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Abstract.

We introduce a new machine learning approach to retrieve cloud optical thickness (COT) fields from visible passive imagery.

In contrast to the heritage Independent Pixel Approximation (IPA), our Convolutional Neural Network (CNN) retrieval takes

the spatial context of a pixel into account, and thereby reduces artifacts arising from net horizontal photon transfer, commonly

known as independent pixel (IP) bias. The CNN maps radiance fields acquired by imaging radiometers at a single wavelength5

channel to COT fields. It is trained with a low-complexity and therefore fast U-Net architecture where the mapping is imple-

mented as a segmentation problem with 36 COT classes. As a training data set, we use a single radiance channel (600 nm)

generated from a 3D radiative transfer model using Large Eddy Simulations (LES) from the Sulu Sea. We study the CNN

model under various conditions based on different permutations of cloud aspect ratio and morphology, and use appropriate

cloud morphology metrics to measure the performance of the retrievals. Additionally, we test the general applicability of the10

CNN on a new geographic location with LES data from the equatorial Atlantic. Results indicate that the CNN is broadly

successful in overcoming the IP bias and outperforms IPA retrievals across all morphologies. In the Atlantic, the CNN tends

to overestimate the COT but shows promise in regions with high cloud fractions and high optical thicknesses, despite being

outside the general training envelope. This work is intended to be used as a baseline for future implementations of the CNN

that can enable generalization to different regions, scales, wavelengths, and sun-sensor geometries with limited training.15

1 Introduction

Cloud optical properties play an important role in determining the cloud radiative effect (CRE), surface energy budget, heating

profiles, etc. Cloud optical thickness (COT) is important for the shortwave CRE. Accurately predicting the COT will help

to improve our understanding of the energy budget. Currently, the most-used cloud optical properties are retrieved under the

independent pixel approximation (Vardhan et al., 1994), or IPA, which assumes clouds are homogeneous within the pixel and20

is blind to the spatial context of adjacent pixels.
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1.1 Effects of Cloud Inhomogeneity

In the real world, clouds are inhomogeneous. Cloud spatial inhomogeneity effects on atmospheric radiation and remote sensing

have been studied extensively for decades. To appreciate that, one only needs to consider that the Stephens and Tsay (1990)

review paper on the once prominent cloud absorption anomaly was itself the synthesis of a body of work starting in the25

1960s. This anomaly is understood as the discrepancy between the absorption as calculated from in-situ cloud microphysics

measurements and as inferred from measured shortwave net irradiances above and below a cloud layer. Rawlins (1989) and

others identified net horizontal photon transport H as the potential cause. This term is an important addition to the energy

conservation of a layer with finite horizontal extent (domain size),

R+T +A= 1 +H (1)30

where R, T , and A are the irradiances that are reflected, transmitted, and absorbed by the layer, normalized by the incident

irradiance (Marshak and Davis, 2005), whereas H quantifies the net lateral exchange between the domain captured in the

equation above and its surroundings. It can only be neglected if clouds are horizontally homogeneous over a sufficiently large

domain. In practice, this condition is not met very often, and yet one-dimensional radiative transfer (1D-RT) makes precisely

that assumption. TheH term can thus be regarded as the missing physics in 1D-RT, which largely explains the lack of radiative35

closure between measured and calculated A, T , and R in earlier studies (Marshak et al., 1999; Kassianov and Kogan, 2002;

Schmidt et al., 2010; Kindel et al., 2011; Ham et al., 2014; Song et al., 2016).

Barker and Liu (1995), hereafter referred to as BL95, first quantified the effect of horizontal photon transport on cloud optical

thickness (COT) retrievals with Landsat data. Interpreting their Landsat-derived COT fields as truth, they calculated synthetic40

radiance fields with a Monte-Carlo 3D-RT model and subsequently retrieved COT from those, emulating the IPA retrieval pro-

cess with realistic clouds. They found that the optical thickness of optically thick clouds is underestimated, whereas optically

thin clouds appear thicker than they really are. Because of horizontal photon transport, the “dark” pixels collectively brighten

at the expense of the “bright” pixels. The magnitude of such errors, quantified by retrieval performance metrics introduced in

Sect. 3.3, depends on cloud type and morphology (horizontal distribution, geometric thickness and other parameters).45

To some degree, radiance averaging in spatially coarse pixels decreases the IP bias because net horizontal photon transport

drops off with larger pixels. On the other hand, radiance averaging also leads to the so-called plane-parallel (PP) bias because

the reflectance r is a concave function of COT, and therefore r(〈COT 〉)≥ 〈r(COT )〉. In other words, reflectance as a function

of the mean of the optical thickness is always greater than or equal to the mean of the reflectance of the optical thickness. The50

PP bias increases with pixel size, while the IP bias decreases. For stratocumulus and some other boundary layer clouds, the

optimum (i.e., the minimum of IP and PP combined) occurs at a scale of about 1 km (Davis et al., 1997; Zinner and Mayer,

2006), which is why currently operational cloud retrievals are performed at this scale (e.g. Platnick et al., 2021).
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In addition to net horizontal photon transport, there are other mechanisms causing inhomogeneity biases in cloud retrievals,55

most notably shadowing, which is especially significant for low sun elevation and pronounced cloud top variability, which

leads to roughening of the retrieved COT fields (Marshak et al., 2006; Iwabuchi, 2007) – as opposed to smoothing that is

caused by horizontal photon transport. The retrieval of droplet effective radius (REF), which is retrieved along with COT in

the bi-spectral technique by Nakajima and King (1990), is also affected by cloud inhomogeneity biases (Marshak et al., 2006;

Zhang et al., 2012), as are downstream parameters such as the liquid water path (LWP) and the cloud droplet number con-60

centration. The occurrence of smoothing and roughening as manifested in power spectra and autocorrelation functions varies

by cloud type and scale, imager wavelength, as well as solar zenith angle (Oreopoulos et al., 2000). Iwabuchi and Hayasaka

(2002) distinguish geometric inhomogeneity (morphology, thickness and cloud top roughness), horizontal variance, resolu-

tion and scaling (power spectrum exponent) and sun-sensor geometry as primary drivers of biases and retrieval noise of IPA

retrievals. Of these, Várnai and Davies (1999) specifically compared cloud-top and horizontal variability with the tilted IPA65

(TIPA) and found that COT variations caused by the variability of geometric thickness rather than by the extinction coeffi-

cient lead to greater reflectance biases, at least for oblique geometries. They also quantified different sub-mechanisms such as

upward and downward “trapping” and “escape” of photons, and proposed to treat them separately in future correction schemes.

Figure 1 illustrates the magnitude of the problem for cumulus clouds. Synthetic radiances, obtained from an LES cloud scene70

with a 3D-RT model (Sect. 2.2), emulate imagery observations. From those radiances, COT fields were retrieved via IPA. For

the clouds shown as an inset in Fig. 1a as an example, the IPA retrieval (Fig. 1c) significantly underestimates the ground truth

COT (Fig. 1b) due to H and other 3D effects.

Figure 1. (a) Synthetic radiance field at 600 nm generated with ERT using LES for a nadir view (30° solar zenith angle, 0° solar azimuth

angle) that would be seen by a satellite imager at 705 km. Inset shown is a 6.4 km x 6.4 km sub-domain region. (b) True COT (ground truth)

for the sub-domain of 6.4 km x 6.4 km. (c) IPA retrieval for the sub-domain. The underestimation made by the IPA retrieval is visually clear.
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1.2 Statistical Mitigation of Cloud Inhomogeneity Effects75

Tremendous effort has been made to mitigate the effects of cloud inhomogeneity. Early mitigation efforts employed statistical

approaches. For example, BL95 determined the slope δ for the logarithmic relationship between the IPA-retrieved COT τIPA

and the true COT τtrue as:

τIPA = τ δtrue (2)

where δ is parameterized as function of the cloud geometric thickness h for the specific cloud fields used:80

δ = e−h/h0 for h < 1,000 m (3)

with h0 ≈ 2km. The corrected COT can then be obtained as τ1/δ
IPA. Chambers et al. (1997) tabulated aspect-ratio dependent

corrections in the form of

τIPA = τtrue(1− o− bv) (4)

where o= 0.01 . . .0.05 and b= 0.15 . . .0.25 are SZA-dependent fit parameters, and the formula is inverted to un-bias the85

COT. In this case, the aspect ratio v is derived from satellite observations as the ratio of the cloud top variability to the horizon-

tal e-folding distance of the COT auto-correlation function. It is really a metric of cloud top roughness, but serves as a proxy

for the true aspect ratio. In contrast to the BL95 formula, the Chambers et al. (1997) parameterization only corrects for the

underestimation of COT for large values, not for the overestimation at small COT.

90

Iwabuchi and Hayasaka (2002) introduced more complex statistical parameterizations that account for sun-sensor geometry

and cloud morphology among other factors, with the main objective of correcting the first two moments of the COT prob-

ability distribution function (PDF) (mean value and variance, Iwabuchi, 2007). Marshak et al. (1998) developed a non-local

IPA (NIPA) that considers pixel-to-pixel interactions by adding a convolution kernel to the IPA that reproduces the observed

Landsat scale break, and inverted the approach for the recovery of the true COT power spectrum from observed radiance fields.95

To stabilize (de-noise or smooth) this deconvolution process, they used spatial regularization. Zinner et al. (2006) applied a

similar approach to aircraft radiance observations of broken clouds, but implemented it as a step-wise sharpening algorithm,

which adjusts the point-spread function of the de-convolution kernel iteratively until the calculated radiance fields match the

observations. Applied to synthetic observations, it not only re-creates the original power spectrum of the underlying LWP field,

but also reproduces the original PDF.100
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1.3 Cloud Inhomogeneity Mitigation Using Tomography and Neural Networks

Another promising mitigation strategy for 3D cloud biases is tomography (e.g. Forster et al., 2021) where multi-angle radiance

observations are inverted to retrieve not only cloud boundaries (through stereo reconstruction or space carving), but also the

3D distribution of parameters such as the liquid water content (LWC) and REF. This is done by iteratively adjusting the in-

puts to 3D-RT calculations until the output is consistent with the observations – an approach that has recently become tractable105

(Levis et al., 2020). Tomography does not require training and comes with built-in closure between the observed and calculated

radiance fields. However, it requires multi-angle radiances and extensive RT calculations, which are computationally expensive.

Pixel context-aware algorithms have become a promising approach for resolving cloud inhomogeneity effects when retriev-

ing cloud optical properties from radiance measurements. Faure et al. (2002) implemented a mapping neural network (MNN)110

where the solution to the inverse problem is understood as mapping from radiance to COT not only on the individual pixel basis

(as in IPA), but also from neighboring pixels. The transfer functions from neighboring pixels are coefficients that are learned

iteratively by the MNN with training data. They can be understood as spatial filters. This is similar to the idea of an averaging

kernel from Marshak et al. (1998), but more general and applied in the opposite direction (from radiance fields to COT). Cornet

et al. (2004) applied this approach for the estimation of domain-averaged COT and REF. Iwabuchi (2007) built on the idea of115

spatial mapping, but generalized it further to include other wavelengths. The filter coefficients are determined by regression

using least-square fitting based on synthetic training data. Instead of mapping directly to COT space, the observed radiance

fields are mapped to pseudo-IPA radiance fields where 3D effects are removed, and from where the standard IPA technique can

be applied to infer COT and other parameters.

120

Such pattern-driven image analysis proliferated with the advent of deep learning, specifically Convolutional Neural Net-

works (LeCun et al., 1989, 1998), once GPUs enabled the processing of large training data sets for increasingly complex

networks efficiently (Krizhevsky et al., 2012). Therefore, it was only natural to harness these techniques for 3D cloud remote

sensing. Okamura et al. (2017) presented the first CNN for multi-pixel cloud reflectance retrievals for COT and REF that was

trained with LES-based synthetic data, followed by Masuda et al. (2019) who developed a CNN retrieval of the slant COT from125

ground-based observations by a radiometrically calibrated fish-eye lens camera (see Sect. 2). These algorithms demonstrated

that CNN is capable of recovering the original cloud fields with higher fidelity than previous techniques, albeit only after a

significant training effort involving supercomputers.

Since the magnitude of 3D remote sensing biases depends on cloud spatial characteristics, CNNs have the potential to130

outperform their regression-based predecessors (Sect. 1.2). In this work, we introduce a CNN that builds on previous work

(Masuda et al., 2019), but significantly reduces training time through:

1. reduced complexity of the architecture (Sect. 3.1);
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2. a deliberately minimal training data set that is still general enough to make the trained CNN applicable to a wide range

of conditions, while outperforming the IPA in terms of the retrieval performance metrics we introduce in Sect. 3.3.135

Figure 2. A scatter plot comparing the COT retrieved by the IPA method (green scatter) and the CNN (red scatter) as a function of the true

COT. The dashed black line depicts the ideal retrieval having a slope of 0. The solid green and red lines are linear regression lines fitted to

the IPA and CNN retrievals respectively.

For the IPA COT from Fig. 1c, we show the retrieval bias in Fig. 2, which is the difference between the retrieved COT and the

ground truth COT, and expressed as a function of the ground truth COT. Figure 2 also provides a preview of the results of the

CNN that we describe in more detail later. The dependence of the bias on the ground truth can be parameterized through linear

regression. In this case, the slope of the regression for the IPA retrieval is -0.79, which reflects the significant underestimation

of the COT for the majority of the pixels from Fig. 1c. In contrast, the CNN retrieval shows a much smaller bias with a slope140

of -0.03, though the scatter is not reduced relative to the IPA. More details on the definition of various retrieval performance

parameters such as the slope and scatter are described in Sect. 3.3.

In our paper, we use two LES data sets from distinct regions of the globe as 3D-RT input (Sect. 2.2) to generate synthetic

radiance data that a satellite would observe at nadir. We then train the model with 6.4 km x 6.4 km resolution radiance images145

as the input and COT as the truth from the first LES data set (shallow convection near the Philippines). The LES data set we

choose contains six distinct cloud morphologies that correspond to a locally representative range of aerosol and wind shear

conditions. We validate the performance of the CNN with unseen image pairs from the first data set by assessing a number of

retrieval performance parameters as a function of cloud field parameters such as mean COT and cloud fraction (CF). Along the
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way, we test different training data selection criteria that increase the capacity of the trained network to generalize. Finally, we150

test the CNN trained on data in the first region on the second data set (closed and open-cell shallow convection in the Southeast

Atlantic) to gauge its functional capacity under completely different circumstances.

Section 2 describes the generation of the training and validation data from the LES data, including the 3D-RT, followed by

the CNN architecture and methodology in Sect. 3. Section 4 discusses the evaluation of the CNN under various experiments155

and case-studies in data conditioning and selection. In Sect. 5, we discuss the main takeaway points from our study and outline

a path for the future.

2 Data Generation

To train the CNN, we need input and true data. The input data consists of radiance images, each at 600 nm wavelength. For

each input image, a ground truth image of the same size is used. In our case, the COT is used as the ground truth. This true160

image goes through a series of processing steps explained in Sect. 3.4. To generate this data, we use two LES models in two

regions, coupled with radiance calculations (Sect. 2.2).

2.1 Large Eddy Simulations

The two LES data sets were chosen from regions where NASA aircraft field campaigns were conducted in the recent past be-

cause this will allow direct validation of CNN-based retrievals with in-situ microphysics and radiation measurements in future165

studies. The first LES data set (Sect. 2.1.1) is based on 7SEAS (Southeast Asian Studies) ship-based observations in the Sulu

Sea area, which was also sampled during the 2019 NASA CAMP2Ex (Cloud, Aerosol and Monsoon Processes-Philippines

Experiment) aircraft campaign. The second data set (Sect. 2.1.2) was based on the 2017 Cloud-Aerosol-Radiation Interactions

and Forcing (CLARIFY) campaign in synergy with the 2018 campaign of the NASA airborne ORACLES (ObseRvations of

Aerosols above CLouds and their intEractionS) study (Redemann et al., 2021) that took place in the Southeast Atlantic. Both170

data sets are dominated by shallow convection, but with different attributes.

For the Sulu Sea data set, Fig. 3 shows how wind shear and aerosol loading affect cloud morphology. For conditions with

no wind shear, one can see a high level of organization (hexagonal walls of convection), especially for the low aerosol loading

case shown in Fig. 3b and Fig. 3d. We selected six of these open-cell convection cases and sampled 64 x 64 pixel sub-domains175

spanning 6.4 km x 6.4 km from the COT fields and the corresponding radiance fields as shown by the yellow box in Fig. 3c.

Figures 3e and 3f visualize the difference in the radiance level between IPA and 3D radiance calculations respectively for the

highlighted sub-domain. Figure 3a shows a scenario with vertical wind shear and high aerosol loading. We used the native

horizontal resolution of the simulations (100 m) as the pixel size for the synthetic radiance simulations – a scale where the IPA

bias dominates over the PP bias and can therefore be optimally studied here.180
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Figure 3. a-d: LES COT fields with/without wind shear and with low/high aerosol loading (the maximum COT is capped at 4 to emphasize

low-COT regions); e, f: Synthetic radiance calculations (Red = 600 nm, Green = 500 nm, Blue = 400 nm) with IPA and 3D, shown for the 6.4

x 6.4 km sub-domain (yellow box) in (c). All observations are of a hypothetical satellite imager at an altitude of 705 km with a solar zenith

angle of 30° (with nadir viewing angle) and a solar azimuth angle of 0°.

The six 48 km x 48 km scenes each generated a hundred 6.4 km x 6.4 km training image pairs. They were obtained by

clipping off 64-pixel stripes on all sides to avoid edge effects from the cyclic boundary conditions in the LES and 3D-RT, and

subsequently moving a 64 x 64 pixel selector window across the remaining domain with a horizontal and vertical stride of 32

pixels. For CNN training, the original number of samples is very low. Therefore, we augmented the native-resolution training185

pairs by horizontally coarsening the fields by a factor of 2, such that each original 100 m x 100 m cell was assigned a spatial

extent of 400 m x 400 m and then split into four cells, leaving the vertical resolution of the fields (40 m) intact. In addition

to providing additional training pairs after sub-sampling as described for the native-resolution data, this coarsening procedure

also effectively generates horizontally smoother cloud fields while halving the cloud aspect ratio. In other words, one of the

key drivers for 3D COT biases as described by BL95 and others is systematically changed in the training data to introduce190

some training data diversity. A second coarsening step introduces another level of coarsening and range of aspect ratios. The

three data sets, labeled 1 x 1 (native resolution), 2 x 2, and 4 x 4, respectively, are used separately (Sect. 4.1) to examine the

impact of the cloud aspect ratio on the retrieval performance, and together (Sect. 4.2) to assess the impact of training sample

number along with algorithm robustness and accuracy for a physically more diverse data set. A more consolidated version of

the three data sets is evaluated to decrease training time (Sect. 4.3).195
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The Atlantic data set (Sect. 2.1.2) encompasses both open-cell and closed-cell convection, from which we sampled five 350

x 350 pixel scenes. These data were only used at the native resolution (100 m x 100 m x 40 m voxel size as the Sulu Sea

simulations); no data augmentation was necessary because the fields only served as validation. This is further explained in

Sect. 4.4.200

2.1.1 Sulu Sea Data Set

The simulation configurations were designed to investigate aerosol-cloud interactions in trade cumulus cloud fields in the

Philippine areas as a pilot study for the CAMP2Ex field program (Reid et al., 2022). The detailed model configurations and

scientific findings were reported by Yamaguchi et al. (2019). The initial, environmental, and boundary conditions were based on

a ship measurement that took place on September 21 in the Sulu Sea during the 7 Southeast Asian Studies (7SEAS) campaign205

in 2012 (Reid et al., 2016). In addition to 6 hourly data, the hourly ERA5 (Hersbach et al., 2020) data were supplementary.

A total of 6 simulations were performed with / without vertical wind shear with three different aerosol number concentrations

for 60 hours with a 48 km2 domain and two-moment bin microphysics scheme. These simulations revealed that trade cumulus

clouds organize so that they produce a similar amount of precipitation and cloud radiative effect, which is consistent with a

buffering of the aerosol effect as discussed by Stevens and Feingold (2009). Vertical wind shear was found to impose two210

effects, which compensate one another; the wind shear enhances clustering of clouds, which tends to protect clouds from being

evaporated, while it tilts the clouds, which enhances evaporation.

2.1.2 Atlantic Data Set

The Atlantic data set is the output of a Lagrangian LES (Kazil et al., 2021, simulation B1). The simulation covers two daytime

periods and simulates the transition from an overcast closed-cell stratocumulus cloud deck to a broken, open-cell cloud deck215

in a pocket of open cells (POC) sampled during the Cloud-Aerosol-Radiation Interactions and Forcing (CLARIFY) campaign

(Abel et al., 2020; Haywood et al., 2021). The LES was driven by the European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis meteorology (ERA5). Its 76.8 km x 76.8 km domain follows the trajectory of the boundary layer flow,

determined with the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT, Stein et al., 2015). On the first

day of the simulation, the stratocumulus cloud deck is in the overcast, closed-cell state, with a cloud fraction near unity and220

negligible surface precipitation. An increase in rain water path towards the evening leads to sustained precipitation over the

course of the night, accompanied by the transition to the open-cell stratocumulus state, which persists during the second day.

The simulation was evaluated with satellite (Spinning Enhanced Visible and Infrared Imager, SEVIRI) and CLARIFY aircraft

in-situ data. It reproduces the evolution of observed stratocumulus cloud morphology, COT, and REF over the two-day period of

the cloud state transition from closed to open cells, and captures its timing as seen in the satellite imagery. Cloud microphysics225

was represented with a two-moment bin scheme, which reproduces the in-situ cloud microphysical properties reasonably well.

A biomass burning layer that was present in the free-troposphere resulted in negligible entrainment of biomass burning aerosol

into the boundary layer, in agreement with the CLARIFY in-situ measurements. Further details on the simulation, its setup,

and the results are given by Kazil et al. (2021).
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2.2 Radiance Calculations230

Both sets of LES calculations contain the 3D distributions of cloud water mixing ratio (mrcloud), REF, water vapor mixing

ratio (mrwater), temperature (T ), pressure (p), and other meteorological variables. From those 3D fields, the LWC is calculated

as

LWC =mrwater ∗ ρair (5)

where ρair is the density of the ambient air, and the extinction coefficient is obtained as235

βext =
3 · qext ·LWC

4 · ρl ·REF
(6)

where ρl is the density of liquid water and qext is the extinction efficiency, approximated as 2 in the geometric optics regime.

Furthermore, the single scattering albedo is set to 1 because all calculations are done in the visible where cloud drop absorption

is negligible. In this exploratory study, the scattering by cloud drops is represented by a simple Henyey-Greenstein (HG) phase

function with an asymmetry parameter of 0.85. For our purposes, it is convenient to use this fixed phase function as a proxy240

for the real phase function, in part because our CNN does not retrieve REF. However, the true REF distribution along with

the associated Mie phase function variability are expected to introduce additional radiance variance, which will need to be

considered in future, real-world CNN applications.

The radiance calculations were performed for the native-resolution 3-dimensional βext, as well as for the horizontally coars-245

ened fields (Sect. 2.1), using the Education and Research 3D Radiative Transfer Toolbox (ERT, Chen et al., 2022) for a wave-

length of 600 nm. ERT provides high-level interfaces in the Python programming language that automates the process of

running 3D RT for measured or modeled cloud/aerosol fields. It builds on using publicly available 3D radiative transfer models

(RTMs) including MCARaTS (Iwabuchi, 2006), SHDOM (Evans, 1998), and MYSTIC (Mayer, 2009) as 3D radiative solvers.

In this study, we used MCARaTS as the solver. The calculated radiances serve as synthetic radiance observations of a hypo-250

thetical satellite imager at an orbital altitude of 705 km with a viewing zenith angle of 0° (nadir) for a SZA of 30° and solar

azimuth angle (SAA) of 0°. The corresponding cloud fields were represented by the vertically integrated βext, i.e., the column

COT from the LES as ground truth for the CNN.

Additional input parameters for the 3D-RT calculations include the incident solar spectral irradiance (Coddington et al.,255

2008), and a spectrally flat surface albedo of 0.03 with a Lambertian reflectance. Similar to the simplified representation of

the cloud drop scattering, the surface reflectance assumptions are only meant to be a proxy for more complex conditions in

the real world. The optical properties of 1D atmospheric components were obtained based on the U.S. standard atmospheric

profile from Anderson et al. (1986) that contains a vertical distribution of atmospheric gases (e.g., CO2,O2,H2O, etc.). We
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used the correlated-k absorption approach introduced by Coddington et al. (2008), which was optimized for a moderate spec-260

tral resolution radiometer. The molecular scattering optical thickness of the atmosphere is calculated based on the algorithm

developed by Bodhaine et al. (1999). For each simulation, three runs were performed with 2 x 109 photons each, which allows

one to estimate photon (statistical) noise along with the mean radiance fields. Following the calculations, 64 x 64 pixel COT

and radiance training pairs are sub-sampled from the larger generator field.

3 Architecture & Methodology265

The CNN is responsible for learning features and patterns that can fit the non-linear relationship between the input and the

corresponding ground truth. In our case, this is done via various multi-channel convolution layers and non-linear transforma-

tions. When an image is fed to the model, it gets passed through these layers, undergoing transformations, changes to size and

dimension, until after the final layer when it is compared with the ground truth to compute the cost.

3.1 Architecture270

Our CNN can be explained in two aspects: (1) the architecture and (2) the training. The architecture is derived from an

existing U-Net design (Ronneberger et al., 2015). Figure 4 shows an illustration of the architecture. We opted for a U-Net

style architecture for three main reasons: 1) the model complexity is lower than other architectures which thereby increases

computational speed during both training and evaluation (inference); 2) the use of concatenation layers linking features learned

by different stages helps the model learn new features having more information without increasing layer depth; and 3) the275

U-Net has been proven to be a state-of-the-art model for segmentation problems, especially in the medical field (Litjens et al.,

2017).

3.1.1 Contracting Path

The architecture has two distinct halves in the U-shape: a contracting branch on the left, and an expanding branch on the right.

The left half is a contracting path, composed of a series of convolutional blocks separated by pooling layers, which collectively280

produce an increasing number of “maps” (from 64 to 1024) while digesting the spatial information into successively smaller

domains (64 x 64 down to 4 x 4), which now carry “features”. These features can be as simple as 1D or 2D gradients and

spatial averages of radiances or higher-dimensional descriptors. Features help the model understand the data on multiple high

dimensions and at different scales in our case. Each filter has 2D kernels with “weights” that gradually change during the

training. The gradual translation from the radiance fields to features ensures that pixel-to-pixel transfer of information can285

occur at a range of scales up to 9 km. In other words, the COT dependence on the radiance of a number of pixels in the

mini-domain, instead of a single one as in IPA, can be accounted for up to the limit of 64 x 64.
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Figure 4. Architecture of proposed model, based on U-Net (Ronneberger et al., 2015). The images are fed through an input layer (shown

in yellow on the left). The blue rectangular blocks depict convolutional layers with 3 x 3 filters. The number of such 3 x 3 filters is listed

above each block (64, 128,...). ReLU activation and Batch Normalization are depicted by blue arrows. Red arrows are max-pooling layers

that downsample the previous layer by half. The gray arrows represent the concatenation operation where a source feature map from the

contracting path on the left is concatenated to an expanding path on the right (shown as dashed blue lines). The green arrows comprise two

operations, mainly upsampling via bilinear interpolation and transposed convolution. The turquoise arrow is the final convolution layer called

projection layer that translates the previous layer to the requisite number of output classes, in this case, 36. The yellow rectangle on the right

is the final output layer.

3.1.2 Expanding Path

The expanding path is the right half of the architecture, composed of a series of decoding and convolutional blocks. Each stage

up-samples by a factor of 2 (green arrows) using bilinear interpolation. In addition, the subsequent “transposed” convolution290

is also informed by matching feature maps that are passed through from the contracting path via concatenation (grey arrows).

Transposed convolution is further explained in Appendix A. Once the original resolution is reached, a final projection layer

is implemented (1 x 1 convolution) translating the final 64 x 64 feature map into probabilities for 36 COT classes for each of

the 64 x 64 pixels. Because we use discrete classes rather than continuous COT, our approach solves a segmentation problem,

rather than a regression problem, in the nomenclature of computer science. This distinction means that our CNN is simpler and295

smaller than previous architectures (e.g., Masuda et al., 2019, a regression approach), although somewhat less accurate because

it is “digitized” into classes. The final layer is activated by a soft-max activation function, which translates the values of the

layer to a multinomial probability distribution. The values for a single pixel are therefore spread across a range of classes, all

between 0 and 1, and whose sum is 1.
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3.2 Loss Function: Focal Loss300

The loss function serves an important role in optimizing a machine learning algorithm. It is the method by which the model

learns to minimize the difference between the ground truth and its prediction made through learned parameters. In our case,

due to the use of segmentation, we opt for a cross-entropy-based loss called focal loss (Lin et al., 2017). But, before discussing

focal loss, we introduce cross-entropy loss, also called log loss, which measures the performance of the predicted probability

value obtained from the softmax function against the ground truth probabilities. Cross-entropy (CE) is given by:305

CE =−
∑

i∈I

∑

c∈C
pi,c · log(p̂i,c) (7)

where I is the set of all pixels, C is the set of all classes, pi,c is the true probability of pixel i belonging to class c, p̂i,c is the

estimated probability of pixel i belonging to class c. Because of our one-hot encoding and the fact that a pixel can only be of

one class, the true probability is binary:

pi,c =





1, when pixel i belongs to class c

0, otherwise
(8)310

As we use softmax activation in our final layer, the sum of estimated probabilities for a pixel over its classes will be 1.

∑

c∈C
p̂i,c = 1 (9)

Cross-entropy works well with binary as well as multi-class targets. It is also compatible with our one-hot encoded approach

as a pixel can only belong to one class. That means only one term in the inner summation would have pi,c = 1 whereas the

remaining C− 1 terms in the inner summation would have pi,c = 0 thereby having only one non-zero value in the summation.315

Despite its advantages, CE fails to deal with class imbalance. This is because all contributions from all classes are summed

together equally using only the truth and estimated probabilities without a weighting factor that can change the importance of

a particular class.

320

In our case, the imbalance between the background class and non-background classes is particularly high with the former

sometimes occupying > 80% of the pixels. If we were to use CE as our loss function, any large errors in estimation of non-zero

classes would get overwhelmed or averaged out by high volumes of low errors in estimation of the background class, therefore

driving the cost misleadingly low. That would lead the model to interpret wrongly that it is learning all the classes equally well

when in fact it might not be.325
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To counteract this, we use focal loss, a variant of cross-entropy designed specifically to be used in problems involving a class

imbalance in the data set. Focal loss (FL), adapted from Lin et al. (2017), is given by:

FL=−
∑

i∈I

∑

c∈C
(1− p̂i,c)γ · pi,c · log(p̂i,c) (10)

Focal loss uses a “modulating factor” (1− p̂i,c)γ to address the issue of imbalance by up-weighting misclassified examples330

(examples that do not have high probabilities), and down-weighting well-classified ones (examples that have high probabilities).

γ is called the “focal parameter” and acts as a smoothing factor by exponentially scaling the importance of a class. It is usually

set to 1 or 2 (if set to 0, focal loss becomes cross-entropy loss). To demonstrate the effect of focal loss, let us consider an

example: The model is learning a particular class “well” i.e., the estimated probability is high, say p̂i,c = 0.9. And γ = 2. Then

the modulating factor would scale it as (1− p̂i,c)γ = (1− 0.9)2 = 0.01. This means the cross entropy loss contribution by that335

class gets scaled down a factor of 100. As advised by Lin et al. (2017), an α term is added as an additional weighting factor

and the final version of our loss function can be written as:

FL=−
∑

i∈I

∑

c∈C
α(1− p̂i,c)γ · pi,c · log(p̂i,c) (11)

It is worth noting that focal loss up-weights any class yielding low probabilities rather than the frequency of occurrence of

that class making it more robust to any class imbalance. This means that the model relies on what it has learned so far, using340

the modulating factor to correct and scale itself.

3.3 Retrieval Performance Quantification

To quantify the retrieval errors, we use the pixel-centric relative root-mean-squared error (RMSE) or R:

R=

√√√√ 1
nx ·ny

nx∑

i=1

ny∑

j=1

(
COTret(i, j)−COTtrue(i, j)

COTtrue(i, j)

)2

× 100% (12)345

whereCOTtrue andCOTret denote ground truth and the retrieval, and nx and ny define the size of the analyzed sub-domain.

In most of our examples, since we use a 64 x 64 COT image spanning 6.4 km x 6.4 km, nx = 64 and ny = 64.

The mean (square) deviation of the pixel-level retrieval from the truth is quantified relative to the pixel-level ground truth in

%. RMSE is a quantification of the scatter that we discussed earlier in the context of Fig. 2. For the case in Fig. 2, the relative

RMSE (R) is 60.8%.350

Instead of pixel-centric metrics, one can also focus on the domain-wide retrieval performance based on the linear regression

between the ground truth and the difference between the retrieval and the ground truth,
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COTret−COTtrue = a ·COTtrue + b (13)

Typically, a < 0 and b > 0. A slope a= 0 and an intercept b= 0 would indicate a perfect retrieval in terms of the sub-domain355

as a whole. UnlikeR, which also encompasses pixel-level retrieval noise, slope and intercept only capture the average deviation

of COTret from COTtrue as a function of the ground truth itself. As we noted earlier, our proposed CNN significantly reduces

the bias characterized by the slope a metric. However, it does not necessarily show the same extent of improvement over the

IPA for the scatter (variance) characterized by R. This is expected as we do not directly optimize the CNN for the R metric.

In addition to the retrieval performance metrics introduced here, alternate metrics can be defined in terms of the two-stream360

transmittance as a function of COT, log COT, or on the power spectrum of COT. Note that BL95 used slope and offset in log

COT space, and determined the slope as a function of cloud geometric thickness to introduce the first 3D COT corrections

known in the literature.

For the case shown in Fig. 2, for the IPA retrieval (green scatter), the linear regression slope (with the true COT subtracted365

from the retrieved COT) a is - 0.79, and the intercept b is 0.15. The neutral COT, −b/a, (0.19 in this case) is the optical

thickness value above which COT is underestimated and below which it is overestimated. For our example in Fig. 2, the IPA

retrieval assigns a COT of 10 to a true COT of 40, whereas a COT of 2 is retrieved as being closer to 4. Such large retrieval

biases on the pixel level are much less pronounced in domain-averaged cloud properties. Equation 15 shows how the domain-

average bias δCOT can be quantified. Using the linear regression slope and intercept from Eq. 13, we can use the true COT370

to obtain pixel-level bias δCOT (i, j), as shown in Eq. 14. Then, we add the pixel-level biases and take the average over the

sub-domain, which yields the domain-average bias δCOT . One could also obtain δCOT by directly using the slope, intercept

and the mean of the true COT over the sub-domain, as shown in Eq. 15.

δCOT (i, j) = a ·COTtrue(i, j) + b (14)

δCOT =
1

nx ·ny

nx∑

i=1

ny∑

j=1

δCOT (i, j) = a ·


 1
nx ·ny

nx∑

i=1

ny∑

j=1

COTtrue(i, j)


+ b (15)375

However, the domain-average bias does not completely disappear even for larger domain sizes, which makes it a significant

factor for global assessments of the shortwave surface cloud radiative effect (e.g. Kato et al., 2018), which are based on cloud

transmittance calculations with imagery products as input. For the case in Fig. 2, the δCOT is - 0.65, with the negative sign

implying an underestimation.

3.4 Pre-Processing380

Before the LES-generated COT images are used as ground truth, a series of pre-processing steps are performed. A clear dis-

tinction between our approach and the one proposed by Masuda et al. (2019) is that we treat COT retrieval as a segmentation
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problem instead of regression. By using segmentation, we reduce the problem to a classification task where the objective is to

classify a pixel into a class. Such an approach aims for accuracy over a finite set of values instead of a continuous distribution.

By binning the true COT image, a discrete mask is obtained. This mask will have contrast and clearly-defined edge-based385

boundaries around pixels due to the binning. In other words, the mask contains distinct features that can then be exploited by

the CNN. As we combine this with focal loss and a probability-based output layer, it allows us to deal with the significant

imbalance between clear-sky and cloud pixels without relying on pre-defined or threshold-based weights to overcome it. We

note that by binning the COT, some precision is lost, but the reduction in complexity of the model via the U-Net architecture

and solution to the data imbalance problem make up for it.390

After binning, each 480 x 480 scene is subdivided into 64 x 64 patches or sub-domains using a 50% overlap to increase the

number of samples. For example, 6 scenes each of size 480 x 480 can generate between 600 and 1,200 samples each of size

64 x 64. We also crop out the edge pixels before cropping. Before this data is fed to train the network, we “one-hot encode”

the images. One-hot encoding can be viewed as a mapping technique where a pixel is mapped from an integer class to a binary395

(0 or 1) class. Since a pixel can only belong to one class, the mapping is 1 if the pixel belongs to the class, and 0 otherwise. If

the number of classes is N , the new size of the COT mask becomes 3-dimensional where the “depth” channel is the class i.e.,

it goes from dimensions of (64 x 64) to (64 x 64 x N ). If a pixel belongs to class 3, the depth-wise array of size N would be

(0, 0, 0, 1, 0, 0, 0, 0, . . . 0). Figure 5 illustrates this, where Fig. 5a shows a discretized mask of the true COT (obtained from

LES) with a 48 km x 48 km resolution. A yellow box highlights a 6.4 km x 6.4 km sub-domain that is extracted. This yellow400

patch, shown in Fig. 5b, is then translated to a 3-D image with binary masks stacked along the channel depth axis using one-hot

encoding. The resulting encoded image is shown in Fig. 5c.

Figure 5. One-hot encoding translates a 2D discrete COT mask to a 3D image with N binary masks. (a) A 48 km x 48 km discrete COT

mask. The yellow box highlighted is a 6.4 km x 6.4 km sub-domain, which is shown in (b). (c) shows the one-hot encoded COT that has the

dimensions (64 x 64 x N ) where a pixel viewed depth-wise (along the channel axis) would have N classes.
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No pre-processing is performed for the input radiance images. Hereafter, we refer to the 480 x 480 (48 km x 48 km resolution)

images generated by the LES as “scenes”.

3.5 Training405

In this section, we explain the methodology for training the model using the architecture described in Sect. 3.1. Figure 6 shows

an overall schematic of the training process, starting with the input radiance images. The training can be understood as expos-

ing the randomly initialized kernel weights in the architecture with 64 x 64 radiance imagery. Each learning exposure modifies

the neurons such that they eventually classify certain patterns into meanings that can help the model learn the non-linear re-

lationship between radiance and the ground truth COT imagery. The full set of radiance images is fed batch-wise into the410

architecture. The model learns features during forward propagation from left to right, and using a loss function, the difference

between “learned” estimation and ground truth is calculated. During backward propagation from right to left, this loss function

is used to optimize and adjust the weights before beginning the next batch/iteration. The CNN architecture is also confronted

with formerly unseen data that is reserved for “validation”. As is common practice in machine learning, we split the data set

into 80% training and 20% validation data. The training and validation process is repeated until the cost no longer improves at415

which point we declare the model to have “converged”.

Figure 6. Schematic representation of the model training approach. C is the cost that needs to be optimized, w refers to the weights of

a neuron, and b is the bias. The final layer of the CNN is cast to probability space using a softmax activation function and the estimated

probability at the end is compared with the true probability (that of the true COT) using a cost function which computes a cost. The cost or

the error is then backpropagated through the network backwards during which the weights and biases are updated. This process is repeated

for different batches of images until the loss is minimized when the model is said to have converged.

We train the model using the Adam optimizer (Kingma and Ba, 2014). To prevent overfitting, we stop training early when

there is no significant improvement in the validation loss after a certain time. We pay special attention to the validation loss
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by using it as the monitored metric because it is a good indication of model generalization, our overall goal. Additionally, we420

use decaying learning rate to reduce the learning rate whenever learning stagnates or plateaus. We save (or checkpoint) the

model weights only when there is an improvement from the previous best validation loss. L1 regularization is applied to all the

convolutional layers to stabilize and improve learning by penalizing drastic weight changes.

3.6 Post-Processing

After the model is trained, the model needs to predict the COT using images of radiance. However, using the model weights425

that were saved during training, when a radiance image of size 64 x 64 pixels is fed, the CNN does not actually output a COT

image of the same size. Rather, it estimates a probability distribution function (PDF), where each pixel i has 36 probability

values p̂i,c corresponding to each class c. We need to translate the PDF to an image in COT-space where we can evaluate

the actual performance of the model. We do this by using a weighted sum approach. For a pixel, we use the 36-value PDF

estimated by the CNN and compute a product of each probability value with a COT “bin” average value bc. The bc value is part430

of an array b that spans 36 classes and is obtained using the average values of each COT bin used during the pre-processing

step. For example, during the binning process, any COT values between 35 and 40 would be binned as class 27. The estimated

probability value for each pixel at class 27 (p̂i,27) would be weighted with b27 = 37.5, which is the average COT value of 35

and 40. This product is then summed and repeated for each pixel, resulting in a 2-dimensional COT image of size 64 x 64. The

estimated COT for a pixel COTi can be written as435

COTi =
∑

c∈C
bc · p̂i,c (16)

4 Evaluation & Results

With the setup explained above, we evaluate how the model behaves when trained on different permutations of cloud morphol-

ogy and aspect ratio. This allows us to observe how the CNN reacts to different situations, thereby providing an indication of

its strengths and weaknesses. We use the metrics detailed in Sect. 3.3 to assess the performance of the CNN and compare it440

with the IPA retrieval.

We express the performance of the CNN models and IPA as a function of three cloud metrics - Cloud Fraction (CF), Cloud

Optical Thickness (COT), and Cloud Variability (CV). To calculate these cloud metrics on the abscissa for each figure in this

section, we only consider pixels that have COT > 0.1. This is done because in our binning method, we consider COT ≤ 0.1 as445

clear-sky. Cloud Fraction is the percentage of the number of pixels having COT > 0.1. Cloud Optical Thickness is the mean

COT taken across pixels having COT > 0.1. Cloud Variability is the ratio of the standard deviation of such pixels to the cloud

fraction.
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In the figures that compare the performances of CNN and IPA retrievals in this section, each dot represents a binned mea-450

surement obtained by taking the mean of the performance metric (relative RMSE percentage or slope appropriately) over a

number of samples to infer the overall trend in performance. Bin sizes are smaller/finer in the lower portions of each cloud

metric as there are a greater number of samples available in these regions. This is the case for all scatter figures measuring

CNN and IPA performances in this section. We also use histograms for a particular cloud metric performance which takes into

account all samples and not just the binned ones.455

4.1 Variability of aspect ratio

Model A Model B Model C

Number of Scenes 6 24 96

Coarsening Factor N/A 2 x 2 4 x 4
Table 1. Data used to train each of the models for Sec. 4.1. Each model is trained on a distinct aspect ratio to evaluate its influence individually.

Figure 7. Comparison of models A, B, C (red, orange and blue lines respectively) and IPA or 1D retrieval (shown in green) obtained by

methods described in Table 1. Model A is trained on scenes that have no coarsening factors applied, model B is trained on scenes from 2

x 2 coarsening factor and C is trained on scenes from 4 x 4 factor. The dashed black line depicts the ideal retrieval. All models are being

evaluated against unseen samples from the 1 x 1, 2 x 2 and 4 x 4 aspect ratios. The rightmost column shows the histogram for the models

evaluated on samples that have COT < 25.

In this subsection, the goal is to evaluate the impact and influence of aspect ratio on the CNN (and its different variants). The

three CNN models A, B, and C are trained on the data that have 1 x 1, 2 x 2, and 4 x 4 coarsening factors respectively applied

(Table 1). All three CNN models and the IPA method are tested on a data set consisting of samples from the 1 x 1, 2 x 2 and

4 x 4 aspect ratios. None of the samples in this test set have been seen before by any of the CNN models during training. This460
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allows us to evaluate if a particular model does better on a particular aspect ratio, thereby giving us insight into the ability of

the CNN to generalize.

The first three columns from the left in Fig. 7 show the performance of the three CNN models as well as the IPA when

measured against different cloud metrics (on the abscissa), and relative RMSE percentage R and slope (both on the ordinate).

465

The histograms on the rightmost column show how much the IPA underestimates (in terms of the slope) and contains errors

(in terms of R) for samples that have COT < 25. Among the CNN models, model A (red line), trained on just the 1 x 1 aspect

ratio, has the highest error R against all values of cloud fraction but does significantly better against variability and optical

thickness. Model C (blue line), trained on the 4 x 4 aspect ratio, works better than model B (yellow line), trained on the 2 x 2

aspect ratio, when evaluated as a function of cloud fraction. However, model B performs better when measuring against cloud470

optical thickness and variability. Model C has differing performances when being evaluated against cloud optical thickness and

variability. In the second column, as the COT increases, R decreases and the slope grows closer to the ideal 0. In the third col-

umn, as the cloud variability increases, model C gets progressively worse, in terms of both R and slope. But, the histogram on

the right-most column shows that for COT < 25, model C is the best performing model because the mode of the R percentage

is closest to 0% and mode of the slope is close to 0 (although model B is very close as well).475

All three CNN models perform better than the IPA in this case study. But, among themselves, none of the CNN models

seem ideally suited for all scenarios of cloud fraction, optical thickness and variability. It could therefore be inferred that a

combination of data from different aspect ratios would provide homogeneity with respect to cloud parameters as well as a

wider range of spatial scales for the CNN.480

4.2 Variability of cloud morphology

Model A Model B

Number of Scenes 1 5

Coarsening Factor 4 x 4 4 x 4
Table 2. Data used to train each of the models for Sect. 4.2. Model A learns from a single cloud generator scene whereas model B learns

from 5 generator fields.

The goal of this study is to evaluate the importance of diversity in varied cloud generator fields, and if a model trained on a

limited number of such fields can generalize to unseen data. We also test if a model trained on multiple fields loses accuracy

over individual fields by trading for generalization. All models and the IPA method are evaluated on a holdout scene that has

not been seen by any of the CNN models during training.485
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Figure 8. Comparison of two CNN models A and B (shown in red and blue respectively) with IPA or 1D retrieval (shown in green) obtained

by methods described in Table 2. Model A is trained on only 1 scene (coarsened to 4 x 4 aspect ratio) whereas model B is trained on 5 scenes

(coarsened to 4 x 4 aspect ratio). All 3 are being evaluated on samples from a holdout scene (with shear). The dashed black line depicts the

ideal retrieval.

Model A is trained on samples from a single LES cloud generator field at a 4 x 4 coarsening factor. Model B is trained on

samples from 5 different cloud generator fields. From Fig. 8, it is once again clear that both the CNN models, A (red) and B

(blue), outperform the IPA retrieval (green) consistently across all metrics. There is a clear distinction between CNN and IPA

performances. In the left most column, the IPA retrieval is the most error-prone in terms of the relative RMSE percentage across490

all cloud fractions, and underestimates the true COT by more than a 50% margin in terms of slope. The same is reflected in

the second column where the IPA either gets worse with increasing COT or remains off the ideal slope by a significant margin.

The slope of the IPA retrieval drops off significantly with higher cloud variability in the third column while R grows worse

as well. With the two CNN models, model A, trained on a single scene, performs comparatively well over large portions of

cloud fraction, variability and optical thickness but struggles with low COT, low CF, and certain sections of CV where it both495

underestimates and overestimates. This could be inferred as the inability of model A to generalize to any images that were not

similar to the envelope of the original training scene because a single scene would not contain enough variability or diversity.

On the other hand, model B, trained on 5 scenes, is far more stable and consistent across all 3 cloud metrics vs both slope and

R. In other words, model B does not lose accuracy in return for better generalization. The histogram on the top right shows

how the IPA is highly error-prone, with most samples having a higher R percentage than either of the CNN models. This is500

also captured in the bottom right slope histogram with a significant shift toward lower slopes. CNN model A and model B

perform comparatively well in both histograms, with the latter slightly edging out in terms of better R performance. Therefore

the impact of using multiple cloud generator fields is quantifiably higher and more useful for the model as it gains a more

generalizable interpretation of the data.
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4.3 Training on a sampled data set505

Figure 9. A distribution of standard deviation of reflectance (Refstd) vs mean of reflectance (Refmean) for the gridded and sampled data

set.

In this section, using knowledge gained from the previous two case studies, we build a new training data set based on

LES Sulu Sea data (Sect. 2.1.1). Now that we know the advantages of using multiple cloud generator scenes and coarsening,

we develop a data set that combines both. However, training a model just by combining all 3 coarsening factors from all 6

scenes will be inefficient. This is because of the numeric imbalance where the highest coarsening factor produces about 16x

the number of samples produced by the lowest coarsening factor. To overcome this imbalance and data bias, we use a gridded510

approach to select a representative sample from a selected region and therefore limit the total number of samples but retain the

importance in terms of the contribution to statistical diversity. We employ a sample selection technique that randomly selects

data samples from three data pools of differing coarsening factors - 1 x 1, 2 x 2 and 4 x 4 at grid boxes defined by standard

deviation of the reflectanceRefstd and mean of the reflectanceRefmean. We use these two metrics becauseRefmean captures

the mean brightness in the data set while Refstd represents the general inhomogeneity in the data. The steps are described515

below:

1. CalculateRefstd vsRefmean for the total of 24,000 samples coming from all 3 domains. Of those samples, about 1,200

come from the 1 x 1 domain, 5,000 come from the 2 x 2 domain and nearly 19,000 come from the 4 x 4 domain.

2. Divide the Refstd vs Refmean distribution into grid boxes where each grid box corresponds to ranges of deviation and

mean.520

3. Randomly select data samples within each grid box from the three data pools.

One aspect to note is that because the total number of samples in each data pool differs, samples are more likely to be

selected from the pool that contains a higher number of data points. As a workaround, to achieve a uniform probability in
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selection for the three data pools, we weighted the random selection in step 3 based on the total number of samples of the data

pool (higher total number gets lower weights). The sample selection was performed for each grid box based on a given number525

of sample selection per box defined by the user. If the given number exceeds the total number of samples within the grid box,

all the data samples in the grid box will be selected. The resulting data set has 548 samples from the 1 x 1 domain, 1,522 from

the 2 x 2 subset and 3,180 from 4 x 4, all of which are chosen with selected randomizations. Figure 9 shows the distribution

of Refstd vs Refmean for the resulting sampled data set. While this data set is not completely balanced despite having a more

uniform Refstd vs Refmean distribution, it is representative of the diversity in the data. The hypothesis is that a CNN trained530

on this data set can retain accuracy over individual cloud fields and also generalize to unseen data, even better than the models

seen in Sect. 4.1 and Sect. 4.2.

Figure 10. Histograms showing the distribution of the sampled dataset used for training in terms of (a) cloud fraction, (b) cloud optical

thickness and (c) cloud variability respectively. Despite being sampled using a gridding approach of Refstd vs Refmean, the balance

necessarily reflected in these histograms. Particularly with the COT distribution seen in (b), we see that the median COT is only 3.8 and

90% of the samples have COT ≤ 13.5. The same imbalance is seen in (c) where the median cloud variability is only 0.4 and 1.2 is the 90th

percentile point.

Figure 10 shows the distribution of the sampled data set across (a) cloud fraction, (b) cloud optical thickness and (c) cloud

variability. We show this figure to illustrate how balancing the data set using Refstd vs Refmean affects the other metrics.

In Fig. 10a, we see that the cloud fraction is relatively well represented by the sampled data set, although not ideal. More535

than 90% of the data is in the CF < 50 region. Figure 10b shows a much higher level of imbalance, with half of the samples

having mean COT ≤ 3.8. Figure 10c shows the highest degree of disparity with 90% of the samples having CV ≤ 1.2. This

will mean that the model will not be exposed to much diversity in variability but the fact remains that this data set is still

representative of the brightness and inhomogeneity distribution.

Figure 11 shows the performance of the CNN and 1D retrievals. The CNN (red), trained on the gridded/sampled data set540

consisting of images from 1 x 1, 2 x 2 and 4 x 4 aspect ratios from all 6 generator fields, outperforms the IPA retrieval (green)

across all cloud metrics against slope and error R. While the IPA underestimates low CF images with slopes close to -0.5, the

CNN was significantly closer to the ideal retrieval. We use scatter points to depict certain samples in the higher ranges of the

cloud parameters as there are too few such samples, which would sway the solid line plot unfairly. For the histograms on the
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Figure 11. Comparison of CNN (shown in red) and IPA or 1D retrieval (shown in green) obtained by methods described in Sect. 4.3. The

CNN is trained on the gridded/sampled data set consisting of images from 1 x 1, 2 x 2 and 4 x 4 aspect ratio domains, and is being evaluated

on a mix of unseen samples from all three domains. The dashed black line depicts the ideal retrieval.

rightmost column, consisting of samples that have cloud fraction < 35%, the CNN is much less error prone and performs well545

over the entire 64 x 64 sub-domains. Therefore, a uniform and representative mix of images (in terms of parameter space) from

different domains yields better performance. Ultimately, this shows that the reduction in data set size does not negatively affect

the performance and quite on the contrary, can improve it, as long as it is done strategically. This experiment reinforces one of

the objectives of our work, which is to demonstrate different training methods to identify optimal approaches.

Figure 12. (a) An image of the 64 x 64 (6.4 km x 6.4 km) radiance channel (600 nm) taken from the Sulu Sea (Sect. 2.1.1) but not shown

to the CNN during training. (b) The corresponding 64 x 64 COT. (c) COT as retrieved by the IPA method of the image in (a). (d) COT as

retrieved by the CNN trained using methods explained in Sect. 4.3. (e) A scatter plot that compares the IPA and CNN retrievals, with the

former underestimating for large COTs.

24

https://doi.org/10.5194/amt-2022-45
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 12 shows a panel of images with a scatter plot to compare the retrievals by IPA and the CNN for an unseen radiance550

image from the Sulu Sea. The scatter plot in in Fig. 12e shows how the IPA underestimates for medium to high COTs while

the CNN remains relatively close to the ideal retrieval.

4.4 Testing the model on a new geographic region

Figure 13. Comparison of CNN (shown in red) and IPA or 1D retrieval (shown in green) when being evaluated on a new geographic region

(Atlantic, Sect. 2.1.2.). The CNN is trained on the gridded/sampled data set consisting of images from 1 x 1, 2 x 2 and 4 x 4 aspect ratio

domains. The dashed black line depicts the ideal retrieval.

Here, we present the results of the model trained on the gridded and sampled data set from the previous study (Sect. 4.3)

when applied to a completely new geographic location, in this case, the Southeast Atlantic. The purpose of this application555

is to observe whether the model is capable of generalizing to highly dissimilar data from a region with vastly different cloud

morphologies. This is an important step to ensure that the CNN is not restricted to its training envelope and has learned the right

features that can be applied more broadly. We also examine and identify the strengths and weaknesses of such an application

with respect to cloud parameters.

560

Looking at only the abscissa ranges in Fig. 13, we can see that this is a vastly different data set. The cloud fraction percentage

in the samples is high, especially compared to the training data from the Sulu Sea. The cloud variability in the data set is on

the other extreme end with most samples having very low variations. When the CNN (trained on the gridded data set) is eval-

uated on this completely different cloud morphology, the results vary in two major ways. First, it marginally under-performs

compared to the IPA in terms of R. The IPA is better across the top panel - the CNN has a higher R for cloud fractions < 75%565

and for cloud variability < 25. The top right histogram shows as much, even for cloud fractions over 80% where the IPA has a

very low error. This is not surprising because the IPA is expected to do well in areas with high CF.
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On the other hand, when we look at the slope, we get a starkly contrasting picture. Both the IPA and CNN perform under-

whelmingly over low COT and low CF where they underestimate and overestimate respectively, but the CNN edges the IPA for570

CF > 80% as shown in the histogram. This is significant because it tells us that the CNN, which has not seen any data similar

to the high CFs seen here, can perform satisfactorily although not ideally. A model trained on a small and imbalanced data set

is still capable of producing good results through the right training approaches.

Figure 14. (a) An image of the 64 x 64 (6.4 km x 6.4 km) radiance channel (600 nm) taken from the Atlantic (Sect. 2.1.2) to test the CNN’s

ability to generalize to new geographical regions. (b) The corresponding 64 x 64 COT. (c) COT as retrieved by the IPA method of the image

in (a). (d) COT as retrieved by the CNN trained using methods explained in Sect. 4.3. (e) A scatter plot that compares the IPA and CNN

retrievals, with the former underestimating for large COTs.

In Fig. 14, we show a panel of images with a scatter plot to visualize the actual retrievals from the IPA method and the CNN.

We use a radiance image from the Atlantic as the input and the scatter plot in Fig. 14 illustrates how the IPA, despite being575

better in many regions in the Atlantic, still remains erroenous by underestimating high COTs. The CNN has a high variance

but performs better than the IPA for most COTs.

5 Summary and Discussion

In this paper, we introduced a U-Net-based, CNN architecture to infer COT fields from shortwave radiance as observed by

satellite or aircraft imagers. Unlike the heritage IPA that is used almost exclusively in current operational algorithms, the CNN580

takes the spatial context of a given pixel into account to reduce or mitigate retrieval biases arising from net horizontal transport

(also known as 3D effects). This exploratory study, preceded by Okamura et al. (2017) and Masuda et al. (2019), is built on

synthetic data at a fixed spatial resolution. Cloud fields from LES output were fed into 3D-RT calculations to simulate what an

imager with a 100 m pixel size would measure, and paired with the corresponding optical thickness ground truth from the LES

to train the network.585

The intent of this line of research is to work towards future real-world applications of CNNs by minimizing training time

while ensuring high-fidelity retrievals, even when the analyzed cloud scenes deviate from the original training envelope.
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These goals were approached in two ways: (a) through the U-Net architecture itself, which has only moderate depth (number590

of layers) and therefore requires less processing time for radiance/optical thickness training pairs than more complex networks;

(b) by strategically limiting the amount of training data. To accomplish this, we used only six LES-generated scenes associ-

ated with varying aerosol conditions and wind shear, spanning a limited range of cloud morphologies. From these scenes, we

sampled 6.4 km x 6.4 km mini-domains as training pairs (radiance and true COT) and tested the performance of the CNN on

unseen data for different training data constellations.595

The first experiment (Sect. 4.1) explored the impact of scale and degree of homogeneity by horizontally spreading the orig-

inal LES fields by factors of 2 and 4. This spatial coarsening procedure homogenizes the cloud fields while altering the aspect

ratio of individual clouds at the same time. By design, the U-Net considers net horizontal photon transport not just at the native

spatial resolution of the training data, but also at a cascade of spatially aggregated versions of that data, shown in the lower600

levels of the architecture (Fig. 4). CNNs that were trained on the original, 2 x 2, and 4 x 4 coarsened data all out-performed

the IPA when applied to unseen data from a combination of scale levels. The retrieval fidelity was quantified via performance

parameters such as the “slope” as defined above, as a function of cloud metrics such as cloud fraction and cloud optical thick-

ness for each analyzed 6.4 km x 6.4 km mini-domain. The most important conclusion from this experiment was that changing

aspect ratios does not significantly alter the physics to the detriment of retrieval fidelity, despite the findings of BL95.605

In the next experiment (Sect. 4.2), we explored the impact of cloud morphology on retrieval fidelity by training a CNN on a

single cloud morphology, and found that more diversity with respect to morphology does not negatively affect the performance

of the retrieval. That is because the single-morphology CNN, applied to unseen data with that same morphology, did not per-

form better than its multi-morphology counterpart. On the contrary, the diversely trained CNN proved more robust, especially610

in certain sub-ranges of some cloud metrics (for example, for small cloud fractions).

Therefore, the performance of single-scale and single-morphology CNNs on unseen training data of their own kind was not

better than diversely-trained CNNs. Since the latter turned out to be more robust, this suggested that diverse training data should

be systematically combined in an optimal CNN. To keep the training sample number low, we developed a balancing approach615

to sub-select image pairs according to their location in a two-dimensional parameter space spanned by radiance mean and

standard deviation, which can be regarded as proxies of mean COT and inhomogeneity, respectively. This diversely-trained,

balanced CNN (Sect. 4.3) performs best compared to all the versions tested in the other experiments. The general conclusion

is that strategically selected training data can lead to higher retrieval fidelity than sample-rich training data without or with im-

proper balance with respect to parameter space. The combined parameter space as shown in Fig. 9 could be called the general620

“training envelope” of the balanced CNN.

It is important to note that even the diversely-trained, balanced CNN is only diverse within the confines of the original six

generator scenes. This narrow choice had been made consciously to test the limits to which training data and thus training
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time could be minimized. In reality, however, cloud scenes can fall well outside the training envelope – not necessarily in625

terms of our simple two-dimensional parameter space of radiance mean and standard deviation, but in terms of a plethora of

morphology parameters such as cloud-to-cloud distance, cloud fraction, vertical distribution, geometric tilt etc., not to mention

sun-sensor geometry. One way to assess the robustness of the CNN in this regard would be to use LES data from the same

set, but at a different time step and therefore a different stage of cloud evolution. We instead chose to use LES data from an

entirely different region and cloud type, and tested the performance of the CNN trained with data specific to the Sulu Sea with630

unseen data from the Southeast Atlantic. Overall, the CNN and the IPA performed about equally well in this case; the slightly

better performance of the IPA in terms of RMSE was balanced out by the slightly better performance of the CNN in terms of

slope. This alone is surprising. Since the IPA is based on physics that does not entail any learning, one would have expected

it to out-perform the pattern-based CNN when encountering a previously unseen cloud scene with a completely different mor-

phology. Even more surprisingly, the CNN out-performed the IPA in terms of slope especially for the stratocumulus sub-set635

of the unseen data (cloud fraction larger than 80%), even though this was a cloud morphology that the CNN had never seen

during the training. This cloud type in particular should have been the strength of the IPA because it is less inhomogeneous

than open-cell convection. For the scattered cloud scenes associated with open cell convection, the IPA underestimated COT by

about as much as the CNN overestimated it (slopes of -0.8 and 0.8, respectively), and the bias increases with cloud variability

as one would expect.640

The Atlantic data set represents a limiting case where the superior performance of the CNN trained with the Sulu Sea data

has dropped to a level similar to or worse than the IPA reference retrieval (except for the stratocumulus sub-set). At this point,

a regionally specific training based on locally initialized LES with a similar CNN architecture would become necessary. In this

paper, we stopped short of re-training the CNN for another region. A related paper from Wolf et al. (2022) does train the CNN645

for a different region and applies it to real-world observations from satellite imagery and flux radiometers at the surface and on

aircraft. In addition, Chen et al. (2022) explores a CNN on aircraft imagery data from the Philippines region.

Aside from regional and cloud-type driven differences in cloud morphology, there are other factors that limit the immediate

applicability of CNNs for operational retrievals. The most significant challenge is domain size. As described by Song et al.650

(2016), net horizontal photon transport in the visible is mostly driven by COT contrasts, regardless of the physical distance over

which they occur (an exception is the near-UV wavelength range where scattering by air molecules plays a role). As such, 3D

effects do not stop at the domain boundary, and the CNN will lose its accuracy if the most important spatial inhomogeneities

occur over scales larger than 6.4 km. It is possible to train with larger domains, but this increases the complexity and training

time of the CNN. To solve this problem, one could train a CNN with a flexible, cascading hierarchy of domain sizes. The U-Net655

architecture is ideally suited to generalize the approach in this fashion.

Future work needs to explore this avenue, while also accounting for the relatively coarse pixel resolutions in typical imager

radiance data (often around 1 km). At these scales, many cumulus clouds are not resolved (Koren et al., 2008), but they have
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a collective radiative effect that must not be ignored. For such sub-resolution clouds, the CNN runs into the same limitations660

as its 1D counterpart, the IPA. Here, the spectral signature of net horizontal transport between spatially inhomogeneous cloud

elements could come to the rescue. This inhomogeneity-induced parameter is detectable in spectral radiances, regardless of the

scale at which clouds occur, and it might become another input parameter (Schmidt et al., 2016) to a future CNN architecture

that could retrieve pixel-level cloud fraction and COT.

665

CNNs will always be limited by the availability of realistic training data. Since it may be impractical to provide regionally

specific LES-based training data everywhere on the globe, it will be necessary to use CNNs that are trained on data from one

region, as proxies for others, as long as certain cloud morphology parameters are comparable. In a future paper (Chen et al.,

2022), we show that radiance closure (the consistency between radiances as measured by an imager and as calculated based on

a CNN or IPA retrieval) is an appropriate tool to assess retrieval performance in the absence of ground truth validation data.670

To generate regionally specific training and validation data for the CNN, cloud tomography (Levis et al., 2020) might be

an alternative or addition to LES, at least for some cloud types. In this approach, 3D cloud fields are reconstructed from

multi-angle radiance observations as available from some satellite radiometers without any training. This is because LES and

tomography-generated training data have the additional advantage of providing the vertical distribution of the cloud extinction.675

Since our simple CNN only retrieves 2D COT fields without consideration of the cloud top geometry, it is important to keep

track of biases associated with this simplification.

Finally, additional spectral channels, especially in the shortwave infrared, would provide access to geophysical parame-

ters well beyond COT – for example thermodynamic phase, drop size, and parameters of aerosol residing between clouds,680

facilitating and improving joint quantification of cloud-aerosol radiative effects from satellite imagery, even for complex or

inhomogeneous scenes. This research, along with its practical applications, is only just beginning.

Appendix A: Transposed Convolution

We use a layer called transposed convolution in the expanding path instead of a traditional convolution layer. Transposed

convolution (Dumoulin and Visin, 2016) works by switching the forward and backward passes of a traditional convolution and685

is used when going from a lower-dimensional space to a higher-dimensional space while maintaining a connectivity pattern

between the two. We use a 2 x 2 kernel with a single stride and padding to ensure the output dimensions remain the same

as the input. As noted by Dumoulin and Visin (2016), it is possible to replace transposed convolution with a regular spatial

convolution step but that would require additional padding thereby reducing the implementation efficiency. To map the latent

space of the contracting path’s output to a data distribution, it is necessary to upsample at the lowest spatial dimension to690

the appropriate size of the ground truth/output. The obvious way to scale up to the output dimensions is to use upsampling

layers that use interpolation (e.g., bilinear, nearest-neighbors). However, interpolation is not “learnable” which means that
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the upsampling layer remains constant throughout the learning process. Therefore, to have the model learn optimal ways of

upsampling, we rely on a subsequent transposed convolution layer following upsampling. The representation generated by the

transposed convolution layer is then channel-wise concatenated with the corresponding feature map having the same spatial695

dimension which is then used by the convolution block to learn new features and obtain a new representation. This convolution

block is also useful to prevent so-called “checkerboard effects” that result when transposed convolution is used in isolation

(Odena et al., 2016).
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