
Dear Reviewer,

Thank you for your detailed comments and suggestions for our manuscript. We
believe that it was constructive and enabled us to improve the clarity and
accessibility of the manuscript. Please find in this document a point-by-point
response to your comments. We have detailed our plan to change the manuscript
per your suggestions and would like to take this opportunity to once again thank
you for your time. Our responses are in bold typeface and black font color while
the proposed changes we intend to make in the manuscript are in italics and blue
font color.

Please note that sections, section numbers, and line numbers referenced in this
document are from the preprint version of the manuscript.

Major concerns:

As a reader/reviewer with very little knowledge about ML, I approached this paper with a
strong desire to learn more. And about how ML can be applied to an endeavor that I
care about. The fact that none of the authors come with an affiliation in computer
science made my expectation even greater. I was, however, disappointed. The key
Section 3 was not easy to read. I came out of it feeling that there was either too much or
not enough detail. In particular, what I guess is ML jargon was often not explained.

I strongly recommend that the authors make that Section 3 into an Appendix with
improvements suggested below (mostly more details), and leave in the main text
(thinking of it as "mandatory reading") a well-crafted high-level summary. That summary
of what's going on in the "black box" should be just enough to leap into the interesting
results presented in Section 4.

Thank you for your candid feedback. After reviewing the section again, we agree
with you, in particular with your view of the machine learning section (Section 3).
We have been discussing the scope of this section for a while as well. We actually
do want to improve the ML section such that it can be understood by a
non-Computer-Science reader. For this reason, we do think that much of the
content should remain in the body of the paper, whereas details that detract from
the flow should be put into the appendix. We will certainly make sure to introduce
our terms better so as to avoid jargon and make the content truly accessible. As
we state in the manuscript, this work is intended to open up a new approach to
correcting 3D effects using machine learning and in particular, Convolutional
Neural Networks. Therefore, as the first in a series of works, we believe this paper

must contain some details of the machine learning specifics in the main text.
Furthermore, for the same reason, we cannot gloss over the machine learning
section directly to the results section because that defeats the purpose of this
paper.

However, we will take your advice on board and make some changes to that
section. For instance, we will make the text more intuitive and organic, rather
than directly talking about specifics. We will move those particulars like filter
sizes, learning rates, etc. to the appendix. We will now add a new subsection 3.1
for introducing some relevant terminology and explaining why and how CNNs
work to solve the problem of biased retrievals. This should ensure that a reader
with little to no background knowledge of machine learning should be able to
understand the overall structure and its application efficacy to the problem we
are trying to solve. At the same time, someone from a computer science
background can reproduce or reconstruct the model using the details mentioned
in the appendix. We will also update the architecture specifics so they can move
into the appendix. Subsection 3.5 titled “Training” will now contain much lesser
specifics as a result. The following is a draft of parts of section 3 that has not yet
been completely separated into the main text and appendix which will be done
once the review period ends:

3 Architecture & Methodology

The Convolutional Neural Network (CNN) is responsible for learning features and
patterns that can fit the non-linear relationship between the radiance and the cloud
optical thickness. In our case, this is done via various multi-channel convolution layers
and non-linear transformations. When a radiance image is fed to the model, it gets
passed through these layers, undergoing transformations and changes to size and
dimension, until after the final layer when it is compared with the ground truth COT to
compute the cost or error. This section will detail the workings of the CNN including its
setup and inner workings. But first, we will discuss some of the nomenclatures that will
be used throughout the rest of the paper.

3.1 Machine Learning Terminology

CNNs, at their core, are feature extractors. The goal is to learn the underlying
low-dimensional and high-dimensional spatial features in the radiance imagery that
when optimized, result in a very close approximation of the COT. In order to extract
these features, CNNs employ convolution. Each convolution operation works by moving
a sliding window or "kernel" over the input to produce a convolved output or "feature

map". Every time the kernel is varied, the features it extracts also vary. A kernel is
simply a 2D matrix that stores the coefficients or "weights" to be convolved with the
input. To put this mathematically, let us say the weight coefficients in the 2D kernel (the
sliding window which moves over the input to perform convolution) of a filter (stacked
kernels) are given by . If, say, the kernel size is x (meaning is a x matrix),𝑤 𝐾 𝐾 𝑤 𝐾 𝐾
and it is convolving over an x input image , then the convolution operation can be𝑀 𝑀 𝑥
written as

(7)𝑧
𝑢,𝑣

 = 𝑤 ∗ 𝑥
𝑢,𝑣

 + 𝑏 =
𝑖=0

𝐾−1

∑
𝑗=0

𝐾−1

∑ 𝑤
𝑖,𝑗

 𝑥
𝑢−𝑖, 𝑣−𝑗

 + 𝑏

where is a bias vector. "Biases" are constants (or constant vectors) that are used to𝑏
offset the output of the convolution. They help reduce the variance and provide flexibility
to the network. Convolution computes the dot product over each pixel of the input over a

x window, offset by a bias value to obtain a single value of the 2D feature map𝐾 𝐾
matrix, represented here as . To obtain the next feature map value, the kernel slides𝑧

𝑢,𝑣

over and repeats the operation in Eq. 7. In doing so, the convolution builds and fills out
the feature map. Once this feature map is obtained, an activation function that is𝑓
typically non-linear is applied to help decide which features of the feature map should
be "activated". It also introduces the non-linearity component to convolution. The
resulting output is termed the "activation map". Following Eq. 7, this activation is given
as:

(8)𝑦 = 𝑓(𝑧) = 𝑓(𝑤 ∗ 𝑥 + 𝑏)

Common activation functions include the sigmoid and functions. For our proposed𝑡𝑎𝑛ℎ
CNN, we use a type of activation function called ReLU or Rectified Linear Output. It is a
function that only activates when the features are non-zero. It can be written as:

(9)𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧)

The features that a filter extracts could be as simple as a horizontal or vertical gradient,
or more complex and high-dimensional. When a number of kernels are stacked
channel-wise, they are called "filters". The major advantage of using a CNN is that we
do not need to manually set the values of these kernels or filters beforehand; it learns
these values through optimization over time. This period during which the CNN learns

how to best set the weights that will result in the lowest error in its estimation of COT is
termed "training". More background information on the training process is provided in
Appendix B.

3.2 Architecture

Our CNN can be explained in two aspects: (1) the architecture and (2) the training. The
architecture is derived from an existing U-Net design (Ronneberger et al., 2015). Figure
4 shows an illustration of the architecture. We opted for a U-Net style architecture for
three main reasons: 1) the model complexity is lower than other architectures which
thereby increases computational speed during both training and evaluation (inference);
2) the use of concatenation layers linking features learned by different stages helps the
model learn new features having more information without increasing layer depth; and
3) the U-Net has been proven to be a state-of-the-art model for segmentation problems,
especially in the medical field Litjens et al. (2017).

3.2.1 Contracting Path

The U-Net architecture in Fig. 4 can be broadly thought of as two distinct halves in the
U-shape: a contracting branch on the left that can be viewed as an "encoder", and an
expanding branch on the right that can be viewed as a "decoder". The encoder, i.e the
left contracting half, progressively reduces or "contracts" the spatial dimensions while
increasing the feature dimensions. The decoder, on the other hand, does the opposite.
This is because the objective of the encoder is to translate the features of the radiance
imagery into a low-dimensional representation (at the bottom of the U-shape). This
representation is the result of learning features of cloudy and non-cloudy regions at
multiple scales. The decoder then projects these low resolution features back to the
pixel space so as to classify each pixel into a COT bin.

The contracting path (the encoder) is composed of a series of convolutional blocks
separated by pooling layers. Each convolutional block has two sequential identical sets
of a 2D convolution layer, batch normalization layer and an activation layer in that order
(Convolution -> Normalization -> Activation -> Convolution -> Normalization ->
Activation). Details about each individual layer in the encoder are provided in Appendix
C1.

3.2.2 Expanding Path

The expanding path (the decoder) is the right half of the architecture, composed of a
series of decoding stages and the same convolutional blocks from the contracting path.
Each decoder stage enlarges or upsamples the spatial dimensions by a factor of 2
using bilinear interpolation. For instance, after the end of the contracting path at the
bottom of the U-shape, the dimensions of the feature map are 4 x 4 x 1024. After we
upsample, the new dimensions become 8 x 8 x 1024. In addition, an operation called
"transposed convolution" is performed after upsampling to provide a learnable set of
parameters to the upsampling process as interpolation is not intrinsically learnable.
Transposed convolution is further explained in Appendix A. The transposed convolution
step halves the number of feature maps, but we reinforce them with the corresponding
feature maps of the same spatial dimensions from the encoding path on the left using
concatenation (depicted as grey arrows in Fig. 4). This concatenation operation
between layers (often referred to as "skip connections" in machine learning literature)
helps add extra information to the upsampling stage from the encoder side. We then
pass the concatenated feature maps through a convolution block, just like we did on the
encoder side. We repeat this upsampling, concatenation, and convolution process until
we reach the desired spatial size of 64 x 64. Once the original resolution is reached, a
final convolution layer with 36 filters is applied, resulting in an output of 64 x 64 x 36.
Since this is a segmentation approach, we need to translate this output to probabilities
where each pixel has a probability distribution across the 36 COT classes. In other
words, the network needs to tell us how likely a pixel is to belong to a range of COT
bins. We accomplish this probability translation by applying a softmax function to the
output. This function can be written as:

𝑓(𝑧
𝑖
) = 𝑒

𝑧
𝑖

𝑗=0

𝑁−1

∑ 𝑒
𝑧

𝑗

where is a function acting on a value or class in a feature map vector which𝑓(𝑧
𝑖
) 𝑖 𝑧

contains such values (classes). In our case, N=36.𝑁

Because we use discrete classes of COT rather than continuous COT, our approach
solves a segmentation problem, rather than a regression problem, in the nomenclature
of computer science. This distinction means that our CNN is simpler and smaller than
previous architectures (e.g., Masuda et al., 2019, a regression approach), although
somewhat less accurate because it is "digitized" into classes. Hyperparameters of the
decoder are available in Appendix C2.

Appendix B: Training

Learning occurs through a process called "backpropagation", short for backward
propagation of error. The model estimates features during forward propagation from left
to right in Fig. 4 and Fig. 6, and using a loss function, the error between the "learned"
estimation of the COT and the ground truth COT is calculated. During backward
propagation from right to left, this error is then propagated backwards through all the
layers, and the gradient of the loss function with respect to the weight of each layer is
computed using the chain rule from differential calculus. This is one of the major
reasons machine learning algorithms often consume large amounts of time. CNNs often
have millions of learnable parameters i.e the weights and biases, and computing the
gradient for each is a time-consuming task. In essence, the gradients inform the
network of how much the weights and biases need to be varied. This is because the
gradient with respect to each weight and bias is simply subtracted from the previous
weight and bias value. This is called the update step. This entire process of forward
propagation, error computation, backward propagation and update step is repeated until
the model converges to a global minimum. This optimization method is called gradient
descent. To train our CNNs, we use a type of optimization algorithm called mini-batch
gradient descent where we divide our training set into “mini-batches” containing a𝐾
subset of the training set (fixed number of training examples). The network only sees
one mini-batch of images at a time and calculates the error and mean gradient over a
mini-batch. The parameters (weights and biases) are then updated and the next
mini-batch is fed. Once all the mini-batches of images have been seen by the network𝐾
in both forward and backward propagation directions, the network is said to have
completed 1 epoch. We train our CNN for around 250-300 epochs by running it on a
Quadro K2200 GPU. The run time depends on the size of the dataset but it can last
anywhere from 8 hours to 30 hours. Our model trained on the consolidated dataset can
train in less than 12 hours.

Appendix C: Layers of the U-Net-based Architecture

Appendix C1: Encoder (Contracting Path)

The first convolutional block ingests an input radiance image of size 64 x 64 and
produces 64 feature maps. These feature maps are the result of 64 filters convolving
over the input radiance imagery to extract its features. We use a stride of 1x1 for all 2D
convolution operations. Each filter produces a single 2D feature map of size 64 x 64 as
we perform 2D convolution. Thus, 64 filters yield 64 2D feature maps. These resulting
64 2D feature maps are stacked channel-wise (the dimensions then become 64 x 64 x
64) and fed to the next 2D convolutional layer to extract more features. Each
subsequent convolutional block doubles the number of filters (and therefore the number

of features) until we reach 1,024 filters in a bid to gather enough features about the
underlying data that can then translate to predicting COT for unseen radiance imagery.
In the encoder, all filters use a 3 x 3 kernel and the convolution uses a stride of 1 x 1.
The batch normalization layer precedes the activation and helps stabilize the training by
applying a transformation to the feature maps to maintain the mean around 0 and the
standard deviation around 1. All convolution layers in the encoder are activated by the
ReLU activation (Eq. 9) after normalization. Additionally, we pad the convolution
operation each time to retain usable resolutions. We employ a max pooling layer in
between convolutional blocks for two reasons - 1) to reduce the number of dimensions
in the feature maps by downsampling along the spatial dimensions, which reduces the
computation in the network; and 2) to extract the sharpest features while dropping noisy
ones. We use a pooling size of 2 x 2 and use a stride of 2 x 2 ensuring that the spatial
dimensions get halved.

Appendix C2: Decoder (Expanding Path)

The upsampling operation is done by bilinear interpolation in the decoder. The spatial
dimensions get doubled each time this operation is performed. Immediately after
interpolation, we apply a transposed convolution with a 2 x 2 kernel and a 1 x 1 stride
and also pad the operation. Again, this is activated by the ReLU function after batch
normalization. Next, the corresponding feature maps from the encoder are
concatenated and the same configuration of the convolution block from the encoder - - 3
x 3 kernel with single stride and ReLU activation - is used to learn more features from
the concatenated output.

Sequential comments:

* Fig. 1: The radiance scale is missing (best to use "BFR" units, pi I / mu_0 F_0).

Thank you for pointing this out, we will add a color bar (visually accessible to
color-deficient persons) as well as units to both radiance and COT. Here is what
that will look like:

* Fig. 1: To better show the IPA underestimation, maybe add a 4th panel: same as (c)
but with a stretched scale.

We do show the under-estimation in Fig. 2 using a scatter plot which quantizes
the scale of under-estimation better than a visual comparison. That said, we will
consider modifying the figure to have a better-scaled panel.

* Fig. 1 and elsewhere: Avoid the "rainbow" color scale that does not work well in B&W
print, nor for color-blind persons. Hint: the default "green-yellow" scale in python avoids
these pitfalls.

Thank you for pointing this out, we will update the figures in the revised
manuscript to be more accessible to color-blind persons. An example of the
modified color scheme/scale is shown above (Figure 1).

* Section 1.2: The history of efforts to mitigate 3D RT effects is interesting to read.
Someday it would be nice to have a more exhaustive version, but here at least one
approach antedates BL95 and is worth mentioning, namely:

Cahalan, R.F., 1994. Bounded cascade clouds: Albedo and effective thickness.
Nonlinear Processes in Geophysics, 1(2/3), pp. 156-167.

Interestingly, Cahalan's solution involves a multiplicative prefactor, as in (4), rather than
BL95's scaling exponent.

Yes, we agree that this is a relevant paper that we should cite. We will make this
change in the revised manuscript as follows in section 1.2.

Cahalan (1994) analyzed marine stratocumulus clouds and arrived at a
parameterization that utilizes the ratio of mean cloud optical thickness to the cloud
effective thickness. This ratio, χ, can be characterized analytically by the cloud fractal
parameters, and parametrically by the standard deviation of the logarithmic cloud optical
thickness.

* Section 1.3: This too is an interesting read that contrasts (physics-based) cloud
tomography and (statistics-based) neural nets. The former is a pretty recent
development with the real breakthrough paper being:

Levis, A., Schechner, Y.Y., Aides, A. and Davis, A.B., 2015. Airborne three-dimensional
cloud tomography. In Proceedings of the IEEE International Conference on Computer
Vision (pp. 3379-3387).

A paper of special interest here that uses a CNN rather than 3D RT in the cloud
tomography per se is:

Sde-Chen, Y., Schechner, Y.Y., Holodovsky, V. and Eytan, E., 2021. 3DeepCT: Learning
volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 5671-5682).

This is certainly a very interesting and relevant paper that lies at the intersection
of tomography and CNNs. We will cite their work in the revised manuscript as
follows in section 1.3:

Sde-Chen et al. (2021) combined the two worlds of CNNs and tomography to
reconstruct the 3D cloud extinction field using multi-view satellite images.

* Fig. 2: What happens to the IPA when true COT > 40? We need to see that for a fair
visual comparison with CNN.

The IPA continues to under-estimate the COT when COT > 40 as well, and in fact
due to the nature of the retrieval, it becomes worse for higher COT. We clipped

the higher COTs to maintain the figure aspect ratio and because we felt the point
that we were trying to establish about the scale of the IPA under-estimation was
made. For a fair comparison, we will clip the true COT to a number suitable for
both retrievals, as shown below, and update it accordingly in the revised
manuscript:

* Fig. 2: How well does the prediction in (4) for the slope work here, in comparison with
the empirical IPA vs true COT slope?

We show the CNN’s retrieval from section 4.3 in Fig. 2 as we consider this to be
the “best” model i.e the least error-prone and generalizable/robust to different
aspect ratios. We show the slope analysis in section 4.3 and NOT in the
introduction as we have not yet defined the slope term. Furthermore, since the
intended takeaway from this plot in Fig. 2 is that the IPA under-estimates the COT,
we did not feel the need to include a slope plot here. We will note that we do
introduce the slope term in Section 3.3. Very briefly, we use the term “slope” to
mean the slope obtained when a linear regression line is fitted against the true
COT vs (retrieved - true) COT. An ideal slope would be 0, indicated by the dashed
black line in Fig. 2. As we mention in Section 3.3, “for the case shown in Fig. 2,

for the IPA retrieval (green scatter), the linear regression slope (with the true COT
subtracted from the retrieved COT) “а” is - 0.79”. In contrast, the CNN retrieval
has a slope of -0.03. This quantization clearly shows the degree of improvement
that the CNN is capable of achieving.

* Fig. 2: To the eye, it looks like, although biased low, the dispersion around the IPA
retrieval is much smaller than around the (unbiased) CNN retrieval. Why? This looks
like an opportunity to get the best of both approaches.

Yes, this is a good observation. In this paper, we are not attempting to optimize
the CNN for minimal dispersion as we are not after an accurate pixel-level
retrieval. Rather, we want to propose a model that is capable of reducing or
mitigating the bias while estimating the COTs for “mini-domains”. One could
introduce a direct error term such as root mean squared error (RMSE) or mean
absolute error (MAE) in the cost function if the goal is to reduce the scatter.

* lines 190-193: I couldn't comprehend the interchangeable use of "level of coarsening"
and "aspect ratio" (AR) until I downloaded and browsed BL95. As I understand, BL95 is
based on cloud models generated from 2D (Landsat) imagery. So, there is a user
choice of how much geometric thickness (h) to assign to the clouds. In that case, talking
about AR makes sense, and BL95 modulated it by varying h. But here the
LES-generated clouds are inherently 3D. So, talking about coarse-graining (in the
horizontal plane) makes sense. But the AR is something different unless all that is taken
from the LES is the 2D COT field and cloud thickness in the 3rd dimension is assigned
and held constant, like in BL95. If that is the case, I missed it.

Yes, we now see how this could be confusing. As you point out, the user gets to
choose the cloud geometric thickness (h) when using Landsat imagery as it is 2D.
The BL95 paper demonstrates this very well and one can see how the aspect ratio
changes when h changes. By contrast, LES produces 3D clouds. We change the
aspect ratio (cloud height divided by width) by *only* coarsening the width or the
horizontal resolution. As we mention in lines 186 and 187, when we coarsen the
horizontal resolution by a factor of 2, the aspect ratio gets halved. When we take
one step further and coarsen by an additional factor of 2 (and therefore a total
coarsening factor of 4), the aspect ratio gets reduced by a factor of 4 from the
original. We do not change the vertical resolution which is kept constant.
Therefore, the resulting data has 3 pools corresponding to the native resolution
and two levels of coarsening factors. We will add a short explanation how aspect
ratio and level of coarsening relate to each other, as follows in section 2.1, line
185. Here is a draft of what the new text would look like:

For CNN training, the original number of samples is very low. Therefore, we augmented
the native-resolution training pairs by horizontally coarsening the fields by a factor of 2,
such that each original 100 m x 100 m cell was assigned a spatial extent of 400 m x 400
m and then split into four cells, leaving the vertical resolution of the fields (40 m) intact.
In addition to providing additional training pairs after sub-sampling as described for the
native-resolution data, this coarsening procedure also effectively generates horizontally
smoother cloud fields while halving the cloud aspect ratio (cloud height divided by cloud
width) since we only change the horizontal resolution. In other words, one of the key
drivers for 3D COT biases as described by BL95 and others is systematically changed
in the training data to introduce some training data diversity. A subsequent second
coarsening step introduces another level of coarsening and the aspect ratio has now
reduced by a factor of 4 from the original. The three data sets, labeled 1 x 1 (native
resolution), 2 x 2, and 4 x 4, respectively, are used separately (Sect. 4.1) to examine the
impact of the cloud aspect ratio on the retrieval performance, and together (Sect. 4.2) to
assess the impact of training sample number along with algorithm robustness and
accuracy for a physically more diverse data set. A more consolidated version of the
three data sets is evaluated to decrease training time (Sect. 4.3).

* line 208: Not an expert here, but I thought that LES microphysics schemes were either
"bulk" or "bin" and, in the _former_ case, they can be either 1- or 2-moment. Please
clarify "two-moment _bin_ microphysics".

The bulk scheme can be either 1 or 2 moment (or n-th moments; e.g., 3-moment
scheme exists). The bin scheme can be two-moment as well. In a two-moment
bins scheme, the size distribution of both mass mixing ratio and number
concentration is represented by bins. One-moment bin scheme uses a bin
representation of mass mixing ratio and diagnose number. A detailed description
of the two-moment bin scheme is given in page 12,246 of Yamaguchi et al. (2019)
that is cited in that paragraph.

* Section 2.1.2: Can I suggest one figure here to visualize the important differences with
the Sulu Sea LES clouds? Something like Fig. 3 for the Sulu Sea simulations.

Yes, this is a great suggestion. We will add a new figure to illustrate a sample
dataset from the Atlantic. It should look similar to this (color maps are compliant
with accessibility):

Figure #. a-d: Lagrangian LES COT fields (600 nm) from the Atlantic taken during
the CLARIFY campaign simulating closed-cell stratocumulus cloud deck
transitioning to a broken open-cell cloud deck; e: Synthetic radiance calculations
(Red = 600 nm) with 3D, shown for the 6.4 km x 6.4 km sub-domain (white box) in
(c).

* Eq. (5): I think you mean r_cloud, not r_water, and maybe "." like in (6), not "*".

Thank you for noting this, it is indeed a mistake that will be corrected in the
revised manuscript.

* Eqs. (5-6): Why not use the more common "q_lw" and "q_wv" for your mixing ratios?
And, accordingly, the usual "Q_ext" for the Mie efficiency factor?

Thank you for this feedback, we will update the notations as follows in the
revised manuscript:

Cloud water vapor mixing ratio: 𝑞
𝑣

Cloud liquid water mixing ratio: 𝑞
𝑙

Mie efficiency factor: 𝑄
𝑒𝑥𝑡

* line 286: Up to 9 km? Is it 6.4 x √2? If so, say it.

Yes, it is indeed 6.4 x √2. We will address this comment when we rewrite the
section to make it friendlier to a non-machine-learning audience. A draft of the
rewrite of section 3 is provided above in response to the first question.

* Fig. 4: Great start for understanding the ML technique used here! However, still too
many questions and undefined concepts for the non-cognoscente:

How do you get the 64 layers from a single one in step #1? Can it be another number?
(I understand the subsequent doubling and halving.)

What is ReLU Activation?

What is Batch Normalization?

(Maybe better to have different colors for these two operations?)

Thank you for being specific about the problematic items in this section, this is
very helpful. As noted earlier, we will be splitting the machine learning section
between the main text and appendix as suggested. The main text will contain
more of an overview, whereas details about the ReLU activation, convolutions
and normalization will be added to the appendix.

* Section 3.2: "cross-entropy" is explained, but not "one-hot encoding", nor is "softmax
activation".

We actually do explain the one-hot encoding approach and the softmax activation
in sections 3.4 and 3.6 respectively. We will add a note in section 3.2 to refer to
these sections for details about those techniques. Additionally, we will add more
details about the softmax activation function during a rewrite of the ML section
(Sect. 3). A draft of the rewrite is available at the beginning of this document.

* Eq. (11): Does alpha depend on i or c? If so, which and how? (And add the
appropriate subscript.) If not, it can be factored out.

The alpha term is used as a weighting factor that is dependent on the true COT
classes. This is because focal loss was specifically developed by Lin et al. (2017)
to overcome class imbalance which is relevant for our application as we have an
overwhelming majority of non-cloudy pixels. We will add the appropriate
subscript and text to make this clear. This is what we expect the new additional
text and equations to look like at line 336:

An αt term is added as an additional weighting factor. We make the weighting factor
dependent on the true binary COT pixel probability pi,c:

) (11)α
𝑡
 = α · 𝑝

𝑖,𝑐
 + (1 − α) ·(1 − 𝑝

𝑖,𝑐

and we set α to 0.25 as recommended by Lin et al. (2017). The final version of our loss
function can be written as:

(12)𝐹𝐿 = −
𝑖 ∈𝐼
∑

𝑐 ∈𝐶
∑ α

𝑡
 (1 − 𝑝

^

𝑖,𝑐
)γ 𝑝

𝑖,𝑐
𝑙𝑜𝑔(𝑝

^

𝑖,𝑐
)

* Fig. 5c: What is the top layer? Looks like a binary cloud mask resulting from all the
COT classes.

The top layer would be the pixels falling between 0 < COT ≤ 0.1 . In other words,
this would be considered the “background class” of “non-cloudy” pixels. We will
add a note in that section to help the reader understand this figure better.

* line 403: Delete "resolution" (it is the domain size).

We will make this change in the updated manuscript.

* Below Fig. 6: Please tell us a little about the "Adams" optimizer.

We took your suggestion and decided that It is better to explain details about the
optimizer in the appendix as it is not necessary to understand this optimizer for
the purposes of this application. The following text will be included in the
appendix and referenced in the main text at line 418:

The Adam optimizer is an extension of the commonly used gradient descent algorithm
that is used to train machine learning algorithms. In a regular stochastic gradient
descent algorithm, a single constant learning rate α is used across all the weights in the
model throughout training.

The Adam optimizer, which stands for Adaptive Moment Estimation, uses a slightly
different approach when it comes to gradients. It calculates a moving average of the
mean (the first moment) of the gradients, and a moving average of the squared
gradients (the second moment). It uses two adjustable parameters and to controlβ

1
β

2

the rate at which these averages. From the Kingma and Ba (2015) paper, we can glean
that this algorithm has numerous advantages, most notably that it has no memory
requirements and is appropriate for noisy gradients. Over time, this optimization
algorithm has come to be popular and is commonly used as the default optimization for
numerous ML problems.

* Above Eq. (16): One COT bin (#27) is finally given explicitly. What about the others?
Are they linearly sampled? Logarithmically? Surely this discretization of the COT scale
also has to be somehow optimized.

This is a great observation that we have been exploring as well. The exact bin
values and classes we used were as follows:

Range of COT Binned Class

[0.0, 0.1) 0

[0.1, 0.2) 1

[0.2, 0.3) 2

[0.3, 0.4) 3

[0.4, 0.5) 4

[0.5, 0.6) 5

[0.6, 0.7) 6

[0.7, 0.8) 7

[0.8, 0.9) 8

[0.9, 1.0) 9

[1.0, 2.0) 10

[2.0, 3.0) 11

[3.0, 4.0) 12

[4.0, 5.0) 13

[5.0, 6.0) 14

[6.0, 7.0) 15

[7.0, 8.0) 16

[8.0, 9.0) 17

[9.0, 10.0) 18

[10.0, 12.0) 19

[12.0, 14.0) 20

[14.0, 16.0) 21

[16.0, 18.0) 22

[18.0, 20.0) 23

[20.0, 25.0) 24

[25.0, 30.0) 25

[30.0, 35.0) 26

[35.0, 40.0) 27

[40.0, 45,0) 28

[45.0, 50.0) 29

[50.0, 60.0) 30

[60.0, 70.0) 31

[70.0, 80.0) 32

[80.0, 90.0) 33

[90.0, 100) 34

[100, 200) 35

It is true that it is possible to further optimize the binning mechanism. Especially
considering the impact it has during the class-to-COT translation after the model
is trained. As this paper is meant to show the feasibility of the CNN to the
problem of correcting biased retrievals, we do not explore this particular aspect
in detail. The bins themselves would be dependent on the range of COT data
available and therefore case-dependent. This makes it harder to have a
predefined or “optimized” set of binning criteria but it is possible to create a
generalization of a set of bins.

* Section 4.1, and below: Better to use "coarsening factor" than "aspect ratio" (see
comment above for lines 190-193).

We do agree that the terms “coarsening factor” and “aspect ratio” are used
interchangeably in places where it might not be appropriate, especially when
prefixed with the 2x2 or 4x4 terms. We will rectify this ambiguity in the revised
manuscript.

* line 447 and Figs. ≥7: Cloud Variability is an interesting non-dimensional quantity. It
seems to have an upper bound of 2, but that isn't clear from the definition. Please
clarify.

Cloud variability is useful as it allows us to evaluate the performance of the
model on a metric that relies on the inhomogeneity of the data. As stated in the
same paragraph, we compute cloud variability as the ratio of the standard
deviation of cloudy pixels (COT > 0.1) to the cloud fraction. There is no upper
bound on cloud variability. In Fig. 12, we can see that it is in fact clipped to just
over 6, while other experiments using different subsets of the Sulu Sea have
different upper limits. The clipping is only done on the upper bound for
illustration where there is an insignificant number of samples past that bound. We
do mention these in the manuscript.

* Section 4.2: Why is the number of scenes used for training described as "cloud
morphology"? (That term does come up later on, in p. 25 in Sect. 4.4 where clouds from
different regions are contrasted.)

We understand the confusion that might arise here with the two terms. The
number of scenes is not the same as cloud morphology. Each of the six 480x480
scenes has a different cloud morphology as explained in section 2.1. And each
scene has a different set of values for wind shear, cloud fraction and aerosol
concentrations. The intention behind section 4.2 is to explore how important
cloud morphology is to learning the underlying features. This is why we keep the
aspect ratio constant and only vary the number of diverse cloud morphologies
the model is exposed to. One worry with machine learning algorithms is that they
can “overfit”. This is when the model appears to memorize the training data and
does not learn any of the higher dimensional features needed to generalize to a
dataset outside the training envelope and is therefore not robust to changes. By
exploring the 1 cloud morphology variation vs 5 cloud morphology variations
setup, we are able to definitely say if the model is capable of generalizing to new
datasets such as the Atlantic.

* Fig. 9, caption: What are the red dots?

Each red dot represents a 64x64 radiance image. We will mention this in the paper
as follows in the captions for the figure:

Figure 9. A distribution of standard deviation of reflectance (Refstd) vs mean of
reflectance (Refmean) for the gridded and sampled data set. Each red scatter dot
represents a 64 x 64 reflectance image belonging to the consolidated data set
consisting of the 1 x 1, 2 x 2 and 4 x 4 coarsening factor data pools.

* line 576: typo in "erroneous"

We will fix this typo in the revised manuscript.

* line 605: Maybe the contradiction found here with BL95 has to do with the key
difference (discussed previously) between their use of "aspect ratio" and the
"coarsening level" that it is equated to here?

As discussed earlier, the BL95 paper changes the aspect ratio by changing the
cloud geometric thickness and we do so by introducing coarsening for the
horizontal resolution. But, perhaps another notable point of difference is that we
use 3D fields from LES while BL95 uses 2D Landsat imagery. There is also the
significant factor that the Landsat imagery used in BL95 was mostly
stratocumulus whereas we deal with isolated cumulus, which is arguably more
complex. In our study, we found that the IPA (1D) retrieval remained consistently
worse and did not necessarily get worse with changes in aspect ratio. However,
due to the many points of difference between our paper and BL95, as you point
out, we cannot definitively say that this discrepancy can be directly compared
against each other. We will make a note of this in the conclusion section. Here is
what a draft of that updated text will look like (starting from line 604):

From this experiment, we found that changing aspect ratios did not significantly alter the
physics to the detriment of retrieval fidelity, despite the findings of BL95. However, we
must note that there are significant differences between the BL95 study and ours. Most
notably, BL95 used 2D Landsat imagery with mostly stratocumulus cloud fields while we
use 3D LES with isolated cumulus clouds. It should also be noted that the BL95 paper
varies cloud geometric thickness to change the aspect ratio while we vary the horizontal
resolution keeping other dimensions constant. Therefore, we cannot conclusively say
that aspect ratio was the sole direct cause of this discrepancy in the IPA retrieval
performance.

