemometers to have standard deviation of 0.2 m/s and 

mean bias between -0.2 to 0.2 m/s, though they noted that the actual values depend on the distribution of wind speeds. A wind 

tunnel experiment by Van Dooren et al. (2021) showed instantaneous velocity from a co-located lidar probe volume and 

hotwire anemometer with coefficients of determination much smaller than the 10-minute-averaged results above (i.e., 0.65 <

𝑅2 < 0.95). As Pedersen and Courtney (2021), for instance, have shown that the standard error in line-of-sight velocity 130 

measured versus a hard target for a CW lidar is on the order of 0.1%, the main source of errors observed by Courtney et al. 

https://doi.org/10.5194/amt-2022-35
Preprint. Discussion started: 9 May 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

(2008) and Van Dooren et al. (2021) is understood to be flow inhomogeneity and amplitude noise (neither of these cases 

included solid interference effects). 

Like these last studies, this article considers instantaneous data from CW lidars in the face of flow inhomogeneity and 

amplitude noise. In contrast to the previous work, our work explicitly compares the uncertainty of several end-to-end QA/QC 135 

techniques and does so over a wider range of flows and lidar return types than has been done previously. Specifically, we 

examine flows that are both unwaked and waked by a field turbine, including those where the specific nacelle-mounted lidar 

problems of solid interference and amplitude noise present a particular challenge. The objective is to bound the achieved 

uncertainty in each of the QA/QC processes for the most common QoI: the spectral (i.e., geometric) median line-of-sight 

velocity, 𝑢̃𝑙𝑜𝑠. To evaluate the efficacy of the interference and noise rejection processes, we compare 𝑢̃𝑙𝑜𝑠 to corresponding 140 

values measured from a meteorological tower co-located with the lidar focus point. 

This work is novel not only by nature of the strides taken to quantitatively determine instantaneous lidar QoI uncertainties 

but also in the first-time exploration, benchmarking, and stress-testing of two high-fidelity processing techniques. The study 

compares the accuracy of 𝑢̃𝑙𝑜𝑠 as processed from measured lidar spectra in three parallel ways: (1) with the conventional 

thresholding technique, (2) with the advanced filtering technique of Herges and Keyantuo (2019), and (3) with a novel 145 

application of an ensemble machine learning model that is trained on spectral data mimicking those observed in the field. 

In the remainder of the article, the methodology underlying the three processing techniques is outlined in Section 2, 

followed by an overview of the demonstration experiment in Section 3, validation results in Section 4, discussion in Section 

5, and concluding remarks with future work in Section 6. 

2.Processing Techniques 150 

The three techniques for QA/QC processing of nacelle-mounted lidar data are described in this section. 

2.1.  Thresholding 

The thresholding technique used herein is related to the conventional thresholding approaches given in Angelou et al. (2012) 

and Peña and Bay Hasager (2013). First, a check is made on the magnitude of the first useable velocity bin of the spectrum, 

and the return is rejected if this magnitude is the maximum among the bins, which often occurs when dominant solid 155 

interference is present. Otherwise, the mean noise level in the spectrum, 𝜇
𝑛𝑜𝑖𝑠𝑒

, and standard deviation of noise, 𝜎𝑛𝑜𝑖𝑠𝑒
 , are  

calculated over the last 100 bins of each spectrum similar to Simley et al. (2014). These last 100 bins are in the tail of the 

spectrum sufficiently away from the RoI (beyond the right edge of Figure 1). The thresholded power spectrum, 𝑠𝑡ℎ., is then 

calculated from the raw spectrum, 𝑠, via Eq. (1): 
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𝑠𝑡ℎ. = 𝑠 − 𝜇𝑛𝑜𝑖𝑠𝑒 − 𝑛𝜎𝜎𝑛𝑜𝑖𝑠𝑒 , (1) 

where 𝑛𝜎 is a tunable parameter for the number of 𝜎𝑛𝑜𝑖𝑠𝑒 above the noise floor of the desired threshold level. Negative values 160 

of 𝑠𝑡ℎ. are subsequently set to zero, and the spectral median is calculated according to standard practice as embodied in the 

MATLAB function medfreq, which defines the median frequency as that which divides the spectrum into two equal areas. 

As thresholding requires a degree of data loss, there exists a tradeoff between reduction in random error in a thresholded 

timeseries due to rejection of spurious spectral noise and increase in random and bias errors due to reduced 𝐶𝑁𝑅 and altered 

skew of the distribution, respectively. The optimal value of 𝑛𝜎 for CW lidar depends at least on the spectral width as described 165 

in Angelou et al. (2012), and we choose an 𝑛𝜎 of five so that any signal above this threshold can conservatively be regarded 

as from the wind rather than from noise (Peña and Bay Hasager, 2013). In this case, we do not apply any correction for the 

alteration of the skew distribution due to thresholding. 

2.2.  Advanced Filtering 

The advanced filtering technique described by Herges and Keyantuo (2019) and also implemented in this article builds on the 170 

thresholding technique to maintain a greater data availability while reducing both random and bias errors. The technique 

leverages the lidar spectral data throughout an entire scan (i.e., incorporating information from adjacent scan positions) to 

isolate the velocity field of interest within the spectra, remove signals from solid returns, and reduce noise using a bilateral 

filter. The advanced filtering technique was developed by matching known erroneous measurements within the lidar scan 

rosette to patterns determined from feature identification within the Doppler spectral image, which includes the spectral 175 

information throughout the entire scan. The feature identification within the spectral image is used to identify and remove hard 

targets, low-signal returns, and returns from nearby non-stationary wind turbine blades. An additional outlier detection was 

developed as a two-dimensional implementation of traditional despiking methods to catch remaining outliers within the scan 

pattern. An overview of the technique is provided below while Herges and Keyantuo (2019) explain the advanced filtering 

technique in greater detail. 180 

The single 2-second example rosette scan with 984 points, or scan indices, shown in Figure 2(a), was chosen to describe 

how the advanced filtering method works, and this method holds for all DTU SpinnerLidar data collected at the SWiFT site, 

including data with inflow variations in wind speed, turbulence, shear, veer, and aerosol particulate concentrations, throughout 

all focus distances and scan-head motor speed rates. This example scan, which was taken with the lidar and turbine in a 

different orientation than for the rest of the article, was measured with a focus distance of 5𝐷, or 135 m, in the direction of a 185 

downstream turbine (i.e., WTGa2 in Figure 7) that was operating within the lidar field of view and a wake from the lidar’s 

own turbine (i.e., WTGa1). 
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Figure 2 shows the unprocessed input to the advanced filtering technique. The figure includes the rosette scan pattern in (a), 

seven example Doppler spectral traces versus 𝑢𝑙𝑜𝑠 in (b), and the spectral image created by the inclusion of all normalized 

power spectral density distributions concatenated in time along the scan index as shown in (c). The advanced filtering technique 190 

primarily uses the data format of the spectral image in Figure 2(c), with Figures 2(a) and (b) included to help interpret the 

information contained in the image. Line colors correspond between each of the three subfigures and indicate seven scan 

indices of interest; the indices were chosen to help demonstrate the advanced filtering technique across a wide subset of return 

types (i.e., even wider than will be considered in the later sections of this paper). As seen in Figure 2(a), the indices of interest 

include example returns from each of the following: the undisturbed freestream of the atmospheric boundary layer, the center 195 

of the wake, the edge of the wake, the boresight, the ground, and the rotating downstream rotor. Note that Figure 2(a) also 

shows an outline of WTGa2 and the wake from WTGa1 (in red) to give reference of what was physically occurring at the 

locations in the scan relative to the seven example locations. 
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Figure 3 displays the effects of the primary steps of the advanced filtering technique on the seven example 𝑢𝑙𝑜𝑠 traces. The 200 

first step (i.e., moving between Figure 2(b) and Figure 3(a)) was to remove the effects of the solid returns within the spectral 

image using a mask. The mask was created by proportionally projecting the signal strength at the lowest velocity bin into 

higher velocity bins. The values for the linear projection were determined empirically and may be specific to a given lidar 

device. However, the values held for the SpinnerLidar in this experiment throughout all focus distances. The mask regions 

Figure 2. Unprocessed Doppler spectra shown in three forms with tracking of seven example cases (indicated by the letters a.-

g.): (a) colormap of spectral median line-of-sight velocity, 𝒖෥𝒍𝒐𝒔,  over the rosette scan pattern including the wake (as indicated 

by the red line and center dot) and relative location to the downstream turbine; (b) normalized power spectral density, (𝒔 −

𝝁𝒏𝒐𝒊𝒔𝒆)/𝒔𝒎𝒂𝒙, versus 𝒖𝒍𝒐𝒔 where 𝒔𝒎𝒂𝒙 = 𝟐𝟏𝟔 − 𝟏; and (c) Doppler spectral image of (𝒔 − 𝝁𝒏𝒐𝒊𝒔𝒆)/𝒔𝒎𝒂𝒙. In (a), 𝒚𝒍𝒊𝒅𝒂𝒓 and 𝒛𝒍𝒊𝒅𝒂𝒓 

are the lateral and vertical coordinates, respectively, of the lidar coordinate system. 

(a) (b) 

(c) 
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were then increased horizontally by 2 pixels using the image processing technique of morphological dilation to ensure the 205 

regions fully masked the effect of the solid returns. The regions within the spectral image covered by the mask were zeroed 

out. Note that the high-strength ground return portion of the “low signal” example was removed while the low-strength portion, 

returned from the aerosols, remains. 

The next step in the technique (i.e., moving between Figure 3(a) and (b)) includes a combination of filtering to remove shot 

noise, thresholding, and identification of the RoI, the latter of which includes flow information from both the atmospheric 210 

boundary layer and wake. A weak bilateral filter1, the effect of which can be observed by comparing the noise in the wake 

edge distribution between Figure 3(a) and (b), is believed to be more effective and accurate at reducing shot noise, as compared 

to a one-dimensional filter, because it utilizes the Doppler information from surrounding measurement points within the 

continuous flowfield. The RoI within the spectral image was created by preserving the Doppler spectra above the normalized 

threshold of 0.015. Smaller regions of spectra outside the RoI remained because of noise values above the threshold or signal 215 

returns from rotating blades, and these regions were removed if they were not interconnected with the primary flowfield RoI, 

which is determined as the large region that intersects the expected 𝑢̃𝑙𝑜𝑠 values. The thresholding value was chosen empirically 

as a value that approaches zero without including regions of noise interconnected with the primary RoI. Remaining invalid 

measurements from cases that are interconnected with the flowfield RoI and have a low 𝐶𝑁𝑅 or are interconnected with the 

rotating downstream rotor blades were addressed in subsequent steps. 220 

 
1 A bilateral filter is an edge preserving nonlinear filter that replaces the intensity of each pixel with a Gaussian weighted 

average of intensity values from nearby pixels, which is a common filtering technique for reducing shot noise within images 

(Phelippeau et al., 2008). 

Figure 3. Traces of normalized power spectral density, (𝒔 − 𝝁𝒏𝒐𝒊𝒔𝒆)/𝒔𝒎𝒂𝒙 , versus 𝒖𝒍𝒐𝒔  where 𝒔𝒎𝒂𝒙 = 𝟐𝟏𝟔 − 𝟏. These cases 

demonstrate the progression of the primary advanced filtering steps: (a) removal of hard targets; (b) bilateral filtering, 

thresholding, and isolation of ROI; and (c) combined outlier detection method and low signal quality filter. 
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Two additional filters were used in the final step (i.e, moving between Figure 3(b) and (c)) to remove the remaining invalid 

measurements. The first filter is a combination of two outlier detection methods (Figure 4 (a) and (b)), and the second filter 

removes returns with low signal quality (Figure 4(c)). The two initial outlier detection methods are used to capture the returns 

from nonstationary solid targets when the flowfield among neighboring scan indices has similar velocities. The first outlier 

detection method uses a spatially smoothed scan pattern, 𝑢̃𝑠𝑚𝑜𝑜𝑡ℎ
𝑙𝑜𝑠 , that is a time-weighted average of 𝑢̃𝑙𝑜𝑠, calculated from the 225 

spectral median of the 𝑢𝑙𝑜𝑠 traces in the filtered spectral image, within a sliding neighborhood to detect outliers from the 

difference between the spatially-smoothed scan and the unsmoothed pattern (𝑢̃𝑙𝑜𝑠 − 𝑢̃𝑠𝑚𝑜𝑜𝑡ℎ
𝑙𝑜𝑠 ) as in Figure 4(a). The filtered 

spectral image is the collection of all 𝑢𝑙𝑜𝑠 traces concatenated in time and processed to the step corresponding to the example 

traces in Figure 3(b). Figure 4(a) shows the size of the sliding neighborhood as a black circle, and there are two invalid 

measurements observable near the rotating downstream rotor. The invalid measurements were identified using a threshold 230 

above six standard deviations of 𝑢̃𝑙𝑜𝑠 − 𝑢̃𝑠𝑚𝑜𝑜𝑡ℎ
𝑙𝑜𝑠  across all 984 scan indices. However, this velocity metric was not robust 

enough to work for all scenarios of data captured during extended field testing without including the second outlier detection 

step. Figure 4(b) shows the normalized power spectral density peak prominence, (𝑠𝑝𝑒𝑎𝑘 − 𝜇𝑛𝑜𝑖𝑠𝑒) 𝑠𝑚𝑎𝑥⁄ , of the filtered spectral 

image at each scan point. Again, the peak return signals from the operational rotor are clear. A threshold of the mean 

(𝑠𝑝𝑒𝑎𝑘 − 𝜇𝑛𝑜𝑖𝑠𝑒) 𝑠𝑚𝑎𝑥⁄  across all 984 scan indices plus four standard deviations detected peak signal outliers. The velocity 235 

difference smoothing and signal peak outlier detections were combined to robustly capture the effect of the operational rotor 

at all focus distances, removing only data that qualified as outliers using both detection methods and thus effectively removing 

the erroneous non-stationary solid targets. The second filter applied during the final step removes power spectra distributions 

with low signal quality. This filter uses the reciprocal of a signal quality metric of the filtered spectral image. The reciprocal 

metric is 𝑠𝑚𝑎𝑥 (𝑠𝑝𝑒𝑎𝑘 − 𝜂𝑛𝑜𝑖𝑠𝑒)⁄ , where 𝜂𝑛𝑜𝑖𝑠𝑒 is the median value of the noise peaks over a region of 𝑢𝑙𝑜𝑠 similar as that used 240 

to calculate 𝜇𝑛𝑜𝑖𝑠𝑒 (i.e., away from the RoI). Figure 4(c) displays the reciprocal quality metric and removes values above 20, 

which correspond to a peak to noise difference of less than 5%. This filter removes the bright values in the ground region of 

Figure 4(c) and also removes values from scans with periods of reduced aerosol within the atmospheric boundary layer, which 

are not observed in this example scan. 

Figure 3 (c) shows the final result of the example traces using the advanced filtering method, leaving only the RoIs in the 245 

freestream, wake center, and wake edge cases. The figure also demonstrates the preservation of a wide distribution of line-of-

sight velocities within the probe volume when measuring the shear layer of the wake edge. The need for expert development 

of the above technique and potential difficulty in adapting to new types of signal returns is part of the motivation for 

development of the machine learning approach described next. 
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 250 

2.3.  Machine Learning 

The machine learning technique is an application of supervised machine learning regression via ensemble neural networks. 

The approach follows from the one-time construction of a high-dimensional parametric database of synthetic lidar spectra. A 

model of correspondence is then developed between the raw spectral shape and the QoI. The subsections below describe the 

neural network architecture, the training and testing approach, and prediction confidence level. 255 

Figure 4. Details of final filtering techniques applied between Figure 3 (b) and (c) using colormaps of the rosette scan pattern: 

(a) outlier detection from the difference between spectral median line-of-sight velocity, 𝒖෥𝒍𝒐𝒔, and smoothed spectral median line-

of-sight velocity, 𝒖෥𝒔𝒎𝒐𝒐𝒕𝒉
𝒍𝒐𝒔 ; (b) outlier detection from the normalized power spectral density peak prominence, 

(𝒔𝒑𝒆𝒂𝒌 − 𝝁𝒏𝒐𝒊𝒔𝒆) 𝒔𝒎𝒂𝒙⁄  where 𝒔𝒎𝒂𝒙 = 𝟐𝟏𝟔 − 𝟏, and (c) filter on the reciprocal of a signal quality metric, 𝒔𝒎𝒂𝒙 (𝒔𝒑𝒆𝒂𝒌 − 𝜼𝒏𝒐𝒊𝒔𝒆)⁄ , 

where 𝜼𝒏𝒐𝒊𝒔𝒆 is the median value of the noise peaks over a region of 𝒖𝒍𝒐𝒔 similar as that used to calculate 𝝁𝒏𝒐𝒊𝒔𝒆 (i.e., away from 

the RoI). 𝒚𝒍𝒊𝒅𝒂𝒓 and 𝒛𝒍𝒊𝒅𝒂𝒓 are the lateral and vertical coordinates, respectively, of the lidar coordinate system. Note that (a) and 

(b) are incorporated into a single filtering operation as described in the text while (c) constitutes a second filtering operation. 

The thresholds for each subfigure are indicated by the green horizontal line on the color bars. 

  

(a) (b) (c) 

𝑠𝑚𝑎𝑥

(𝑠𝑝𝑒𝑎𝑘 − 𝜂𝑛𝑜𝑖𝑠𝑒)
 

 (-) 

𝑠𝑝𝑒𝑎𝑘 − 𝜇𝑛𝑜𝑖𝑠𝑒

𝑠𝑚𝑎𝑥

 

(-) 

𝑢̃𝑙𝑜𝑠 − 𝑢̃𝑠𝑚𝑜𝑜𝑡ℎ
𝑙𝑜𝑠  

(m/s) 
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2.3.1.  Architecture 

The network architecture is depicted in Figure 5. The 

individual network architecture is six hidden layers with 

48 nodes each. Each node features a sigmoid symmetric 

transfer function, and model learning is based on mean-260 

square-error evaluation and backpropagation using 

Levenberg-Marquardt. The input layer receives the 

spectral magnitudes of the first 129 bins in the spectrum, 

which correspond to a 𝑢𝑙𝑜𝑠 range of 0.75-19.95 m/s and 

is more than wide enough to capture the RoI of all the 265 

cases studied below. 

Ensembles of the individual networks are generated 

to increase the regression performance by addressing the 

bias-variance trade off; the relatively large number of 

nodes in the individual networks produces low bias 270 

estimates while cross-referencing results from multiple 

networks attenuates the high variance associated with 

such large individual networks. The ensemble training 

approach is a classical one of bootstrap aggregating 

(often referred to as bagging) (Breiman, 1996), where 𝐵  individual networks are trained by bootstrapping samples with 275 

replacement from the training dataset such that the number of bootstrapped samples is the same as the training data size. The 

bagging approach has been found to be resistant to model misspecification and overfitting (Tibshirani, 1996). We use 𝐵 = 32. 

Once the one-time training of the 𝐵 individual neural networks is complete, we calculate the QoI from the median output 

of all 𝐵 individual networks in the ensemble. In our work to be shown below, the QoI is 𝑢̃𝑙𝑜𝑠, though it is also possible to 

generate estimates for other QoIs such as the spectral standard deviation.  280 

2.3.2.  Training and Testing 

The individual networks are implemented and trained through MATLAB’s parallelized trainNeuralNetwork function. 

This function requires a training dataset, as well as a validation dataset to determine when to terminate model refinement (i.e., 

to determine when the model begins to lose generality and overfit the training data). A third dataset is isolated completely from 

the training process to test the final model for generality. The split of training, validation, and testing data is 70, 15, and 15%, 285 

respectively. 

Figure 5. Depiction of the ensemble neural network structure. Note 

that input and output layers are omitted for clarity. 
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The synthetic spectra to be used for the training, 

validation, and testing of the ML model are generated from 

full-factorial parametric sweeps through a gridded seven-

dimensional space designed to replicate the range of spectral 290 

shape parameters observed in the field. The process of 

replicating the range of observed shapes, which is described 

in Appendix A, is important since a trained model only 

produces valid output if the input data fall within the 

distribution of the training data. Related to this aspect, 295 

several limitations of the synthetic spectra database for this 

effort to bear in mind are the bound on the peak prominence 

of the RoI, which is required to be 4𝜎𝑛𝑜𝑖𝑠𝑒 above 𝜇
𝑛𝑜𝑖𝑠𝑒

 (see 

Appendix A for more on these two noise parameters), the 

bound on 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠

, which is set to be no less than 2 m/s, and the 300 

inclusion of only single-peaked spectra (i.e., no double-

peaked spectra often found at the shear layer of a wind 

turbine wake). In addition to relaxing some of these 

constraints, future efforts might also benefit from generating 

synthetic spectra that satisfy not only the range but also the 305 

probability distribution of the statistics from the field data. 

The use of the ~58,000 training cases and ~13,000 

validation cases produces convergence of the root-mean-

square (RMS) error calculated on the ~13,000 isolated testing 

cases to 0.141 m/s. Figure 6 shows the performance of the 310 

ensemble network on the testing cases where only the datapoints in gray, which represent the predictions with highest 

confidence as explained in the next subsection, are used in the linear regression and RMS error calculations. The magnitude 

of the residuals is relatively constant with velocity except near the origin where the parameter estimation process can be 

complicated by the presence of the inverse function as described in Appendix A. 

The variance component of error in neural networks often dominates the bias component (Geman et al., 1992), and this 315 

scenario is borne out even for our ensemble neural network, which has RMS error much larger than mean error. However, the 

variance error is still relatively low in the context of wind energy applications. In practice, the variance (and bias) will be 

shown to be larger because of the presence of inhomogeneity within the lidar probe volume. 

Figure 6. Relationship between machine-learning-

predicted spectral median, 𝒖෥𝒎.𝒍.
𝒍𝒐𝒔 , and the true value, 𝒖෥𝒕𝒓𝒖𝒆

𝒍𝒐𝒔 , 

from the 13,383 testing cases. The red data indicate 

predictions with low confidence as explained in Section 

2.3.3. Removing these datapoints, which was done before 

the regression fitting, leaves partial data availability as 

indicated. Note that the 𝒚 = 𝒙  line is mostly obstructed 

from view by the linear fit line. 

Linear Fit Line: 𝑦 = 𝑥 

𝑅2 =  0.9982 

𝑦 = 1.0𝑥 + 0.0010 

Availability = 96% 

𝑢
𝑚

.𝑙
.

𝑙𝑜
𝑠

 (
m

/s
) 

𝑢̃𝑡𝑟𝑢𝑒
𝑙𝑜𝑠

 (m/s) 

Fit Cases Rejected Cases 

https://doi.org/10.5194/amt-2022-35
Preprint. Discussion started: 9 May 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

2.3.3.  Prediction Confidence 

The ensemble strategy provides not only an estimate of a QoI via the median of the individual network outputs but also an 320 

associated estimate of the uncertainty of the QoI based on the distribution of the outputs from the individual networks. We 

calculate the standard error of the ensemble estimate as 𝜃/(𝐵 − 1)1/2, where 𝜃 is the standard deviation of the individual 

network outputs. This approach, which benefits from the bootstrapping performed in the training process as described above, 

was found to provide a better estimate of standard error from multilayer perceptrons than several other approaches reviewed 

by Tibshirani (1996), and our own initial experience showed better performance with this approach than with one that trains a 325 

separate ensemble on the residual errors of the first ensemble. 

In our implementation, we leverage the standard error to flag spectra that produce relatively large variation in the QoI 

across the ensemble members. Specifically, we set a threshold of standard error of 0.09 m/s, above which data are rejected as 

unreliable. This threshold provides an acceptable balance between data availability and variance error, though the tradeoff has 

not yet been studied exhaustively. 330 

3.Experimental Techniques 

3.1.  Facility 

A validation case for the lidar processing techniques is derived from data at the Scaled Wind Farm Technology (SWiFT) 

facility in Lubbock, Texas, USA as illustrated in Figure 7. The site features level terrain with minimal surface roughness, and 

characterization of the atmospheric conditions is given in Kelley and Ennis (2016) with recent benchmarking and validation 335 

activities given in Doubrawa et al. (2020) and Hsieh (2021). 
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Each of the three V27 wind turbine 

rotors on the site are 27 m in diameter, 𝐷, 

and have hub heights of 31.5 m. Two 

meteorological towers are positioned 340 

2.5 𝐷  ahead of the frontline turbines 

relative to the prevailing wind direction as 

shown in Figure 7. Data were taken with 

the lidar scanning over the meteorological 

towers both with the rotors stationary and 345 

with the WTGa1 rotor operating, and we 

hereafter refer to these cases as the inflow 

and waked cases, respectively. These data 

derive from a 2016-2017 test campaign, 

most of the data for which has been 350 

released into the public domain through 

the A2e Data Archive and Portal (2019).  

3.2.  Ultrasonic Anemometers 

SATI Series ‘A’ style probe ultrasonic 

anemometers from ATI Technologies, 355 

Inc. are located at 10.1 m, 18.3 m, 31.9 m, 

45.4 m, and 58.3 m above the ground on 

the METa1 and METb1 meteorological 

towers. The anemometers sample data at 

100 Hz and measure 𝑢𝑠𝑜𝑛𝑖𝑐, 𝑣𝑠𝑜𝑛𝑖𝑐 , and 𝑤𝑠𝑜𝑛𝑖𝑐 , which are the velocity components in the site reference frame according to the 360 

coordinate system of Figure 7. The manufacturer-quoted accuracy of the 𝑢𝑠𝑜𝑛𝑖𝑐 and 𝑣𝑠𝑜𝑛𝑖𝑐  components is ±0.01 m/s. The total 

uncertainty of the horizontal wind direction measurement derived from the sonic anemometers is estimated at 1.22°. 

Occasional spurious spikes in the signal are removed in pre-processing using a median absolute deviation filter with a 

length of 10,000 data points, or 100 seconds. Data lying more than five standard deviations away from the median are also 

removed. In addition to these standard quality control processing techniques used at SWiFT, this effort uses shape-preserving 365 

piecewise cubic interpolation across any spans of data up to 1 s in length that have been omitted either due to the removal 

process noted above or to malfunction of the instrumentation. Longer segments of instrument cutout were removed from 

Figure 7. (a) Rendering of the SWiFT facility in Lubbock, Texas, USA. The 

nacelle of WTGa1 was outfitted with a rear-mounted DTU SpinnerLidar, 

which scanned the flow at different focus lengths according to the rosette 

patterns shown in red. Rendering from Doubrawa et al. (2020). (b) Planform 

view of the site where 𝑫 = 27 m. Adapted from Herges and Keyantuo (2019). 
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consideration to be used in this study. No blockage correction was made for the presence of the tower or anemometers in this 

study. 

3.3.  Laser Anemometer (Lidar) 370 

Scans from the DTU SpinnerLidar (Mikkelsen et al., 2013) mounted on WTGa1 will be considered below. The beam pointing 

accuracy of the instrument is not quantified exactly, but the pointing direction has been verified with infrared photogrammetry 

in the lab (Herges et al., 2017), and the beam position in the field is known from the combination of Theodolite total station 

measurements of the lidar location in the stationary nacelle, the lidar accelerometers, and the turbine yaw heading. The scans 

of interest were focused 2.5𝐷 from WTGa1. At this focus length, the full-width half-maximum (FWMH) averaging length of 375 

the beam is 8.45 m as defined by a truncated Gaussian weighting function. Integrating the weighting function over 16 × 

FWHM corresponds to over 99% of the full weight along the beam path; see Debnath et al. (2019) for more information. The 

probe volume averaging acts as a low-pass filter for the timeseries of 𝑢̃𝑙𝑜𝑠 from the lidar, but the filtered small-scale turbulence 

content is returned in each scan as additional power density spectral width, which in some cases can be used to improve 

turbulence estimates (Branlard et al., 2013; Peña et al., 2017). 380 

The rosette scan patterns of the SpinnerLidar are completed in 2-4 s and consist of 984-1968 measurement locations, some 

of which are eliminated from the measurement domain when the focus distance falls below the surface of the ground. Within 

each scan, the lidar samples at 100 MHz, and power spectra are calculated from sequences of 512 samples to yield 256 fast-

Fourier-transformed bins so that the returned power spectrum for each measurement location is the average of ~400 

consecutive spectra. 385 

The 𝐶𝑁𝑅 is calculated from the lidar spectra according to a wideband defined as Eq. (2): 

𝐶𝑁𝑅 = (𝜇𝑛𝑜𝑖𝑠𝑒  (𝑢𝑚𝑎𝑥
𝑙𝑜𝑠 − 𝑢𝑚𝑖𝑛

𝑙𝑜𝑠 ))
−1

  ∫ (𝑠 − 𝜇𝑛𝑜𝑖𝑠𝑒)  𝑑𝑢 
𝑙𝑜𝑠

𝑢𝑚𝑎𝑥
𝑙𝑜𝑠

𝑢𝑚𝑖𝑛
𝑙𝑜𝑠

  (2) 

where 𝑢∎
𝑙𝑜𝑠 is the minimum or maximum line-of-sight velocity sensed by the lidar according to the subscript. For the lidar used 

here, 𝑢𝑚𝑎𝑥
𝑙𝑜𝑠  is 38.40 m/s and 𝑢𝑚𝑖𝑛

𝑙𝑜𝑠  is 0.75 m/s (velocities lower than 0.75 m/s are removed due to high relative intensity noise 

(Lindelöw, 2007)). Practically, the integral in Eq. (2) is evaluated discretely using trapezoidal integration over the bin width 

of 0.15 m/s. 𝐶𝑁𝑅 calculations are performed using the advanced filtering technique output spectra since this provides a more 390 

complete RoI than the thresholded spectra and since the machine learning does not produce output spectra to integrate. 

3.4.  Pre-Processing 

Our work compares estimated velocities from the lidar spectra to point measurements from the sonic anemometers for cases 

when the lidar beam passed within a certain distance of the anemometers. Several steps are necessary to enable an appropriate 

and meaningful comparison as described below. 395 
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3.4.1.  Bin Selection 

Similar to Gottschall et al. (2012), filtering of the 10-minute bins for the present campaign was performed to isolate cases of 

specific interest. Several filters were applied to all 10-minute-averaged bins. Bins without the lidar activated were disregarded, 

as were bins with the yaw heading more than 60° from zero since the lidar measurement volume would not overlap the 

meteorological tower for those cases. The wind direction was also constrained to be within a certain tolerance of the line of 400 

sight of the lidar beam so that the lidar could resolve a significant component of the wind speed, and this tolerance was 30° 

and 60° for the inflow and waked cases, respectively. For the inflow cases, which have a larger database than the waked cases, 

additional filters were applied requiring all five sonic anemometers to be functioning and limiting the maximum wind speed 

to 6 m/s. This second constraint is imposed because the lower velocity cases are the ones for which high-fidelity processing 

becomes most difficult in the presence of solid interference, which is a major focus of this article. Both inflow and waked 405 

cases, however, were required to have maximum wind speed greater than 2 m/s. 

The filtering resulted in 69 10-minute bins for the inflow cases as shown in Table 1 and six 10-minute bins for the waked 

cases as shown in Table 2. These data cover multiple seasons, spanning from January 16 to July 11, 2017. Data cover a range 

of stability states of the atmospheric boundary layer (ABL) as can be inferred from the more than order of magnitude variation 

in standard deviation of wind speed, which corresponds to turbulence intensities between 1-29% for Table 1 and 6-21% for 410 

Table 2. 

 

Table 1. Summary statistics of the 69 10-minute bins used for the validation study of inflow data. Data shown 

correspond to the sonic anemometer at 31.9 m. The values 𝑤𝑠 and 𝑤𝑑 are the horizontal wind speed and wind 

direction, respectively. The value 𝛾 is the turbine yaw heading, which corresponds to clockwise rotation in the 

reference frame of Figure 7. 

 

𝑢𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅ 

 

(m/s) 

𝑣𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅ 

 

(m/s) 

𝑤𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅  

 

(m/s) 

𝑤𝑠𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

(m/s) 

√(𝑤𝑠𝑠𝑜𝑛𝑖𝑐 − 𝑤𝑠𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(m/s) 

𝑤𝑑𝑠𝑜𝑛𝑖𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

(°) 

√(𝑤𝑑𝑠𝑜𝑛𝑖𝑐 − 𝑤𝑑𝑠𝑜𝑛𝑖𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(°) 

𝛾̅ 

 

(°) 

Minimum 2.69 -1.31 -0.26 2.82 0.08 165.01 0.94 346.98 

Mean 4.56 0.18 0.02 4.63 0.42 177.81 5.25 347.06 

Maximum 5.96 1.28 0.34 5.98 1.37 194.45 21.73 347.11 

 

Table 2. Summary statistics of the six 10-minute bins used for the validation study of waked data. Data shown 

correspond to the sonic anemometer at 31.9 m. The values 𝑤𝑠 and 𝑤𝑑 are the horizontal wind speed and wind 

direction, respectively. The value 𝛾 is the turbine yaw heading, which corresponds to clockwise rotation in the 

reference frame of Figure 7. 
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𝑢𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅ 

 

(m/s) 

𝑣𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅ 

 

(m/s) 

𝑤𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅  

 

(m/s) 

𝑤𝑠𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

(m/s) 

√(𝑤𝑠𝑠𝑜𝑛𝑖𝑐 − 𝑤𝑠𝑠𝑜𝑛𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(m/s) 

𝑤𝑑𝑠𝑜𝑛𝑖𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

(°) 

√(𝑤𝑑𝑠𝑜𝑛𝑖𝑐 − 𝑤𝑑𝑠𝑜𝑛𝑖𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(°) 

𝛾̅ 

 

(°) 

Minimum -6.29 -3.27 -0.20 4.24 0.25 26.83 3.59 324.95 

Mean -5.37 -1.07 -0.04 5.89 0.67 274.81 6.51 338.10 

Maximum -4.02 2.96 0.11 6.84 1.07 342.46 9.41 18.55 

 

3.4.2.  Within-Bin Filtering 415 

Within each bin scans were removed when the lidar was focused at distances other than 2.5𝐷 (i.e., the nominal distance to the 

meteorological tower), when the sonic anemometers were malfunctioning, and when there was more than 2 m of separation 

between the lidar beam path and the sonic anemometer in the 𝑥 = -2.5𝐷 plane as described in the following subsection. The 

within-bin filtering resulted in net comparison times of at least 355 and 14 minutes per sonic anemometer location for the 

validation study of the inflow and waked cases, respectively (the small sample size of the waked cases will be discussed 420 

below). 

   Various levels of other filtering, or sub-binning, are also explored in Section 4 to bin data on certain QoIs. The highest level 

of such sub-binning determines whether an individual return includes solid interference or not. This determination is performed 

similarly to the thresholding technique in Section 2.1; a return is designated as having solid interference if the first useable 

velocity bin of the spectrum lies above the threshold described by Eq. (1), which often occurs when solid interference is 425 

present. Other sub-binning operations include those based on the lidar 𝐶𝑁𝑅 as well as on the time-local standard deviation of 

velocity from the sonic anemometers. For the latter, calculations are made using a running standard deviation with a window 

span corresponding to 16 × FWHM (the relationship between time window span and probe length is approximated by invoking 

Taylor’s hypothesis to translate the time stamps of each sonic anemometer reading to horizontal distances from the lidar focus 

point for any given lidar scan). Note that the resulting quantity is related to the streamwise turbulence intensity by division of 430 

the streamwise velocity, but the absolute magnitude of the fluctuations in the atmosphere are considered here to be more 

relevant than the conventional normalized quantity in the context of the comparisons to be made below. 

3.4.3.  Spatio-Temporal Syncing 

Once a 2-4 s scan window has been deemed valid for the validation analysis, a process is used to isolate the exact scan indices 

within each window when the lidar beam was pointed closest to each of the sonic anemometers. The lidar beam position is 435 

known in the coordinate system depicted in Figure 7 as described in Section 3.3.  For the waked cases, the turbine yaw setting 

was variable as indicated in Table 2, which resulted in high variability of the closest-passing scan indices within the rosette 
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scan pattern. For the inflow cases, the turbine setting was usually fixed at 347°, so the closest-passing scan index was more 

predictable. For all cases, the closest-passing scan index was only retained for this work if there was less than 2 m of separation 

between the lidar beam path and the sonic anemometer in the 𝑥 = -2.5𝐷 plane as shown in Figure 8. Note that for scan indices 440 

with 𝛿 ≠ 0, the focus point of the probe volume is slightly offset from the 𝑥 = -2.5𝐷 plane according to the 2.5𝐷 radius of the 

Figure 8. Rendering of WTGa1 and METa1, where the former is yawed to 347° (i.e., nearly 180° from 

the orientation shown in Figure 7) to cover the latter with the lidar scan pattern. Guy wires have been 

removed for clarity. The value 𝝌 is the horizontal directional offset of the lidar beam from the -𝒙 axis, 

and 𝜹 is the elevation angle of the beam, which becomes –18.2°, -11.6°, 0.2°, 11.7°, and 22.0° when the 

beam is pointed at the center of the five respective anemometers at 𝒛 = 10.1 m, 18.3 m, 31.9 m, 45.4 m, 

and 58.3 m. The maximum distance, 𝒅, in the 𝒙 = −𝟐. 𝟓𝑫 plane between the lidar beam and the center 

of the sonic anemometer probe for the considered data is 2 m. Note that the lidar beam is thickened for 

clarity; the actual beam diameter at the waist is 2.7 mm for the 2.5𝑫 focus point. 

Laser 

𝑥 

𝑦 

𝑧 

Sonic 

anemometer 

https://doi.org/10.5194/amt-2022-35
Preprint. Discussion started: 9 May 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

hemispherical scan geometry. Once the closest-passing index is identified, the data from the nearby sonic anemometer is 

interpolated cubically in time to the moment when the lidar beam sampled near it.  

3.4.4.  Projection of Velocity Components 

Although the lidar and sonic anemometer feature significantly different measurement volumes and thus can never be compared 445 

to the highest degree of confidence, projecting the sonic anemometer velocity data onto the line of sight of the lidar beam is 

an important step to removing some of the uncertainty of the comparison. Projection was performed for each of the five closest 

individual scan indices identified in Section 3.4.3.  3.4.2.  to produce the line-of-sight velocity, 𝑢𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠 , for each sonic 

anemometer according to Eq. (3): 

𝑢𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠 = [ cos(𝜒) cos (𝛿) sin(𝜒) cos(𝛿) sin (𝛿)]  (

𝑢𝑠𝑜𝑛𝑖𝑐

𝑣𝑠𝑜𝑛𝑖𝑐

𝑤𝑠𝑜𝑛𝑖𝑐

), (3) 

where 𝜒 and 𝛿 are the angles defined by Figure 8. 450 

3.5.  Time-Averaging Error 

The uncertainty bands on ensemble data shown at various instances in Section 4 below correspond to the statistical time-

averaging error (i.e., random uncertainty) and are derived from 10,000 bootstrap resamples with a 95% confidence level 

(Benedict and Gould, 1996). 

4.  Validation Results 455 

This section presents the results of the validation study. Section 4.1.  gives examples to demonstrate the processing techniques 

qualitatively, while Sections 4.2.  and 4.3.  give the validation exercises for the inflow and waked cases, respectively. Due to 

the larger sample size for the inflow cases, we spend significantly more time analysing these cases. 

4.1.  Processing Examples 

An example of an instantaneous comparison between a lidar return and sonic anemometer data is shown in Figure 9. This 460 

example case illustrates several features observed throughout the full dataset. 

First, the turbine is yawed at 347°, as it was for all of the inflow cases, and the location of the five closest lidar scan indices 

in Figure 9(a) relative to the five sonic anemometers is thus representative of most of the inflow cases, the only exception 

being several 10-minute bins that were measured with the lidar mounted at a non-zero yaw of –15.1°, which caused the closest 

lidar scan indices to fall at the plane of symmetry of the rosette scan pattern. For the handful of waked cases, the turbine yaw 465 

setting was continuously variable, which led to a wider range of scan indices being used for the validation. 
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Figure 9. Comparison of lidar processing techniques for a single 2 s inflow scan at 2:38:10 (local time) on February 

9, 2017. In (a), the instantaneous location of the lidar scan pattern (in black) is overlaid on the met tower (in gray) 

with the scan location closest each respective sonic anemometer highlighted (in red). In (b), the sonic line-of-sight 

velocity, 𝒖 𝒔𝒐𝒏𝒊𝒄
𝒍𝒐𝒔 , and lidar spectral median line-of-sight velocity, 𝒖෥𝒍𝒊𝒅𝒂𝒓

𝒍𝒐𝒔 , are plotted verses height, where the sonic 

anemometer data has been temporally interpolated to the same instant as the lidar passing. The uncertainty bands 

indicate the sonic anemometer instrument’s quoted uncertainty. Subfigures (c)-(g) show the individual scaled lidar 

spectra, 𝒔/𝒔𝒎𝒂𝒙 where 𝒔𝒎𝒂𝒙 = 𝟐𝟏𝟔 − 𝟏, for each of the index locations in (a) and (b) where solid lines (−) indicate 

spectral magnitude and vertical dashed lines (--) indicate the line-of-sight velocity estimates. Subfigures (c)-(g) also 

show the raw lidar spectra, which have no corresponding entries in (b) since the raw data precedes the MFE 

process. 

(c) (d) Index 532 Index 282 

(g) Index 796 

(a) (b) 

Sonic anemometer 

Lidar (raw) 

Lidar (thresholding) 

Lidar (adv. filtering) 

Lidar (machine learning) 

Index 796 

Index 211 

Index 222 

Index 282 
Index 532 

𝜇𝑛𝑜𝑖𝑠𝑒  

𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  

(f) Index 211 (e) Index 222 

𝑢𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠  
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In Figure 9(b), the velocity estimates of the sonic anemometer indicate a roughly logarithmic boundary layer profile at this 

instant, and the disagreements between 𝑢𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠  and 𝑢̃𝑙𝑖𝑑𝑎𝑟

𝑙𝑜𝑠  are congruous with our understanding of the lidar measurement 

principles and processing. The smallest error between the two instruments occurs at the middle lidar location corresponding 470 

to 𝛿 = 0.2° while there is added error away from this 𝛿  setting, both because the lidar probe volume samples through a 

vertically nonhomogeneous ABL as well as because of truncation of the spectra at low velocities by the unusable bins at the 

beginning of the spectra. 

Insight to the comparison of the three lidar processing techniques in Figure 9(b) is provided with the help of subfigures (c)-

(g), which show the spectral returns for each index. In general, we find that the advanced filtering and machine learning 475 

techniques have similar estimates of 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 , while the thresholding technique shows significant deviations for indices 532 

(Figure 9(c)) and 222 (Figure 9(e)). As before in Figure 9(b), the thresholding technique gives no estimate whatsoever for 

index 532 in Figure 9(c) since the high magnitude of the first useable velocity bin flags this spectra as a full solid return, which 

the thresholding technique therefore rejects as described in Section 2.1.  This solid return is due to ground interference, which 

is a common scenario for the scan indices with relatively large negative 𝛿 like index 532, depending on the scattering behavior 480 

of the laser at the exact location of intersection with the ground. For index 222 in Figure 9(e), the thresholding technique does 

give an estimate, but the estimate is strongly biased because of a partial solid return. This return is due to interference from the 

meteorological tower or sonic anemometer itself and is a common occurrence in our validation dataset because of the proximity 

of the lidar scan to the meteorological tower, particularly for the 𝛿 = 0.2° indices. Both the advanced filtering and machine 

learning techniques successfully ignore the signature of this solid interference and estimate 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  near to 𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 . 485 

It is also worth noting the small differences in spectral shape between the thresholding and advanced filtering techniques 

above the threshold limit, which are due to the bilateral smoothing process across adjacent scans of the advanced filtering 

technique. The machine learning technique implicitly performs its own smoothing operation (without regard to adjacent scans), 

but no visualization of this smoothing is possible since the machine learning technique generates no output spectra. 

Next, we show sample processed data from 10-minute bins in Figure 10 that illustrate several points about the time series 490 

of processed lidar data. Figure 10(a) represents a bin with low turbulence intensity and one for which 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  from the three 

lidar processing techniques tracks 𝑢𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠  qualitatively well. Figure 10(b) shows a case of higher turbulence intensity, where 

all three processing methods again perform similarly well, though small discrepancies between methods are observable. Figure 

10(c) shows a bin where solid returns produce a number of instants where none of the three processing techniques yield an 

estimate. Figure 10(d) is a wake case, and there are a handful of instances where the thresholding and machine learning 495 

approaches again do not produce estimates because of strong solid returns from the meteorological tower. While the advanced 

filtering technique produces higher data availability for this bin, a stronger bias is detected in these results for the estimates 

between 03:14 and 03:16 than for the other two techniques. Note that the first half of the bin is removed from the comparison 

because the separation between the lidar beam and sonic anemometer in the 𝑥 = −2.5𝐷 plane exceeds the 2 m tolerance. 
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Other than the cases with solid returns, the agreement of all three processing methods with the reconstructed data is 500 

qualitatively good. The following sections provide a more quantitative statistical perspective of the performance of each of the 

processing methods. 

 

 

Figure 10. Time series comparisons of spectral median lidar line-of-sight 

velocity, 𝒖෥𝒍𝒊𝒅𝒂𝒓
𝒍𝒐𝒔 , with the nearby sonic anemometer line-of-sight velocity, 

𝒖𝒔𝒐𝒏𝒊𝒄
𝒍𝒐𝒔 , for four sample 10-minute bins at scan index positions with  𝜹 =

𝟎. 𝟐°. Subfigures (a)-(c) are inflow cases, and (d) is a wake case. Faded 

color indicates scans where the distance between the lidar beam and the 

center of the sonic anemometer in the 𝒙 = -2.5𝑫 plane was larger than 

the 2 m tolerance. In the machine learning results, a green “x” indicates 

a removed reading due to low confidence as explained in Section 2.3.3. 

A vertical gray line indicates an instant when none of the three of the 

processing techniques returned a reading. 

(a) (b) 

(c) 

Sonic anemometer 

Lidar (thresholding) 

Lidar (adv. filtering) 
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4.2.  Inflow Cases 505 

This section contains the results from our analysis of the 69 bins with inflow cases described in Table 1. First, we offer insight 

on the trends in the lidar errors for the cases without and with solid interference, which have total return counts of 47,927 and 

7,183, respectively. Next is a description of the practical significance of these trends for wind turbine applications. 

4.2.1.  Error Trends without Solid Interference 

Considered first is the inflow data filtered to exclude any returns with solid interference present as described in Section 3.4.2.  510 

Figure 11 shows scatterplots of all such results differentiated by height for the three processing techniques. The similarity of 

the three subfigures is expected, and all three techniques produce roughly the same mean and random error when no solid 

interference is present. Notably, the data availability for the machine learning technique is 3% lower than for the other two 

techniques, though this gap might be helped with an improved machine learning architecture and training scheme. While the 

overall performance between the three techniques for these cases of non-interfered returns appears fairly similar, further 515 

analysis is warranted to better understand several nuances of the QA/QC problem. 

The sources of bias observed in Figure 11 are several, though only one is likely related to the processing technique. This 

processing-related bias source is the truncation of RoIs that fall at least partially over the unusable velocity bins at the beginning 

of the spectra. This truncation will artificially increase 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  for low velocities, which is indeed the trend observed comparing 

Figure 11. Instantaneous lidar line-of-sight spectral median velocity estimates, 𝒖෥𝒍𝒊𝒅𝒂𝒓
𝒍𝒐𝒔 , versus sonic anemometer line-of-sight 

velocity estimates, 𝒖𝒔𝒐𝒏𝒊𝒄
𝒍𝒐𝒔 , for inflow cases without solid interference from the (a) thresholding, (b) advanced filtering, and (c) 

machine learning techniques. The variation shown for the coefficient of determination value, 𝑹𝟐, the linear fit slope, 𝒎, and the 

linear fit offset, 𝒃, correspond to the ranges observed across the fits at all five comparison heights. 

(a) 

Availability = 100% 

(b) (c) 

0.81 < 𝑅2 < 0.96 

0.88 < 𝑚 < 0.94 

0.30 < 𝑏 < 0.73 

Linear Fit Line: 𝑦 = 𝑥 

Colors

Instantaneous measurement Markers/lines: 

0.82 < 𝑅2 < 0.97 

0.88 < 𝑚 < 0.94  

0.30 < 𝑏 < 0.74   

0.81 < 𝑅2 < 0.97 

0.87 < 𝑚 < 0.93  
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Availability = 100% Availability = 97% 
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𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  and 𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠  at the 10 m height (i.e., where velocities are the lowest on average). While the machine learning technique 520 

offers the possibility to eliminate such a bias as noted in 

Appendix A, we do not observe any practically significant 

differences in the mean offset or slope of the linear trend 

lines between processing techniques in the dataset in Figure 

11. 525 

There remains a bias of 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  even at higher velocities 

in Figure 11, which suggests the presence of another, most 

likely more dominant source of bias. This source stems 

from the difference between the spatial distribution of the 

measurement volumes of the sonic anemometer and the 530 

lidar. For example, the asymptotic character of the ABL 

mean velocity profile with increasing height can produce a 

reduction in the height-averaged 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠  compared to a point 

at the center of the probe volume (e.g., a sonic anemometer 

at the height of the lidar focus point), which is in fact the 535 

trend observed for the comparisons with the sonic 

anemometer at 58 m (see also Figure 9(b)). 

Another source of bias is that introduced due to local 

flow blockage around the sonic anemometers, boom arms, 

and meteorological tower, which may not be sensed by the 540 

lidar beam depending on its relative position. Furthermore, 

there is clearly potential for internal bias in the sonic 

anemometers and lidar (Lindelöw-Marsden, 2009). 

Related to scatter, two main sources in Figure 11 are the 

spectral width resulting from turbulence within the lidar 545 

probe volume as well as amplitude noise. Based on the 

findings of Simley et al. (2014), we expect the former to be 

larger than the latter, especially in high turbulence 

conditions since the RMS error due to the lidar’s probe 

volume averaging scales linearly with turbulence 550 

magnitude. An approximately linear scaling is validated in Figure 12(a), which bins the data for four of the five comparison 

heights based on the running standard deviation of velocity from the sonic anemometer along the line-of-sight, 𝑇𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠 , as 

Figure 12. Convergence of the standard deviation, S.D., of error 

with (a) magnitude of time-local turbulent fluctuations, 𝑻𝒔𝒐𝒏𝒊𝒄
𝒍𝒐𝒔 , 

and (b) carrier-to-noise ratio, 𝑪𝑵𝑹, for inflow cases without 

solid interference across the four higher comparison heights. 

𝑻𝒔𝒐𝒏𝒊𝒄
𝒍𝒐𝒔  is the running standard deviation of velocity from the 

sonic anemometer along the line-of-sight based on the filtering 

window described in Section 3.4.2. The 𝑪𝑵𝑹  values are 

calculated from the advanced filtering technique’s output 

spectra as described in Section 3.3. Data plotted derive from all 

the comparison heights except the bottom, 𝒛 = 10.1 m position. 

(a) 

(b) 

0≤𝐶𝑁𝑅<0.05 

0.05≤𝐶𝑁𝑅<0.10 
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described in Section 3.4.2 (the bottom comparison height was omitted because of irregular trends possibly related to proximity 

of the RoIs to the unusable bins of the lidar). Figure 12(a) can be interpreted to suggest that much of the random error is a 

function of turbulence magnitude. On the other hand, one can extrapolate the trend to 𝑇𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠 = 0 to estimate that there exists 555 

a baseline standard deviation of error of roughly 0.08 to 0.15 m/s, which is primarily due to the interference of amplitude noise 

on the parameter estimation problem. Because of the coarse resolution of the binning and the possibility of the trendline 

flattening out as 𝑇𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠 → 0 due to the discretization of the lidar spectra, we conservatively take the value at the first 𝑇𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠  bin 

to be the estimated contribution of amplitude noise, which is 0.13 and 0.16 m/s for the higher and lower ranges of 𝐶𝑁𝑅, 

respectively, of the thresholding and advanced filtering techniques. These values are 0.15 and 0.17 m/s, respectively, for the 560 

machine learning technique. Note that the uncertainty of the sonic anemometer velocity, quoted at ±0.01 m/s for 𝑢𝑠𝑜𝑛𝑖𝑐 and 

𝑣𝑠𝑜𝑛𝑖𝑐 , is small relative to the above values. 

The effect of the amplitude noise on random error, which is a function in part of the processing technique, can be drawn 

out explicitly as in Figure 12(b), where the influence of 𝑇𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠  is nominally removed by the scaling of the ordinate and where 

the standard deviation of errors has been binned on 𝐶𝑁𝑅 instead. Figure 12(b) shows a principle derived from the Cramer-Rao 565 

lower bound (Rye and Hardesty, 1993), which is that the minimum attainable variance of the spectral estimation process is an 

inverse function of 𝐶𝑁𝑅 . The slightly better parameter estimation performance of the advanced filtering versus the 

thresholding technique is a result of (1) the larger effective 𝐶𝑁𝑅 of the RoI and (2) the bilateral filtering of the advanced 

filtering approach. The increase in error for the lower two 𝐶𝑁𝑅 levels of the thresholding technique compared to the advanced 

filtering technique is expected since the thresholding process removes a larger and larger percentage of the signal as 𝐶𝑁𝑅 →570 

0. The estimation performance of the machine learning technique is better than that of the other two techniques at low 𝐶𝑁𝑅 

and worse than that of the other two techniques at high 𝐶𝑁𝑅, though the variations in performance between techniques are 

relatively small for cases without solid interference. 

The overall performance of each lidar processing technique as a function of height is tabulated in Table 3. Except for the 

10 m position, the bias errors are smaller than the random errors and are consistent between the three processing techniques, 575 

which is expected based on the results of Figure 11. The standard deviations of the errors are between 0.23 and 0.33 m/s for 

the advanced filtering and machine learning techniques while the thresholding technique has 1-3% higher values. Between the 

advanced filtering and machine learning techniques, the former is overall the more effective within the bounds of the data 

considered in this study because of higher data availability and slightly better noise rejection. 

 580 
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Table 3. Performance of lidar processing techniques versus sonic anemometer for inflow cases without solid 

interference. The processing abbreviations are threshold (𝑡ℎ.), advanced filter (𝑎. 𝑓.), and machine learning (𝑚. 𝑙.). 

S.D. refers to standard deviation. 

H
ei

g
h

t 

(m
) 

 

Mean [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 − 𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

S.D. [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 −  𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

Availability 

(-) 

  th. a.f. m.l. th. a.f. m.l. th. a.f. m.l. 

10 
 

0.47 

±0.01 

0.48 

±0.01 

0.48 

±0.01 

0.34 

±0.01 

0.33 

±0.01 

0.33 

±0.01 
100% 100% 97% 

18 
 

0.00 

±0.01 

0.00 

±0.01 

0.00 

±0.01 

0.29 

±0.01 

0.28 

±0.01 

0.28 

±0.01 
100% 100% 97% 

32 
 

-0.04 

±0.00 

-0.04 

±0.00 

-0.05 

±0.01 

0.25 

±0.01 

0.24 

±0.01 

0.25 

±0.01 
100% 100% 97% 

45 
 

0.07 

±0.00 

0.07 

±0.00 

0.07 

±0.00 

0.24 

±0.01 

0.23 

±0.01 

0.23 

±0.01 
100% 100% 96% 

58 
 

-0.19 

±0.01 

-0.19 

±0.01 

-0.20 

±0.01 

0.33 

±0.01 

0.32 

±0.01 

0.32 

±0.01 
100% 100% 98% 

Combined 
 

0.03 

±0.00 

0.03 

±0.00 

0.02 

±0.00 

0.35 

±0.00 

0.35 

±0.00 

0.35 

±0.00 
100% 100% 97% 

 

4.2.2.  Error Trends with Solid Interference 585 

Figure 13 shows the data and linear fit of the comparison of all inflow cases with the solid interference flag. The lower 

coefficient of determination values, 𝑅2, of the thresholding technique are primarily a consequence of a handful of partial solid 

returns that are not filtered out and that manifest as the outliers near the bottom of Figure 13(a). As described for the data 

without solid interference, a bias again exists for all three processing techniques near lower velocities. 

The tabulated data in Table 4 shows several of the same trends as described for the non-interfered data in Table 3. Namely, 590 

the bias errors are generally much smaller than the random errors, and the advanced filtering and machine learning techniques 

outperform the thresholding technique in terms of random error. The notable differences from Table 3 are that the standard 

deviation of the errors for the advanced filtering and machine learning techniques have a larger range from 0.08 to 0.38 m/s 

(as compared to 0.23 to 0.33 m/s before), and that the thresholding technique now has up to 154% higher values (as compared 

to a maximum of 3% before) due mostly to the handful of outliers described for Figure 13(a). The thresholding technique thus 595 

has much poorer performance than the other two techniques in terms of random error, as well as in terms of data availability, 

which is around 30% lower than for the other techniques over all comparison locations. Between the advanced filtering and 

machine learning techniques, the machine learning provides an average improvement of 0.02 and 0.01 m/s for the mean and 

standard deviation of error, respectively, across all comparison heights, but these small gains are traded for 6%  lower data 

availability across all comparison heights. 600 
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Table 4. Performance of lidar processing techniques versus sonic anemometer for inflow cases with solid 

interference. The processing abbreviations are threshold (𝑡ℎ.), advanced filter (𝑎. 𝑓.), and machine learning (𝑚. 𝑙.). 

S.D. refers to standard deviation. 

H
ei

g
h

t 

(m
) 

 

Mean [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 − 𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

S.D. [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 −  𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

Availability 

(-) 

  th. a.f. m.l. th. a.f. m.l. th. a.f. m.l. 

10 
 

0.29 

±0.02 

0.41 

±0.01 

0.37 

±0.01 

0.39 

±0.01 

0.38 

±0.01 

0.36 

±0.01 
56% 98% 96% 

18 
 

-0.10 

±0.01 

-0.08 

±0.01 

-0.09 

±0.01 

0.28 

±0.01 

0.27 

±0.01 

0.28 

±0.01 
93% 98% 89% 

32 
 

-0.16 

±0.04 

-0.02 

±0.01 

-0.04 

±0.01 

0.57 

±0.10 

0.22 

±0.01 

0.24 

±0.01 
63% 97% 83% 

45 
 

N/A 
0.10 

±0.06 
N/A N/A 

0.08 

±0.04 
N/A 0% 55% 0% 

58 
 

N/A 
-0.13 

±0.29 
N/A N/A 

0.29 

±0.24 
N/A 0% 60% 0% 

Combined 
 

0.07 

±0.01 

0.21 

±0.01 

0.19 

±0.01 

0.46 

±0.03 

0.40 

±0.01 

0.39 

±0.01 
65% 98% 92% 

 

Figure 14 gives example spectra from the cases with solid interference to illustrate several features and deficiencies of the 

different processing techniques. Figure 14(a) is a common case, similar to the one shown in Figure 9(c), where the thresholding 

Figure 13. Instantaneous lidar line-of-sight spectral median velocity estimates, 𝒖෥𝒍𝒊𝒅𝒂𝒓
𝒍𝒐𝒔 , versus sonic anemometer line-of-sight 

velocity estimates, 𝒖𝒔𝒐𝒏𝒊𝒄
𝒍𝒐𝒔 , for inflow cases with solid interference from the (a) thresholding, (b) advanced filtering, and (c) 

machine learning techniques. The variation shown for the coefficient of determination value, 𝑹𝟐, the linear fit slope, 𝒎, and the 

linear fit offset, 𝒃, correspond to the ranges observed across the fits at all five comparison heights. 

(a) (b) (c) 

0.77 < 𝑅2 < 0.95 

0.80 < 𝑚 < 0.94  

0.11 < 𝑏 < 1.1     

Linear Fit Line: 𝑦 = 𝑥 

Colors: 

Instantaneous measurement Markers/lines: 

0.88 < 𝑅2 < 0.99 

0.79 < 𝑚 < 0.97  

0.26 < 𝑏 < 1.1     

0.88 < 𝑅2 < 0.96 

0.86 < 𝑚 < 0.91  

0.37 < 𝑏 < 0.91   

Availability = 65% Availability = 98% Availability = 92% 
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technique does not make a prediction because of overwhelming solid interference, but the advanced filtering and machine 605 

learning techniques successfully produce a value of 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠

 approximately equal to 𝑢𝑠𝑜𝑛𝑖𝑐
𝑙𝑜𝑠 . Figure 14(b) corresponds to one of 

the outliers described above in Figure 13(a), where the thresholding technique exhibits a strong bias in its estimate because the 

magnitude of the interference spike is high enough to exceed the threshold but not high enough to be flagged as a solid return. 

Figure 14(c) is a case of a non-stationary solid return as evidence by the strong peak just above 1 m/s. The thresholding 

technique is again strongly biased, the advanced filtering technique produces a valid estimate, and the machine learning 610 

technique gives an estimate that does not meet its confidence threshold, which is not surprising since the technique was not 

trained on non-stationary solid returns. While it is unknown what moving object was present within the lidar beam path for 

this particular return, non-stationary solid returns are common when scanning nearby rotating turbines. Figure 14(d) is a 

difficult case where the advanced filtering technique does not give an estimate because the data are obscured by ground returns, 

and the solid return mask, applied when moving between Figure 3(a) and (b), removes the RoI signal, although the machine 615 

learning technique produces an approximately correct estimate. Evidenced by the last two subfigures, there is still development 

work to improve the advanced filtering and machine learning techniques for cases with the combination of low velocity and 

solid interference. 

 

 620 

Figure 14. Selected examples of scaled lidar spectra, 𝒔/𝒔𝒎𝒂𝒙 , where 𝒔𝒎𝒂𝒙 = 𝟐𝟏𝟔 − 𝟏  versus lidar line-of-sight 

velocity, 𝒖𝒍𝒊𝒅𝒂𝒓
𝒍𝒐𝒔 , and sonic anemometer line-of-sight velocity, 𝒖𝒔𝒐𝒏𝒊𝒄

𝒍𝒐𝒔 , for inflow cases with solid interference. Solid 

lines (−) indicate spectral magnitude and vertical dashed lines (--) indicate the line-of-sight velocity estimates. See 

text for details. 

(a) (b) 

(c) (d) 

Sonic anemometer 

Lidar (raw) 

Lidar (thresholding) 

Lidar (adv. filtering) 

Lidar (machine learning) 
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4.2.3.  Practical Significance 

The error trends reviewed above for inflow cases have implications for wind turbine applications featuring nacelle-mounted, 

forward-facing lidar. Figure 15 shows the aggregate (i.e., both with and without solid interference) error results as a function 

of height relative to the wind turbine rotor of the current dataset. Typically, the most important information about the inflow 

from a wind turbine control perspective is the flow within the swept area of the rotor, which will be examined below. 625 

The mean errors within the rotor height are small at less than 0.08 m/s and consistent between the three processing 

techniques as shown in Figure 15(a). The standard deviation of the errors within the rotor height as shown in Figure 15(b), 

however, are between 0.23 and 0.29 m/s for the advanced filtering and machine learning techniques, and the thresholding 

technique has 0.002-0.05 m/s (1-22%) higher values depending on scan position because of its poor handling of solid returns. 

In terms of aggregated data availability, the advanced filtering technique has 99.7% availability, followed by the machine 630 

learning technique at 96.2% and the thresholding technique at 95.5%. Between the two better performing techniques, the 

advanced filtering is overall more effective than the machine learning within the bounds of the data considered in this study 

because of higher data availability and slightly better noise rejection. 

In practice, the value of the uncertainties quoted above will be increased by reprojection onto the wind direction (i.e., the 

reverse process of Eq. (3)). Assuming the lidar center axis is aligned with the wind direction and allowing 𝛿 = ±11.7° (which 635 

corresponds to the vertical limits of the rotor height in this study for the given focus distance), the 1/cos (𝛿) correction will 

be no more than an increase of 2%, which does not change any of the values quoted in the previous paragraph by more than 

Figure 15. Aggregate results from inflow cases for (a) mean error, (b), standard deviation (S.D.) of error, and (c) 

data availability plotted versus height off the ground. The dimensions of a V27 turbine as used in the experiment 

are shown for reference. The line colors are: thresholding (−), advanced filtering (−), and machine learning (−). 

(a) (b) (c) 

https://doi.org/10.5194/amt-2022-35
Preprint. Discussion started: 9 May 2022
c© Author(s) 2022. CC BY 4.0 License.



31 

 

0.01 m/s. Considering instead a ±30° limit on the deviation of the line of sight from the wind direction (which corresponds to 

the outer cone angle of the DTU SpinnerLidar in this study), the correction will be an increase of ≤15%. Further increase in 

uncertainty is introduced by the assumptions typically required about the local wind direction when inferring a velocity from 640 

a single line of sight, and these directional biases scale on (1) the RMS magnitude of the transverse (i.e., 𝑦-𝑧 plane) wind 

components at the scan perimeter of interest and (2) the tangent of the deviation of the line of sight angle from the mean wind 

direction (Simley et al., 2014). 

4.3.  Waked Cases 

This section contains the results from our analysis of the six bins with waked cases described in Table 2. Below, we forego the 645 

bulk of the analysis of error trends performed in the previous section, primarily because the smaller sample size of waked cases 

does not permit a strong study. Rather, we show results that, despite the relatively large error bars on the data, hint at the 

practical significance of the lidar errors and variations between processing techniques for rear-mounted lidars on wind turbines. 

Table 5, Table 6, and Figure 16 are analogous to Table 3, Table 4, and Figure 15, respectively, but for the waked rather 

than inflow cases. Again, the ranking of efficacy of the three processing techniques (from highest to lowest) is advanced 650 

filtering, machine learning, and thresholding, and again the standard deviations of errors are substantially larger than the mean 

errors. For the advanced filtering and machine learning techniques, the ranges of the standard deviation of errors for cases 

within the rotor height and without solid interference are 0.29 to 0.45 m/s, and these increase to 0.34 to 0.49 m/s for cases with 

solid interference. The increase in the upper bound of the standard deviations compared to the inflow cases is expected since 

the wake presents a relatively turbulent environment, which works against the precision of the lidar in comparison to a point 655 

measurement from a sonic anemometer as demonstrated by Figure 12(a). As shown in Figure 16, both the thresholding and 

machine learning techniques have significantly lower data availability in the waked cases than in the previous inflow cases 

(note the difference in the horizontal axis limits between Figure 15 and Figure 16), which is related to a higher proportion of 

solid returns from the meteorological tower in the waked dataset due to the less control that was asserted on the yaw position 

of the turbine for the waked cases. 660 

The previously mentioned increase in uncertainty introduced by the assumptions required about the local wind direction 

have been quantified for the waked case specifically in Kelley et al. (2018), who simulated the SpinnerLidar with a 3𝐷 focus 

length in a turbulent wake at SWiFT using large eddy simulation. They found an additional mean error after projection on the 

order of 3% due to deviations of the wake velocity direction from the nominal flow direction. Considering this increase in 

mean error, as well as again the maximum of 2% increase to all errors due to reprojection onto the wind direction from 𝛿 =665 

±11.7°, the maximum mean and standard deviation of error for the aggregated waked cases within the rotor height can be 

estimated at 0.13 and 0.45 m/s, respectively, for the advanced filtering technique and at 0.17 and 0.47 m/s, respectively, for 

the machine learning technique. 
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As noted, the sample size of six bins is too small for a complete analysis. Furthermore, the spatial inhomogeneity of a 

waked flow adds further uncertainty to the results since a full analysis should ideally be blocked to account for differences in 670 

processing performance at different points of interest within the wake such as the shear layer and hub flow regions, for instance, 

and at different turbine thrust conditions. A more exhaustive dataset is needed and will be sought in future work. 

 

Table 5. Performance of lidar processing techniques versus sonic anemometer for waked cases without solid 

interference. The processing abbreviations are threshold (𝑡ℎ.), advanced filter (𝑎. 𝑓.), and machine learning (𝑚. 𝑙.). 

S.D. refers to standard deviation. 

H
ei

g
h

t 

(m
) 

 

Mean [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 − 𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

S.D. [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 −  𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

Availability 

(-) 

  th. a.f. m.l. th. a.f. m.l. th. a.f. m.l. 

10 
 

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

18 
 

-0.03 

±0.05 

-0.01 

±0.05 

-0.01 

±0.05 

0.30 

±0.04 

0.30 

±0.04 

0.29 

±0.04 
99% 100% 100% 

32 
 

0.08 

±0.04 

0.12 

±0.04 

0.15 

±0.05 

0.34 

±0.06 

0.36 

±0.05 

0.40 

±0.07 
100% 100% 93% 

45 
 

-0.03 

±0.05 

-0.02 

±0.04 

0.03 

±0.05 

0.46 

±0.06 

0.42 

±0.05 

0.45 

±0.04 
100% 100% 96% 

58 
 

0.07 

±0.03 

0.07 

±0.03 

0.07 

±0.02 

0.24 

±0.03 

0.24 

±0.03 

0.23 

±0.03 
100% 100% 100% 

Combined 
 

0.03 

±0.02 

0.04 

±0.02 

0.06 

±0.02 

0.37 

±0.03 

0.35 

±0.02 

0.37 

±0.03 
100% 100% 97% 

 

Table 6. Performance of lidar processing techniques versus sonic anemometer for waked cases with solid 

interference. The processing abbreviations are threshold (𝑡ℎ.), advanced filter (𝑎. 𝑓.), and machine learning (𝑚. 𝑙.). 

S.D. refers to standard deviation. 

H
ei

g
h

t 

(m
) 

 

Mean [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 − 𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

S.D. [ 𝑢̃𝑙𝑖𝑑𝑎𝑟
𝑙𝑜𝑠 −  𝑢𝑠𝑜𝑛𝑖𝑐

𝑙𝑜𝑠 ] 
(m/s) 

Availability 

(-) 

  th. a.f. m.l. th. a.f. m.l. th. a.f. m.l. 

10 
 

-0.08 

±0.27 

-0.26 

±0.03 

-0.18 

±0.02 

0.26 

±0.22 

0.36 

±0.04 

0.27 

±0.03 
0% 100% 79% 

18 
 

-0.02 

±0.06 

0.04 

±0.03 

0.05 

±0.04 

0.36 

±0.06 

0.34 

±0.03 

0.36 

±0.04 
36% 100% 86% 

32 
 

0.27 

±0.29 

0.13 

±0.06 

0.19 

±0.08 

0.92 

±0.92 

0.38 

±0.06 

0.41 

±0.10 
21% 100% 55% 

45 
 

0.11 

±0.10 

0.18 

±0.10 

0.21 

±0.11 

0.34 

±0.14 

0.48 

±0.08 

0.49 

±0.09 
40% 100% 74% 

58 
 

-0.14 

±0.08 

-0.14 

±0.06 

-0.13 

±0.07 

0.27 

±0.07 

0.32 

±0.06 

0.33 

±0.07 
43% 100% 90% 
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Combined 
 

0.02 

±0.06 

-0.10 

±0.02 

-0.06 

±0.02 

0.48 

±0.24 

0.40 

±0.03 

0.36 

±0.02 
17% 100% 78% 

 675 

 

 

5.Discussion 

All three lidar processing techniques can produce similar performance when no solid interference is present (assuming the 

machine learning model is not exposed to out-of-distribution samples). However, the advanced filtering and machine learning 680 

approaches generally give better performance than the thresholding technique when solid interference is present. 

While the thresholding technique’s merit for use within the rotor height in this study may be unfairly penalized by the setup 

of our validation study that features lidar scans directly over the solid obstruction of the meteorological tower, we note that 

inflow lidar scans in the field may, in fact, be required near existing meteorological towers in order to produce higher spatial 

resolution of the incoming flow. Other cases that are not considered in the current datasets for which the ability to effectively 685 

reject non-aerosol returns is important are for interference from the optical window (i.e., boresight interference), nearby 

turbines, and precipitation. Nearby turbines can present a particularly complicated case because of non-stationary rotor blades, 

which shift the solid interference peak away from the typically assumed location at zero velocity. The much poorer 

Figure 16. Aggregate results from waked cases for (a) mean error, (b), standard deviation (S.D.) of error, and (c) 

data availability plotted versus height off the ground. The dimensions of a V27 turbine as used in the experiment 

are shown for reference. The line colors are: thresholding (−), advanced filtering (−), and machine learning (−). 

(a) (b) (c) 
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performance of the thresholding technique observed above for all kinds of cases with solid interference represents a main 

motivation for using higher-fidelity techniques. 690 

Comparing the advanced filtering and machine learning approaches, a slight performance advantage was demonstrated by 

the former for the data considered in our study. However, the potential for improvement of the machine learning technique 

may be higher. The advanced filtering technique, which required significant investment during development by subject matter 

experts, still requires continuing development for out-of-distribution cases as shown by the outliers and data loss in Figure 13, 

for instance. On the other hand, continuing development can be accommodated with relatively low (computational) expense 695 

for the machine learning technique by increasing the size of the networks and/or the diversity of training cases, and this process 

requires less expert involvement. The machine learning approach therefore removes the ongoing expert commitment to the 

QA/QC problem, instead shifting the workload to a computer. Further, the machine learning technique does not truncate returns 

that fall at the beginning of the spectra but implicitly accounts for these (as well as potentially negative) velocities in the QoI 

estimation process. The machine learning approach thus provides the framework for both a more efficient workflow 700 

development and higher accuracy than is possible by a series of advanced user-generated filters. 

Another advantage of the ensemble machine learning approach is the inherent ability to estimate an uncertainty associated 

with each estimate. While this feature is employed rather simplistically in this study by providing just a confidence threshold, 

the ensemble approach could enable more rigorous uncertainty quantification by leveraging other spectral estimators such as 

the higher-order moments and spectral entropy of the distribution of estimates from the individual members of the ensemble. 705 

Other machine learning approaches with uncertainty quantification capability such as the mean-variance, Monte-Carlo 

dropout, and Bayesian ones could also be tested. It is cautioned that the machine learning technique should not generally be 

trusted to correctly predict confidence on cases that are out of bounds of its training data though so-called out-of-distribution 

detection offers an avenue for improvement. 

A final consideration is computational efficiency. The machine learning technique requires ~1 second to evaluate an 710 

estimate on a personal computer, as compared to ~50 seconds for the advanced filtering technique, which makes the former 

more feasible in its current state for real-time control applications. 

6.Conclusions and Future Work 

Three QA/QC processing techniques suited for wind turbine nacelle-mounted lidar were compared and validated using field 

data including both inflow and waked cases. The validation study was performed against point measurements from sonic 715 

anemometers mounted to a meteorological tower. Using such a setup, some level of mean and random error is unavoidable 

due to flow inhomogeneity coupled with the difference in sample volumes of the two techniques. However, the processing 

techniques worked to mitigate uncertainty due to two other sources: amplitude noise and solid interference. Most of the analysis 

was performed on inflow cases due to the larger sample size and thus higher statistical confidence in the results. In terms of 

mean errors for these inflow cases, the three lidar techniques performed similarly and showed less than 0.08 m/s deviation 720 
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from the sonic anemometer data. In terms of the standard deviation of errors, the advanced filtering and machine learning 

techniques, which showed aggregate errors within the rotor height between 0.2 and 0.3 m/s, performed 1-22% better than the 

conventional thresholding technique, which could not always filter out solid object returns coming from the meteorological 

tower and/or ground surface. In terms of aggregated data availability, the advanced filtering technique had 99.7% availability, 

followed by the machine learning technique at 96.2% and the thresholding technique at 95.5%. When no solid interference 725 

was present, all techniques performed similarly, showing the expected convergence of error with turbulence magnitude and 

𝐶𝑁𝑅. For the waked cases, aggregate standard deviations of errors were larger and on the order of 0.3 to 0.5 m/s within the 

rotor height for the advanced filtering and machine learning techniques, though this may be attributable in part to a relatively 

large number of solid returns in the data analyzed due to the experimental setup. The error values above increase by at most 

15% due to projection correction based on a maximum of 30° deviation of the line of sight from the wind direction (which 730 

corresponds to the outer cone angle of the DTU SpinnerLidar in this study), and small additional errors are introduced 

especially for the waked cases due to uncertainty in the wind direction. 

The machine learning technique showed promise as an approach capable of providing not only less expensive development 

for QA/QC applications but also higher accuracy and faster evaluation. Future work may include expansion of the parametric 

training database to include a wider range of realistic spectral return shapes or development of the workflow to train the model 735 

directly on experimental returns sampled near the sonic anemometers, as well as refinement of the machine learning technique 

to improve confidence levels for each velocity estimate. 

New work may also be aimed at validating the estimates of spectral standard deviation of each lidar return, since the 

inherent spectral width of a volume-averaged lidar measurement may allow for derivation of small-scale turbulence 

information. Towards these ends, exploratory work not presented here has shown the advanced filtering and machine learning 740 

techniques to be most capable to accurately locate the tails of the lidar spectrum. 

Appendix A: Generation of Synthetic Spectra 

The source of truth during the machine learning training process is synthetic spectra with known statistics. This appendix 

describes the creation of idealized power spectral densities (PSDs) for this purpose. For clarity, we here drop the notation of 

𝑙𝑜𝑠 in the superscript of 𝑢 that has been used to denote line-of-sight velocities above. 745 

The synthetic PSD of the RoI, 𝑠𝑅𝑂𝐼 , is generated as a function of 𝑢 
 from a scaled epsilon-skew-normal distribution 

(Mudholkar and Hutson, 2000) as in Eq. (A-1): 

𝑠𝑅𝑂𝐼 =  𝑚0𝑅𝑂𝐼
 𝑒

−
1
2

(
𝑢 

 −𝑚1𝑅𝑂𝐼 

𝑚2𝑅𝑂𝐼
 

 
(1∓𝑚3𝑅𝑂𝐼)

)

2

, 
(A-1) 

where 𝑚0𝑅𝑂𝐼
 is a magnitude parameter in counts of 16-bit dynamic range, 𝑚1𝑅𝑂𝐼

 is a location parameter in m/s, 𝑚2𝑅𝑂𝐼
 is a 

width parameter in m/s, and 𝑚3𝑅𝑂𝐼
 is a nondimensional skew parameter whose absolute value is less than one, and the ∓ takes 

https://doi.org/10.5194/amt-2022-35
Preprint. Discussion started: 9 May 2022
c© Author(s) 2022. CC BY 4.0 License.



36 

 

the sign opposite of the numerator of the exponent. Note that when numerically calculating the true values of the QoIs including 750 

the spectral median from 𝑠𝑅𝑂𝐼 , our discretization extends below 0.75 m/s in order to preclude any truncation of 𝑠𝑅𝑂𝐼 by the 

first several bins that are removed from the spectra as described in Section 3.3.  Note that only single-peaked spectra (i.e., no 

double-peaked spectra often found at the shear layer of a wind turbine wake) are included in the synthetic dataset since Eq. 

(A-1) generates only single peaks. 

The synthetic PSD of the solid interference, 𝑠𝑠𝑜𝑙𝑖𝑑 , is generated as an inverse function of 𝑢 
 according to Eq. (A-2): 755 

𝑠𝑠𝑜𝑙𝑖𝑑 =
𝑝𝑠𝑜𝑙𝑖𝑑

1+(𝑢 
 −𝑢𝑠𝑜𝑙𝑖𝑑

 )/𝑤𝑠𝑜𝑙𝑖𝑑
  , (A-2) 

where 𝑝𝑠𝑜𝑙𝑖𝑑 is the prominence of the solid interference spike, 𝑢𝑠𝑜𝑙𝑖𝑑
  is the velocity at 𝑝𝑠𝑜𝑙𝑖𝑑  (which in our case is the minimum 

𝑢 
 of 0.75 m/s that can be sensed by the lidar), and 𝑤𝑠𝑜𝑙𝑖𝑑 is the full-width half-maximum of the interference spectrum. 

Modeling of the PSD must also include amplitude noise that adheres to the probability density function of the measured 

noise content. The statistics of the noise within each PSD bin are known to follow a scaled chi-squared distribution (Rye and 

Hardesty, 1993; Garber, 1993). By the central limit theorem, the chi-squared distribution asymptotes to a Gaussian distribution 760 

for sufficiently large sample sizes such as for the hundreds of individual spectra that are averaged in typical lidar measurements. 

In such cases, randomized instances of the time-averaged noise spectrum, 𝑠𝑛𝑜𝑖𝑠𝑒, can be generated given a standard deviation, 

𝜎𝑛𝑜𝑖𝑠𝑒, and mean, 𝜇
𝑛𝑜𝑖𝑠𝑒

, within each spectral bin. These noise parameters are here taken to be uniform over the spectrum (i.e., 

we assume white noise). 

The combined synthetic PSD, 𝑠, is constructed in Eq. (A-3): 765 

𝑠 =  𝑠𝑅𝑂𝐼 +  𝑠𝑠𝑜𝑙𝑖𝑑 + 𝑠𝑛𝑜𝑖𝑠𝑒 
. (A-3) 

Collectively, there are eight unknown parameters implicit to Eq. (A-3) including four from Eq. (A-1), two from Eq. (A-2), 

and two from the noise contribution. In practice, we retain only seven of these parameters; the only independent noise 

parameter is 𝜎𝑛𝑜𝑖𝑠𝑒  because 𝜇𝑛𝑜𝑖𝑠𝑒 is determined by the scaling approach described next. 

To mimic the scaled version of the SpinnerLidar data output (see Branlard et al., 2013), a vertical translation is applied to 

each 𝑠 curve so that the maximum value of the curve is the full magnitude of the 16-bit SpinnerLidar output. Depending on 770 

the maximum prominence of 𝑠, this translation effectively sets 𝜇𝑛𝑜𝑖𝑠𝑒. 

For each of the seven parameters, a full-factorial sweep across a range of values that have been observed in measurements 

provided a database of lidar spectra to train and test the machine learning model. In order to ensure that this parametric space 

be representative of the true population of observed lidar spectral shapes (notwithstanding the limitations due to using only 

single-peaked spectra), the range of variation of the parameters was drawn from 3.2e8 individual lidar returns taken over more 775 

than 180 hours of wake sampling, which included both daytime and nighttime conditions, as well as the winter, spring, and 

summer seasons. These results, which included lidar returns at focus lengths of 1.0𝐷, 1.5𝐷, 2.0𝐷, 2.5𝐷, 3.0𝐷, 4.0𝐷, and 5.0𝐷, 
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represent the full dataset from the experiments at the SWiFT site during the 2016-2017 wake steering campaign (2019). Note 

that this dataset is substantially larger than the selection of bins described in Section 3.4.1.   

Table A-1 shows the approximate ranges of parameters extracted from the full dataset. In several cases, the range listed in 780 

the table (and used for model development) is reduced slightly from the extracted values to lessen the complexity of the training 

dataset given the limited number of training cases to be generated. Most notably, 𝑚1𝑅𝑂𝐼
 has a minimum of 2 m/s since the 

interaction between the RoI and the solid interference signature is increasingly difficult for the machine learning model as 

these two regions converge. 

Within the ranges given in Table A-1, the full factorial synthetic data are generated from four uniform or logarithmically-785 

spaced intervals across the range depending on the parameter (as noted in the main text, our synthetic dataset matches the 

ranges of the observed parameters but not yet the distributions). This results in 78,125 training cases, and the training process 

was found to be more robust if parameter values for each case were randomized within their interval. An additional 16,741 

validation cases and 16,741 testing cases were generated using a uniform random distribution over the parametric space, and 

these cases were used to determine when to terminate model refinement and to test the final ensemble predictions, respectively, 790 

as described in Section 2.3.2.  Before initiating the training process, the training, validation, and testing data are filtered based 

on a requirement that 𝑚0𝑅𝑂𝐼
> 4𝜎𝑛𝑜𝑖𝑠𝑒, which reduces the number of synthetic cases to 58407, 13428, and 13383, respectively 

(a field implementation of the current machine learning technique could feature a preprocessing thresholding operation to flag 

and/or reject cases of lowest 𝐶𝑁𝑅 that fall outside this bound of the training data). 

 795 

Table A-1. Ranges of parameters used for generation of synthetic spectral dataset. 

 𝑚0𝑅𝑂𝐼
 𝑚1𝑅𝑂𝐼

 𝑚2𝑅𝑂𝐼
 𝑚3𝑅𝑂𝐼

 𝑝𝑠𝑜𝑙𝑖𝑑 𝑤𝑠𝑜𝑙𝑖𝑑  𝜎𝑛𝑜𝑖𝑠𝑒  

Minimum 1.2E+03 2.0E+00 7.5E-02 -2.5E+00 0 1.2E-01 5.1E-01 

Maximum 4.0E+04 1.3E+01 1.0E+00 2.5E+00 6.0E+04 6.0E+00 3.2E+03 
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