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Abstract.

We introduce a new machine learning approach to retrieve cloud optical thickness (COT) fields from visible passive imagery.
In contrast to the heritage Independent Pixel Approximation (IPA), our Convolutional Neural Network (CNN) retrieval takes
the spatial context of a pixel into account, and thereby reduces artifacts arising from net horizontal photon transfer, commonly
known as independent pixel (IP) bias. The CNN maps radiance fields acquired by imaging radiometers at a single wavelength
channel to COT fields. It is trained with a low-complexity and therefore fast U-Net architecture where the mapping is imple-
mented as a segmentation problem with 36 COT classes. As a training data set, we use a single radiance channel (600 nm)
generated from a 3D radiative transfer model using Large Eddy Simulations (LES) from the Sulu Sea. We study the CNN
model under various conditions based on different permutations of cloud aspect ratio and morphology, and use appropriate
cloud morphology metrics to measure the performance of the retrievals. Additionally, we test the general applicability of the
CNN on a new geographic location with LES data from the equatorial Atlantic. Results indicate that the CNN is broadly suc-
cessful in overcoming the IP bias and outperforms IPA retrievals across all morphologies. Over the Atlantic, the CNN tends
to overestimate the COT but shows promise in regions with high cloud fractions and high optical thicknesses, despite being
outside the general training envelope. This work is intended to be used as a baseline for future implementations of the CNN

that can enable generalization to different regions, scales, wavelengths, and sun-sensor geometries with limited training.

1 Introduction

Cloud optical properties play an important role in determining the cloud radiative effect (CRE), surface energy budget, heating
profiles, etc. Cloud optical thickness (COT) is important for the shortwave CRE. Accurately predicting the COT will help
to improve our understanding of the energy budget. Currently, the most-used cloud optical properties are retrieved under the
independent pixel approximation (Vardhan et al., 1994), or IPA, which assumes clouds are homogeneous within the pixel and

is blind to the spatial context of adjacent pixels.
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1.1 Effects of Cloud Inhomogeneity

In the real world, clouds are inhomogeneous. Cloud spatial inhomogeneity effects on atmospheric radiation and remote sensing
have been studied extensively for decades. To appreciate that, one only needs to consider that the Stephens and Tsay (1990)
review paper on the once prominent cloud absorption anomaly was itself the synthesis of a body of work starting in the
1960s. This anomaly is understood as the discrepancy between the absorption as calculated from in-situ cloud microphysics
measurements and as inferred from measured shortwave net irradiances above and below a cloud layer. Rawlins (1989) and
others identified net horizontal photon transport H as the potential cause. This term is an important addition to the energy

conservation of a layer with finite horizontal extent (domain size),

R+T+A=1+H (1)

where R, T, and A are the irradiances that are reflected, transmitted, and absorbed by the layer, normalized by the incident
irradiance (Marshak and Davis, 2005), whereas H quantifies the net lateral exchange between the domain captured in the
equation above and its surroundings. It can only be neglected if clouds are horizontally homogeneous over a sufficiently large
domain. In practice, this condition is not met very often, and yet one-dimensional radiative transfer (1D-RT) makes precisely
that assumption. The H term can thus be regarded as the missing physics in 1D-RT, which largely explains the lack of radiative
closure between measured and calculated A, T', and R in earlier studies (Marshak et al., 1999; Kassianov and Kogan, 2002;
Schmidt et al., 2010; Kindel et al., 2011; Ham et al., 2014; Song et al., 2016).

Barker and Liu (1995), hereafter referred to as BL95, first quantified the effect of horizontal photon transport on COT re-
trievals with Landsat data. Interpreting their Landsat-derived COT fields as truth, they calculated synthetic radiance fields with
a Monte-Carlo 3D-RT model and subsequently retrieved COT from those, emulating the IPA retrieval process with realistic
clouds. They found that the optical thickness of optically thick clouds is underestimated, whereas optically thin clouds appear
thicker than they really are. Because of horizontal photon transport, the “dark™ pixels collectively brighten at the expense of
the “bright” pixels. The magnitude of such errors, quantified by retrieval performance metrics introduced in Sect. 3.4, depends

on cloud type and morphology (horizontal distribution, geometric thickness and other parameters).

To some degree, radiance averaging in spatially coarse pixels decreases the independent pixel (IP) bias because net horizon-
tal photon transport drops off with larger pixels. On the other hand, radiance averaging also leads to the so-called plane-parallel
(PP) bias because the reflectance r is a concave function of COT, and therefore r((COT)) > (r(COT)). In other words, re-
flectance as a function of the mean of the optical thickness is always greater than or equal to the mean of the reflectance of the
optical thickness. The PP bias increases with pixel size, while the IP bias decreases. To reduce the PP bias, Cahalan (1994)
introduced the concept of effective COT for marine stratocumulus clouds, which can be parameterized as a function of (COT')
and the standard deviation of the logarithm of the COT. For stratocumulus and some other boundary layer clouds, the optimum

(i.e., the minimum of IP and PP combined) occurs at a scale of about 1 km (Davis et al., 1997; Zinner and Mayer, 2006), which
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is why currently operational cloud retrievals are performed at this scale (e.g. Platnick et al., 2021).

In addition to net horizontal photon transport, there are other mechanisms causing inhomogeneity biases in cloud retrievals,
most notably shadowing, which is especially significant for low sun elevation and pronounced cloud top variability, which
leads to roughening of the retrieved COT fields (Marshak et al., 2006; Iwabuchi, 2007) — as opposed to smoothing that is
caused by horizontal photon transport. The retrieval of droplet effective radius (REF), which is retrieved along with COT in
the bi-spectral technique by Nakajima and King (1990), is also affected by cloud inhomogeneity biases (Marshak et al., 2006;
Zhang et al., 2012), as are downstream parameters such as the liquid water path (LWP) and the cloud droplet number con-
centration. The occurrence of smoothing and roughening as manifested in power spectra and autocorrelation functions varies
by cloud type and scale, imager wavelength, as well as solar zenith angle (Oreopoulos et al., 2000). Iwabuchi and Hayasaka
(2002) distinguished geometric inhomogeneity (morphology, thickness and cloud top roughness), horizontal variance, resolu-
tion and scaling (power spectrum exponent), and sun-sensor geometry as the primary drivers of biases and retrieval noise of
IPA retrievals. Of these, Varnai and Davies (1999) specifically compared cloud-top and horizontal variability with the tilted
IPA (TIPA) and found that COT variations caused by the variability of geometric thickness rather than by the extinction coeffi-
cient lead to greater reflectance biases, at least for oblique geometries. They also quantified different sub-mechanisms such as

upward and downward “trapping” and “escape” of photons, and proposed to treat them separately in future correction schemes.

Figure 1 illustrates the magnitude of the problem for cumulus clouds. Synthetic radiances obtained from an LES cloud scene
with a 3D-RT model (Sect. 2.2) emulate imagery observations. From those radiances, COT fields were retrieved via IPA. For
the clouds shown as an inset in Fig. 1a as an example, the IPA retrieval (Fig. 1c) significantly underestimates the ground truth

COT (Fig. 1b) due to H and other 3D effects.

1.2 Statistical Mitigation of Cloud Inhomogeneity Effects

Tremendous effort has been made to mitigate the effects of cloud inhomogeneity. Early mitigation efforts employed statistical
approaches. For example, BL95 determined the slope § for the logarithmic relationship between the IPA-retrieved COT 77p 4

and the true COT 7. as:

5
TIPA = Tirue ()

where ¢ is parameterized as a function of the cloud geometric thickness h for the specific cloud fields used:

§=e "M for h < 1,000 m 3

with hg &~ 2km. The corrected COT can then be obtained as 711 1/;?4. Chambers et al. (1997) tabulated aspect-ratio dependent

corrections in the form of
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Figure 1. (a) Synthetic radiance field at 600 nm generated with EaR>T using LES for a nadir view (30° solar zenith angle, 0° solar azimuth
angle) that would be seen by a satellite imager at 705 km. Inset shown is a 6.4 km x 6.4 km sub-domain region. (b) True COT (ground truth)

for the sub-domain of 6.4 km x 6.4 km. (c¢) IPA retrieval for the sub-domain. The underestimation made by the IPA retrieval is visually clear.

TIPA = Ttrue(l — 0 —bv) @)

where 0 =0.01...0.05 and b =0.15...0.25 are SZA-dependent fit parameters, and the formula is inverted to un-bias the
COT. In this case, the aspect ratio v is derived from satellite observations as the ratio of the cloud top variability to the horizon-
tal e-folding distance of the COT auto-correlation function. It is really a metric of cloud top roughness, but serves as a proxy
for the true aspect ratio. In contrast to the BL95 formula, the Chambers et al. (1997) parameterization only corrects for the

underestimation of COT for large values, not for the overestimation at small COT.

Iwabuchi and Hayasaka (2002) introduced more complex statistical parameterizations that account for sun-sensor geometry
and cloud morphology among other factors, with the main objective of correcting the first two moments of the COT prob-
ability distribution function (PDF) (mean value and variance, Iwabuchi, 2007). Marshak et al. (1998) developed a non-local
IPA (NIPA) that considers pixel-to-pixel interactions by adding a convolution kernel to the IPA that reproduces the observed
Landsat scale break, and inverted the approach for the recovery of the true COT power spectrum from observed radiance fields.
To stabilize (de-noise or smooth) this deconvolution process, they used spatial regularization. Zinner et al. (2006) applied a
similar approach to aircraft radiance observations of broken clouds, but implemented it as a step-wise sharpening algorithm,
which adjusts the point-spread function of the deconvolution kernel iteratively until the calculated radiance fields match the
observations. Applied to synthetic observations, it not only re-creates the original power spectrum of the underlying LWP field,

but also reproduces the original PDF.
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1.3 Cloud Inhomogeneity Mitigation Using Tomography and Neural Networks

Another promising mitigation strategy for 3D cloud biases is tomography (e.g. Forster et al., 2021) where multi-angle radiance
observations are inverted to retrieve not only cloud boundaries (through stereo reconstruction or space carving), but also the
3D distribution of parameters such as the liquid water content (LWC) and REF. This is done by iteratively adjusting the in-
puts to 3D-RT calculations until the output is consistent with the observations — an approach that has recently become tractable
(Levis et al., 2020). Tomography does not require training and comes with built-in closure between the observed and calculated

radiance fields. However, it requires multi-angle radiances and extensive RT calculations, which are computationally expensive.

Pixel context-aware algorithms have become a promising approach for resolving cloud inhomogeneity effects when retriev-
ing cloud optical properties from radiance measurements. Faure et al. (2002) implemented a mapping neural network (MNN)
where the solution to the inverse problem is understood as mapping from radiance to COT not only on the individual pixel basis
(as in IPA), but also from neighboring pixels. The transfer functions from neighboring pixels are coefficients that are learned
iteratively by the MNN with training data. They can be understood as spatial filters. This is similar to the idea of an averaging
kernel from Marshak et al. (1998), but more general and applied in the opposite direction (from radiance fields to COT). Cornet
et al. (2004) applied this approach for the estimation of domain-averaged COT and REF. Iwabuchi (2007) built on the idea of
spatial mapping, but generalized it further to include other wavelengths. The filter coefficients are determined by regression
using least-square fitting based on synthetic training data. Instead of mapping directly to COT space, the observed radiance
fields are mapped to pseudo-IPA radiance fields where 3D effects are removed, and from where the standard IPA technique can

be applied to infer COT and other parameters.

Such pattern-driven image analysis proliferated with the advent of deep learning, specifically Convolutional Neural Networks
(CNNs, LeCun et al., 1989, LeCun et al., 1998). In the last two decades, the increased use of GPUs (Graphics Processing Units)
has enabled the efficient processing of large training data sets for increasingly complex networks (Krizhevsky et al., 2012).
Therefore, it was only natural to harness these techniques for 3D cloud remote sensing. Okamura et al. (2017) presented the first
CNN for multi-pixel cloud reflectance retrievals for COT and REF that was trained with LES-based synthetic data, followed
by Masuda et al. (2019) who developed a CNN retrieval of the slant COT from ground-based observations by a radiometrically
calibrated fish-eye lens camera (see Sect. 2). Sde-Chen et al. (2021) combined the two worlds of CNNs and tomography to
reconstruct the 3D cloud extinction field using multi-view satellite images. These algorithms demonstrated that a CNN is capa-
ble of recovering the original cloud fields with higher fidelity than previous techniques, albeit only after a significant training

effort sometimes involving days of training using supercomputers.

Since the magnitude of 3D remote sensing biases depends on cloud spatial characteristics, CNNs have the potential to
outperform their regression-based predecessors (Sect. 1.2). In this work, we introduce a CNN that builds on previous work

(Masuda et al., 2019), but significantly reduces training time through:
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1. reduced complexity of the architecture (Sect. 3.2);

2. adeliberately minimal training data set that is still general enough to make the trained CNN applicable to a wide range

of conditions, while outperforming the IPA in terms of the retrieval performance metrics we introduce in Sect. 3.4.

IPA COT
e CNNCOT

(Retrieved - True) COT

P " 1 " 1T " 1
0 20 40 60
True COT

Figure 2. A scatter plot comparing the COT retrieved by the IPA method (blue scatter) and the CNN (red scatter) as a function of the true
COT. The dashed black line depicts the ideal retrieval having a slope of 0. The solid blue and red lines are linear regression lines fitted to the

IPA and CNN retrievals respectively.

For the IPA-retrieved COT from Fig. 1c, we show the retrieval bias in Fig. 2, which is the difference between the retrieved
COT and the ground truth COT, and expressed as a function of the ground truth COT. Figure 2 also provides a preview of the
results of the CNN that we describe in more detail later. The dependence of the bias on the ground truth can be parameterized
through linear regression. In this case, the slope of the regression for the IPA retrieval is -0.79, which reflects the significant
underestimation of the COT for the majority of the pixels from Fig. 1c. In contrast, the CNN retrieval shows a much smaller
bias with a slope of -0.03, though the scatter is not reduced relative to the IPA. More details on the definition of the various
retrieval performance parameters such as the slope and scatter are described in Sect. 3.4. It is worth noting that the IPA retrieval
in Fig. 2 does appear to have a linear relationship with the difference between the retrieved and true COT which would imply
that it is indeed possible to parameterize this effect as a 3D correction. Furthermore, as we discuss in Sect. 1.2, there have been
approaches that have attempted to do so, including Iwabuchi and Hayasaka (2002). However, the underlying problem with such
a method is that the parameters are fixed, and derived for very specific cloud fields using multivariate fitting. By contrast, with

our proposed CNN (and its future iterations), the intention is to utilize the existing spatial context in cloud imagery to learn the
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underlying features that can then be generalized and applied to correct 3D radiative/net horizontal photon transport effects.

In our paper, we use two LES data sets from distinct regions of the globe as 3D-RT input (Sect. 2.2) to generate synthetic
radiance data that a satellite would observe at nadir. We then train the model with 6.4 km x 6.4 km resolution radiance images
as the input and COT as the truth from the first LES data set (shallow convection near the Philippines). The LES data set we
chose contains six distinct cloud morphologies that correspond to a locally representative range of aerosol and wind shear
conditions. We validate the performance of the CNN with unseen image pairs from the first data set by assessing a number of
retrieval performance parameters as a function of cloud field parameters such as mean COT and cloud fraction (CF). Along
the way, we test different training data selection criteria that increase the capacity of the trained network to generalize. Finally,
we test the CNN trained on data from the Philippines on the second data set (closed and open-cell shallow convection in the

Southeast Atlantic) to gauge its functional capacity under completely different circumstances.

Section 2 describes the generation of the training and validation data from the LES data, including the 3D-RT, followed by
the CNN architecture and methodology in Sect. 3. Section 4 discusses the evaluation of the CNN under various experiments
and case-studies in data conditioning and selection. In Sect. 5, we discuss the main takeaway points from our study and outline

a path for the future.

2 Data Generation

To train the CNN, we need input and true data. The input data consists of radiance images, each at 600 nm wavelength. For
each input image, a ground truth image of the same size is used. In our case, the COT is used as the ground truth. This true
image goes through a series of processing steps explained in Sect. 2.3. To generate this data, we use two LES models in two

regions, coupled with radiance calculations (Sect. 2.2).
2.1 Large Eddy Simulations

The two LES data sets were chosen from regions where NASA aircraft field campaigns were conducted in the recent past to
allow for direct validation of CNN-based retrievals with in-situ microphysics and radiation measurements in future studies.
The first LES data set (Sect. 2.1.1) is based on 7SEAS (Southeast Asian Studies) ship-based observations in the Sulu Sea area,
which was also sampled during the 2019 NASA CAMP?Ex (Cloud, Aerosol and Monsoon Processes-Philippines Experiment)
aircraft campaign. The second data set (Sect. 2.1.2) was based on the 2017 Cloud-Aerosol-Radiation Interactions and Forc-
ing (CLARIFY) campaign in synergy with the 2018 campaign of the NASA airborne ORACLES (ObseRvations of Aerosols
above CLouds and their intEractionS) study (Redemann et al., 2021) that took place in the Southeast Atlantic. Both data sets

are dominated by shallow convection, but with different attributes.
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Figure 3. a-d: LES COT fields from the 7SEAS campaign in the Sulu Sea with/without wind shear and with low/high aerosol loading (the
maximum COT is capped at 4 to emphasize low-COT regions); e, f: Synthetic radiance calculations (Red = 600 nm, Green = 500 nm, Blue
=400 nm) with IPA and 3D, shown for the 6.4 km x 6.4 km sub-domain (white box) in (c). All observations are of a hypothetical satellite

imager at an altitude of 705 km with a solar zenith angle of 30° (with nadir viewing angle) and a solar azimuth angle of 0°.

For the Sulu Sea data set, Fig. 3 shows how wind shear and aerosol loading affect cloud morphology. For conditions with
no wind shear, one can see a high level of organization (hexagonal walls of convection), especially for the low aerosol loading
case shown in Fig. 3b and Fig. 3d. We selected six of these open-cell convection cases and sampled 64 x 64 pixel sub-domains
spanning 6.4 km x 6.4 km from the COT fields and the corresponding radiance fields as shown by the white box in Fig. 3c.
Figures 3e and 3f visualize the difference in the radiance level between IPA and 3D radiance calculations respectively for the
highlighted sub-domain. Figure 3a shows a scenario with vertical wind shear and high aerosol loading. We used the native
horizontal resolution of the simulations (100 m) as the pixel size for the synthetic radiance simulations — a scale where the IPA

bias dominates over the PP bias and can therefore be optimally studied here.

The six 48 km x 48 km scenes each generated a hundred 6.4 km x 6.4 km training image pairs. They were obtained by
clipping off 64-pixel stripes on all sides to avoid edge effects from the cyclic boundary conditions in the LES and 3D-RT, and
subsequently moving a 64 x 64 pixel selector window across the remaining domain with a horizontal and vertical stride of 32
pixels. For CNN training, the original number of samples is very low. Therefore, we augmented the native-resolution training
pairs by horizontally coarsening the fields by a factor of 2, such that each original 100 m x 100 m cell was assigned a spatial
extent of 400 m x 400 m and then split into four cells, leaving the vertical resolution of the fields (40 m) intact. In addition

to providing additional training pairs after sub-sampling as described for the native-resolution data, this coarsening procedure
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also effectively generates horizontally smoother cloud fields while halving the cloud aspect ratio (cloud height divided by cloud
width) since we only change the horizontal resolution. In other words, one of the key drivers for 3D COT biases as described by
BL95 and others is systematically changed in the training data to introduce some training data diversity. A subsequent second
coarsening step introduces another level of coarsening and the aspect ratio has now reduced by a factor of 4 from the original.
The three data sets, labeled 1 x 1 (native resolution), 2 x 2, and 4 x 4, respectively, are used separately (Sect. 4.1) to examine the
impact of the cloud aspect ratio on the retrieval performance, and together (Sect. 4.2) to assess the impact of training sample
number along with algorithm robustness and accuracy for a physically more diverse data set. A more consolidated version of

the three data sets is evaluated to decrease training time (Sect. 4.3).

The Atlantic data set (Sect. 2.1.2) encompasses both open-cell and closed-cell convection, from which we sampled five 350
x 350 pixel scenes. These data were only used at the native resolution (100 m x 100 m x 40 m voxel size as the Sulu Sea
simulations); no data augmentation was necessary because the fields only served as validation. This is further explained in

Sect. 4.4.
2.1.1 Sulu Sea Data Set

The simulation configurations were designed to investigate aerosol-cloud interactions in trade cumulus cloud fields in the
Philippine areas as a pilot study for the CAMP?Ex field program (Reid et al., 2022). The detailed model configurations and
scientific findings were reported by Yamaguchi et al. (2019). The initial, environmental, and boundary conditions were based on
a ship measurement that took place on September 21 in the Sulu Sea during the 7 Southeast Asian Studies (7SEAS) campaign in
2012 (Reid et al., 2016). In addition to 6 hourly data, the hourly ERAS (Hersbach et al., 2020) data were supplementary. A total
of 6 simulations were performed with / without vertical wind shear with three different aerosol number concentrations - 35,
150, and 230 mg™! - for 60 hours with a 48 km x 48 km domain and two-moment bin microphysics scheme. These simulations
revealed that trade cumulus clouds organize so that they produce a similar amount of precipitation and cloud radiative effect,
which is consistent with a buffering of the aerosol effect as discussed by Stevens and Feingold (2009). Vertical wind shear
was found to impose two effects which compensate one another; the wind shear enhances clustering of clouds, which tends to

protect clouds from being evaporated, while it tilts the clouds, which enhances evaporation.
2.1.2 Atlantic Data Set

The Atlantic data set is the output of a Lagrangian LES (Kazil et al., 2021, simulation B;). The simulation covers two daytime
periods and simulates the transition from an overcast closed-cell stratocumulus cloud deck to a broken, open-cell cloud deck
in a pocket of open cells (POC) sampled during the Cloud-Aerosol-Radiation Interactions and Forcing (CLARIFY) campaign
(Abel et al., 2020; Haywood et al., 2021). The closed-cell cloud deck at the start of the simulation is depicted in Fig. 4a while
Figs. 4b, 4c and 4d illustrate the transition to an open-cell morphology. Figure 4e visualizes the 3D radiance calculations for the
highlighted 6.4 km x 6.4 km sub-domain. The LES was driven by the European Centre for Medium-Range Weather Forecasts
(ECMWEF) reanalysis meteorology (ERAS). Its 76.8 km x 76.8 km domain follows the trajectory of the boundary layer flow,
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Figure 4. a-d: Lagrangian LES COT fields (600 nm) from the Atlantic taken during the CLARIFY campaign simulating closed-cell stra-
tocumulus cloud deck transitioning to a broken open-cell cloud deck over a 78 km x 78 km domain; e: 3D Synthetic radiance calculations

(Red = 600 nm), shown for the 6.4 km x 6.4 km highlighted white box sub-domain in (c).

determined with the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HY SPLIT, Stein et al., 2015). On the first
day of the simulation, the stratocumulus cloud deck is in the overcast, closed-cell state, with a cloud fraction near unity and
negligible surface precipitation. An increase in rain water path towards the evening leads to sustained precipitation over the
course of the night, accompanied by the transition to the open-cell stratocumulus state, which persists during the second day.
The simulation was evaluated with satellite (Spinning Enhanced Visible and Infrared Imager, SEVIRI) and CLARIFY aircraft
in-situ data. It reproduces the evolution of observed stratocumulus cloud morphology, COT, and REF over the two-day period of
the cloud state transition from closed to open cells, and captures its timing as seen in the satellite imagery. Cloud microphysics
was represented with a two-moment bin scheme, which reproduces the in-situ cloud microphysical properties reasonably well.
A biomass burning layer that was present in the free-troposphere resulted in negligible entrainment of biomass burning aerosol
into the boundary layer, in agreement with the CLARIFY in-situ measurements. Further details on the simulation, its setup,

and the results are given by Kazil et al. (2021).
2.2 Radiance Calculations

Both sets of LES calculations contain the 3D distributions of cloud water mixing ratio (g;), REF, water vapor mixing ratio (q,),

temperature ("), pressure (p), and other meteorological variables. From those 3D fields, the LWC is calculated as

10
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LWC = qi * Pair (5)

where p,;, is the density of the ambient air, and the extinction coefficient is obtained as

3 Qegt - LWC

ﬁext = W (6)

where p; is the density of liquid water and )., is the extinction efficiency, approximated as 2 in the geometric optics
regime. Furthermore, the single scattering albedo is set to 1 because all calculations are done in the visible where cloud drop
absorption is negligible. In this exploratory study, the scattering by cloud drops is represented by a simple Henyey-Greenstein
(HG) phase function with an asymmetry parameter of 0.85. For our purposes, it is convenient to use this fixed phase function as
a proxy for the real phase function, in part because our CNN does not retrieve REF. However, the true REF distribution along
with the associated Mie phase function variability are expected to introduce additional radiance variance, which will need to

be considered in future, real-world CNN applications.

The radiance calculations were performed for the native-resolution 3-dimensional 3., as well as for the horizontally coars-
ened fields (Sect. 2.1), using the Education and Research 3D Radiative Transfer Toolbox (EaR3T, Chen et al., 2022) for a
wavelength of 600 nm. EaR>T provides high-level interfaces in the Python programming language that automates the process
of running 3D RT for measured or modeled cloud/aerosol fields. It builds on using publicly available 3D radiative transfer
models (RTMs) including MCARaTS (Iwabuchi, 2006), SHDOM (Evans, 1998), and MYSTIC (Mayer, 2009) as 3D radiative
solvers. In this study, we used MCARaTS as the solver. The calculated radiances serve as synthetic radiance observations of
a hypothetical satellite imager at an orbital altitude of 705 km with a viewing zenith angle of 0° (nadir) for a SZA of 30° and
solar azimuth angle (SAA) of 0°. The corresponding cloud fields were represented by the vertically integrated (3., i.e., the
column COT from the LES as ground truth for the CNN.

Additional input parameters for the 3D-RT calculations include the incident solar spectral irradiance (Coddington et al.,
2008), and a spectrally flat surface albedo of 0.03 with a Lambertian reflectance. Similar to the simplified representation of
the cloud drop scattering, the surface reflectance assumptions are only meant to be a proxy for more complex conditions in
the real world. The optical properties of 1D atmospheric components were obtained based on the U.S. standard atmospheric
profile from Anderson et al. (1986) that contains a vertical distribution of atmospheric gases (e.g., CO2,04, H2O, etc.). We
used the correlated-k absorption approach introduced by Coddington et al. (2008), which was optimized for a moderate spec-
tral resolution radiometer. The molecular scattering optical thickness of the atmosphere is calculated based on the algorithm
developed by Bodhaine et al. (1999). For each simulation, three runs were performed with 2 x 10° photons each, which allows
one to estimate photon (statistical) noise along with the mean radiance fields. Following the calculations, 64 x 64 pixel COT

and radiance training pairs are sub-sampled from the larger generator field.

11
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2.3 Pre-Processing

Before the LES-generated COT images are used as ground truth, a series of pre-processing steps are performed. A clear dis-
tinction between our approach and the one proposed by Masuda et al. (2019) is that we treat COT retrieval as a segmentation
problem instead of regression. By using segmentation, we reduce the problem to a classification task where the objective is to
classify a pixel into a class. Such an approach aims for accuracy over a finite IV set of values instead of a continuous distribu-
tion. The N discrete classes represent bins over the range of COT values. By binning the true COT image, a discrete mask is
obtained. To create this COT mask, we apply a lookup table to the COT image. If a pixel lies in a COT bin interval, the pixel is
assigned a numerical value (or a class) corresponding to that COT bin. For instance, if the COT of a pixel is less than 0.1, it is
assigned to class 0. If the COT lies in the interval [0.1,0.2), it is assigned to class 1 and so on for a total of N classes. Since the
bins are non-overlapping intervals, a pixel can only belong to one COT class. We note that by binning the COT, some precision

is lost, but the reduction in complexity of our model via the U-Net architecture (and therefore faster training) makes up for it.

After binning, each 480 x 480 scene is divided into 64 x 64 patches or sub-domains using a stride of 32 pixels in both the
horizontal and vertical directions to increase the number of samples. We also crop out the edge pixels from a scene before
dividing into sub-domains. Therefore, a 480 x 480 scene can generate between 600 and 1,200 samples each of size 64 x 64
pixels depending on how many edge pixels are cropped out. Before this data is fed to train the network, we “one-hot encode”
the images. One-hot encoding can be viewed as a mapping technique where a pixel is mapped from an integer value to a binary
(0 or 1) class. The mapping is 1 if the pixel belongs to the class, and 0 otherwise. The COT mask becomes 3-dimensional
where the depth channel is the class i.e., it goes from dimensions of 64 x 64 to 64 x 64 x N. If a pixel belongs to class 3,
the depth-wise array of size N would be (0, 0,0, 1, 0,0, 0, 0, ... 0) with N — 1 zeros. In our case, we set N to 36. Figure 5
illustrates this, where Fig. 5a shows a discretized mask of the true COT (obtained from LES) with a 48 km x 48 km resolution.
A white box highlights a 6.4 km x 6.4 km sub-domain that is extracted. This sub-domain, shown in Fig. 5b, is then translated
to a 3-D image with binary masks stacked along the channel depth axis using one-hot encoding. The resulting encoded image
is shown in Fig. 5¢. No pre-processing is performed on the input radiance images. Hereafter, we refer to the 480 x 480 (48 km

x 48 km resolution) images generated by the LES as “scenes”.

3 Architecture & Methodology

3.1 Machine Learning Terminology

The CNN is responsible for learning features and patterns that can fit the non-linear relationship between the radiance and the
COT. When a radiance image is fed to the model, it gets passed through various layers, undergoing non-linear transformations
and changes to size and dimension, until after the final layer when it is compared with the ground truth COT to compute the

cost or error. This section will detail the inner workings of the CNN including its setup. But first, we will discuss some of the
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Figure 5. One-hot encoding translates a 2D discrete COT mask to a 3D image with /N binary masks. (a) A 48 km x 48 km discrete COT
mask. The white box highlighted is a 6.4 km x 6.4 km sub-domain, which is shown in (b). (¢) shows the one-hot encoded COT that has the
dimensions (64 x 64 x N) where a pixel viewed depth-wise (along the channel axis) would have N classes of COT. Each layer represents
a bin interval of the range of COT. For instance, the white pixels in the top layer have COT < 0.1. Similarly, in the second layer, the white
pixels are those whose COT lies in the interval [0.1,0.2). The final layer’s white pixels have COT > 100. In our case, N = 36

nomenclatures that will be used throughout the rest of the paper.

CNNs, at their core, are feature extractors. In our case, the goal is to learn the underlying low-dimensional and high-
dimensional spatial features in the radiance imagery that when optimized, make up a mapping function to retrieve the COT.
In order to extract these features, CNNs employ spatial convolution. Each convolution operation works by moving a sliding
window or “kernel” over the input to produce a convolved output or “feature map”. Every time the kernel is varied, the features
it extracts also vary. A kernel is simply a 2D matrix that stores the coefficients or “weights” to be convolved with the input. To
put this mathematically, let the weight coefficients in the 2D kernel be represented by w. If the kernel size is KxK (meaning
w is a Kx K matrix), and is convolving over an input image x of size MxM, then the convolution operation, in its simplest

form, can be written as:

K-1K-1

Zypw =Wk Ty p +B= Z Z Wy, j Ty—iv—j +B (7)
i=0 j=0

where B is a bias value. Biases are constants that are used to offset the output of the convolution to help reduce the variance
and provide flexibility to the network. Convolution computes the dot product over each pixel of the input over a K'x K window,
offset by a bias value to obtain a single value of the 2D feature map matrix, represented here as z, ,. The kernel then slides
over the input in a horizontal or vertical direction, and repeats the operation in Eq. (7) until all the input pixels have undergone

convolution. In doing so, the convolution builds and fills out the 2D feature map. The weight coefficients w can therefore be
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viewed as operators on input x extracting a feature map z. Once the features z are extracted, they now need to be used and
combined to arrive at the mapping to the desired output (in our case, COT). Since the mapping from radiance to COT space
is non-linear, an activation function f (commonly used in other ML models as well) is applied element-wise to the 2D feature
matrix z. The activation function helps the CNN learn complex patterns by only activating certain features that are most helpful
in approximating the mapping to COT. The resulting output is termed an “activation map”. Following Eq. (7), this activation

map is given as:

y=f(z)=fwxz+B) (8)

We note that throughout the rest of this paper, we use the terms “activation map” and “feature map” interchangeably. Com-
mon activation functions include the sigmoid and tanh functions. For our proposed CNN, we use a type of activation function
called ReLU or Rectified Linear Unit that only activates those features that are positive. As mentioned earlier, f is applied

element-wise to the 2D feature matrix z and can be written as:

f(z) =max(0,z2) ©)

The features that a kernel extracts could be as simple as a horizontal or vertical gradient, or more complex and high-
dimensional. When a number of kernels are stacked channel-wise, they are called “filters”. The major advantage of using a
CNN is that we do not need to know the weight coefficients of these kernels or filters beforehand; it learns these values through
optimization over time. This period during which the CNN learns how to best set the weights that will result in the lowest error
in its estimation of COT is termed “training”. Background on the learning process is detailed in Appendix A. Additionally,
we normalize the output of convolution to a fixed mean and variance using a normalization layer as is customary in machine
learning. This is done before or after the activation function is applied, and helps the model to converge faster because it

constrains the value range of the features, thereby stabilizing the learning process.
3.2 Architecture

Our CNN can be explained in two aspects: (1) the architecture and (2) the training. The architecture is derived from an existing
U-Net design (Ronneberger et al., 2015). Figure 6 shows a schematic of the architecture. We opted for a U-Net style architec-
ture for three main reasons: 1) the model complexity is lower than other architectures which thereby increases computational
speed during both training and evaluation (inference); 2) the use of concatenation layers that link features learned by different
stages helps the model learn new features without increasing layer depth; and 3) the U-Net has been proven to be a state-of-
the-art model for segmentation problems, especially in the medical field (Litjens et al., 2017). The U-Net architecture in Fig.
6 can be broadly thought of as having two distinct halves in the U-shape: a contracting branch on the left that can be viewed
as an “encoder”, and an expanding branch on the right that can be viewed as a “decoder”. The encoder progressively reduces

or “contracts” the spatial dimensions while increasing the feature dimension. This is because the objective of the encoder is
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to translate the features of the radiance imagery into a low-resolution, high-dimensional representation of the radiance (at the
bottom of the U-shape). This representation is the result of learning the patterns of cloudy and non-cloudy regions at multiple
scales. The decoder, on the other hand, does the opposite by building the spatial dimensions back up to its target size while
reducing along the feature dimension. It projects the low resolution features learned by the encoder back to the pixel space to

classify and segment each pixel into a COT bin.
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Figure 6. Architecture of the proposed model, based on U-Net (Ronneberger et al., 2015). The radiance images of size 64 x 64 are fed
through an input layer (shown in yellow on the left). The blue rectangular blocks depict convolutional layers. The number of filters for each
convolutional layer is listed above each block (64, 128, 256,...). The blue arrows depict two sequential operations - the ReLU activation
and Batch Normalization. Red arrows are max-pooling layers that downsample the previous layer by half. The gray arrows represent the
concatenation operation where a source feature map from the contracting path (encoder) on the left is concatenated to a feature map from the
expanding path (decoder) on the right (shown as dashed blue lines). The green arrows represent upsampling via bilinear interpolation and
transposed convolution. The turquoise arrow is the final 2D convolutional layer that translates the previous layer to the requisite number of
output COT bins, in this case, 36. The yellow rectangle on the right is the final output layer that is activated by the softmax function to obtain

36 probabilities for each of the 36 COT bins.

3.2.1 Contracting Path

The contracting path (the encoder) is composed of a series of convolutional blocks separated by pooling layers. Each con-
volutional block has two sequential identical sets of a 2D convolution layer, normalization layer and an activation layer in
that order (Convolution — Normalization — Activation — Convolution — Normalization — Activation). With each passing

convolution layer, the aim is to learn a set of distinctive features of the radiance imagery that can help the model approximate
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a mapping function from the radiance to the COT. Since each convolution covers multiple neighboring pixels at a time, the
CNN can gather an understanding of the different distributions of radiance at different regions. The resulting outputs from each
convolution i.e., the feature maps are fed forward as the input to the subsequent layer so that none of the features are learned
in isolation. As we discussed earlier, since the goal of the encoder is to learn a low resolution, high dimensional representation
of the radiance, the horizontal and vertical dimensions are decreased after each convolutional block through downsampling
while the number of features are increased by using more convolutional filters. The downsampling operation in the encoder is
accomplished through a layer called max-pooling layer. Using the output of the convolutional block, max-pooling drops half
the pixels and retains only the sharp pixels. In terms of dimensions, the model takes in an input whose dimensions are 64 x 64
x 1 (a single 600 nm radiance channel image of size 64 x 64 spanning 6.4 km x 6.4 km) while the output of the encoder at the
bottom of the U-shape produces a feature map of size 4 x 4 x 1024. More details about each individual layer in the encoder are

provided in Appendix B.
3.2.2 Expanding Path

The expanding path (the decoder) is the right half of the architecture. It is composed of a series of decoding stages and the
same convolutional blocks from the contracting path. Each decoder stage enlarges or upsamples the spatial dimensions by a
factor of 2 using bilinear interpolation. For instance, after the end of the contracting path at the bottom of the U-shape, the
dimensions of the feature map are 4 x 4 x 1024. After we upsample, the new dimensions become 8 x 8 x 1024. However,
interpolation is not intrinsically learnable because it does not rely on an adaptable kernel that updates during training. To add
a learnable element to upsampling, an operation called “transposed convolution” is applied after interpolation. It performs
the inverse of a standard spatial convolution operation to broadcast the interpolated output to a feature map containing half
the number of feature maps compared to the interpolation step. Transposed convolution is further explained in Appendix C.
A core contribution of the U-Net architecture proposed by Ronneberger et al. (2015) was the use of concatenation (depicted
as grey arrows in Fig. 6). This concatenation operation between layers (often referred to as “skip connections” in machine
learning literature) helps to add extra information to the upsampling stage from the encoder side. It also works to reinforce
some of the features learned from the original radiance imagery that may have been lost during downsampling. We then pass
the concatenated feature maps through a spatial convolution block whose configuration is the same as the ones used in the
encoder. We repeat this interpolation, transposed convolution, concatenation and spatial convolution process until we reach the
desired spatial size of 64 x 64. Once the original resolution is reached, a final convolutional layer with 36 filters (36 corresponds
to the number of classes or COT bins) is applied, resulting in an output of 64 x 64 x 36. At this point, the output would give us
the raw mapping function to retrieve the COT. However, as we discussed in Sect. 2.3, the ground truth COT is actually not the
raw COT generated from the LES. Instead, it is a one-hot encoded COT of dimensions 64 x 64 x 36 where each of the 36 values
is binary (0 or 1). Therefore, we need to apply a transformation to the output of the final layer to translate it to a multinomial
probability distribution across the same 36 COT bins as the ground truth. To obtain this distribution, we use the so-called
softmax function (see Appendix C). It works by taking the 36 raw values of each output pixel as input and normalizing it into a

PDF containing 36 probabilities proportional to the exponential of the raw values, shown in Eq. (C1). Because we use discrete
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bins of COT rather than continuous COT, our approach solves a segmentation problem, rather than a regression problem, in
the nomenclature of computer science. This distinction means that our CNN is simpler, smaller, and trains faster than previous
architectures (e.g., Masuda et al., 2019, a regression approach). Details about each layer, activation functions (including the

softmax function), and hyperparameters are explained in Appendix C.
3.3 Loss Function: Focal Loss

The loss function serves an important role in optimizing a machine learning algorithm. It is the method by which the model
learns to minimize the difference between the ground truth and its prediction made through learned parameters. Mean squared
error and mean absolute error are commonly used as loss functions in regression-based approaches. In our case, due to the use
of segmentation/classification, we rely on a cross-entropy-based loss called focal loss (Lin et al., 2017). But, before discussing
focal loss, we introduce cross-entropy loss. Also called log loss, cross-entropy measures the difference between the estimated

probability and the true probability. Cross-entropy (CE) is given by:

CE==Y> pic-log(pic) (10)

i€l ceC

where [ is the set of all pixels, C'is the set of all classes, p; . is the true probability of pixel ¢ belonging to class ¢, p; . is
the estimated probability of pixel 7 belonging to class c. We recall from Sect. 2.3 that since we use one-hot encoding for the
ground truth COT, and we know that a pixel can only belong to one class, the true probability is binary. In other words, a pixel

either belongs to a class (COT bin) or it does not. This can be written mathematically as:

1, when pixel ¢ belongs to class ¢
Dic = an
0, otherwise

Since the softmax activation in the final layer generates a normalized PDF, the sum taken over the estimated probabilities of

each class is always 1.

S 2

ceC

Cross-entropy works well with binary as well as multi-class targets. However, cross-entropy fails to deal with class im-
balance. This is because all contributions from all classes are summed together equally using only the truth and estimated
probabilities without a weighting factor that can change the importance of a particular class. In our case, the imbalance be-
tween the cloudy pixels and non-cloudy pixels is particularly high with the latter sometimes occupying more than 80 % of the
image. If we were to use cross-entropy as our loss function, any large errors in the estimation of the cloudy pixels would get

overwhelmed or averaged out by high volumes of low errors for the non-cloudy pixels, therefore driving the cost misleadingly

17



425

430

435

440

445

450

low. That would lead the model to interpret wrongly that it is learning all the classes equally well when in fact it might not be.
To counteract this, we use focal loss, a variant of cross-entropy designed specifically to be used in problems involving a class

imbalance in the data set. Focal loss (FL), adapted from Lin et al. (2017), is given by:

Y (1= i) pic-log(pie) (13)

i€l ceC

Focal loss uses a “modulating factor” (1 —p; )” to address the issue of imbalance in cross-entropy loss by up-weighting
misclassified examples (classes that do not have high probabilities), and down-weighting well-classified ones (classes that have
high probabilities). y is called the “focal parameter” and acts as a smoothing factor by exponentially scaling the importance
of a class. It is usually set to 1 or 2 (if set to 0, focal loss becomes cross-entropy loss). To demonstrate the effect of focal loss,
let us consider an example. Let us say the model is learning a particular class “well” i.e., the estimated probability is high, say
Pi,c = 0.9 and the corresponding ground truth probability p; . is 1. And let us set the focal parameter +y to 2. Then the modulating
factor would produce (1 —p; .)” = (1—0.9)2 = 0.01. This means that the loss contribution by that class is scaled down by a
factor of 100 when using focal loss instead of cross-entropy loss. By down-weighting the clear-sky pixel contribution, we can
focus on improving the retrieval of cloudy pixels. In addition, the «; term serves as an adaptable weighting factor. We make

the weighting factor dependent on the true binary COT pixel probability p; .:

Q, when pixel ¢ belongs to class ¢
ar=ap;c+(1—a)(l—pic) = 14
1—a«, otherwise

and we set « to 0.25 as recommended by Lin et al. (2017). It is worth noting that focal loss up-weights any class yielding low
probabilities rather than the frequency of occurrence of that class making it more robust to any class imbalance. This ensures

that the model relies on what it has learned so far, using the modulating factor to scale and correct itself.

3.4 Retrieval Performance Quantification

To quantify the retrieval errors, we use the pixel-centric relative root-mean-squared error (RMSE) or R:

Mg

R:

(Tret { j _Ttrue(Z ])) % 100% (15)
=1 j=1 Ttvue(l ])

where 7, and 7,..; denote ground truth and the retrieval, and n, and n, define the size of the analyzed sub-domain. In
most of our examples, since we use a 64 x 64 COT image spanning 6.4 km x 6.4 km, n,, = 64 and n,, = 64. The mean (square)
deviation of the pixel-level retrieval from the truth is quantified relative to the pixel-level ground truth in percentage. RMSE is

a quantification of the scatter that we discussed earlier in the context of Fig. 2. For the case in Fig. 2, the relative RMSE (R) of
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the IPA retrieval is 60.8 %.

Instead of pixel-centric metrics, one can also focus on the domain-wide retrieval performance based on the linear regression

between the ground truth and the difference between the retrieval and the ground truth,

Tret — Ttrue = @ True T b (16)

Typically, a < 0 and b > 0. A slope @ = 0 and an intercept b = 0 would indicate a perfect retrieval in terms of the sub-domain
as a whole. Unlike R, which also encompasses pixel-level retrieval noise, slope and intercept only capture the average deviation
of 7,4 from 74, as a function of the ground truth itself. As we noted earlier, our proposed CNN significantly reduces the bias
characterized by the slope a metric. However, it does not necessarily show the same extent of improvement over the IPA for
the scatter (variance) characterized by R. This is expected as we do not directly optimize the CNN for the R metric. In addition
to the retrieval performance metrics introduced here, alternate metrics can be defined in terms of the two-stream transmittance
as a function of COT, log COT, or on the power spectrum of COT. Note that BL95 used slope and offset in log COT space,
and determined the slope as a function of cloud geometric thickness to introduce the first 3D COT corrections known in the

literature.

For the case shown in Fig. 2, for the IPA retrieval (blue scatter), the linear regression slope (with the true COT subtracted
from the retrieved COT) a is - 0.79, and the intercept b is 0.15. The neutral COT, —b/a, (0.19 in this case) is the optical thickness
value above which COT is underestimated and below which it is overestimated. For our example in Fig. 2, the IPA retrieval
assigns a COT of 10 to a true COT of 40, whereas a COT of 2 is retrieved as being closer to 4. Such large retrieval biases on
the pixel level are much less pronounced in domain-averaged cloud properties. Equation (18) shows how the domain-average
bias §7 can be quantified. Using the linear regression slope and intercept from Eq. (16), we can use the true COT to obtain
pixel-level bias 67(4,7), as shown in Eq. (17). Then, we add the pixel-level biases and take the average over the sub-domain,
which yields the domain-average bias d7. One could also obtain 7 by directly using the slope, intercept and the mean of the

true COT over the sub-domain, as shown in Eq. (18).

57‘(i,j)=a-7‘true(i,j)+b a7
1 Nge Ny o 1 Ng Ny o
o = DD or(ij)=a- SN True(ig) | +b (18)
Nz My 553 Nz My 7 1

However, the domain-average bias does not completely disappear even for larger domain sizes, which makes it a significant
factor for global assessments of the shortwave surface cloud radiative effect (e.g. Kato et al., 2018), which are based on cloud
transmittance calculations with imagery products as input. For the case in Fig. 2, the §7 is - 0.65, with the negative sign

implying an underestimation.
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3.5 Training

During training, the CNN learns from the training set, attempting to learn a non-linear mapping function between radiance and
COT. At the same time as training, the CNN is also confronted with formerly unseen data that is reserved for “validation”. As
is common practice in machine learning, we split the data set into 80 % training and 20 % validation data. The training and

validation process is repeated until the cost no longer improves at which point we declare the model to have “converged”.

To train all our CNNs, we use a type of optimization algorithm called mini-batch gradient descent where we divide our
training set into K “mini-batches”, each containing a fixed subset of the training examples. The network only sees one mini-
batch of images at a time and calculates the error and mean gradient over that mini-batch. The error is backpropagated and
the parameters (weights and biases) are updated before the next mini-batch is fed. Once all the K mini-batches of images
have been seen by the network in both forward and backward propagation directions, the network is said to have completed 1
epoch. Over a number of epochs, the CNN learns to optimize for the loss function and the error no longer decreases over time
at which point we declare the model to have converged. More information about the learning and training process is detailed
in Appendix A. To prevent overfitting, we stop training early when there is no significant improvement in the validation loss
after a certain time. We pay special attention to the validation loss by using it as the monitored metric because it is a good
indication of model generalization, our overall goal. Additionally, we use decaying learning rate to reduce the learning rate
whenever learning stagnates or plateaus. We save the model weights only when there is an improvement from the previous
best validation loss. L1 regularization is applied to all the convolutional layers to stabilize and improve learning by penalizing

drastic weight changes.
3.6 Post-Processing

After the model is trained, the model needs to predict the COT using images of radiance. However, using the model weights
that were saved during training, when a radiance image of size 64 x 64 pixels is fed, the CNN does not actually output a COT
image of the same size. Rather, it estimates a probability distribution function (PDF), where each pixel ¢ has 36 probability
values p; . corresponding to each class or COT bin c. We need to translate the PDF to an image in COT-space where we can
evaluate the actual performance of the model. To accomplish this step, we use a weighted sum approach. For a pixel, we use
the 36-value PDF estimated by the CNN and compute a product of each probability value with a COT bin interval average
value d.. The d, value is an element of an array d that spans 36 classes that is obtained using the average values of each COT
bin interval used during the pre-processing step. For example, during the binning process, any COT values between 35 and
40 would be binned as class 27. The estimated probability value for each pixel at class 27 (p; 27) would be weighted with
do7 = 37.5, which is the average COT value of 35 and 40. This product is then summed and repeated for each pixel PDF,
resulting in a 2-dimensional COT image of size 64 x 64. The predicted or retrieved COT for a pixel, denoted by 7,..;, can be

written as
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4 Evaluation & Results

With the setup explained above, we evaluate how the model behaves when trained on different permutations of cloud morphol-
ogy and aspect ratio. This allows us to observe how the CNN reacts to different situations, thereby providing an indication of
its strengths and weaknesses. We use the metrics detailed in Sect. 3.4 to assess the performance of the CNN and compare it
with the IPA retrieval. We express the performances of the CNN models and IPA as a function of three cloud metrics - cloud
fraction (CF) percentage, mean cloud optical thickness (COT), and cloud variability (CV). To calculate these cloud metrics
on the abscissa for each figure in this section, we only consider pixels whose COT is at least 0.1. This is done because in
our binning method, we treat pixels whose COT is less than 0.1 as clear-sky and the rest as cloudy pixels. Cloud fraction
percentage is the percentage of cloudy pixels in the image. The cloud optical thickness shown in the figures of this section
depicts the mean COT taken across the cloudy pixels. Cloud variability is the ratio of the standard deviation of cloudy pixels
to the cloud fraction. In the figures that compare the scatter performances of CNN and IPA retrievals in this section, each dot
represents a binned measurement obtained by taking the mean of the performance metric (relative RMSE percentage or slope
appropriately) over a number of samples to infer the overall trend in performance. Bin sizes are smaller/finer in the lower ends
of each cloud metric as there are a greater number of samples in these regions. We also use histograms for a particular cloud

metric performance which takes into account all samples and not just the binned ones.

4.1 Variability of aspect ratio

Model A Model B Model C
Number of Scenes 6 24 96
Coarsening Factor N/A 2x2 4x4

Table 1. Data used to train each of the models for Sect. 4.1. Each model is trained on a distinct aspect ratio to evaluate its influence

individually.

In this subsection, the goal is to evaluate the impact and influence of aspect ratio on the CNN (and its different variants). The
three CNN models A, B, and C are trained on the data that have been coarsened by factors of 1 x 1,2 x 2, and 4 x 4 (Table 1).
All three CNN models and the IPA method are tested on a data set consisting of samples with 1 x 1, 2 x 2 and 4 x 4 coarsening
factors. None of the samples in this test set have been seen before by any of the CNN models during training. This allows us
to evaluate if a particular model does better on a particular aspect ratio, thereby giving us insight into the ability of the CNN to

generalize.
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Figure 7. Comparison of models A, B, C (red, orange and blue lines respectively) and IPA or 1D retrieval (shown in teal) obtained by
methods described in Table 1. Model A is trained on scenes that have no coarsening factors applied (1 x 1), B is trained on scenes coarsened
by a factor of 2 x 2, and C is trained on scenes coarsened by a factor of 4 x 4. The dashed black line depicts the ideal retrieval. All models are

being evaluated against a pool of unseen images with 1 x 1, 2 x 2 and 4 x 4 coarsening factors. The rightmost column shows the histograms

samples that have COT < 25.

The first three columns from the left in Fig. 7 show the performance of the three CNN models as well as the [IPA when

measured against different cloud metrics (on the abscissa), and relative RMSE percentage R and slope (both on the ordinate).

The histograms on the rightmost column show how much the IPA underestimates (in terms of the slope) and contains errors
(in terms of R) for samples that have COT < 25. Among the CNN models, model A, trained on just the 1 x 1 coarsening factor
data (original aspect ratio), has the highest error R against all values of cloud fraction but does significantly better against
variability and optical thickness. Model C, trained on the 4 x 4 coarsening factor data (quarter of the original aspect ratio),
works better than model B, trained on the 2 x 2 coarsening factor data (half the original aspect ratio), when evaluated as a
function of cloud fraction. However, model B performs better when measuring against mean COT and variability. Model C has
differing performances when being evaluated against mean COT and variability. In the second column, as the COT increases,
R decreases and the slope grows closer to the ideal 0. In the third column, as the cloud variability increases, model C gets
progressively worse, in terms of both R and slope. But, the histogram on the right-most column shows that for COT < 25,
model C is the best performing model because the mode of the R percentage is closest to 0 % and mode of the slope is close

to 0 (although model B is very close as well).

All three CNN models perform better than the IPA in this case study. But, among themselves, none of the CNN models

seem ideally suited for all scenarios of cloud fraction, optical thickness and variability. It could therefore be inferred that a
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combination of data from different aspect ratios would provide homogeneity with respect to cloud parameters as well as a

wider range of spatial scales for the CNN.

4.2 Variability of cloud morphology

Model A Model B
Number of Scenes 1 5
Coarsening Factor 4x4 4x4

Table 2. Data used to train each of the models for Sect. 4.2. Model A learns from a single cloud generator scene whereas model B learns

150- —e— Binned 1D ret.
—e— Binned Model A
—e— Binned Model B
0

1-

| I A

1-

from 5 generator fields.

Relative RMSE (%)
~
U'|

Slope

50 100 0 20 40 0 0.75 15 i
Cloud Fraction (%) Cloud Optical Thickness Cloud Variability Histogram: CF < 30

Figure 8. Comparison of two CNN models A and B (shown in red and blue respectively) with IPA or 1D retrieval (shown in teal) obtained
by methods described in Table 2. Model A is trained on only 1 scene (coarsened by a factor of 4 x 4) whereas model B is trained on 5 scenes

(also coarsened to a factor of 4 x 4). All 3 are being evaluated on samples from a holdout scene (with shear). The dashed black line depicts

the ideal retrieval.

The goal of this study is to evaluate the importance of diversity in varied cloud generator fields, and if a model trained on a
limited number of such fields can generalize to unseen data. We also test if a model trained on multiple fields loses accuracy
over individual fields by trading for generalization. All models and the IPA method are evaluated on a holdout scene that has

not been seen by any of the CNN models during training.
Model A is trained on samples from a single LES cloud generator field at a 4 x 4 coarsening factor. Model B is trained

on samples from 5 different cloud generator fields. From Fig. 8, it is once again clear that both the CNN models, A and B,

outperform the IPA retrieval consistently across all metrics. There is a clear distinction between CNN and IPA performances.
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In the left most column, the IPA retrieval is the most error-prone in terms of the relative RMSE percentage across all cloud
fractions, and underestimates the true COT by more than a 50 % margin in terms of slope. The same is reflected in the second
column where the IPA either gets worse with increasing COT or remains off the ideal slope by a significant margin. The slope
of the IPA retrieval drops off significantly with higher cloud variability in the third column while R grows worse as well. With
the two CNN models, model A, trained on a single scene, performs comparatively well over large portions of cloud fraction,
variability and optical thickness but struggles with low COT, low CF, and certain sections of CV where it both underestimates
and overestimates. This could be inferred as the inability of model A to generalize to any images that were not similar to
the envelope of the original training scene because a single scene would not contain enough variability or diversity. On the
other hand, model B, trained on 5 scenes, is far more stable and consistent across all 3 cloud metrics vs both slope and R.
In other words, model B does not lose accuracy in return for better generalization. The histogram on the top right shows
how the IPA is highly error-prone, with most samples having a higher IR percentage than either of the CNN models. This is
also captured in the bottom right slope histogram with a significant shift toward lower slopes. CNN model A and model B
perform comparatively well in both histograms, with the latter slightly edging out in terms of better R performance. Therefore
the impact of using multiple cloud generator fields is quantifiably higher and more useful for the model as it gains a more

generalizable interpretation of the data.

4.3 Training on a sampled data set
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Figure 9. A distribution of standard deviation of reflectance (Refs:q) vs mean of reflectance (Re fean) for the gridded and sampled data
set. Each red scatter dot represents a 64 x 64 reflectance image belonging to the consolidated gridded/sampled data set consisting of the 1 x

1,2 x 2 and 4 x 4 coarsening factor data pools.

In this section, using knowledge gained from the previous two case studies, we build a new training data set based on the
LES data from the Sulu Sea (Sect. 2.1.1). Now that we know the advantages of using multiple cloud generator scenes and

coarsening, we develop a data set that combines both. However, training a model just by combining all 3 coarsening factors
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from all 6 scenes will be inefficient. This is because of the numeric imbalance where the highest coarsening factor produces
about 16 times the number of samples produced by the lowest coarsening factor. To overcome this imbalance and data bias,
we use a gridded approach to select a representative sample from a selected region and therefore limit the total number of
samples but retain the importance in terms of the contribution to statistical diversity. We employ a sample selection technique
that randomly selects data samples from three data pools of differing coarsening factors - 1 x 1, 2 x 2 and 4 x 4 at grid
boxes defined by standard deviation of the reflectance Re fs;4 and mean of the reflectance Re f,cqn. We use these two metrics
because Re feqan captures the mean brightness in the data set while Re f,;4 represents the general inhomogeneity in the data.

The steps are described below:

1. Calculate Refstq vs Re fean for the total of 24,000 samples coming from all 3 domains. Of those samples, about 1,200

come from the 1 x 1 domain, 5,000 come from the 2 x 2 domain and nearly 19,000 come from the 4 x 4 domain.

2. Divide the Refsiq vs Re fmean distribution into grid boxes where each grid box corresponds to ranges of deviation and

mean.

3. Randomly select data samples within each grid box from the three data pools.

One aspect to note is that because the total number of samples in each data pool differs, samples are more likely to be
selected from the pool that contains a higher number of data points. As a workaround, to achieve a uniform probability in
selection for the three data pools, we weighted the random selection in step 3 based on the total number of samples of the data
pool (higher total number gets lower weights). The sample selection was performed for each grid box based on a given number
of sample selection per box defined by the user. If the given number exceeds the total number of samples within the grid box,
all the data samples in the grid box will be selected. The resulting data set has 548 samples from the 1 x 1 domain, 1,522 from
the 2 x 2 subset and 3,180 from 4 x 4, all of which are chosen with selected randomizations. Figure 9 shows the distribution
of Refstq vs Re fiean for the resulting sampled data set. While this data set is not completely balanced despite having a more
uniform Refsiq vs Re fiean distribution, it is representative of the diversity in the data. The hypothesis is that a CNN trained
on this data set can retain accuracy over individual cloud fields and also generalize to unseen data, even better than the models
seen in Sect. 4.1 and Sect. 4.2.

Figure 10 shows the distribution of the sampled data set across (a) cloud fraction, (b) cloud optical thickness and (c) cloud
variability. We show this figure to illustrate how balancing the data set using Re fs:q VS Re finean affects the other metrics.

In Fig. 10a, we see that the cloud fraction is relatively well represented by the sampled data set, although not ideal. More
than 90 % of the data is in the CF < 50 % region. Figure 10b shows a much higher level of imbalance, with half of the samples
having mean COT < 3.8. Figure 10c shows the highest degree of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>