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Reply to comments #2 from the anonymous referee 

We would like to thank in advance the anonymous referee for the thorough reading and the detailed 
comments on the manuscript, which are very helpful to improve insufficient parts in the first draft. The 
manuscript has been revised following the comments below and we hope that all the comments have 
been addressed accordingly. The referee’s comments are presented in bold and we apply the figure and 
table numbering of the revised manuscript. The revised manuscript is presented in italic.  

 

<General comments> 

Comment #1:  

“I believe the demonstration of the method validity can be improved. In particular, the qualitative 
discussion about the performance of reproduction, described with Figs. 11-12, needs to be 
improved and more objective. Also, in addition to the prediction errors presented in Figs. 7–9, it 
is recommended to show how well the proposed methods reproduce known good spectra (i.e., 
actual measurements).”  
 

Response #1: 

Firstly, thanks for the valuable comments and suggestions. As the referee pointed out, we acknowledged 
that the result parts referred in the comments definitely need improvements and thus the Sections 2-3 
have been greatly revised. The ‘Results and discussion’ part has been re-organized with ‘Model 
selection’ (Section 3.1) and ‘Validation’ (Section 3.2). The details will be discussed in the following 
section. Sections 3.1-3.2 in the first draft have been combined to Section 3.1.  
 
The applied analysis in the first draft could not quantitatively prove the validity of the suggested 
methods. Following the two referee’s recommendations, we targeted a certain area including each 
defective region (Defects 1-3) and its surroundings (100-indices toward both north and south direction) 
where actual measurements (regarded as ‘true’) could be obtained. The following part has been inserted 
to Section 3.2.  

3.2 Evaluation 

3.2.1 Spatial and spectral inspection 

 For the quantitative evaluation of the reproduced spectra, certain areas are targeted which include 
each defect (Defects 1-3) and its surroundings where actual measurements regarded as ‘true’ could be 
obtained. The evaluation is made with the data measured on 10 March 2021 (06 UTC), which are not 
used for the model training. The center longitude of the areas is set to 128° E, which is identical with 



the sub-nadir longitude of GK-2B. Along the spectral direction, we focus on the specific spectral range 
of the whole spectral gap of Defects 1-3, as shown in Table 3. Specifying the range helps to closely 
analyze the spectral patterns of absorption lines of trace gases and cloud properties. Table 3 presents 
spectral ranges of Defects 1-3 and the target wavelengths for the analysis.  

 

Table 1 The spectral range of Defects 1-3 and target wavelengths for the analysis. The third column 
presents GEMS retrieval products of which each fitting window is overlapped with Defects 1-3.  

Defect Target 
wavelength GEMS Level 2 product Optimized model 

1 (400-500 nm) 432-450 nm CHOCHO, NO2 PCA-Linear 
2 (300-400 nm) 312-360 nm O3, HCHO, SO2, NO2, aerosol optical depth PCA-ANN 
3 (484-491 nm) 484-491 nm Cloud, AEH PCA-Linear 

 

For the evaluation, actual GEMS radiances and the reproduced radiances with machine 
learning methods are directly compared, hereafter called GEMS radiances and ML radiances, 
respectively. In Figs. 11-13, each column shows GEMS, ML radiances and the difference while the first 
and second rows show the representative wavelengths for the smallest and the largest difference, 
respectively. Figure 11 shows the comparison results of the Defect 3 area, which shows the best 
performance compared to the Defects 1-2 areas. The difference in Fig. 11 is close to zero (within ± 
0.5%) because the spectral gap of Defect 3 is narrower than the counterparts of Defects 1-2. The 
narrower the spectral range of the output radiances is, the more abundant information could be 
obtained from the input radiances. For Defect 3, there is no scene dependence over the output 
wavelengths and the difference shows noise-like features except for the spatial dependence which might 
be originated from instrument artifacts.  

  
(a) 

 

  
(b) 

 

Figure 1 The GEMS, ML radiances and the difference from left to right at the wavelengths presenting 
(a) the smallest and (b) the largest difference for the Defect 3 area. Bad pixels are marked in dark 



gray and the difference is calculated as (ML-GEMS)/GEMS in percent. The color bar range for the 
difference is ± 0.5% and the unit of RMSE is in percent divided by the mean radiance. 

Figure 12 shows the Defect 1 area where the ML radiances are within about 5% of the GEMS 
radiances. It also shows that dark targets (clear sky with small radiance) show a positive difference 
while bright targets (mostly cloudy sky with large radiances) show an opposite tendency. The tendencies 
are also found from the ML radiances on the other dates for different angle conditions such as SZA and 
VZA. It seems the applied machine learning model (PCA-Linear) might not be fully trained to resolve 
the different atmospheric conditions and radiances which causes a certain bias depending on the scenes.   

  
(a) 

 

  
(b) 

 

Figure 2 Same as Fig. 11 for the Defect 1 area.  

 

For the Defect 2 area, it is clear that the information from valid radiances of wavelengths 
longer than 400 nm is insufficient to effectively reproduce the spectral features at shorter wavelengths 
(consistent results with Figs. 8-9). Both output spectral lengths of Defects 2-3 are nearly identical 
around 100 nm but it seems radiances near 300 nm need more information to be successfully reproduced. 
The stripping feature found in Fig. 12b is significant at 312 nm for the ML radiances, while it doesn’t 
at 357.2 nm in Fig.12a. The stripping feature seems to be added during the reproducing process 
especially for shorter wavelengths, and the reason is still unclear. Another distinct feature found in Fig. 
12 is that the difference in northern parts is very large with the difference of 10%. We suspect that the 
reason might be the VZA effect considering that VZA increases at the northern parts in the area. Without 
angle conditions in the input parameters for the model, the difference becomes doubled at 312 nm 
presenting similar patterns with the difference in Fig. 12b. This indicates the angle effect can be 
emulated in the model by applying VZA and SZA as the input parameters, but it is not fully resolved 
especially for the radiances at shorter wavelengths.  



  
(a) 

 

  
(b) 

 

Figure 3 Same as Fig. 11 for the Defect 2 area. 

 

A closer inspection is performed to analyze the general spectral features over target 
wavelengths. For each defect area in Figs. 11-13, the collected spectra are divided into four groups 
depending on the scene brightness considering that ML radiances could have different systematic biases 
depending on the scenes. With the data, the mean difference is calculated for each wavelength. As found 
in Fig. 11, Fig. 14a shows that the ML radiances over dark scenes have the positive bias while brighter 
scenes have the negative bias. It is interesting that the scene dependence is only significantly found for 
Defect 1. Figure 14b indicates that the ML radiances are overestimated except for the very brighter 
scenes. It should be noted that the y-axis range of Fig.14b is wider than the figures for Defects 1 and 3. 
With the results, it can be deduced that the complicated atmospheric effects at the shorter wavelengths 
are difficult to be emulated and instrument artifacts such as stray light also would affect the reproducing 
process. Figure 14c shows relatively large difference at the spectral peaks, but generally the difference 
is smaller than 0.2% 

 
(a) 

 
(b) 

 
(c) 

Figure 4 Mean difference between ML and GEMS radiances within the target area of (a) Defect 1, (b) 
Defect 2 and (c) Defect 3. Each color indicates the average for each quartile and Q1, Q2 and Q3 

represent the first, second and third quartile, respectively. The difference is calculated as (ML-
GEMS)/GEMS in percent. 



Besides the shorter wavelengths of Defect 2, mean ML radiance and the difference with GEMS 
radiances are presented by targeting Fraunhofer lines from 390 to 400 nm (see Fig. 14). The Ring effect 
caused by rotational Raman scattering can be found over the two peaks in Fig. 14a, which is generally 
known to be very small and largely affected by clouds (Joiner et al., 1995). Figure 14b shows that PCA-
ANN reproduces the dominant features at the peaks very well on average within 0.6%, but it seems the 
difference increases with darker scenes where the Ring effect becomes stronger. This indicates that the 
ML radiances would need additional information to successfully reproduce the exact spectral features 
especially for the very small signals such as the Ring effect.  

 
(a) 

 
(b) 

Figure 5 (a) Mean ML radiances (b) and the difference with GEMS raidances at the Fraunhofer lines 
for the Defect 2 area. Each color indicates the average for each quartile and Q1, Q2 and Q3 

represent the first, second and third quartile, respectively. The difference is calculated as (ML-
GEMS)/GEMS in percent. 

3.2.2 PCA-based spectral analysis 

As applied in the pre-processing step in our research, PCA is a very useful tool to capture the meaningful 
variances along the spectral direction and it has been widely used to retrieve environmental and surface 
properties (Horler and Ahern, 1986; Joiner et al., 2016; Li et al., 2013, 2015). To investigate further 
the spectral patterns, we apply PCA to GEMS radiances (except for bad pixels) at the target 
wavelengths (see Table 3) collected within each area in Fig. 11-13. With PCA, various spectral patterns 
are compressed and a spectrum can be projected to PC subspaces by multiplying with the constructed 
PC matrix (eigenvector matrix). This indicates that if a spectrum has disparate spectral patterns, the 
projected PCs would also have distinct values when comparing with the PCs of GEMS radiances. 
Figure 15 presents the results when projecting both GEMS and ML radiances with PCA. For the 
inspection, the Defect 3 area is presented which has the wider defective width along the north-south 
direction. Because the first PC scores represents mean radiances, the second PC are used for the 
analysis. As we assumed, bad pixels in Fig. 15a show disparate values because the spectral patterns of 
the interpolated spectra are inconsistent with GEMS radiances. The ML radiances in Fig. 15b show 
spatially homogenous PC scores which indicates that the machine learning methods could properly 
reproduce the dominant spectral patterns, in this case of the second PC.  

 



 
(a) 

 
(b) 

Figure 15. The second PC of (a) actual measurements and (b) reproduced spectra on the target area 
for Defect 3. The PC is scaled for clarity of presentation.  

The dominant patterns for each PC are presented in Fig. 16 with GEMS radiances for the target 
wavelengths of Defects 1-3. Each color indicates the eigenvector of the first-sixth PCs which determines 
how each PC score of a spectrum contributes to the original spectrum. Li et al. (2015) verified that the 
leading PC scores from the UV/VIS backscattered radiation (shorter than 360 nm) are significantly 
correlated with dominant absorption features and surface properties. The trailing PC scores might be 
associated with instrument artifacts and other unresolved spectral features. Figure 16 shows that the 
first PC corresponds to the mean spectrum as discussed in Sect. 3.1.1 and the second-sixth PCs show 
dominant spectral patterns originated from absorption features of trace gases, surface properties and 
unresolved features. This indicates that the comparison of PC scores could provide the information on 
the similarity of the dominant patterns between ML and GEMS radiances as shown in Table 4 with the 
correlation coefficient. The results indicate that the mean spectral feature (the first PC) and some 
dominant patterns (the second and third PCs) could be well reproduced with the suggested models, but 
other spectral features such as the fourth PC for Defect 2 have difficulty obtaining valid information 
from input radiances for accurate reproduction. The magnitude of radiance from the major PCs except 
for the first PC might not be large considering that even the leading PCs have small explained variance 
ratio for hyperspectral data in UV/VIS spectrum. However, it would be enough to determine the exact 
spectral signals which are mostly related to the important information for the retrieval process.  

   
Figure 6 Eigenvector of the first-

sixth PCs applied to GEMS radiances for the target wavelengths of (a) Defects 1, (b) Defect 2 and (c) 
Defect 3. All eigenvectors are scaled (min-max scaling) and shifted for clarity of presentation. 

Table 2. Correlation coefficient of PC scores of reproduced and actual measurements for Defects 1-3.  
Defects PC 01 PC 02 PC 03 PC 04 PC 05 PC 06 
Defect 1 0.9999 0.9976 0.8172 0.9779 0.6846 0.6609 
Defect 2 0.9999 0.8129 0.9876 0.4294 0.7035 0.5046 
Defect 3 0.9999 0.9962 0.9787 0.6644 0.5399 0.2649 

 

 



Comment #2:  

“Besides, how can the spectral sampling of input/output (0.1 nm) be finer than the original GEMS 
data (0.2 nm)? More detailed descriptions about this are recommended. Overall, I suggest this 
manuscript be reconsidered after major revisions.” 

 

Response #2:  
As for the spectral intervals of GEMS spectra for the training process, the response for the comment is 
addressed below as there is a similar comment in the following section.  

 

<Specific comments> 

• Line 78: Please give the full names of the gaseous species (i.e., O3, SO2, NO2, and HCHO). 

Corrected. 

• Line 82: The authors refer to each of ~700 east-west pixels as a “scan,” but probably this term 
is not accurate. Isn’t the whole ~700 pixels considered to be in one scan? Also, can GEMS cover 
the entire field of regard by one scan? It seems that is what the authors are implying. 

The sentences have been revised as follows:  

“For earth measurements, GEMS measures the backscattered radiation from east to west about 700 
times by moving a scan mirror and for each scan, totally 2048 pixels are obtained along the north-
south direction. All measurements at each scan position are combined together to cover the full field 
of regard (FOR) of GEMS.” 

• Line 84: Do the CCD pixel numbers presented here represent those for only photoactive pixels? 

The provided pixel numbers are designed to be photoactive pixels. However, signals from some pixels 
at the edges of the CCD are known to be invalid, which are flagged as low quality pixels. The point 
has been added to the revised manuscript.  

• Line 89: The general description of the bad pixel detection method is informative. But how 
about presenting how long the GEMS integration time is (by adding another sentence)? 

The integration time of GEMS is 69.996409 milliseconds. The information has been updated to the 
manuscript.  

• Line 99: This sentence sounds as if the results of 1-D interpolation were presented earlier, which 
is not true. How about rephrasing this sentence, using a verb like “imply” instead of “indicate”? 

We agreed to the point. It has been corrected.  

• Line 104: The subject affected by the defective pixels is the quality of ozone retrieval, not the 
ozone properties themselves. 

Indeed. It has been corrected.  



• Line 148: How can the spectral interval of input and output (0.1 nm) be narrower than that of 
original GEMS measurements (0.2 nm)? How are the GEMS measurement spectra sampled 
onto the finer grids? Please give more details here. 

The detailed description of the spectral interval of input and output has been added to Line 175: 

For the training process, each measured spectrum is linearly interpolated with the sampling interval 
of 0.1 nm, and radiances of each spectrum are divided into input and output radiances based on the 
specified spectral ranges in Table 2. The training datasets should be sampled at identical spectral 
grids and for that, each spectrum is interpolated in a pre-processing step. After the prediction, each 
replaced spectrum is reversely interpolated onto its original spectral grids. During the interpolation 
processes, intrinsic information a spectrum has could be lost, and thus finer spectral grids are applied 
to minimize interpolation errors by preserving radiances at more frequent interval than the original 
(about 0.2 nm). 

• Line 149: Did you investigate how much the results changed when trained without solar zenith 
angle (SZA) and viewing zenith angle (VZA)? Please describe the impacts of including these 
variables. 

The impact of angle conditions as input has been analyzed and added to Line 175: 

Figure 5 presents the converging process of the PCA-ANN model for Defect 2 applying different 
optimizers with and without SZA and VZA conditions. The additions of the angle conditions as input 
parameters speed up the model convergence with smaller MSE because without the angle parameters, 
the information would be implicitly elicited during the optimization process. The model converges at 
44, 98 and 33 epochs for Adam, SGD and RMSprop, respectively. Adam converges at the smallest 
MSE while the SGD converges with the highest MSE. RMSprop presents unstable loss for validation 
data and converges with higher MSE compared to Adam. 

  

Figure 7 Training and validation losses for Defect 2 (a) with and (b) without the angle conditions as 
input parameters. The results are obtained with different optimizers such as Adam (black), SGD with 

the gradient clipping value of 0.5 (blue) and RMSprop (orange)  

• Figure 5: The caption and the color bar title do not correspond. Which wavelength was used 
between 310 and 354 nm? 

Thanks for the correction. It is radiance at 310 nm and the caption has been corrected accordingly.  



• Line 264: How can we tell if spectra look “reasonable”? This statement is vague. Please 
consider changing Figs. 11-12 to include any reference (know, good, measured) spectra for the 
reconstructed parts. 

The response for this comment is addressed in the previous section.  

• Line 269: I believe the term “noise” itself implies randomness, which would not necessarily be 
canceled in the normalized radiance. Please consider replacing the term with another, e.g., 
error, bias, artifact, etc. 

Artifacts would be more proper expression, indeed. It has been updated.  

• Please consider re-writing the units in the figures as W cm–3 sr–1 

Corrected.  

• Please consider minor English corrections below. 

o Lines 42, 49, 50, 100: affect to -> affect ? 

o Lines 109, 148, 184, 185, 199, 214, 221, 238, 241, 243, 250, 254, 258, 268: Defect -> Defects 

o Line 225: Fig. -> Figs. 

o Line 242: N-S -> North-South 

o Line 276: A period (.) missing between sentences 

These comments have been addressed in the revised manuscript.  
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