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Abstract. Earth radiances in the form of hyperspectral measurements contain useful information on atmospheric constituents 

and aerosol properties. The Geostationary Environment Monitoring Spectrometer (GEMS) is an environmental sensor 

measuring such hyperspectral data in the ultraviolet and visible (UV/VIS) spectral range over the Asia-Pacific region. After 

completion of the in orbit test (IOT) of GEMS in October 2020, bad pixels are found as one of remaining calibration issues. 10 

Bad pixels result in obvious spatial gaps in the measured radiances as well as retrieved properties. To solve the fundamental 

cause of the issue, this study takes an approach reproducing the defective spectra with machine learning models using artificial 

neural network (ANN) and multivariate linear regression (Linear). Here the models are trained with defect-free measurements 

of GEMS after dimensionality reduction with principal component analysis (PCA). Results show that the PCA-Linear model 

has small reproduction errors for a narrower spectral gap and less vulnerable to outliers with an error of 0.5-5%. On the other 15 

hand, the PCA-ANN model shows better results emulating strong non-linear relations with an error of about 5% except for the 

shorter wavelengths around 300 nm. It is demonstrated that dominant spectral patterns can be successfully reproduced with 

the models within the level of radiometric calibration accuracy of GEMS, but a limitation remains when it comes to finer 

spectral features. When applying the reproduced spectra to retrieval processes of cloud and ozone, cloud centroid pressure 

shows an error of around 1% while total ozone column density shows relatively higher variance. As an initial step reproducing 20 

spectral patterns for bad pixels, the current study provides the potential and limitations of machine learning methods to improve 

hyperspectral measurements from the geostationary orbit. 

1 Introduction 

Earth radiances provide useful information on the atmospheric chemical composition, especially when it is measured in the 

form of many contiguous spectral bands. This type of measurements is referred to as ‘hyperspectral’ (Bovensmann et al., 1999; 25 

Goetz et al., 1985) which is sampled with high spectral resolution to accurately describe absorption lines of targeted gaseous 

or particulate components (Boersma et al., 2004; Loyola et al., 2011; Hedelt et al., 2019; Manolakis et al., 2019; Kang et al., 

2020). The Geostationary Environment Monitoring Spectrometer (GEMS) on-board the Geostationary Korea Multi-Purpose 

Satellite-2B (GEO-KOMPSAT-2B) is an environmental sensor providing such a hyperspectral measurement in the ultraviolet 
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and visible (UV/VIS) spectral region from 300 to 500 nm with a spectral resolution of finer than 0.6 nm (Kim et al., 2020; 

Kang et al., 2022). Following the launch of the satellite in February 2020, the in orbit test (IOT) of GEMS was successfully 70 

completed in October 2020 with some issues to be  continuously monitored on the radiance level (Level 1B) with collected 

long-term measurements (Schenkeveld et al., 2017; Pan et al., 2019; Lee et al., 2020; Ludewig et al., 2020) 

One of the issues to be periodically monitored is bad pixels, which refer to anomalous pixels having hot, cold, noisy 

or drifted readout values in raw data (Han et al., 2002; Lo´pez-Alonso and Alda, 2002). The definition of bad pixels is not 

universal, and in this paper, it refers to all kinds of pixels having abnormal observation features. The impact of bad pixels to 75 

the GEMS data products is obvious because the given areas affected by bad pixels cannot provide any measured information. 

It causes spatial discontinuity in Level 1B data and retrieved properties (Level 2) by affecting retrieval processes with 

contaminated spectral features. The defective region is not large so far, but the area could be enlarged as time goes by (Kieffer, 

1996) and the missing areas may increase possibly including scientifically important regions especially for environmental 

monitoring.  80 

Because there is a constant measurement gap for certain areas in the GEMS field of regard (FOR), one could need 

alternative information for the areas for practical or scientific reasons. To supplement the information and investigate the 

applicability of machine learning, this study focuses on replacing the Level 1B radiances using spectral relations with simple 

machine learning methods. One of advantages of replacing Level 1B data (not the Level 2) is that improving spectral features 

can be an efficient way to solve the bad pixel issue for all Level 2 products. The proposed approach places more emphasis on 85 

efficiency and further applicability of machine learning, even though the spatial gaps in Level 2 data can be filled with a 

suitable method for each product with higher accuracy (e.g., variogram or mathematical filters) (Fang et al., 2008; Katzfuss 

and Cressie, 2011; Guo et al., 2015; Llamas et al., 2020; Yang et al., 2021). Another advantage is that the approach helps the 

current retrieval algorithms avoid bad pixel effects without further development. The GEMS cloud height retrieval algorithm, 

for instance, had to modify the fitting window during the IOT because the targeted O2-O2 absorption lines (around 477 nm) 90 

are affected by bad pixels. The proposed approach, however, has the potential to reproduce the O2-O2 absorption features with 

the information from unaffected wavelengths (e.g., rotational Raman scattering lines) by applying spectral replacement. If it 

is successful, the retrieval can avoid bad pixel effects without further algorithm development. The main question to be 

answered for that is whether non-linear spectral relations could be effectively emulated with spectral replacement using 

machine learning techniques. 95 

For atmospheric remote sensing, the majority of researches has employed machine learning as a proxy of the radiative 

transfer model to retrieve geophysical states from measured spectral radiances (Loyola et al., 2018; Zhu et al., 2018; Hedelt et 

al., 2019). There are fewer approaches applied to obtain radiation flux (Dorvlo et al., 2002; Zarzalejo et al., 2005) and even 

much fewer to obtain hyperspectral radiances to accurately quantify radiative forcing in climate system (Taylor et al., 2016), 

increase spectral resolution (Le et al., 2020) and fill in a spectral gap for inter-calibration (Wu et al., 2018). A monochromatic 100 

radiance itself rarely contains any important meaning and thus seldom has it been a final target. In this study, however, radiance 

at each wavelength for a targeted spectral region is an important output to be reproduced with machine learning models, 
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artificial neural network (ANN) and multivariate linear regression. Theoretically, ANN can accurately emulate non-linear 

relations with a simple model structure using large training data (Cybenko, 1989; Hornik et al., 1989). Machine learning 210 

methods also have a high chance to successfully process hyperspectral data because the abundant datasets make the training 

process more efficient after breaking the curse of dimensionality with a proper pre-processing step (Gewali et al., 2018). 

Principle component analysis (PCA) is applied for that in this study, which is useful to extract important information from 

hyperspectral measurements (Horler and Ahern, 1986; Bajorski, 2011; Li et al., 2013, 2015; Joiner et al., 2016). 

The following sections are organized as follows. Section 2 introduces sensor specification of GEMS and a general 215 

description of machine learning models with model structure and hyperparameter setting. Section 3 contains model 

optimization results and error analysis for wide defect regions. With the optimized model, the spatial and spectral inspection 

is performed for reproduced radiances and retrieved properties. In Sect. 4, conclusions are presented with limitations as well 

as further application in future study. 

2 Data and methods 220 

2.1 Data description 

2.1.1 GEMS 

GEMS is a UV/VIS imaging spectrometer in the geostationary orbit observing the Asia-Pacific region (5° S-45° N, 75° E-145° 
E) with high spatial and spectral resolution to retrieve key atmospheric constituents such as ozone (O3), sulfur dioxide (SO2), 

nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO) and aerosol properties (Kim et al., 2020). The 225 

observation targets of GEMS are the Sun (irradiance mode) and the Earth (radiance mode) and the description for each 

measurement mode is summarized in Table 1. In both measurement modes, incident light from a scene passing through a fore-

optics and a spectrometer reaches to a two-dimensional detector array, the charge-coupled device (CCD) detector. The CCD 

of GEMS comprises 2,048 rows and 1,033 columns of photoactive pixels along the spatial direction from north to south and 

the spectral direction with a sampling interval of 0.2 nm, respectively. GEMS observes the Sun on the purpose of calibration 230 

once a day. For Earth measurements, GEMS measures the backscattered radiation from east to west about 700 times by moving 

a scan mirror and for each scan, 2048 pixels in total are obtained along the north-south direction. All measurements at each 

scan position are combined to cover the full FOR of GEMS. The data used in this study are the operational data (Level 1C) 

which are used for the retrieval processes of Level 2 products.  

 235 

Table 1 Top level measurement specifications of GEMS 

Measurement mode Solar irradiance Earth radiance 

Data dimension 
[spectral, spatial, scan] 

[1033, 2048] 
[1033, 2048, 695] 
(nominal scene) 

Spectral range [nm] 300-500 
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Spectral sampling 
[nm/pixel] 

0.20 

Spectral resolution [nm] < 0.60 

Spatial resolution [km2] - 
3.5 ×	8 

(spatial × scan) 

Measurement frequency 
Once a day 

(13:00 UTC) 
Every hour 

(00:45-07:45 UTC) 

2.1.2 Bad pixel 245 

Bad pixel detection is generally performed with dark-current measurements which are taken without exposure to light for a 

certain integration time (Howell, 2006), about 70 milliseconds for GEMS. The bad pixel detection is based on the sensor 

characterization sorting out erroneous signals from a normal trend. Figure 1 illustrates bad pixel positions (in white) on the 

GEMS CCD detector array. A cluster and distinct line shapes of bad pixels shown in Fig. 1a were initially identified during 

on-ground calibration before the launch. Some pixels were additionally sorted out during the IOT possibly due to the impacts 250 

from the launch environment conditions in space. Following the suggestions made by the instrument developers, linear 

interpolation along the spatial direction (north-south) is applied to replace the measurements on bad pixel positions (Fischer 

et al., 2007; Schläpfer et al., 2007). However, it was found during the IOT that significant interpolation error could be 

introduced on the bad pixel positions denoted as Defects 1-3 (see Fig. 1b), especially when the spatial width of the bad pixels 

is too wide such as in Defects 2-3. Especially, when a scene on the Earth dramatically changes, discontinuity caused by the 255 

interpolation becomes more apparent. 

 

 

 

 

 

(a) (b) 
Figure 1 The two-dimensional bad pixel map (a) on the GEMS CCD detector along the spectral (x-axis) and spatial direction (y-axis) and 
(b) zooming in the bad pixel positions from top to bottom rows for Defects 1-3. Bad pixels are marked in white.  

The interpolation error seriously affects Level 2 products of which the spectral fitting windows are overlapped with 260 

bad pixel areas. For instance, cloud properties and aerosol effective height (AEH) of GEMS are retrieved from O2-O2 

absorption bands around 477 nm (Choi et al., 2021; Kim et al., 2021) where the cluster of bad pixels is located (Defect 3). 

During the IOT, Defect 3 caused spatial discontinuity to the retrieved cloud and AEH distribution, which made the fitting 
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window of the products moved to avoid bad pixel effects. Ozone retrieval is also affected by Defect 2 (300-400 nm) as the 275 

spectral radiances within 300-380 nm are major ozone absorption lines in the UV/VIS spectral range (Bak et al., 2019). Even 

though spatially interpolated radiances are homogeneous with its surroundings (see Fig. 2), the spectral patterns are not 

properly reproduced with the operational method (spatial interpolation) causing distinct horizontal lines in the retrieved 

products (to be discussed in Sect. 3.2 2). 

 280 

 
(a) 

 
(b) 

Figure 2 Spatial distribution of GEMS radiances at 312 nm with bad pixels (a) marked in dark gray and (b) reproduced with spatial 
interpolation. The GEMS spectra were measured on 10 March 2021 (06 UTC). 

2.2 Replacement approach 

2.2.1 General description 

Upwelling radiances are determined by the interactions of light with trace gases, aerosols and clouds in the atmosphere and 285 

surface reflection. Spectral replacement is based on the fact that radiances at different wavelengths for a scene have certain 

spectral relations (Liu et al., 2006; Wu et al., 2018) with which missing values in a spectrum could be reproduced. To 

investigate this, randomly collected GEMS spectra measured on defect-free pixels are used to establish the relations with the 

basic premise that neighboring pixels on the detector array (set to within 100 spatial indices) would have similar measurement 

characteristics. 290 

Because it is highly possible that input radiances have redundant information, PCA is applied for dimensionality 

reduction to compress the input radiances to low-dimensional principle components (PCs). The strong linear relations among 

radiances in a spectrum are compressed to the first PC, which has the largest variance. The non-linear properties caused by 

atmospheric scattering, absorption, different optical paths and sensor noise are projected onto the subsequent PC subspaces. 

The PCA process is given by the following Eq. (1): 295 

$!×# = &!×$'$×#                                 (1) 
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where Z, X and W represent the PC scores, input and PC matrix, respectively. The PC scores matrix (Z) is obtained by 

projecting the input to the PC subspaces with W, which is obtained by applying eigenvalue decomposition to the X. The 320 

subscript n, ( and p indicates the dimension of matrix corresponding to the number of datasets, input wavelengths and the 

number of PCs, respectively.  

With the compressed data, multivariate linear regression (PCA-Linear) and ANN (PCA-ANN) models are trained to 

define the relations between input (Xm) and output (Yn) radiances in a spectrum. The PCA-ANN model is constructed with a 

simple feed-forward model with a hidden layer as described in Fig. 3. In the model optimization process, the PCA-ANN model 325 

with a hidden layer showed faster and more effective convergence of loss function than the models having multi-hidden layers 

in this study. For PCA-Linear, it adopts a simple linear model structure consisting of parameters such as weight and bias having 

the minimum mean squared error (MSE) between the regressed and measured radiances. After model optimization, bad pixels 

(X’m, Y’n) are replaced with reproduced radiances likely measured by the sensor. 

 330 

 

Figure 3 Schematic chart of the training and bad pixel replacement process. W and b represent weight and bias parameters in each layer. 
The subscript m, n, p and k is equal to the spectral dimension of input and output parameters, the number of PCs and hidden nodes of the 
ANN model, respectively. 

2.2.2 Input/output and model optimization 335 

For the model training, radiances in a spectrum are divided into input and output radiances based on the specified spectral 

ranges in Table 2. The spectral ranges of output radiances for Defects 1-3 are identical to each defective region while the rest 

part of a spectrum are the input radiances. The randomly selected GEMS measurements for a month (March 2021) are split 

into training and test data, which are used to update model parameters and to check for overfitting, respectively. To mitigate 

oversampling of certain scenes (dark scenes in this case), the sampling process should be carefully performed to avoid unstable 340 

training. The datasets for the models are interpolated at identical spectral grids in a pre-processing step and then are reversely 

interpolated onto its original spectral grids after the reproduction. Considering that the intrinsic information could be lost 

during the interpolation processes, finer spectral grids (0.1 nm) are adopted for the model to minimize interpolation errors by 
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preserving radiances at more frequent intervals. The solar zenith angle (SZA) and viewing zenith angle (VZA) are key variables 

determining optical paths of upwelling and downwelling radiances and thus are used as input variables together with radiances.  

The neural network constructed with the hyperparameter settings presented in Table 2 is implemented with 

TensorFlow, a high-level Application Programming Interface (API) written in Python. As described in Fig. 4, the activation 365 

function is the Rectified Linear Unit (ReLU) in the hidden layer of the ANN model. The structure itself is not complicated but 

it has multiple nodes in the input and output layers, which makes ReLU more competitive (Nwankpa et al., 2018). The 

hyperbolic tangent (tanh) and sigmoid function show poor results especially when the output parameters have lower variance 

making the optimization stuck into the averaged value and preventing the model from being updated.  

 370 

Table 2 Input and output (I/O) parameters for ANN training and hyperparameter for optimization of neural network. 

Model Parameter Defect 1 Defect 2 Defect 3 Remark 

I/O 
Input (Xm) 

SZA / VZA Random selection 
(100,000 for 
training and 

test data) 

300-400 nm 400-500 nm 
460-483.9 / 

491.1-500 nm 
Output (Yn) 400.1-500 nm 300-399.9 nm 484-491 nm 

Hyper-
parameter 

Activation 
function 

ReLU  

Optimizer Adam optimizer  
Loss function Mean squared error  

Scaling Standardization  
 

For the optimizer, Adaptive Moment Estimation (Adam) is used which shows stable results compared to Stochastic 

Gradient Descent (SGD) and Root Mean Square Propagation (RMSProp) (Kingma and Ba, 2015). It is empirically found that 

SGD without gradient clipping tends to cause exploding gradient and RMSProp has difficulty reaching the global minima 375 

compared to Adam. Figure 5 presents the converging process of the PCA-ANN model for Defect 2 applying different 

optimizers with and without SZA and VZA conditions. The addition of angle conditions as input parameters speeds up the 

model convergence with smaller MSE because without the angle parameters, the information would be implicitly elicited in 

the optimization process. The model converges with angle conditions at 44, 98 and 33 epochs for Adam, SGD and RMSprop, 

respectively. Adam converges at the smallest MSE while SGD converges with the highest MSE. RMSprop presents unstable 380 

loss for validation data and converges with higher MSE compared to Adam.  
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(a) 

 

(b) 
Figure 4 Training and validation losses for Defect 2 (a) with and (b) without the angle conditions as input parameters with different 
optimizers such as Adam (black), SGD with the gradient clipping value of 0.5 (blue) and RMSprop (orange).  

3 Results and discussion  

3.1 Model optimization  

Figure 5 shows model optimization results depending on each model and the number of PCs as the input nodes. Because the 390 

spectral range of output radiances differs for each defect region (Defects 1-3), model optimization is also separately performed. 

The spectral ranges of output radiances for Defects 1 and 2 are wider than that of Defect 3 which results in higher MSE. PCA-

ANN seems to be unstable for Defect 1 showing overfitting which might be caused by unfiltered outliers in output radiances 

of GEMS at the wavelengths longer than 480 nm. Defect 2 contains ozone absorption lines, which increases non-linearity 

between input and output radiances. Because of the strong non-linearity, PCA-ANN shows better performance than PCA-395 

Linear for Defect 2. Defect 3 has the smallest number of output parameters in a narrow spectral gap which causes strong 

correlation between input and output radiances as shown in Fig. 5c. In short, the optimized number of PCs is set to 90 for all 

defect regions when loss functions for both training and test data converge, with PCA-Linear for Defects 1 and 3 and the PCA-

ANN model for Defect 2. 

 400 
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Figure 5 Loss function depending on the number of PCs with PCA-ANN (red) and PCA-Linear (black) models for spectral replacement 
with training and test datasets for Defects 1-3 ((a): Defect 1, (b): Defect 2 and (c): Defect 3). The number of hidden nodes for ANN is double 
the number of PCs. 

 The model performance is evaluated with training and test datasets specified in Table 2. Figure 6 presents mean and 

normalized root mean squared error (NRMSE) of the output radiances for both datasets. The NRMSE is a statistical indicator 415 

normalized by the mean radiance at each wavelength showing that radiances at strong absorption lines have higher uncertainty. 

Especially, the radiances in 400-500 nm provide insufficient information to properly represent ozone absorption features at the 

wavelengths shorter than 325 nm in Defect 2. Defect 1 also has higher errors around the edges of output spectral ranges where 

pixel saturation occurs. Defect 3 shows the smallest NRMSE of around 0.2% because of strong linear relations between input 

and output radiances. The results show that it is possible to successfully reproduce spectral features at a narrower spectral 420 

range even with simple linear regression.  

 

 
(a) 

 
(b) 

Figure 6 Output radiances for Defect 1-3 with averaged spectra and NRMSE for (a) training and (b) test datasets measured in March 2021. 
The unit of NRMSE is in percent. 

3.2 Evaluation 

3.2.1 Spatial inspection 

For quantitative evaluation, we investigated each defect area (Defects 1-3) and its surroundings where actual measurements 

regarded as ‘true’ exist. The evaluation is made with the data measured on 10 March 2021 (06 UTC), which are excluded for 

the model training. Table 3 presents spectral ranges of Defects 1-3 and the target wavelengths for the analysis. Targeting the 430 

wavelengths helps analyze the exact spectral patterns. 
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Table 3 The spectral range of Defects 1-3 and target wavelengths for the analysis. The third column presents GEMS retrieval products of 480 
which each fitting window is overlapped with Defects 1-3.  

Defect 
Target 

wavelength 
GEMS Level 2 product Optimized model 

1 (400-500 nm) 432-450 nm CHOCHO, NO2 PCA-Linear 
2 (300-400 nm) 312-360 nm O3, HCHO, SO2, NO2, aerosol optical depth PCA-ANN 
3 (484-491 nm) 484-491 nm Cloud, AEH PCA-Linear 

 

The measured and reproduced radiances with machine learning methods are directly compared, which are hereafter 

referred to as GEMS radiances and ML radiances. In Figs. 7-9, each column shows GEMS, ML radiances and the difference 

while the first and second rows show the radiances at the wavelengths showing the smallest and the largest differences, 485 

respectively. Figure 7 shows the comparison results of the Defect 3 area, which represents the best performance among the 

three defect areas. The difference in Fig. 7 is within the range of ± 0.5% because the spectral gap of Defect 3 is narrower than 

the counterparts of Defects 1-2. For Defect 3, there is no distinct scene dependence over the output wavelengths and the 

difference shows noise-like features originated from instrument artifacts. One thing to be noted is that the results presented 

here is calculated at the finer spectral grids of 0.1 nm before interpolating to the original spectral grids. After the interpolation, 490 

the difference especially at strong peaks in a spectrum could increases by 0.5% for Fig. 7b.   
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Figure 7 Spatial distribution of GEMS, ML radiances and the difference (from the first to the third column) at the wavelengths presenting 500 
(a) the smallest and (b) the largest differences for the Defect 3 area. The difference is calculated between the ML and GEMS radiances 
divided by the latter in percent. Bad pixels are marked in dark gray and the color bar range is ± 0.5%. The unit of NRMSE is in percent 
divided by mean radiance.  

Figure 8 shows the Defect 1 area where differences between GEMS and ML radiances are within about 5%. It shows 

that dark targets (clear sky with low radiance) show a positive difference while bright targets (mostly clouds with high radiance) 505 

show the opposite. The tendency is also found on the other dates for different angle conditions. It seems the applied machine 

learning model (PCA-Linear) might have its limitation in describing the non-linear relations of angle conditions, scene 

properties and radiances causing the difference of about 5%.   
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Figure 8 Same as Fig. 7 for the Defect 1 area with the color bar range of 5%. 510 

For the Defect 2 area, the information from radiances at the wavelengths longer than 400 nm is insufficient to 

effectively reproduce the spectral features at shorter wavelengths (consistent results with Fig. 6). Both Defects 2-3 have the 

output spectral ranges of about 100 nm but it seems the output radiances near 300 nm for Defect 2 need more information to 

be successfully reproduced. Especially, the stripping features found in Fig. 9b are more significant at 312 nm for the ML 

radiances compared to Fig. 9a. The stripping features seem to be added during the reproducing process especially for shorter 515 

wavelengths, and the reason is still unclear. We suspect that unpredictable noises from the instrument would cause the features 

and it seems more distinguishable in low signals. The scene dependence found in Fig. 8 is also dominant in Fig. 9 at shorter 
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wavelengths, but with the opposite tendency. It is also shown that some areas undetected as bad pixels cause big differences 535 

over the areas close to the spatial index of 1240 in Fig. 9.  
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(b) 

 

Figure 9 Same as Fig. 8 for the Defect 2 area with the color bar range of 5%. 

3.2.2 PCA-based analysis 

To further characterize the reproduced spectral patterns, we apply PCA to GEMS radiances collected within each area in Fig. 540 

7-9 at the target wavelengths (see Table 3). With PCA, various spectral patterns are compressed to PC scores. If a spectrum 

has disparate spectral patterns, the PC scores would have distinct values compared to the PC scores of defect-free spectra. 

Figure 10 shows the PC scores of GEMS and ML radiances projected with the identical eigenvector matrix (corresponding to 

X in Eq. 1) constructed with GEMS radiances. The Defect 3 area is presented for the visual inspection with the second PC 

scores because the first PCs mostly represent mean radiances. The radiances reproduced with spatial interpolation on the bad 545 

pixel area show disparate values as shown in Fig. 10a. The ML radiances in Fig. 10b show spatially homogenous PC scores 

on the contrary because the machine learning methods properly reproduce dominant spectral patterns.  
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(a) 

 
(b) 

Figure 10 The second PC scores of (a) GEMS radiances and (b) ML radiances on the target area for Defect 3. The PC is scaled for clarity 580 
of presentation. 

The dominant spectral patterns for each PC are presented in Fig. 11 with the eigenvector matrix constructed from 

GEMS radiances for the specified target wavelengths in Table 3. Each color indicates the eigenvector for the first-sixth PCs 

contributing to total radiances at each wavelength. Li et al. (2015) verified that the leading PCs (shorter than 360 nm) mainly 

represent dominant absorption and surface properties, while the trailing PCs are associated with instrument artifacts and 585 

unresolved spectral features, as similarly shown in Fig. 11.  
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(c) 

Figure 11 Eigenvector of the first-sixth PCs applied to GEMS radiances for the target wavelengths of (a) Defects 1, (b) Defect 2 and (c) 
Defect 3. All eigenvectors are scaled (min-max scaling) and shifted for clarity of presentation. 

As presented in Table 4, comparing PC scores provides qualitative information on the effectiveness of the suggested 590 

method. The results show that the mean spectral pattern (the first PC) and dominant patterns could be reproduced with 

sufficient information. However, other spectral features such as the third PC for Defect 1 or the second PC for Defect 2 show 

insufficient information available from input radiances. As shown with the explained variance ratio (EVR), each PC except 

the first one may contribute to a small extent to total radiances. However, it could be enough to determine subtle spectral 

patterns, which are important for retrieval processes. The effectiveness of spectral replacement could be glimpsed in the results, 595 

which will be discussed further in the following section with retrieval results.   

Deleted: 11

Deleted: 12

Deleted: from the UV/VIS backscattered radiation 

Deleted: features 600 

Deleted: might be

Deleted: other 

Deleted: with PCA 

Deleted: 12

Deleted: 12605 

Deleted: some 

Deleted: an

Deleted: sufficiently 

Deleted:  with the suggested models,

Deleted: but 610 

Deleted: have 

Deleted: difficulty obtaining valid information 

Deleted:  for accurate reproduction

Deleted: Given 

Deleted: but 615 

Deleted: The interesting finding is that only for Defect 3, the 
leading PCs having relatively higher explained variance ratio show 
high correlation coefficients over 0.95. 

Deleted: for each spectral region 

Deleted: process620 



14 
 

 

Table 4 Correlation coefficients (Corr.) of PC scores of GEMS and ML radiances and explained variance ratios (EVR) of GEMS radiances 
for each target region in Fig. 8-10 excepting bad pixel area. 

PC 
Defect 1 Defect 2 Defect 3 

Corr. EVR Corr. EVR Corr. EVR 

1 0.9999 99.9906 0.9998 99.9504 1.0000 99.9953 
2 0.9983 0.0070 0.8672 0.0294 0.9976 0.0038 
3 0.8511 0.0007 0.9857 0.0135 0.9863 0.0003 
4 0.9731 0.0006 0.5469 0.0019 0.8147 0.0001 
5 0.6646 0.0001 0.8454 0.0012 0.6079 0.0001 
6 0.7999 0.0001 0.7197 0.0005 0.7815 0.0001 

3.3 Level 2 retrieval results 

3.3.1 Cloud and ozone retrieval 625 

In the previous section for radiances, the overall prediction error with the suggested method is about 5% except for ozone 

absorption lines. The next question is whether the reproduced spectral features are applicable to retrieval processes. Even if 

the trained models accurately reproduce radiances at each wavelength, the Level 2 retrieval could be unsuccessful if non-linear 

relations are too elusive to be properly emulated with the model. To prove this, we performed the cloud retrieval with the 

fitting window in 460.2-490.0 nm containing bad pixels. The replaced radiances at O2-O2 absorption lines related to Defect 3 630 

have the smallest error of 0.5% and the retrieval is successful as shown in Fig. 12. Without the replacement, the retrieved cloud 

centroid pressure showed unrealistic values on bad pixel areas. Figure 12 presents cloud centroid pressure retrieved with ML 

and GEMS spectra by zooming in defect-free areas to analyze cloud distribution. The difference of cloud centroid pressure 

between Figs.12a and 12b is about 1% on average while the cloud properties of ML spectra have weak stripping features. The 

spectral range of Defect 3 is very narrow within the fitting window and thus the replacement errors could be small enough not 635 

to cause additional retrieval errors. 
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(b) 

Figure 12 Spatial distribution of cloud centroid pressure retrieved with (a) GEMS and (b) ML radiances presented in Fig.7. The GEMS 
spectra were measured on 10 March 2021 (06 UTC). 
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The ozone retrieval results are presented in this section. Figure 13 shows total ozone column density including bad 

pixels and defect-free areas as presented in Fig. 9. The ozone properties retrieved with measured GEMS spectra show distinct 

spatial discontinuity over the bad pixel area (see Fig. 13a) while the discontinuity is somewhat reduced with ML spectra in 

Fig. 13b. However, the retrieved properties show different spatial distribution patterns even for the defect-free areas. It seems 

the ozone properties are underestimated especially for higher radiances in Fig. 13b and the stripping features found in Fig. 9 660 

present in Fig. 13b. The angle conditions for spectral replacement provide important information because the retrieval results 

without the conditions show unrealistic features with much higher variance (not shown). In short, the ozone properties retrieved 

with the ML spectra can present approximate spatial patterns within the reasonable ranges but with high uncertainty within 

about 8%.  

 665 

 
(a) 

 
(b) 

Figure 13 Spatial distribution of total ozone column density retrieved with (a) GEMS and (b) ML radiances presented in Fig.9. The GEMS 
spectra were measured on 10 March 2021 (06 UTC). 

3.3.2 Cause analysis for further application  

The high uncertainty for ozone retrieval is attributed to the lack of information in the input data or insufficient model 

optimization because the input spectral range (400-500 nm) may have deficient information for ozone properties. To clarify 670 

this and investigate further, we targeted ozone absorption lines in 312-360 nm and Fraunhofer lines in 390-400 nm for the 

replacement with different input cases. In the Fraunhofer lines, the Ring effect caused by rotational Raman scattering can be 

found over two radiance peaks which is generally known to be very small and largely affected by the existence of clouds 

(Joiner et al., 1995). It is expected the analysis can give clear evidence on whether the small scattering features could be 

reproduced with machine learning for different input wavelengths. For the analysis, the PCA-ANN model is trained for each 675 

input case respectively with defect-free measurements in March 2021 (around 80,000 spectra after bad pixel masking and the 

elimination of saturation pixels). 

Figure 14 presents mean absolute errors of reproduced radiances for ozone absorption and Fraunhofer lines with four 

different input conditions: 1-2) including each near side (within 20 nm) from the output spectral regions (A and B for the left 
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and the right side, respectively); 3) including both near sides of wavelengths (A and B); and 4) all wavelengths in 300-500 nm 

except for A, B and the output spectral region. Each input case is plotted in Fig 14 with the color of red, sky blue, blue and 855 

black line, respectively. Results show that prediction errors increase at the spectral peaks and overall error patterns differ for 

different input conditions. As assumed, the errors are higher with farther input spectral bands from the output spectral region. 

Figure 14a clearly shows that the insufficient information from the input data may cause large errors for radiances at shorter 

wavelengths as well as the ozone retrieval. Figure 14b also presents that each input case has a different level of information 

which could determine the accuracy of spectral replacement especially for the weak scattering features.  860 

 

 
(a) 

 
(b) 

Figure 14 Mean absolute errors for the reproduced and measured radiances at (a) ozone absorption and (b) Fraunhofer lines with different 
input cases. The x1 and x2 in the legend indicates the wavelengths at the boundary of output spectral bands, respectively. The absolute error 
is calculated between the ML and GEMS radiances divided by the latter in percent. 

Figure 15 presents a closer inspection by dividing spectra into four groups depending on the scene brightness. 865 

Different scenes could have different error levels which could be ignored in the averaged values in Fig. 14. The analysis is 

performed with the spectra reproduced with the input conditions showing the smallest (blue lines) errors in Fig. 14. The PCA-

ANN model reproduces dominant spectral features with an error of 0.4% for all scenes with the best input condition as shown 

in Fig. 15. However, it seems the difference increases with darker scenes (weak signals). This indicates low signals would be 

generally less predictable even with the information extracted from the very close wavelengths. It could be a limitation of the 870 

approach because the radiances having meaningful information for trace gases mostly have small signals (clear sky) in the 

UV-VIS spectral region.  
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(a) 

 

(b) 

Figure 15 Mean absolute errors for the reproduced and measured radiances at (a) ozone absorption and (b) Fraunhofer lines with the input 
case showing the smallest errors in Fig. 14. The Q1, Q2 and Q3 represent the first, second and third quartile and each color indicates the 
average in the range of each quartile. The x1 and x2 indicates wavelengths at the boundary of output spectral bands and the absolute error is 
calculated between the ML and GEMS radiances divided by the latter in percent. 

In this section, reproduced absorption or scattering lines are compared with different input conditions. It seems the 920 

suggested method (PCA-ANN) could be quite effective when the input spectral ranges are closer to the target wavelengths to 

be reproduced. However, it is not necessarily true the wider the input spectral range is, the more accurate the replacement 

becomes. If input spectral ranges have some calibration issues (e.g. stray light or saturation) or provide conflicting features 

with other input spectral bands as shown in Fig. 14a, the reproduced spectrum would have inconsistent features causing higher 

error. In conclusion, the suggested method accurately predicts the overall magnitude of a spectrum but reproducing a certain 925 

spectral feature with high accuracy would need more information especially for low signals or strong absorption lines. At least, 

the input and output spectral regions should be close enough to reduce the spectral error up to 0.5%, the uncertainty of the 

reproduced spectra at O2-O2 absorption lines presenting successful cloud retrieval results.  

4 Conclusions 

GEMS is an environmental sensor measuring hyperspectral radiances from 300 to 500 nm in the Asia-Pacific region for timely 930 

atmospheric monitoring. During the IOT of GEMS, one of calibration issues was found that erroneous values of bad pixels on 

the detector array are not properly replaced with spatial interpolation, the current operational method of GEMS. It is clear that 

when the bad pixel area is too large, the spatial interpolation tends to cause high interpolation error especially for a scene 

having large spatial inhomogeneity (i.e. cloud edges). The high interpolation error of bad pixels could affect the retrieval 

process, which causes horizontal discontinuity at a certain latitude for the retrieval of Level 2 products.  935 

 For accuracy, the spatial gaps found in Level 2 products could be better improved when applying a fitted method for 

each product. However, we more focus on improving the erroneous radiances to check whether the issue could be more 

efficiently resolved for both radiances and retrieved properties. This study suggests machine learning methods (PCA-ANN 

and PCA-Linear) to fill in various spectral gaps denoted as Defects 1-3 by investigating how much information could be 
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obtained to reproduce spectral features without any additional information. The basic assumption of this approach is that 

radiances of a spectrum have strong linear and non-linear relations, which could be emulated with the ANN and multivariate 

linear regression. The spectral range of output radiances is set to the wavelengths of bad pixels, while the input radiances 

correspond to the rest part of a spectrum for Defects 1-3, respectively.  960 

In the results, PCA-Linear model presents smaller prediction errors for the defective regions which have strong linear 

relations between input and output radiances (Defect 1) or a narrower spectral gap (Defect 3). When applying the reproduced 

spectra for Defect 3 to the cloud retrieval, the cloud centroid pressure is successfully retrieved with an error of 1%, on average. 

This is because the output spectral range of Defect 3 is comparably narrower and thus the input wavelengths provide enough 

information to reproduce exact spectral features which are valid for the subsequent retrieval process. The PCA-ANN model is 965 

better for the output radiances having strong non-linear relations (Defect 2). Dominant spectral patterns and the overall 

magnitude of spectra could be successfully reproduced mostly with an error of 5% except for ozone absorption lines. When 

applying the reproduced spectra to the ozone retrieval, however, we only can obtain the spatial patterns of total ozone column 

density with higher uncertainty within about 8%.  

Further investigation reproducing Fraunhofer lines and ozone absorption lines helps conclude the benefits and 970 

limitations of the approach as follows: 1) The closer the input and output wavelengths are, the smaller its reproduction error 

becomes. This is because radiances at adjacent wavelengths have a high possibility containing common information valid for 

the replacement. Even though the condition is not satisfied, approximate spatial patterns could be obtained but the accuracy is 

not guaranteed for both radiances and retrieval properties. 2) The input radiances should be carefully selected because machine 

models (especially ANN) are vulnerable to outliers or erroneous input radiances. If one adopts more complex models, the 975 

importance of the selection would increase. 3) Errors coming from instrument artifacts such as the stripping feature could be 

propagated with the method as it seems the feature is not properly emulated in the model so far. 4) Finally, low radiances could 

have higher uncertainty even when using the spectral information as much as possible. GEMS is the environmental sensor and 

thus may provide useful information with clear sky conditions. Considering this, additional information would be needed if 

one pursues very high retrieval accuracy with the replaced spectra. In this regard, combining the external information together 980 

with the spectral components would be the next step for developing the approach. Additionally, the research adopts very simple 

machine learning models which also can be updated further. 

Considering that the number of bad pixels would increase in operation as did in Ozone Mapping and Profiler Suite 

(OMPS) (Seftor et al., 2014), an efficient way of replacing bad pixels would be necessary for the long-term operation of 

GEMS. It is also highly possible that an unexpected issue could occur such as the row-anomaly of Ozone Monitoring 985 

Instrument (OMI) (Schenkeveld et al., 2017). The ultimate goal of this research is to increase the usefulness of GEMS data for 

a longer time period, at least for designed lifetime of ten years. The current work verifies that the gap filling (in Level 1) with 

certain spectral conditions shows quite reliable results even with the limitations for the strong absorption bands, which is 

natural and provides the reasons why we need observation data over such spectral bands. However, it is also anticipated that 

accumulation of observation data along with auxiliary data and improved nonlinear algorithm, the limitation could be improved 990 
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in future study. For that, this paper provides the basis for further applicability of the method by evaluating the efficiency of 

machine learning methods to reproduce hyperspectral data especially in the UV/VIS spectral range.  
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