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Abstract. Earth radiances in the form of hyperspectral data contain useful information on atmospheric constituents and aerosol 

properties. The Geostationary Environment Monitoring Spectrometer (GEMS) is an environmental sensor measuring such 

hyperspectral data in the ultraviolet and visible (UV/VIS) spectral range over the Asia-Pacific region. After successful 

completion of the in orbit test (IOT) of GEMS in October 2020, bad pixels are found as a remaining calibration issue to be 10 

updated with follow-up treatment. During the IOT, one-dimensional interpolation is performed in operation to replace the 

erroneous pixels of GEMS, which causes high interpolation error for a wide defective area on the detector array. To resolve 

the issue, this study suggests machine learning methods with artificial neural network (ANN) and multivariate linear regression 

(Linear) for filling in a spectral gap of defective spectra. The basic assumption of the methods is that radiances of a spectrum 

have linear and non-linear relations and a finite range of radiances could be reproduced with the relations. The machine learning 15 

models are trained with normal measurements of GEMS after dimensionality reduction for input parameters with principal 

component analysis (PCA) for efficient training process. Results show that PCA-Linear has small prediction errors especially 

for a narrower spectral gap and less vulnerable to outliers in the training data with the prediction error of 0.5-5%. PCA-ANN 

shows better results emulating strong non-linear relations with the prediction error within 5% except for the shorter 

wavelengths around 300 nm. The dominant spectral patterns could be successfully reproduced with the models nearly within 20 

the level of radiometric calibration accuracy of GEMS but limitations still remain particularly in the reproduction of the precise 

spectral features which needs additional information to be investigated further. As the initial approach reproducing missing 

radiances of GEMS, this study verifies that spectral relations in the UV/VIS spectrum are successfully reproduced with a 

simple machine learning model, which has high potential to be updated further for enhancing measurement quality of 

environmental satellite measurements.The results show that defective radiances at the wavelengths of strong absorption lines 25 

is better replaced with PCA-ANN with the error of 5%, while PCA-Linear is better for reproducing radiances having strong 

correlation with input radiances. The shorter the spectral range of output radiances is, the smaller the prediction error is with 

PCA-Linear (0.5-5%). Spectral and spatial discontinuity caused by real bad pixels can be significantly improved with the 

trained machine learning models especially for wide defect areas. This study verifies that spectral relations of radiances in the 
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UV/VIS spectrum are successfully reproduced with a simple machine learning model, which has high potential to be 30 

investigated further for enhancing measurement quality of environmental satellite measurements. 

1 Introduction 

Earth radiance contains useful information on the chemical composition in the atmosphere, especially when it is measured in 

the form of many contiguous spectral bands. This type of measurement is referred to as ‘hyperspectral’ (Bovensmann et al., 

1999; Goetz et al., 1985), because it is frequently sampled with high spectral resolution to accurately describe absorption lines 35 

of a targeted gaseous or particulate component (Boersma et al., 2004; Kang et al., 2020; Manolakis et al., 2019; Pan et al., 

2017). The Geostationary Environment Monitoring Spectrometer (GEMS) on-board the Geostationary Korea Multi-Purpose 

Satellite-2B (GEO-KOMPSAT-2B) is an environmental sensor providing such a hyperspectral measurement in the ultraviolet 

and visible (UV/VIS) spectral region from 300 to 500 nm with a spectral resolution of finer than 0.6 nm (Kim et al., 2020). 

Following the launch of the satellite in February 2020, the in orbit test (IOT) of GEMS was successfully completed in October 40 

2020 with some issues to be continuously monitored. The root cause of each issue is to be examined with collected long-term 

measurements, as it has been dealt with for other polar orbit sensors having similar sensor characteristics (Ludewig et al., 2020; 

Pan et al., 2019, 2020; Schenkeveld et al., 2017). 

One of the issues to be periodically monitored is about bad pixels, which refer to anomalous pixels having hot, cold, 

noisy or drifted readout values in raw data (Lo ṕez-Alonso and Alda, 2002). The definition of bad pixels is not universal, and 45 

in this paper, it refers to all kinds of pixels presenting abnormal observation features. Bad pixel detection is based on sensor 

characterization by sorting out erroneous signals from normal trend. A few hot pixels were flagged as bad pixels during on-

ground tests for GEMS and additional pixels have been sorted out during the IOT because of the impacts from the launch of 

the satellite and different environment conditions in space. The number of bad pixels tends to increase as time goes by (Kieffer, 

1996), which indicates a significant number of bad pixels could affect to the measurement quality during the operation period 50 

of GEMS. 

Following the bad pixel detection, replacement of measurements on bad pixel positions needs to be performed. There 

are various ways to replace the measurements on bad pixels (Boldrini et al., 2012; Burger, 2009; Rankin et al., 2018), and in 

the GEMS calibration system, it adopts one-dimensional spatial interpolation on the detector (Fischer et al., 2007; Schläpfer 

et al., 2007). However, the approach showed its limitation during the IOT, when an area consisting of bad pixels is quite large 55 

and the adjacent pixels valid for spatial interpolation are too far from the erroneous area. Especially, when a scene on the Earth 

dramatically changes, discontinuity caused by the interpolation becomes larger. This phenomenon affects to not only spatial 

discontinuity on two-dimensional measurements, but also to a retrieval process using the spectral features contaminated by 

bad pixels (Marchetti et al., 2019).  

In this respect, this study suggests machine learning methods to replace bad pixels on the radiance level using valid 60 

spectral features of normal measurements. As a way of replacement, we compare machine learning approaches using artificial 
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neural network (ANN) and multivariate linear regression. Theoretically, it has been verified that ANN can accurately emulate 

non-linear relations with a simple model structure when there are a large number of training data (Cybenko, 1989; Hornik et 

al., 1989). Machine learning methods have a high chance to successfully process hyperspectral data because the abundant 

datasets make training process more effective after breaking the curse of dimensionality with a proper pre-processing step 65 

(Gewali et al., 2018). Principle component analysis (PCA) is applied in this study, as it is useful to extract important 

information from hyperspectral measurements (Bajorski, 2011).  

For atmospheric remote sensing, the majority of researches on hyperspectral measurements has employed machine 

learning as a proxy of the radiative transfer model to retrieve geophysical states with measured spectral radiances (Hedelt et 

al., 2019; Loyola et al., 2018; Zhu et al., 2018). There are fewer approaches applied to obtain radiation flux (Dorvlo et al., 70 

2002; Zarzalejo et al., 2005) and even much fewer to obtain hyperspectral radiances for different purposes such as to accurately 

quantify radiative forcing in climate system (Taylor et al., 2016), increase spectral resolution (Le et al., 2020) and fill in a 

spectral gap for inter-calibration (Wu et al., 2018). A monochromatic radiance itself rarely contains any important meaning 

and thus seldom has it been a final target for machine learning. In this study, however, radiance at each wavelength of a targeted 

spectral region becomes an important output to be reproduced. Considering that the retrieval process is based on the measured 75 

spectral features, how much information could be reproduced with the machine learning methods also needs to be quantified.  

The following sections are organized as follows. Section 2 introduces sensor specification of GEMS including an 

overview of bad pixel detection and replacement methods for GEMS. In the section, a general description of machine learning 

models suggested in this study is introduced as well as the model structure and hyperparameter setting. Section 3 contains 

model optimization results and error analysis for wide defect regions. With the optimized model, the spatial and spectral 80 

inspection is performed to actual measurements including bad pixel areas. bad pixel replacement is performed to real spectra 

contaminated by bad pixels and it is compared with linear interpolation, the operational method for replacing bad pixels of 

GEMS. In Sect. 4, conclusions are presented with limitations as well as further applications in the future study. 

2 Data and methods 

2.1 Data description 85 

2.1.1 GEMS 

GEMS is a UV/VIS imaging spectrometer in the geostationary orbit observing the Asia-Pacific region (5° S-45° N, 75° E-145° 

E) with high spatial and spectral resolution to retrieve key atmospheric constituents such as ozone (O3), sulfur dioxide (SO2), 

nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO) O3, SO2, NO2, HCHO and aerosol properties (Level 2) 

(Kim et al., 2020). The observation targets of GEMS are the Sun (irradiance mode) and the Earth (radiance mode) and the 90 

description for each measurement mode is summarized in Table 1. In both measurement modes, incident light from a scene 

passing through a fore-optics and a spectrometer reaches to a two-dimensional detector array, the charge-coupled device (CCD) 
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detector. The CCD of GEMS comprises 2,048 rows and 1,033 columns of photoactive pixels along the spatial direction from 

north to south (N-S) and the spectral direction with a sampling interval of 0.2 nm, respectively. GEMS observes the Sun on 

the purpose of calibration once a day with a premise of the measured solar irradiance being stable and nearly time independent. 95 

For Earth measurements, GEMS measures the backscattered radiation from east to west about 700 times by moving a scan 

mirror and for each scan, totally 2048 pixels are obtained along the north-south direction. All measurements at each scan 

position are combined together to cover the full field of regard (FOR) of GEMS. GEMS scans the earth around 700 times 

within 30 minutes from east to west to cover the full field of regard (FOR) of GEMS. In both measurement modes, incident 

light from a scene passing through a fore-optics and spectrometer reaches to a two-dimensional detector array, the charge-100 

coupled device (CCD) detector. The CCD of GEMS comprises 2,048 rows and 1,033 columns along the spatial direction from 

north to south (N-S) and the spectral direction with a sampling interval of 0.2 nm, respectively.  

Table 1 Top level measurement specifications of GEMS 

Measurement mode Solar irradiance Earth radiance 

Data dimension 

[spectral, spatial, scan] 
[1033, 2048] 

[1033, 2048, 695] 

(nominal scene) 

Spectral range [nm] 300-500 

Spectral sampling 

[nm/pixel] 
0.20 

Spectral resolution [nm] < 0.60 

Spatial resolution [km2] - 
3.5 × 8 

(spatial × scan) 

Measurement frequency 
Once a day 

(13:00 UTC) 

Every hour 

(00:45-07:45 UTC) 

2.1.2 Bad pixel 

Bad pixel detection is generally performed with dark-current measurements which are taken without exposure to light for a 105 

certain integration time (Howell, 2006), and for GEMS, the integration time corresponds to about 70 milliseconds. Figure 1 

illustrates bad pixel positions (in white) on the GEMS CCD detector array identified during the IOT. A cluster and distinct 

line shapes of bad pixels shown in Fig. 1a are initially identified during on-ground calibration before the launch of the satellite. 

Following the suggestions made by the instrument developers, linear interpolation along the spatial (N-S) direction (north-

south) is applied to replace the unusable measurements on bad pixel positions. With such a simple procedure, a single bad 110 

pixel could be properly substituted. However, it was found during the IOT that significant interpolation error could occur on 

the bad pixel positions denoted as Defects 1-3 (see Fig. 1b), especially when the spatial width of the invalid area is too wide 

as shown in Defects 2 and 3.  
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(a) (b) 
Figure 1 (a) Two-dimensional bad pixel map on the GEMS CCD detector along the spectral (x-axis) and spatial direction (y-axis) and (b) 

zooming in the bad pixel positions from top to bottom rows for Defects 1-3. Bad pixels are marked in white.  115 

The interpolation error could seriously affect to the Level 2 products of which the spectral fitting windows are 

overlapped with bad pixel areas. For instance, cloud properties and aerosol effective height (AEH) of GEMS are retrieved 

from O2-O2 absorption bands around 477 nm (Choi et al., 2021; Kim et al., 2021) where the cluster of bad pixels is located 

(Defect 3). During the IOT, Defect 3 caused spatial discontinuity to the retrieved cloud and AEH distribution, which made the 

fitting window of the products modified to avoid bad pixel effects. The O3 retrieval is also affected by Defect 2 (300-400 nm) 120 

as the spectral radiances within 300-380 nm provide major information for the O3 retrieval of GEMS (Bak et al., 2019). The 

bad pixel effects in the Level 2 product are clearly shown in Fig. 2 which presents radiances at 312 nm and the retrieved total 

O3 column of GEMS. Even though radiances at the certain wavelength are homogeneous with its surroundings (see Fig. 2b). 

The spectral patterns are not properly reproduced with the existed method (spatial interpolation) causing the distinct horizontal 

line in Fig. 2c. 125 

 

(a) 

 

(b) 

 

(c) 
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Figure 2 Spatial distribution of radiances at 312 nm with bad pixels (a) marked in dark gray and (b) reproduced with spatial interpolation 

and (c) the total O3 column of GEMS. The measurements are on 10 March 2021 (06 UTC). 

To eliminate the bad pixel effects this study suggests machine learning methods to spectrally reproduce radiances on bad 

pixels instead of spatial interpolation as described in Fig. 3. The multivariate linear regression and ANN models are compared 

to evaluate model performance for reproducing Earth radiance corresponding to the bad pixel positions of Defects 1-3. Solar 130 

measurements have high spatial homogeneity resulting in small interpolation error even on the large bad pixel areas, and are 

not considered in this study.  

 

Figure 3 Schematic chart of the input (blue circle) and output pixels (red circle) on the GEMS CCD for the spatial interpolation and 

machine learning methods suggested in this study. Yellow circle indicates adjacent pixels to bad pixel position. 135 

2.2 Replacement approach 

2.2.1 General description 

Reproduction of radiances on bad pixels is based on a fact that radiances at different wavelengths for a scene are highly 

correlated with each other (Liu et al., 2006; Wu et al., 2018). If the relations can be accurately established, some missing values 

in a spectrum can be properly reproduced with radiances at the other wavelengths. Further questions to be investigated are 140 

whether non-linear relations could be accurately emulated with machine learning methods and valid information for the 

reproduction may exist in the input radiances. To emulate the relations of the input and output radiances in a spectrum, the 

randomly collected GEMS spectra for various scenes are used which are measured on normal pixels located closer to a bad 

pixel area on the detector array for Defects 1-3. The basic premise of this approach is that neighbor pixels on the detector array 

would have similar measurement characteristics. After training a model with the normal spectra, a spectral gap (output 145 

radiances) could be reproduced through the model. 

Because it is highly possible that input radiances have redundant information, PCA is applied for dimensionality 

reduction to compress the input radiances to low-dimensional principle components (PCs). The PCA process is given by the 

following Eq. (1): 



7 

 

𝐙𝒏×𝒑 = 𝐗𝒏×𝝀𝐖𝝀×𝒑                     (1) 150 

where Z, X and W represents the PC scores, input and PC matrix, respectively. The PC scores matrix (Z) is obtained by 

projecting the input to the PC subspaces with W, which is obtained by applying eigenvalue decomposition to the X. The 

subscript n, 𝜆 and p means the dimension of matrix corresponding to the number of datasets, wavelengths and the number of 

PCs, respectively.  

With the compressed data, multivariate linear regression (PCA-Linear) and ANN (PCA-ANN) models are trained to 155 

define the relations between input (Xm) and output (Yn) radiances in a spectrum. The PCA-ANN model is constructed with a 

simple feed-forward model with a hidden layer as described in Fig. 43. In the model optimization process, the PCA-ANN 

model with a hidden layer showed faster and more effective convergence of loss function than the models having multi-hidden 

layers in this study. For PCA-Linear, it adopts a simple linear model structure consisting of parameters such as weight and 

bias having the minimum mean squared error (MSE) between the regressed and measured radiances. After model optimization, 160 

it can be used to replace bad pixels (X’m, Y’n) with radiances to be likely measured by the sensor. 

 

Figure 43 Schematic chart of the training and bad pixel replacement process. W and b represent weight and bias parameters in each layer. 

The subscript m, n, p and k is equal to the spectral dimension of input and output parameters, the number of PCs and hidden nodes of the 

ANN model, respectively. 165 

2.2.2 Input/Output and model optimization 

For the reproduction process, radiances of each spectrum are divided into input and output radiances based on the specified 

spectral ranges in Table 2. The spectral ranges of output radiances for Defects 1-3 are identical to each defective region and 

the rest part of a spectrum becomes input radiances. Training and test data are constructed with GEMS radiance data which 

are randomly sampled out in March-April 2021 to update model parameter and check for overfitting, respectively. The datasets 170 

for the models should be sampled at identical spectral grids and for that, each spectrum is interpolated in a pre-processing step 

and after the reproduction, the spectra are reversely interpolated onto its original spectral grids. Considering that the intrinsic 

information a spectrum has could be lost during the interpolation processes, the finer spectral grids (0.1 nm) are adopted for 
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the model to minimize interpolation errors by preserving radiances at more frequent intervals than the original grids. The solar 

zenith angle (SZA) and viewing zenith angle (VZA) are key variables determining optical paths of upwelling and downwelling 175 

radiances and thus are used as input variables together with radiances. The neural network constructed with the hyperparameter 

setting presented in Table 2 is implemented with TensorFlow, a high-level Application Programming Interface (API) written 

in Python. As described in Fig. 43, the activation function is the Rectified Linear Unit (ReLU) in the hidden layer of the ANN 

model. The structure itself is not complicated but it has multiple nodes in the input and output layers, which makes ReLU more 

competitive (Nwankpa et al., 2018). The hyperbolic tangent (tanh) and sigmoid function show poor results especially when 180 

the output parameters have lower variance making the optimization stuck into the averaged value and preventing the model 

from being updated.  

Table 2 Input and output (I/O) parameters for ANN training and hyperparameter for optimization of neural network. 

Model Parameter Defect 1 Defect 2 Defect 3 Remark 

I/O 
Input (Xm) 

SZA / VZA Random selection 

(100,000 for 

training and 

test data) 

300-400 nm 400-500 nm 
460-483.9 / 

491.1-500 nm 

Output (Yn) 400.1-500 nm 300-399.9 nm 484-491 nm 

Hyper-

parameter 

Activation 

function 
ReLU  

Optimizer Adam optimizer  

Loss function Mean squared error  

Scaling Standardization  

 

For the optimizer, Adaptive Moment Estimation (Adam) is used which shows stable results compared to Stochastic 185 

Gradient Descent (SGD) and Root Mean Square Propagation (RMSProp) (Kingma and Ba, 2015). It is empirically found that 

SGD without gradient clipping tends to cause exploding gradient and RMSProp has difficulty reaching the global minima 

compared to Adam. Figure 54 presents the converging process of the PCA-ANN model for Defect 2 applying different 

optimizers with and without SZA and VZA conditions. The additions of the angle conditions as input parameters speed up the 

model convergence with smaller MSE because without the angle parameters, the information would be implicitly elicited 190 

during the optimization process. The model converges with angle conditions at 44, 98 and 33 epochs for Adam, SGD and 

RMSprop, respectively. Adam converges at the smallest MSE while the SGD converges with the highest MSE. RMSprop 

presents unstable loss for validation data and converges with higher MSE compared to Adam.  
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Figure 5 Training and validation losses for Defect 2 (a) with and (b) without the angle conditions as input parameters. The results are 

obtained with different optimizers such as Adam (black), SGD with the gradient clipping value of 0.5 (blue) and RMSprop (orange).  195 

3 Results and discussion  

3.1 Optimization resultsModel selection 

3.1.1 Optimization results  

Earth radiance is determined by the interactions of light with trace gases, aerosols and clouds in the atmosphere and reflected 

properties of a scene. The magnitude of a spectrum is dominantly determined by the scene properties which result in strong 200 

linear relations among radiances in a spectrum. In other words, when a scene is dark (bright), the upwelling radiances of the 

scene over the whole spectral region tend to become generally low (high). The PCA analysis performed for dimensionality 

reduction describes the characteristic with PC scores of input radiances in training data for Defect 2 (See Fig. 65). In the figure, 

it can be found that the first principal component (PC) is highly correlated with the magnitude of a spectrum represented by 

the radiance at 354 nm. This indicates that strong linear relations among radiances in a spectrum are compressed to the first 205 

PC, which has the largest variance. The non-linear properties caused by atmospheric scattering, absorption, different optical 

paths and sensor noise are projected onto the other subsquent PC subspaces.  
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Figure 65 PC scores of input training data from 400 to 500 nm for Defect 2 after dimensionality reduction. Colorbar represents the radiance 

at 31054 nm of output training data. 210 

Figure 76 shows model optimization results depending on each model and the number of PCs. Because the spectral 

range of output radiances differs for each defect region (Defects 1-3), model optimization is performed, respectively. The 

spectral ranges of output radiances for Defects 1 and 2 is are wider than that of Defect 3 which results in higher MSE. PCA-

ANN seems to be unstable for Defect 1 showing over-fitted features which might be caused by unfiltered outliers in output 

radiances of GEMS at the wavelengths longer than 480 nm. It is empirically found that PCA-ANN is more vulnerable to 215 

outliers compared to PCA-Linear. Defect 2 is at the wavelengths where the upwelling radiances are largely affected by O3, 

which increases non-linearity between input and output radiances. Because of the strong non-linearity, PCA-ANN shows better 

performance than PCA-Linear for Defect 2. Defect 3 has the smallest number of output parameters in a narrow spectral gap 

which causes strong correlation between input and output radiances. The loss functions (MSE) in Fig. 76c are small and 

converge quickly for both PCA-ANN and PCA-Linear models. With the results, the optimized number of PCs is set to 90 for 220 

all defect regions when loss functions for both training and test data efficiently converge, with PCA-Linear for Defects 1 and 

3 and the PCA-ANN model for Defect 2. 
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(a) 

 
(b) 

 
(c) 

Figure 76 Loss function depending on the number of PCs with PCA-ANN (red) and PCA-Linear (black) models to predict the output 

radiances corresponding to the spectral range of Defects 1-3 ((a): Defect 1, (b): Defect 2 and (c): Defect 3). The dashed and solid line 

indicates training and test results, respectively. The number of hidden nodes for ANN is double the number of PCs. 225 

3.1.2 Statistical evaluation  

3.2 Statistical evaluation 

The optimized model structures for Defects 1-3 are set as described in the previous section. Following that, in this section, 

model performance is statistically evaluated with training and test datasets specified in Table 2. Figure 87 presents mean and 

normalized root mean squared error (NRMSE) of the predicted output radiances with training and test data. The NRMSE is a 230 

statistical indicator normalized by mean radiance at each wavelength and it can be found that radiances affected by strong 

absorption lines have relatively high uncertainty. Especially, information from the radiances in 400-500 nm is insufficient to 

properly represent O3ozone absorption features at shorter wavelengths and it causes high uncertainty at the wavelengths shorter 

than 325 nm in Defect 2. Defect 3 has the smallest NRMSE because of strong linear relations between input and output 

radiances as previously mentioned in Sect. 3.1. The NRMSE is less than 0.1% for both training and test data for Defect 3. The 235 

results show that it is possible to successfully reproduce spectral features at a narrower spectral range with simple linear 

regression.  

 

 
(a) 
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(b) 

Figure 87 Mean (black) and NRMSE (blue) spectra of output radiances for Defect 1-3 with (a) training and (b) test datasets measured in 

March-April 2021. The unit of NRMSE is percent. 240 

Figure 98 shows the error histogram of each prediction model for Defects 1-3 with training and test data. The mode 

and mean of error histograms are on the order of 0.001-0.01 for test and training data. The machine learning models are good 

enough to properly emulate spectral relations between input and output parameters, but it is somewhat over-fitted to the training 

data causing a few outliers for the prediction of test data. Defect 2 has the largest standard deviation, which is consistent with 

the higher NRMSE at shorter wavelengths around 300 nm in Fig. 87. The largest kurtosis of Defect 2 for both training and test 245 

data indicates tails of the distributions are heavy compared to normal distribution, mostly from the radiances at shorter 

wavelengths. Considering that the overall prediction error is within 5% except for the O3ozone absorption lines, the prediction 

models for Defects 1-3 are well constructed for further bad pixel replacement. 

 
(a) 

 
(b) 

 
(c) 

Figure 98 Prediction error of randomly collected training (blue) and test (yellow) datasets measured in March-April 2021 with the optimized 

models for Defects 1-3 (PCA-ANN for Defect 2 and PCA-Linear for Defects 1 and 3). Prediction error and the statistics areis calculated 250 
with the difference between the predicted and measured radiances divided by the latter. 

The training and test datasets presented in Figs. 87-98 are randomly collected spectra of GEMS measurements in 

March-April 2021, which guarantees a basic assumption in machine learning that the underlying population should be identical 

for training and test data (Zhen and Li, 2008). However, in operation, the prediction model is obliged to be trained in advance 

with sufficient datasets for timely reproducing erroneous pixels of satellite measurements on a daily basis. This indicates the 255 

assumption might be violated if measurement characteristics of training and test data significantly change. To investigate 
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further the effect, the prediction model is trained with training and test data measured in March and April 2021, respectively 

(see Fig. 109). The results show that histograms of test data for Defects 1-2 are more skewed than those of training data, when 

the measurement periods of training and test datasets are separateddiffer. On the other hand, prediction results for Defect 3 

areis independent to the measurement periods of training and test data. This results indicate that the spectral features of GEMS 260 

spectra change profoundly as time goes by and the changes have strong spectral dependence within 300-500 nm. 

 
(a) 

 
(b) 

 
(c) 

Figure 109 Same as Fig. 98 with training and test datasets measured in March and April 2021, respectively. 

3.3 Application to bad pixel replacement 

In this section, the prediction model trained with randomly collected spectra in March-April 2021 is employed for reproducing 

real bad pixels of Defect 1-3 from GEMS measurements on 2 May 2021. It is demonstrated with visual inspection of radiance 265 

images and quantitative comparison between machine learning methods and spatial interpolation, the current operational 

method for bad pixels in the GEMS calibration system. Figure 10 shows earth radiance images of GEMS on a particular region 

(15° N, 102° E) affected by bad pixels of Defect 3, which has wider spatial width of bad pixels than that of Defect 1-2 along 

the N-S direction. Spatial discontinuity caused by bad pixels occurs as a horizontal line because GEMS scans the earth from 

east to west by sequentially recording scan images. Bad pixels of Defect 1-3 are stationary on the detector array, which causes 270 

measurements at certain latitudes unavailable. It is also noted that clouds are a main target making spatial discontinuity caused 

by bad pixels more noticeable with its high spatial variability. The spatial discontinuity is easily found in Fig. 10a because of 

the bad pixels inaccurately replaced with spatial interpolation. The PCA-Linear for Defect 3 shows better performance because 

the bad pixel positions easily found in Fig. 10a are entirely indistinguishable in Fig. 10b. The improvement is also found in 

Defect 2 (not shown), but with its narrower spatial gap compared to Defect 3, the improved results with PCA-ANN for Defect 275 

2 is not visually recognizable. For Defect 1, the spatial width of bad pixels along the N-S direction is narrower (two pixels 

width along the N-S direction) than that of Defect 2-3, which presents no significant difference between PCA-Linear and 

spatial interpolation. 
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(a) 

 

(b) 

Figure 10 Comparison of bad pixel replacement between (a) spatial interpolation and (b) the machine learning method for the radiance at 

487 nm for Defect 3 measured on 2 May 2021 (03 UTC). 280 

A closer inspection is performed to analyze the reproduced spectral features for Defect 2-3. In spectral analysis, the 

effectiveness of bad pixel replacement methods could be well demonstrated at the wavelengths where the input and output 

radiances are met. If the replacement is successful, the partly replaced spectrum should have continuous spectral features over 

the whole spectral range. The spectral range affected by bad pixels for each defect region is 300-400 nm and 484-491 nm, 

which corresponds to the range of output radiances for Defect 2-3, respectively. The rest part of a spectrum is input parameters 285 

for each defective region. As previously mentioned in Sect. 3.1., PCA-ANN shows better performance for Defect 2, while 

PCA-Linear is better for Defect 3 and thus each method is used for Defect 2 and 3, respectively. Figure 11 shows one of 

radiance spectra of Defect 2 and 3 from the GEMS measurement on 2 May 2021. For Defect 3 as shown in Fig. 11b, the 

reproduced spectrum with spatial interpolation shows totally unrealistic features compared to that with PCA-Linear because 

of the wider spatial gap of Defect 3. For Defect 2, however, the reproduced spectra with spatial interpolation and PCA-ANN 290 

show reasonable spectral features and the spectral discontinuity is not clearly discernible at the wavelength of 400 nm.  

 

(a) 

 

(b) 
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Figure 11 Radiance spectrum affected by bad pixels of (a) Defect 2 and (b) Defect 3 measured on 2 May 2021 (03 UTC). Bad pixel 

replacement is performed with spatial interpolation (red) and machine learning methods with PCA-ANN and PCA-Linear for Defect 2 and 

3, respectively. 

To deeply investigate the spectral features of replaced radiances for Defect 2-3, Fig. 12 analyzes reflectance spectra 295 

by dividing each radiance spectrum in Fig. 11 with the measured solar spectrum of GEMS. In reflectance, measurement noise 

from calibration processes could be cancelled out by normalizing earth radiance with measured solar irradiance. The 

Fraunhofer lines originating from the solar spectrum could also be cancelled out, which makes it easy to analyze spectral 

features of a spectrum without strong absorption lines. In Fig. 12a, spectral discontinuity with spatial interpolation is more 

obvious at 400 nm compared to the radiance spectrum in Fig 11a. For Defect 3, Fig. 12b also shows stable features with PCA-300 

Linear at the defective spectral range around 487 nm. It could also be seen that the measurement noise from the sensor could 

be successfully incorporated in the replaced spectrum with machine learning methods because the measured reflectance would 

have noise-like features if the noise is not properly reproduced in the radiance spectrum. Consequently, the results indicate 

that the machine learning methods are good enough to properly reproduce spectrally and spatially continuous features using 

spectral relations of radiances in the UV/VIS spectrum.   305 

 

(a) 

 

(b) 

Figure 12 Same as Fig. 11 for reflectance spectrum affected by bad pixels of (a) Defect 2 and (b) Defect 3. 

3.2 Evaluation 

3.2.1 Spatial and spectral inspection 

 For the quantitative evaluation of the reproduced spectra, certain areas are targeted which include each defect (Defects 1-3) 

and its surroundings where actual measurements regarded as ‘true’ could be obtained. The evaluation is made with the data 310 

measured on 10 March 2021 (06 UTC), which are excluded for the model training. The center longitude of the areas is set to 

128° E, which is identical with the sub-nadir longitude of GK-2B. Table 3 presents spectral ranges of Defects 1-3 and the 

target wavelengths for the analysis. Specifying the wavelengths for the analysis helps to specifically analyze the spectral 

patterns of absorption lines of trace gases and cloud properties. 
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Table 3 The spectral range of Defects 1-3 and target wavelengths for the analysis. The third column presents GEMS retrieval products of 315 
which each fitting window is overlapped with Defects 1-3.  

Defect 
Target 

wavelength 
GEMS Level 2 product Optimized model 

1 (400-500 nm) 432-450 nm CHOCHO, NO2 PCA-Linear 

2 (300-400 nm) 312-360 nm O3, HCHO, SO2, NO2, aerosol optical depth PCA-ANN 

3 (484-491 nm) 484-491 nm Cloud, AEH PCA-Linear 

 

The measured and the reproduced radiances with machine learning methods are directly compared, which are 

hereafter referred to as GEMS radiances and ML radiances. In Figs. 11-13, each column shows GEMS, ML radiances and the 

difference while the first and second rows show the radiances at representative wavelengths showing the smallest and the 320 

largest difference, respectively. Figure 11 shows the comparison results of the Defect 3 area, which presents the best 

performance compared to the Defect 1 and 2 areas. The difference in Fig. 11 is within ± 0.5% because the spectral gap of 

Defect 3 is narrower than the counterparts of Defects 1-2. For Defect 3, there is no scene dependence over the output 

wavelengths and the difference shows noise-like features and the spatial dependence originated from instrument artifacts.  

  

(a) 

 

  

(b) 

 

Figure 11 The GEMS, ML radiances and the difference (from left to right) at the wavelengths presenting (a) the smallest and (b) the largest 325 
difference for the Defect 3 area. The difference is calculated between the ML and GEMS radiances divided by the latter in percent. Bad 

pixels are marked in dark gray and the color bar range is ± 0.5%. The unit of RMSE is in percent divided by the mean radiance.  
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Figure 12 shows the Defect 1 area where the ML radiances are within about 5% of the GEMS radiances. It also shows 

that dark targets (clear sky with small radiance) show a positive difference while bright targets (mostly cloudy sky with large 

radiances) show an opposite tendency. The tendencies are also found on the other dates for different angle conditions. It seems 330 

the applied machine learning model (PCA-Linear) might have its limitation in describing the non-linear relations of angle 

conditions, scene properties and radiances causing the difference of about 5%.   

  

(a) 

 

  

(b) 

 

Figure 12 Same as Fig. 11 for the Defect 1 area with the color bar range of 10%. 

For the Defect 2 area, it is clear that the information from radiances of wavelengths longer than 400 nm is insufficient 

to effectively reproduce the spectral features at shorter wavelengths (consistent results with Figs. 8-9). Both output spectral 335 

ranges of Defects 2-3 are around 100 nm but it seems the output radiances near 300 nm for Defect 2 need more information to 

be successfully reproduced. The stripping feature found in Fig. 13b becomes significant at 312 nm for the ML radiances on 

the contrary to the radiances at 357.2 nm in Fig.13a. The stripping feature seems to be added during the reproducing process 

especially for shorter wavelengths, and the reason is still unclear. Another distinct feature found in Fig. 13 is that the difference 

in northern parts is very large with the difference of 10%. We suspect that the reason might be the VZA effect considering that 340 

VZA increases at the northern parts in the area. Without angle conditions as the input parameters for the model, the difference 

becomes doubled at 312 nm presenting similar patterns with the difference in Fig. 13b. This indicates the angle effect can be 

emulated in the model by applying VZA and SZA as the input parameters, but it is not fully resolved especially for the radiances 

at shorter wavelengths.  
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(a) 

 

  

(b) 

 

Figure 13 Same as Fig. 11 for the Defect 2 area with the color bar range of 10%. 345 

A closer inspection is performed to analyze the general spectral features over target wavelengths. Within each defect 

area in Figs. 11-13, the collected spectra are divided into four groups considering that ML radiances could have different 

systematic biases depending on the scene brightness as shown in Fig. 11. Figure 14a shows that the ML radiances for the 

Defect 1 area over dark scenes have a positive bias while brighter scenes have a negative bias. It is interesting that the scene 

dependence is only significantly found for Defect 1. It should be noted that the y-axis range of Fig.14b is wider than the figures 350 

for Defects 1 and 3. Figure 14b indicates that the ML radiances are overestimated except for the very darker scenes especially 

at shorter wavelengths and it can be deduced that the complicated atmospheric effects involving clouds at the shorter 

wavelengths would affect the reproducing process. Figure 14c shows relatively large difference at the spectral peaks, but 

generally the difference is smaller than 0.2% 
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(a) 

 

(b) 

 

(c) 
Figure 14 Mean difference between ML and GEMS radiances within the target area for (a) Defect 1, (b) Defect 2 and (c) Defect 3. Each 355 
color indicates the average for each quartile and Q1, Q2 and Q3 represent the first, second and third quartile, respectively. The difference is 

calculated between the ML and GEMS radiances divided by the latter in percent. 

Besides the shorter wavelengths of Defect 2, the comparison between ML and GEMS radiances is presented by 

targeting Fraunhofer lines from 390 to 400 nm (see Fig. 14). The Ring effect caused by rotational Raman scattering can be 

found over the two peaks in Fig. 14a, which is generally known to be very small and largely affected by clouds (Joiner et al., 360 

1995). Figure 14b shows that PCA-ANN reproduces the dominant features at the peaks very well on average within 0.6%, but 

it seems the difference increases with darker scenes where the Ring effect becomes stronger. This indicates that the ML 

radiances would need additional information to successfully reproduce the exact spectral features especially for the very small 

signals such as the Ring effect.  

 

(a) 

 

(b) 
Figure 15 (a) Mean ML radiances (b) and the difference with GEMS radiances at Fraunhofer lines for the Defect 2 area. Each color 365 

indicates the average for each quartile and Q1, Q2 and Q3 represent the first, second and third quartile, respectively. The difference is 

calculated between the ML and GEMS radiances divided by the latter in percent. 

3.2.2 PCA-based spectral analysis 

As applied in the pre-processing step for the present research, PCA is a very useful tool to capture the meaningful variances 

and it has been widely used to retrieve environmental and surface properties (Horler and Ahern, 1986; Joiner et al., 2016; Li 370 

et al., 2013, 2015). To investigate further the spectral patterns, we apply PCA to GEMS radiances collected within each area 

in Fig. 11-13 at the target wavelengths (see Table 3). With PCA, various spectral patterns are compressed to PC scores and 
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this indicates that if a spectrum has disparate spectral patterns, the PC scores would also have distinct values when comparing 

with the PC scores of normal spectra. Figure 15 presents the PC scores of GEMS and ML radiances which are projected with 

the identical eigenvector matrix (corresponding to X in Eq. 1) constructed from GEMS radiances. The Defect 3 area is targeted 375 

for the inspection which has the widest defective width along the north-south direction and the second PC scores are used for 

the analysis because the first PC scores represent mean radiances as discussed in Sect. 3.1.1. For the comparison, the radiances 

reproduced with spatial interpolation on the bad pixel area are projected together as shown in Fig.15a. As assumed, the PC 

scores from reproduced spectra with spatial interpolation show disparate values because the spectral patterns of the interpolated 

spectra are inconsistent with the patterns of normal spectra. The ML radiances in Fig. 15b show spatially homogenous PC 380 

scores which indicates that the machine learning methods could properly reproduce the dominant spectral patterns, in the case 

of the second PC.  

 

(a) 

 

(b) 
Figure 15. The second PC scores of (a) GEMS radiances and (b) ML radiances on the target area for Defect 3. The PC is scaled for clarity 

of presentation.  

The dominant spectral patterns for each PC are presented in Fig. 16 with the eigenvector matrix constructed from 385 

GEMS radiances for the target wavelengths of Defects 1-3. Each color indicates the eigenvectors for the first-sixth PCs which 

determine the contribution of radiances at each wavelengths for each PC subspaces. Li et al. (2015) verifies that the leading 

PCs from the UV/VIS backscattered radiation (shorter than 360 nm) are highly correlated with dominant absorption features 

and surface properties and the trailing PCs might be associated with instrument artifacts and other unresolved spectral features 

with PCA. Similarly, Fig. 16 shows that the eigenvector for the first PC corresponds to the mean spectrum and the eigenvector 390 

for the second-sixth PCs show dominant spectral patterns originated from absorption features of trace gases, surface properties 

and unresolved features. Considering that the dominant patterns could be identically found in the eigenvectors constructed 

from GEMS reflectance (not shown), it can be deduced that the patterns are extracted from the spectral features caused by 

atmospheric interactions rather than instrument artifacts.  
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Figure 16 Eigenvector of the first-sixth PCs applied to GEMS radiances for the target wavelengths of (a) Defects 1, (b) Defect 2 and (c) 395 
Defect 3. All eigenvectors are scaled (min-max scaling) and shifted for clarity of presentation. 

As presented in Table 4, the comparison of PC scores could indirectly provide the information on the similarity of 

the dominant patterns between ML and GEMS radiances with the correlation coefficient. The results show that the mean 

spectral pattern (the first PC) and some dominant patterns could be well reproduced with the suggested models, but other 

spectral features such as the second PC for Defect 2 have difficulty obtaining valid information from input radiances for 400 

accurate reproduction. The contribution to the original radiances from each PC might be very small except for the first PC 

because even the leading PCs have small explained variance ratio for hyperspectral data in UV/VIS spectrum. However, 

considering the results in Figs. 14-15, it would be enough to determine the exact spectral patterns significantly related to the 

important information for the retrieval process, which needs to be investigated further.  

Table 4. Correlation coefficient between PC scores of GEMS and ML radiances for the target areas of Defects 1-3 with the exception of 405 

bad pixels.  

Defects PC 01 PC 02 PC 03 PC 04 PC 05 PC 06 

Defect 1 0.9999 0.9976 0.8172 0.9779 0.6846 0.6609 

Defect 2 0.9999 0.8129 0.9876 0.4294 0.7035 0.5046 

Defect 3 0.9999 0.9962 0.9787 0.6644 0.5399 0.2649 

4 Conclusions 

GEMS is an environmental sensor measuring hyperspectral radiances from 300 to 500 nm in the Asia-Pacific region for timely 

atmospheric monitoring. During the IOT of GEMS, one of calibration issues was found that erroneous values of bad pixels on 

the detector array are not properly replaced with spatial interpolation, the current operational method of GEMS. It is clear that 410 

when the bad pixel area is too large, the spatial interpolation tends to cause high interpolation error especially for a scene 

having large spatial inhomogeneity (i.e. cloud edges). The high interpolation error of bad pixels could affect to the retrieval 

process, which causes horizontal discontinuity at a certain latitude for the retrieval of Level 2 products.  

To resolve the issue, this study suggests machine learning methods using PCA-ANN and PCA-Linear to fill in the 

the spectral gaps caused by bad pixels, denoted as Defects 1-3 in this study. The basic assumption of this approach is that 415 

radiances of a spectrum have strong linear and non-linear relations, which could be emulated with the ANN and multivariate 

linear regression. The spectral range of output radiances corresponds to the wavelengths of bad pixels, while the input radiances 
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correspond to the rest part of a spectrum for Defects 1-3, respectively. Considering that input radiances have strong linear 

relations, dimensionality reduction with PCA is applied in the pre-processing step to reduce linear relations of input radiances 

and to increase computational efficiency of training process.  420 

In the results, PCA-Linear model presents smaller prediction errors for the defective region having strong linear 

relations between input and output radiances (Defect 1) or having a narrower spectral gap (Defect 3). The PCA-ANN model 

is better for the output radiances having strong non-linear relations with input radiances (Defect 2). The narrower the spectral 

range of output radiances is, the smaller the prediction error is because the prediction error of Defect 3 is around 0.5%, while 

it is around 5% for Defects 1 and 2 except for the shorter wavelengths around 300 nm. The comparison results between 425 

measured and reproduced radiances show that the dominant spectral patterns could be successfully reproduced for the spectral 

gap-filling mostly within 5%, while the spectral patterns determined by very small signals such as the Ring effect would be 

insufficiently reproduced with the suggested methods. The extracted spectral patterns using PCA also present the similar results 

showing highly correlated PC scores for the first PC for Defect 1-3 regardless of the models, while the PCs determining subtle 

spectral features are relatively less correlated especially for Defect 1-2.  430 

When the trained model is applied to the actual bad pixels, the spectral gap of bad pixels is properly replaced 

presenting continuous spectral features especially for Defect 2 and 3. The bad pixel replacement with PCA-Linear and spatial 

interpolation for Defect 1 is almost same considering the narrower spatial gap of Defect 1.  

 To apply the methods in operation, however, it needs to be updated further to solve the following issues. The machine 

learning model, especially the PCA-ANN model, becomes highly unstable when measurement characteristics of training and 435 

test data significantly change. If measurements have high seasonal dependence, then the time lag between training and test 

data should be as shorter as possible to guarantee that both data are sampled from an identical population considering the basic 

premise of ANN. It is empirically found that the time lag between training and test data should not be over two weeks for 

GEMS which could be technically demanding in operation. Secondly, the radiance at shorter wavelengths (around 325 nm) of 

Defect 2 has high prediction error of over 5%, which is higher than the level of radiometric calibration accuracy of GEMS 440 

(4%). To increase prediction accuracy at strong absorption lines and describe precise spectral features, additional information 

would be needed besides the spectral relations of radiances in a spectrum.it needs to be updated further. 

Considering that the number of bad pixels would increase in operation as did in Ozone Mapping and Profiler Suite 

(OMPS) (Seftor et al., 2014), an efficient way of replacing bad pixels would be necessary for the long-term operation of GEMS. 

It is also highly possible that an unexpected issue could occur such as the row-anomaly of Ozone Monitoring Instrument (OMI) 445 

(Schenkeveld et al., 2017), machine learning methods suggested in this study can be a useful tool for filling in the a spectral 

gap and increasing the number of data reserving measurement characteristics of the sensor.  
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