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Abstract. Measurement of light absorption of solar radiation by aerosols is vital for assessing direct aerosol radiative 

forcing, which affects local and global climate. Low-cost and easy-to-operate filter-based instruments, such as the Particle 

Soot Absorption Photometer (PSAP) that collect aerosols on a filter and measure light attenuation through the filter are 

widely used to infer aerosol light absorption. However, filter-based absorption measurements are subject to artifacts that are 

difficult to quantify. These artifacts are associated with the presence of the filter medium and the complex interactions 15 

between the filter fibers and accumulated aerosols. Various correction algorithms have been introduced to correct for the 

filter-based absorption coefficient measurements toward predicting the particle-phase absorption coefficient (Babs). However, 

the inability of these algorithms to incorporate in their formulations the complex matrix of influencing parameters such as 

particle asymmetry parameter, particle size, and particle penetration depth results in prediction of particle-phase absorption 

coefficients with relatively low accuracy. The analytical form of corrections also suffer from a lack of universal 20 

applicability: different corrections are required for rural and urban sites across the world. In this study, we analyzed three 

months of high-resolution ambient data collected using a 3-wavelength photoacoustic spectrometer (PASS) and PSAP on the 

same inlet; both instruments were operated at the Department of Energy’s Atmospheric Radiation Measurement (ARM) 

Southern Great Plains user facility in Oklahoma. We implemented the two most commonly used analytical correction 

algorithms, namely the Virkkula (2010) and the average of Virkkula (2010) and Ogren (2010)-Bond (1999), as well as a 25 

Random Forest Regression (RFR) machine learning algorithm to infer particle-phase Babs values from PSAP data and 

estimate their accuracy in comparison to the reference Babs values measured synchronously by the PASS. For the application 

on the SGP dataset, the RFR model was trained with an uncorrected absorption coefficient derived from PSAP 

(Babs_uncorrected_PSAP), PSAP transmission (Tr), scattering coefficient from nephelometer (Bscat), and total mass concentration 

obtained from the sum of ACSM measured concentrations of various species as input variables and particle-phase Babs as the 30 

output variable. The wavelength averaged Root Mean Square Error (RMSE) values of Babs predicted using the RFR 

algorithm are improved by an order of magnitude in comparison to those predicted by the Virkulla (2010) and average 
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correction algorithms. A revised form of the Virkkula (2010) algorithm suitable for the SGP site has been proposed; 

however, its performance yields approximately twofold errors when compared to the RFR algorithm. To further test the 

accuracy of our proposed RFR algorithm, we again trained and tested the model on a dataset of laboratory-generated 35 

combustion aerosols. The RFR model used as inputs the aerosol number size distribution from Scanning Mobility Particle 

Sizer (SMPS), uncorrected Tricolor Absorption Photometer (TAP)-derived Babs, and nephelometer-measured scattering 

coefficient Bscat and predicted particle-phase Babs values within 5% of the reference Babs measured by a PASS. Machine 

learning approaches offer a promising path to correct for biases in long-term filter-based absorption datasets and accurately 

quantify their variability and trends needed for robust radiative forcing determination. 40 

1 Introduction 

Aerosols affect the climate through the absorption and scattering of radiation which has been the subject of intensive 

ongoing research (Brown et al., 2021). Aerosols are one of the most significant sources of uncertainty in climate model 

predictions of radiative forcing (IPCC, 2021). The U.S. Department of Energy's Atmospheric Radiation Measurement 

(ARM) program was established in 1990 to collect measurements to better understand processes that affect atmospheric 45 

radiation in climate models (Stokes and Schwartz, 1994). The ARM program currently operates three heavily instrumented 

fixed location sites to gather atmospheric data: Southern Great Plains (SGP), North Slope of Alaska (NSA), and Eastern 

North Atlantic (ENA). The SGP site is the world's most comprehensive climate research facility, with extensive in situ and 

remote sensing instrument clusters deployed over about 143,000 km2 centered near Lamont, Oklahoma, USA. Instruments at 

the SGP site measure radiation, cloud properties, and other meteorological quantities (Sisterson et al., 2016). Light 50 

absorption data by aerosols at the SGP site is collected using Radiance Research’s 3-wavelength Particle Soot Absorption 

Photometer (PSAP) (Sheridan et al., 2001) and DMT’s 3-wavelength Photoacoustic Soot Spectrometer (PASS), an extension 

of the 1-wavelength instrument that was deployed at Jeju island, South Korea (Flowers et al., 2010) and in Utqiagvik, Alaska 

(Myers et al., 2021). 

The PSAP instrument infers aerosol light absorption using a low-cost filter-based method by measuring transmittance 55 

through aerosol particles collected on a filter substrate. The instruments based on this method, such as PSAP, facilitate semi-

continuous sampling of particles and produce time-averaged bulk absorption measurements (Pandey et al., 2016). Filter-

based aerosol light absorption measurement instruments such as PSAP are widely used due to their low cost and operational 

ease, even though their accuracy suffers from “unquantifiable artifacts” such as multiple scattering, which can overestimate 

absorption(Bond et al., 1999; Clarke, 1982; Gorbunov et al., 2002), aerosol overloading on the filter which can 60 

underestimate absorption (Arnott et al., 1999; Weingartner et al., 2003) and the changed morphology of the deposited 

aerosol on the filter (Subramanian et al., 2007). 

The PASS instrument was deployed at the SGP site in January 2009, followed by its decommission in October 2015 with the 

goal of evaluating the PSAP biases by the ARM program. The PASS is a contact-free method to measure particle-phase 
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aerosol light absorption coefficient (Babs). The working principle of a PASS is described in detail in Arnott et al. (1999). 65 

Briefly, photons from a modulated laser beam are absorbed by light-absorbing aerosol particles. The absorbed energy is 

transmitted as heat to the surrounding air, which results in modulated pressure waves that are detected as sound waves by a 

microphone. The microphone can be calibrated to determine light absorption by the particles. The measurements from a 

PASS are highly accurate, but they have low sensitivity (1hr average signal/noise ratio ~0.2 Mm-1 at SGP), and long-term 

deployments can be expensive. PASS also has issues with liquid and/or multiphase particles, as some of the laser energy 70 

goes into the phase change associated with heating the particles rather than producing acoustic waves. 

Various correction algorithms (Bond et al., 1999; Virkkula et al., 2005; Li et al., 2020; Müller et al., 2014; Nakayama et al., 

2010) based on a general analytical equation form, have been developed and used in climate research facilities across the 

world. The general form of the various previously developed correction algorithms for PSAP is summarised in Eqn. (2), 

where f is some function that varies between different correction approaches and C0 is a constant representing a fraction of 75 

total light scattered by the particles collected on the filter. The absorption coefficient reported by PSAP (Babs_PSAP) is auto-

corrected using an empirical correction f(Tr) applied by the instrument firmware to correct for magnification of the aerosol 

absorption by the filter medium and nonlinearities in the response as the filter is loaded (Bond et al., 1999; Ogren et al., 

2010). DOE’s PSAP Instrument Handbook (Springston, 2018) reports the filter area (APSAP=17. 81mm2) and parameters used 

for f(Tr) as shown in Eqn. (1). Therefore, to obtain the uncorrected absorption coefficients from PSAP, we undo the filter-80 

loading correction with the same parameters as mentioned in the Handbook. 
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𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑓𝑓�𝑇𝑇𝑇𝑇(𝜆𝜆), 𝑆𝑆𝑆𝑆𝐴𝐴(𝜆𝜆),𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆)� −   𝐶𝐶0(𝜆𝜆) × 𝐵𝐵𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢  (2) 
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These algorithms, however, are non-universal in applicability and hence limited in accuracy because the fitting parameters of 

the transmission functions calculated in such algorithms are based on datasets of laboratory-generated aerosols which may or 

may not represent the diverse aerosols types in various parts of the world (Collaud Coen et al., 2010; Zuidema et al., 2018). 

The large variation in results of correction creates a need for a universal systematic approach for correcting filter-based 

measurements that is more accurate than previously stated algorithms. 90 

In this study, we used three months of high-resolution ambient data collected by the PASS and PSAP at ARM’s SGP site; we 

corrected for filter-based absorption measurements using Virkkula (2010) (referenced as “unrevised Virkkula” going 

forward), Virkkula equation with revised coefficients for the SGP site (referenced as “revised Virkkula”), the average of 

unrevised Virkkula and Ogren (2010) modified Bond (1999) correction (referenced as “Average”), and the Random Forest 

Regression (RFR), which is a supervised ensemble Machine Learning (ML) algorithm used for a wide range of classification 95 
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and regression predictive problems (Kumar and Sahu, 2021). We provide an inter-comparison of the performances of these 

algorithms on the sampled SGP data. 

2 Methodology 

2.1 Ambient data from SGP observatory 

This study used ambient ground-based aerosol data from the ARM user facility at SGP, Lamont, OK. Figure A1 provides the 100 

descriptive statistics of the raw data obtained from instruments and the optical parameters derived from it. Figure A2 

presents composition data collected by the Aerodyne’s Aerosol Chemical Speciation Monitor (ACSM) instrument at the 

SGP site over the period of ~3 months from 27th Jun to 25th Sept 2015, which is the period of focus in this study. We 

observed that organics aerosols (OA) consist of more than 60% of the mass concentration followed by sulfates, ammonium, 

and nitrate. The summary of BC concentration at the SGP site is shown in Fig. A3, which presents the Field Campaign Data 105 

collected using the Sunset Model 4 Semi-Continuous OC-EC Instrument from 3rd June to 27th November 2013. The average 

Elemental Carbon (EC) and Organic Carbon (OC) concentrations were found to be 0.174 ± 0.123 and 2.267 ± 1.400 ug 

carbon/m3 air, respectively. Figure A4 illustrates the time series of the uncorrected aerosol absorption data as derived from 

PSAP (Babs_uncorrected_PSAP) and PASS (Babs) instruments. We observed that the average particle-phase Babs at the SGP site 

ranged from 0 to 8 Mm-1 for most times with an average Babs of 1.36 Mm-1 across all three wavelengths. A detailed 110 

description of the working of each of the instruments at the SGP site is present in their respective Handbooks published by 

the ARM and SGP AOS Instrument Handbook (J Uin et al., 2020). The overview of instruments as mentioned in their 

handbook is as follows - The PSAP’s inlet was dried, and the air was sampled from the AOS high-flow aerosol inlet. 

Impactor with 1-um and 10-µm size cut-off is used in all AOS systems. The impactor alternates between the two sampling 

cutoffs (all particles < 1 µm and all particles < 10 µm). The flow split is mentioned to be 0.9 slpm for the instrument and 0.4 115 

slpm for dilution flow. The PSAP has been operated by ARM (and many others in the global community) for almost 25 

years with the same filter media, Pallflex E70-2075W, which is composed of quartz fibers on a cellulose backing. All 

published corrections factors were developed and measured using the Pallflex E70 media. The sample inlet air flowrate into 

the PASS’s resonator was approximately 1 lpm. The external sample flow system is set to draw 7.5 lpm through the 

Nephelometer. The ACSM handbook states the aerosol size range to be 40nm to 1um (vacuum aerodynamic diameter) and 120 

the sample entering the ACSM for analysis is pulled from the dry sample stream at 0.1 lpm controlled by a 100 µm critical 

orifice. 

Previous studies have measured non-refractive submicrometer aerosol concentration and the composition of its organic and 

inorganic constituents at the SGP site (Parworth et al., 2015; Liu et al., 2021). Across all studies, the highest mass 

concentration at the SGP site occurs in the winter and decreases from spring to fall. The nitrates dominate during the winters, 125 

while OA accounting for more than 60% of total non-refractory particulate matter mass concentration dominates for the rest 

of the year. The Babs and Bscat at 550 nm ranged from 0 to 10 Mm-1 and 0 to 50 Mm-1 from 2010 to 2013, respectively 
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(Sherman et al., 2015). Also, since the site is rural, long-term transport aerosols (such as mineral dust, absorbing OA, and 

secondary organic aerosol – SOA) may affect local aerosol properties (Andrews et al., 2019). 

In this study, high-resolution data from PASS, PSAP, nephelometer, and ACSM with sampling averaged intervals of 2sec, 130 

1min, 1min, and 30min, respectively, were collected from 27 Jun to 25 Sept 2015 in the ARM user facility at SGP. The 

rationale behind choosing this short duration time frame was the availability of quality controlled PASS datasets;  the laser 

module corresponding to the green wavelength underwent an upgrade at the site in early 2015. From figure A1(a), (d) and 

figure A4, however, we suspect that either the newly installed 532nm PASS laser could be slightly overestimating 

absorption, or that the old 405nm and 781nm lasers could be slightly underestimating absorption compared to their true 135 

values. We preprocessed the data into the following three broad steps for each instrument; first, we only included those 

timestamps where data was valid across all instruments without incorrect (e.g. Negative absorption coefficients), suspect 

(e.g. PASS measurements > 15Mm-1 at the SGP site), and missing values (e.g. Missing timestamps corresponding to parallel 

instrument measurements). Second, we smoothed the data from all instruments into 1hr averages. Third, to compare the 

measurements from different instruments at the same wavelengths, we adjust the PASS-derived Babs and nephelometer-140 

derived Bscat to the PSAP's operating wavelengths. The absorption Ångström exponent (AAE) is an aerosol optical parameter 

used for aerosol characterization and to extrapolate a given particle-phase aerosol absorption coefficient to any wavelength 

of interest. The AAE and SAE values were inferred using Eqn. (3) and Eqn. (4) (Liu et al., 2018). Statistics of AAE and SAE 

values from SGP’s PASS and nephelometer data are summarized in Figure A1. Since the standard deviations of AAE values 

for the SGP data were significantly high, time-dependent AAE and SAE values were used to extrapolate the particle phase 145 

absorption and scattering coefficients to the PSAP's operating wavelengths. The parameters Babs1 and Babs2 in the Eqn. (3) 

and (4) are the absorption coefficients at wavelengths λ1 and λ2. 

 

𝐴𝐴𝐴𝐴𝐴𝐴 =  −
𝑙𝑙𝑙𝑙(𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 1/ 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 2)

𝑙𝑙𝑙𝑙(𝜆𝜆1/ 𝜆𝜆2)
(3) 

𝑆𝑆𝐴𝐴𝐴𝐴 =  −
𝑙𝑙𝑙𝑙(𝐵𝐵𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢 1/ 𝐵𝐵𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢 2)

𝑙𝑙𝑙𝑙(𝜆𝜆1/ 𝜆𝜆2)
(4) 150 

 

The extrapolation of filter-based measurements to other wavelengths using AAE is less accurate than the extrapolation of 

PASS measurements because filter-based measurements are inherently biased due to artifacts and its extrapolation to other 

wavelengths further adds to error. In order to compare the measurements from different instruments at same wavelengths, 

the measured values from the particle-phase instruments - Babs from PASS and Bscat from nephelometer, were extrapolated to 155 

PSAP's operating wavelengths (467, 530, and 660 nm) using inferred AAE and SAE, respectively. 
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Figure 1: Scatterplot of absorption coefficients from the PSAP and extrapolated PASS measurements corresponding to (a) 467nm, 
(b) 530nm and (c) 660nm wavelengths at the SGP site.  160 

Figure 1 presents the comparison of uncorrected filter-based absorption coefficients with the calibrated, particle-phase Babs 

measured using PASS. We observed that the uncorrected filter-based absorption coefficients are more than 4 times greater 

than the particle-phase Babs measured by the PASS across all the wavelengths. Hence, at least for the SGP site, if we choose 

not to apply any correction algorithm to the filter-based absorption data, we can use a factor of 4 to obtain the Babs with a 

wavelength-averaged RMSE (Root Mean Square Error) of 2.58 ± 0.11 Mm-1. This overestimation of the filter-based aerosol 165 

light absorption measurements is due to the scattering of light away from the forward direction by the filter fibers and due to 

the changed morphology of the deposited aerosol on the filter (Subramanian et al., 2007; Bond et al., 1999; Clarke, 1982; 

Gorbunov et al., 2002). 

2.2 Correction algorithms 

In order to correct for these “difficult-to-quantify” artifacts associated with the filter-based measurement of the aerosol 170 

absorption, various correction algorithms (Bond et al., 1999; Ogren, 2010; Virkkula et al., 2005; Li et al., 2020) have been 

introduced to predict the particle-phase absorption coefficient (Babs) using filter-based absorption coefficient measurements. 

Ogren (2010) modified Bond (1999) and Virkkula (2010) correction algorithms are widely used in global atmosphere 

monitoring networks such as the Global Atmosphere Watch Programme (GAW) and the NOAA Federated Aerosol Network 

(Andrews et al., 2019). In this study, we only discuss the commonly used correction algorithms on the ground sites and 175 

compared them with the proposed ML-based filter correction algorithm. 

2.2.1 Virkkula (2010) with unrevised parameters 

Virkkula et al. (2005) developed an analytical correction equation that iteratively calculates Babs from filter-based 

measurements. The transmittance correction function in the Virkkula equation was a multivariate function of the natural 

logarithm of transmission and SSA as shown in Eqn. (6). The parameters in the Virkkula equation h0, h1, k0, and k1 vary 180 

with wavelength. Virkkula (2010) recalculated these parameters by correcting for flowmeter calibration in Eqn. (6). 
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𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × (𝑘𝑘0 + 𝑘𝑘1 ln(𝑇𝑇𝑇𝑇))  −   𝑠𝑠 × 𝐵𝐵𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢  (5) 

 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑉𝑉𝑉𝑉𝑇𝑇𝑘𝑘𝑘𝑘𝑉𝑉𝑙𝑙𝑉𝑉 𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) = 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × ( 𝑘𝑘0 + 𝑘𝑘1(ℎ0 + ℎ1𝜔𝜔0) 𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇) )  −   𝑠𝑠 × 𝐵𝐵𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢  (6) 
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The parameters in Eqn. (6) represent– particle phase absorption coefficient (Babs), uncorrected absorption coefficient derived 

from PSAP (Babs_uncorrected_PSAP), transmission values from PSAP (Tr), particle phase scattering coefficient from Nephlometer 

(Bscat), single scattering albedo(SSA = ωo = Babs/(Babs+Bscat)) and Virkkula parameters/constants (k0, k1, h0, h1, s). 

Using these parameters of the Virkkula equation, we calculated the Babs values from the uncorrected filter-based absorption 

coefficients. Following the procedure mentioned in Virkkula (2005), due to the unknown values of SSA, the Virkkula 190 

equation was iteratively solved for the Babs. The Babs was first calculated using the Eqn. (5) and then was used to compute the 

initial guess for ωo. Next, this value of ωo was then used in Eqn. (6) to compute a more accurate value of Babs and this 

procedure was repeated until Babs value converged. 

2.2.2 Virkkula (2010) with revised parameters for the SGP site 

Using the reference measurements of Babs from the PASS at the SGP site, we refitted the parameters in the Virkkula equation 195 

(h0, h1, k0, k1) to obtain revised parameters. The fitting was implemented using the “curvefit” function from the “SciPy” 

Python library, which uses non-linear least squares to fit a functional equation form to given data. After fitting of optimized 

parameters of the Virkkula equation, we solved for the particle phase absorption coefficients using the filter-based 

absorption coefficients. It is important to note that the calculated revised Virkkula parameters may only be valid for the SGP 

site because these revised parameters were computed using the absorption data from PASS and PSAP at SGP site. 200 

2.2.3 Ogren (2010)-Bond (1999) correction and its Average with unrevised Virkkula (2010) 

Bond (1999) published a correction scheme for the PSAP which was updated by Ogren (2010). The Ogren (2010) modified 

Bond (1999) correction is applied using the Eqn. (7) to obtain the corrected Babs value. Another correction technique that is 

often used by the DOE ARM community involves computing a simple arithmetic mean of Virkkula (2010) correction with 

unrevised parameters and the Ogren (2010)-Bond (1999) correction to obtain a average corrected Babs value as shown in Eqn. 205 

(8) (C Flynn et al., 2020; Zuidema et al., 2018) For brevity, going forward we will refer to this correction scheme as the 

“Average” correction algorithm. 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑐𝑐𝑙𝑙𝑐𝑐 − 𝑂𝑂𝑂𝑂𝑇𝑇𝑐𝑐𝑙𝑙 𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) = 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × (
1

1.5557 × 𝑇𝑇𝑇𝑇 + 1.0227 
)  −  0.0164 × 𝐵𝐵𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢 (7) 

 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝐴𝐴𝑐𝑐𝑇𝑇𝑉𝑉𝑂𝑂𝑐𝑐 𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) =  
𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑉𝑉𝑙𝑙𝑇𝑇𝑐𝑐𝐴𝐴𝑉𝑉𝑠𝑠𝑐𝑐𝑐𝑐 𝑉𝑉𝑉𝑉𝑇𝑇𝑘𝑘𝑘𝑘𝑉𝑉𝑙𝑙𝑉𝑉 𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐)  + 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑐𝑐𝑙𝑙𝑐𝑐/𝑂𝑂𝑂𝑂𝑇𝑇𝑐𝑐𝑙𝑙 𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐)

2
(8) 210 

https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-211.pdf
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2.2.4 Random Forest Regression Model 

Random Forest Regression (RFR) is an ensemble supervised ML algorithm used for a wide range of classification and 

regression predictive problems (Kumar and Sahu, 2021). Random forest involves constructing a large number of decision 

trees with each decision tree fitted on a different subset of the training dataset (also called Bagging), in addition to selecting a 

random subset of input variables at each split point in the construction of trees. Random forest is known to reduce overfitting 215 

of data in decision trees and provide accurate predictions (Biau, 2012; Breiman, 2001). The three most essential 

hyperparameters to tune the Random forest are: – 1. A number of random input variables to consider at each split point 2. 

The depth of the decision trees 3. The number of decision trees in the forest. The core concept behind the Random Forest is 

that it aggregates the results of many trained decision trees empirically and outputs the most optimal result. 

ML algorithms perform very well on trained dataset; therefore, it is crucial to test their performance on unseen or untrained 220 

data. We split the SGP dataset into training and testing sets in the ratio of 70:30. The training set was used to train the RFR 

model, and then the testing set was used to evaluate the model's performance on the new input data that the model had not 

encountered before. For the SGP data, we trained the RFR model with an uncorrected absorption coefficient derived from 

PSAP (Babs_uncorrected_PSAP), PSAP transmission (Tr), scattering coefficient from nephelometer (Bscat), and total mass 

concentration obtained from the sum of ACSM measured concentrations of various species as input variables and particle-225 

phase Babs as the output variable. The values of the hyperparameters used for the construction of the RFR model are: the 

number of features to consider while looking for the best split = 5, the number of trees = 100, and the max_depth was such 

that nodes were expanded until all leaves were pure or until all leaves contain less than two samples. 

The RFR algorithm is entirely a data-driven approach to correct filter-based measurements.  The algorithm was trained on 

input-output variables, which were measured by different instruments installed at the site. The instrument detection limits, 230 

precision, and accuracy play a significant role in the training and predicting ability of the RFR algorithm. In order to gain 

highly accurate predictions from the RFR algorithm on the test dataset (data that is not used while training but is used to 

check the accuracy of the algorithm on unseen data), the algorithm requires good quality training data and with reasonably 

large number of samples/instances  in the training dataset to ensure that the algorithm’s accuracy on the unseen test dataset is 

not limited by the number of samples of the training dataset on which it is trained upon. Figure A5 presents the general 235 

workflow of ML based correction models developed in this study. 

3 Results 

3.1 Application of Virkkula (2010) algorithm with unrevised parameters 

 k0  k1 h0 h1 s 

467 nm 0.377 ± 0.013 -0.640 ± 0.007 1.16 ± 0.005 -0.63 ± 0.09 0.015 

530 nm 0.358 ± 0.011 -0.640 ± 0.007 1.17 ± 0.003 -0.71 ± 0.05 0.017 
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660 nm 0.352 ± 0.013 -0.674 ± 0.006 1.14 ± 0.11 -0.72 ± 0.16 0.022 

Table 1: Unrevised parameters as mentioned in Virkkula (2010) to be used in Virkkula algorithm (i.e., Eqn. (6)). 

 240 

 

 
Figure 2: Comparison between PSAP absorption coefficients, corrected for using Virkkula (2010) algorithm with unrevised 
coefficients, and the reference PASS absorption coefficients measured at the SGP site corresponding to (a) 467nm, (b) 530nm and 
(c) 660nm wavelengths.  245 

The parameters mentioned in the Virkkula (2010) as shown in Table 1 were directly used to iteratively solve for Babs using 

Eqn. (6). Figure 2 shows comparisons between the unrevised Virkkula calculated Babs and reference Babs measured using 

PASS. We observed that the %RMSE values (calculated over all three wavelengths as = Σi (RMSEi / Mean Reference Babs_i) 

× 100) which represents percentage of uncertainty for unrevised Virkkula in the calculation or predictions of Babs is ~376% 

and R2 values are negative for all three wavelengths, which suggests that the unrevised Virkkula algorithm performs worse 250 

than a constant prediction of mean Babs value. 

The variance in Babs calculated using unrevised Virkkula is large enough to undermine the algorithm's applicability without 

revising the parameters/coefficients. Since fitting parameters in Virkkula (2010) were based on experimental burn data of 

kerosene soot and "white" ammonium sulphate aerosol, those parameters cannot be universally applied to different types of 

ambient aerosols (Collaud Coen et al., 2010; Zuidema et al., 2018). 255 

3.2 Application of Virkkula (2010) algorithm with revised parameters for the SGP site 

 k0  k1 h0 h1 s 

467 nm 0.141 ± 0.007 -0.09 ± 0.007 11.043 ± 3.226 -10.369 ± 3.33 0.015 

530 nm 0.162 ± 0.005 -0.092 ± 0.006 0.043 ± 2.667 0.547 ± 2.77 0.017 

660 nm 0.148 ± 0.004 -0.064 ± 0.005 20.35 ± 2.509 -20.059 ± 2.6 0.022 

Table 2: Revised parameters for the Virkkula equation computed using SGP dataset 
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Figure 3: Comparison between PSAP absorption coefficients, corrected for using the Virkkula algorithm with revised coefficients, 
and the reference PASS absorption coefficients measured at the SGP site corresponding to (a) 467nm, (b) 530nm and (c) 660nm 260 
wavelengths.  

To overcome the imprecision of the unrevised Virkkula algorithm, we fitted the Virkkula equation to the SGP data to obtain 

revised Virkkula parameters (i.e., k0, k1, h0, h1) shown in Table 2. The same values of s were used as mentioned in 

Virkkula (2010) because parameter “s” represents a fraction of total light scattered which is experimentally determined by 

fitting to ammonium sulphate experiments (Virkkula et al., 2005). The Virkkula equation with these newly computed 265 

parameters was then used to iteratively solve for the Babs using Eqn. (6). Figure 3 presents a comparison of filter-based 

absorption corrected using the revised Virkkula algorithm and reference Babs measured using the PASS. We observed that the 

Virkkula algorithm performed comparatively well with revised parameters because the RMSE values decreased and R2 

values increased in comparison to unrevised Virkkula’s evaluation metrics (i.e., RMSE, %RMSE and R2). The results of Fig. 

2 and Fig. 3 clearly imply that it is essential to revise the parameters before implementing the Virkkula equation for 270 

predicting Babs at each site. Since the Virkkula equation does not undertake the seasonal, source and particle size distribution 

as inputs, the Virkkula parameters are subject to change with these external factors too. 

It is important to note that since the Babs predictions of revised Virkkula as shown in Fig. 3 were based on the same data that 

was used to calculate the Virkkula parameters, The performance of this algorithm on this data is the best that is possible. The 

%RMSE for the revised Virkkula predictions for the SGP data was ~58% which is less than that of unrevised Virkkula, but it 275 

still represents significant uncertainty in the calculation/prediction of Babs. This major shortcoming of analytical fits led us to 

the ML approach to predict the Babs using filter-based measurements. 
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3.3 Application of Ogren (2010) modified Bond (1999) correction and its average with unrevised Virkkula (2010) 

 
Figure 4: Comparison between PSAP absorption coefficients, corrected for using Bond-Ogren correction algorithm, and the 280 
reference PASS absorption coefficients measured at the SGP site corresponding to (a) 467nm, (b) 530nm and (c) 660nm 
wavelengths.  

Figure 4 presents a comparison of filter-based absorption corrected using only the Ogren (2010) modified Bond (1999) 

algorithm as presented in Eqn. (7), and reference Babs measured using the PASS. The %RMSE for this algorithm on the SGP 

data is ~312% which is almost the same as the %RMSE of unrevised Virkkula (2010). Since the general equation form of 285 

Ogren (2010) modified Bond (1999) is similar to that of Virkkula (2010) and both the unrevised versions of algorithms 

perform with similar accuracy, hence, the improvement in accuracy of Ogren (2010) modified Bond (1999) with revised 

coefficients can be expected to be very similar to that in the case of Virkkula. 

 

 290 
Figure 5: Comparison between PSAP absorption coefficients, corrected for using the average of Bond-Ogren and unrevised 
Virkkula (2010) algorithms, and the reference PASS absorption coefficients measured at the SGP site corresponding to (a) 467nm, 
(b) 530nm and (c) 660nm wavelengths.  

Figure 5 presents a comparison of filter-based absorption corrected using the average of unrevised Virkkula (2010) and 

Ogren (2010) modified Bond (1999), and reference Babs measured using the PASS. The %RMSE values for the “Average” 295 

correction are ~343% and R2 are negative for all three wavelengths suggesting that the model performs worse than a constant 

prediction of mean Babs value. We observed that the “Average” correction performed better than the unrevised Virkkula but 

still worse than revised Virkkula algorithm. This justifies the application of “Average” algorithm at ARM sites for better 
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accuracy when PASS-derived Babs values are not available to revise the parameters of Virkkula equation and using just 

unrevised Virkkula algorithm yields low accuracy. 300 

3.4 Application of Random Forest Regression (RFR) algorithm 

 
Figure 6: Random Forest Regression, a supervised machine learning algorithm, applied to correct for PSAP absorption 
coefficients, and comparison of its performance with reference PASS absorption coefficients measured at the SGP site 
corresponding to (a) 467nm, (b) 530nm and (c) 660nm wavelengths. 305 

We used RFR, which is a supervised ML algorithm, to correct for the filter-based PSAP-derived uncorrected absorption 

coefficients (Babs_uncorrected_PSAP). Figure 6 presents the comparison of RFR predicted Babs with the reference Babs measured 

using PASS. We observed from Fig. 6 that for all three wavelengths, %RMSE values for the Babs predictions from the RFR 

algorithm are ~32%, and the R2 values are also greater than ~0.8, which are much better than the evaluation metrics for both 

unrevised and revised Virkkula algorithms even when the RFR algorithm's evaluation metrics were computed on unseen test 310 

data. 

Apart from the two common correction algorithms (Ogren (2010) modified Bond (1999) and Virkkula (2010)) applied to 

PSAP, recent attempts were made to develop new correction algorithms (Li et al., 2020) by constructing a multivariate linear 

model in the general correction Eqn. (2) and including the interaction terms between AAE, SSA, and ln(Tr). It was referred 

as “Algorithm A” by Hanyang et al. and produced the R2 values of 0.62, 0.55, and 0.43 on the PSAP's operating wavelengths 315 

of 467nm, 528nm, and 652nm, respectively. Comparing just R2 values, the RFR algorithm fares better than "Algorithm A" 

which is the most recent PSAP correction algorithm developed yet. 

The RFR algorithm performs better than the analytical models because it empirically captures the nonlinearities and complex 

relationships between the input variables and Babs, and it was trained on an extra input of total mass concentration from 

ACSM. It is important to note that after the eliminative pre-processing of the three months of bulk data, the number of valid 320 

data samples that remained was relatively small for a typical ML algorithm training; we can expect that the RFR algorithm 

can perform even better with more extensive data. 
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3.5 Improving the accuracy of the Random Forest Regression (RFR) algorithm 

RFR is an ensemble supervised machine learning algorithm which builds many decision trees using the input data during the 

training phase and predicts the output as the mean of predictions from all of the trees. The accuracy of the RFR directly 325 

depends on the number of different or uncorrelated trees built during the training as shown in Fig. 7. In order to produce 

many uncorrelated trees, we not only train the trees on different random subsets of training data (i.e., Bagging) but also 

choose differerent input features or variables randomly to split the nodes. Training the RFR algorithm on all the input 

variables which significantly affect the output variable not only enables us to increase the number of uncorrelated trees built 

during training but also constrains the model for accurate prediction. Hence, the accuracy of RFR to predict particle phase 330 

Babs could be further improved by training the algorithm using all possible input variables that affect Babs, such as  

Babs_uncorrected_PSAP/TAP from PSAP/TAP transmission, Bscat, aerosol number size distribution parameters, and composition. 

 
Figure 7: Flowchart of RFR illustrating many uncorrelated trees build using random feature sampling whose average prediction is 
more accurate than each of the individual trees. (Adapted from Gitconnected) 335 

As a proof of concept, we trained and tested the RFR algorithm on a laboratory-generated published dataset of burn chamber 

experiments (Sumlin et al., 2018; Shetty et al., 2019; Shetty et al., 2021). The algorithm was trained using the total number 

concentration, geometric mean diameter, geometric standard deviation, uncorrected filter-based Tricolor Absorption 

Photometer (TAP) Babs, and nephelometer Bscat as input variables, while the output variable was the particle-phase absorption 

coefficient. Figure 8 presents the comparison of RFR predicted Babs with the reference Babs measured using PASS during the 340 

burn. We observed from Fig. 8 that the RFR algorithm correctly predicted the particle-phase Babs within 5% (=%RMSE) of 

the reference Babs. We also note that the R2 values are ~1, which shows that the predictions correlate near-perfectly with the 

reference PASS-derived absorption values. This example demonstrates the capabilities of RFR in capturing the complex 

relationship between filter-based measurements and particle-phase Babs with the best possible accuracy. 

https://levelup.gitconnected.com/random-forest-regression-209c0f354c84
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 345 
Figure 8: An illustration of the power of Random Forest Regression (RFR) algorithm in accurately predicting particle-phase 
absorption coefficient when trained with a robust set of input variables. The plots show the accuracy of RFR trained TAP 
absorption coefficients in comparison to the reference PASS absorption coefficients corresponding to (a) 405nm and (b) 532nm for 
laboratory-generated aerosols from combustion. 

4 Conclusions 350 

The uncertainties in predicting particle-phase absorption coefficients from filter-based absorption data are due to both 

measurement uncertainties of the instruments and the uncertainties of parameter computation while using analytical 

algorithms like those put forth in Virkkula (2010). Little can be done about the instruments' measurement uncertainties, 

originating from noise and calibration of instruments, STP correction, and flow rate uncertainties (Sherman et al., 2015). 

However, using ML techniques, we can avoid the uncertainties introduced by parameter computation and stiff functional 355 

forms, which are inevitable when using algorithms with analytical forms. 

Our findings show that the revised and unrevised Virkkula (2010), as well as the Average algorithms, need to be 

significantly revised to improve their accuracy. We demonstrate that our RFR algorithm corrects for the PSAP filter-based 

biases in reference to the PASS measurements at the SGP accurately and much better than the standard Virkkula algorithm. 

A unique feature of the SGP site is that while there are significant monthly variations in the aerosol composition, the optical 360 

properties such as the Babs, Bscat, and SSA are bounded in a small range with weak annual cycles. Because of this feature of 

the SGP site, we argue that the ML-based correction algorithm trained in this study is scalable to other months. Furthermore, 

the developed correction algorithm can be applied to any climate research facility site globally, provided the seasonality 

information is included as an input feature to the algorithm during the training using Label Encoding method which can be 

used to convert categorical variable such as name of the months into numerical variable. 365 

RFR was a ML algorithm of choice in this study because of its high accuracy even with relatively small training datasets 

(Kumar and Sahu, 2021). However, if training of a large dataset is involved, other techniques such as XGBoost and neural 

networks could improve accuracy further than RFR. The RFR algorithm captures nonlinear dependence between variables 
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with the highest accuracy compared to the functional analytical form correction algorithms that were previously developed. 

We confidently propose that ML models can produce the most accurate and fastest predictions possible of the particle phase 370 

absorption coefficients compared to any other analytical equation form algorithms, given the training data is accurate and of 

reasonable size. 

Major aerosol monitoring networks, such as the Interagency Monitoring of PROtected Visual Environments (IMPROVE) 

network and the Chemical Speciation Network (CSN) collect particle samples for measurement of UV-VIS-IR absorption 

coefficient. Correction scheme developed as part of this study might be applicable to infer aerosol light absorption properties 375 

for samples collected from the IMPROVE network, rural facilities and federal Class I areas. ML approaches offers 

promising path to correct long term of airborne filter based absorption observations to accurately quantify their variability 

and trends for robust climate radiative forcing determination. Future work will be in the direction of fine tuning the RFR 

algorithm to accurately predicting light absorption by biomass burning aerosols from the wildfires. 

 380 
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Appendix A 

 
Figure A1: Summary of the SGP dataset. The boxplots of raw measurement data are shown as obtained from various instruments 
used in this study (a) PASS (b) PSAP{ Babs_uncorrected_PSAP } and (c) Nephelometer. The boxplots of parameters dervied from the raw 385 
data are also shown (d) AAE (e) SAE and (f) SSA. The green line is the median of the data. The bottom line of box is 25% 
percentile of data and top line of box is 75% percentile of data, therefore, the box represents the middle 50% of all the datapoints 
which is the core of the data. 

  

 390 

 
Figure A2: Composition of the ambient ground measurement site at SGP. The error bars represent the standard deviations. (a) 
Mass concentrations of various species (b) Timeseries of the absolute mass concentration of particle chemical composition. 
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  395 

Figure A3: (a) Timeseries of Elemental Carbon (EC) concentration. (b) Timeseries of ratio of EC and OC concentrations at SGP 
from Jun-Nov 2013.s 
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Figure A4: Timeseries data of uncorrected absorption coefficients as derived from  PSAP {Babs_uncorrected_PSAP} (at 467nm, 530nm 400 
and 660nm) and PASS (Babs) (at 405nm, 532nm and 781nm) instrument at the SGP observatory. 
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Figure A5: Workflow of Machine Learning based correction model developed and used in this study. 

 

Code availability 405 

https://github.com/joshinkumar/Filter-correction-ML-code.git 

Data availability 

Atmospheric Radiation Measurement (ARM) user facility. 2009. Photoacoustic Soot Spectrometer (AOSPASS3W). 2015-

06-27 to 2015-09-25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by A. Aiken. ARM Data 

Center. Data set accessed 2021-12-17 at http://dx.doi.org/10.5439/1190011. 410 

 

Atmospheric Radiation Measurement (ARM) user facility. 2011. Particle Soot Absorption Photometer (AOSPSAP3W). 

2015-06-27 to 2017-09-25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by A. Koontz and S. 

Springston. ARM Data Center. Data set accessed 2021-12-17 at http://dx.doi.org/10.5439/1333829. 

 415 

https://github.com/joshinkumar/Filter-correction-ML-code.git
http://dx.doi.org/10.5439/1190011
http://dx.doi.org/10.5439/1333829
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Atmospheric Radiation Measurement (ARM) user facility. 2011. Nephelometer (AOSNEPHDRY). 2015-06-27 to 2015-09-

25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by A. Koontz and J. Uin. ARM Data Center. 

Data set accessed 2021-12-17 at http://dx.doi.org/10.5439/1258791. 

 

Atmospheric Radiation Measurement (ARM) user facility. 2010. ACSM, corrected for composition-dependent collection 420 

efficiency (ACSMCDCE). 2015-06-27 to 2015-09-25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). 

Compiled by M. Zawadowicz and J. Howie. ARM Data Center. Data set accessed 2021-12-17 at 

http://dx.doi.org/10.5439/1763029. 

 

Field Campaign Data: Semi-Continuous OCEC SGP 2013: 425 

https://adc.arm.gov/discovery/#/results/id::6561_ocec_microchem_scocec_aerosol_blkcarbonconc?showDetails=true 

 

Laboratory generated wood and keroscene burn dataset: 

https://github.com/joshinkumar/Filter-correction-ML-code/blob/main/Lab%20Burn%20Dataset.zip 
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