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Abstract. Various satellite imagers of the vertically integrated column of carbon dioxide (XCO2) are under development to

enhance the capabilities for the monitoring of the fossil fuel (FF) CO2 emissions. XCO2 images can be used to detect plumes

from cities and large industrial plants, and to quantify the corresponding emissions using atmospheric inversions techniques.

However, this potential and the ability to catch the signal from more diffuse FF CO2 sources can be hampered by the mix

between these FF signals and a background signal from other types of CO2 surface fluxes, and in particular of biogenic CO25

fluxes. The deployment of dense ground-based air-sampling networks for CO2 and radiocarbon (14CO2) could complement

the spaceborne imagery by supporting the separation between the fossil fuel and biogenic or biofuel (BF) CO2 signals. We

evaluate this potential complementarity with a high resolution analytical inversion system focused on Northern France, Western

Germany, Belgium, Luxembourg and a part of the Netherlands, and with pseudo-data experiments. The inversion system

controls the FF and BF emissions from the large urban areas and plants, in addition to regional budgets of more diffuse10

emissions or of biogenic fluxes (NEE, Net Ecosystem Exchange), at an hourly scale over a whole day. The system provides

results corresponding to the assimilation ofassimilates pseudo data from a single track of a 300-km swath XCO2 imager at 2

km resolution and from surface ground-based CO2 and/or 14CO2 networks. It represents the diversity of 14CO2 sources and

sinks and not just the dilution of radiocarbon-free FF CO2 emissions. The uncertainty in the resulting FF CO2 emissions at

local (urban area/ plant) to regional scales is directly derived and used to assess the potential of the different combinations15

of observation systems. The assimilation of satellite observations yield estimates of the morning regional emissions with an

uncertainty down to 10% (1 sigma) in the satellite field of view, from an assumed uncertainty of 15% in the prior estimates.

However, it does not provide direct information about emissions outside the satellite field of view and neither about afternoon

or nighttime emissions. The co-assimilation of 14CO2 and CO2 surface observationsdata leads to a further reduction of the

uncertainty in the estimates of FF emissions. However, this further reduction is significant only in administrative regions with20

three or more 14CO2 and CO2 sampling sites. The uncertainty in the estimates of 1-day emission in North Rhine-Westphalia,
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a region with three sampling sites, decreases from 8 to 6.6% when assimilating the in situ 14CO2 and CO2 data in addition

to the satellite data. Furthermore, this additionalnew decrease appears to be larger when the ground stations are close to

large FF emission areas, providing an additional direct constraint for the estimate of these sources rather than supporting the

characterization of the background signal from the NEE and its separation from that of the FF emissions. More generally, the25

results indicate no amplification of the potential of each observation subsystem when they are combined into a large observation

system with satellite and surface data.

1 Introduction

Article 4 of the Paris Climate Agreement aims to reduce greenhouse gas (GHG) emissions within a few decades on the

basis of equity, until they are compensated by GHG removals. The monitoring of this international ambition implies some30

operational observation of the GHG emissions, in particular those of carbon dioxide (CO2) from fossil fuels (FFs). A significant

contribution to this monitoring is expected from observations of atmospheric composition and atmospheric inversion systems

(IPCC, 2019; Ciais et al., 2015; Pinty et al., 2017). In particular, the development of spaceborne imagery of the vertically

integrated column of CO2 (XCO2), at spatial resolution better than 5 km, should make it possible to detect plumes downwind

fromunder the wind from anthropogenic sources of CO2 (Pillai et al., 2016; Schwandner et al., 2017; Broquet et al., 2018).35

A key example of such imagery is the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M; Pinty et al., 2017;

Kuhlmann et al., 2019; Lespinas et al., 2020) (Pinty et al., 2017) constellation which is schedule to launch in 2025-2026. Each

satellite of the constellation will observe XCO2 with a ∼300 km swath and a ∼ 2×2 km2 spatial resolution.

Previous analyses of the potential of high resolution satellite imagery of XCO2 (such as ESA, 2015; Wang et al., 2020;

Santaren et al., 2021) (Broquet et al., 2018) (Kuhlmann et al., 2019) have focused on its use as a stand-alone observation sys-40

tem, and on the potential complementarity of images of co-emitted species co-registred with an instrument onboard the same

satellite or from another mission (Reuter et al., 2019; Kuhlmann et al., 2019, 2020). However, the distinction between FF

and natural CO2 signals and thus the separation between the FF and natural components in the flux estimates remain diffi-

cult, even when using high-resolution images and satellite data on co-emitted species (Kuhlmann et al., 2020; Santaren et al.,

2021; Sadiq et al., 2021) (Santaren et al., 2021). The separation between the emissions from biofuel (BF) and FF combustion45

is another challenge because BF emissions can be located in the same hot-spots as FF ones (Ciais et al., 2020).

The deployment of dense ground-based networks of near-surface air sampling for radiocarbon (14CO2) has been also con-

sidered in complement to the spaceborne imagery (Ciais et al., 2015). Indeed FF-emitted CO2 is radiocarbon-free (Pinty et al.,

2017; Levin et al., 2003, 2021) (Wang et al., 2018; Wang et al., 2016)(Basu et al., 2016) : 14CO2 surface data have a less am-

biguous sensitivity to the signal from FF emissions than CO2 surface data. However, practical constraints lead to sampling50
14CO2 daily if not weekly to monthly (Levin et al., 2020). This prevents the direct identification of temporal variations at

higher frequencies, e.g. hourly, associated with the signal from cities and point sources, but time series of continuous hourly

measurements of CO2 should enable these specific temporal variations to be captureds. Various studies have been conducted

to estimate the potential of 14CO2 surface data in addition to CO2 surface data to discriminate anthropogenic from biogenic
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CO2. Most of the studies with real samplings corresponded to local analyses (e.g. Levin et al., 2003; Turnbull et al., 2006;55

Lehman et al., 2013; Wenger et al., 2019; Lee et al., 2020). Inversions with pseudo data were used to assess the potential of
14CO2 surface data to monitor the FF CO2 emissions at continental scales (Wang, 2016; Wang et al., 2018; Basu et al., 2016).

However, Graven et al. (2018) or Basu et al. (2020) showed promising results regarding the quantification of budgets of FF

CO2 emissions or the assessment of their estimates from inventories based on ∼10 stations of 14CO2 at the scale of California

or of the United States, respectively.60

This study aims at assessing the potential of combination between a spaceborne XCO2 imager and ground based 14CO2 and

CO2 networks to monitor FF emissions of CO2 at finer spatial scales, typically that of administrative regions in Europe, and

with a view to feed operational systems with highly accurate emission estimates. More specifically, it aims at assessing how

these additional ground-based networks decrease the uncertainty in FF emissions by improving the distinction between the FF

and biogenic fluxes.65

There is currently no XCO2 large swath imager in orbit and we assume that dense networks of 14CO2, with more stations

than the current ones even in areas relatively well equipped like Europe ((Levin et al., 2020), https://www.icos-cp.eu/), are

required to support such monitoring of the FF CO2 emissions. Furthermore, the combination of remote sensing data and

air sample measurements has often been difficult, mainly due to systematic errors in satellite retrievals and in the atmospheric

chemistry-transport models that simulate them. In this case, the air sample measurements are rather used to constrain some bias70

correction of the remote sensing data (Bergamaschi et al., 2009) and/or the model (Locatelli et al., 2015); or they are implicitly

used to dampen the effect of these systematic errors. The gradual improvement in the quality of retrievals and models over time

has just recently opened the door to a more harmonious use of remote sensing data and air sample measurements for inverse

modelling (Byrne et al., 2022).

Therefore, this study relies on inversion tests performed with parameters corresponding to pseudo-observations and different75

scenarios of observation systems, i.e., on Observing System Simulation Experiments (OSSEs). The analysis focuses on the

strengths and limitations of the atmospheric sampling from the different measurement systems. It discards components of

the uncertainties associated to the current atmospheric radiative transfer inversion systems, used to retrieve XCO2 data from

satellite measurements, and to the current atmospheric transport models underlying the atmospheric inversion. The inversion

tests performed in this study with different sets of pseudo-data correspond to Observing System Simulation Experiments80

(OSSEs). Our OSSEsThey include the simulation of the sampling of a CO2M-like spaceborne instrument from single orbits

over Western Europe at 12:00 (Universal Time Coordinated, UTC) and a scenario of dense CO2 and 14CO2 ground-based

network.

The work performed relies on a Bayesian inversion framework, in which the knowledge of control parameters, here the

CO2 fluxes, improves with the assimilation of related observations. It is focused on the direct computation of the uncertainty85

in the control parameters. We analyse the uncertainty in the posterior values of the control parameters as a function of the

observation system that is used for the inversion, and the corresponding uncertainty reduction, i.e., the relative difference

between the posterior uncertainty and the prior uncertainty in the control parameters. The analysis of this uncertainty reduction

is made over one day at the local scale (urban areas, industrial plants) to the scale of administrative regions in Europeregional
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scale, following the rationale and the general inverse modelling framework of Santaren et al. (2021). It focuses on a large part90

of Western Europe, using a regional atmospheric transport model configuration of the CHIMERE regional transport model

(Menut et al., 2013) with a 2 km horizontal zoom over Northern France, Western Germany, Belgium, Luxembourg and a

large part of the Netherlands. It controls FF emissions from urban areas and industrial plants in addition to regional budgets

of more diffuse emissions or of biogenic fluxes at an hourly scale. The analytical expression of the inversion framework

(Wu et al., 2016) allows for the results of the individual control parameters or for budgets integrated in space within the regions95

or in time within a day to be analyzed and for many options for the observation system to be tested despite the dimension of

the high resolution inversion problem.

The assimilation of 14CO2 and CO2 surface data in addition to XCO2 images and the inclusion of non-FF fluxes of 14CO2

in the inversion framework make use of the larger-scale inversion framework developed by Wang (2016). It takes into account

not only the 14CO2 emissions from nuclear power plants and fuel reprocessing plants, but also the specific isotopic signatures100

of the heterotrophic respiration (HR) and Net Primary Production (NPP) by land ecosystems (Miller et al., 2012; Basu et al.,

2016, 2020) and thus solves for these fluxes separately. It also controls the emissions from BF burning.

The analytical inversion framework is described in section 2. Results from the pseudo-data experiments with the assimila-

tion of satellite observations alone are taken as a reference and presented in Section 3.1. Then a larger suite of experiments

combining 14CO2 and CO2 surface and XCO2 satellite observations is used to assess their complementarity in Sections 3.2105

to 3.3. Section 4 provides some discussions about this inversion framework and a conclusion regarding complementarity of

XCO2 satellite, 14CO2 and CO2 surface observations.

2 Methodology of the inversion

This section presents the high dimensional inversion framework designed in this study for the co-assimilation of CO2 and
14CO2 data. It has strong similarities with the system developed by Santaren et al. (2021), which assimilates CO2 data only,110

and it borrows from Wang (2016) to assimilate 14CO2 data. The system relies on:

– A local to regional scaleAn analytical inversion framework (Wu et al., 2016) as presented in Section 2.1, which controls

anthropogenic emissions from large cities and industrial plants in addition to regional budgets of more diffuse emissions

or of natural fluxesin which budgets of surface anthropogenic and natural fluxes are controlled at local (city or industrial

plant) or regional scales and at hourly resolution (see the definition of the control vector in Section 2.5).115

– A zoomed configuration of the regional atmospheric transport model CHIMERE (Menut et al., 2013) for most of Western

Europe, described in section 2.2.

– Hourly to annual maps of all types of surface CO2 and 14CO2 fluxes, at high spatial resolution from the CO2Human

Emissions project (CHE, https://www.che-project.eu/), which are described in section 2.3, at temporal resolutions up to

1-hour. They are used to distribute the local-to-regional-scale budgets of the fluxes into corresponding high resolution120

flux maps (see section 2.5).
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– Simulations of the locations time and uncertainty of the XCO2 retrievals and of the CO2 and 14CO2 ground-based data

as a function of time, for different scenarios of the observing system, as described in Section 2.6. For the XCO2 data, we

rely on the simulation of the CO2M sampling during one satellite pass over the area of interest generated by the Institut

für Umweltphysik Bremen (IUPB) in the frame of the ESA-PMIF project (European Spacial Agency, Plume Monitoring125

Inversion Framework Wang et al., 2020; Lespinas et al., 2020).

Inversions are conducted over a 1-day window from 0:00 to 24:00, on July 1 2015, i.e. in summer when the biogenic fluxes

are relatively high. The restriction to 1 day is connected to results of Santaren et al. (2021), which show the lack of sensitivity

of observations made during a given day to the fluxes during other days over the modeling domain, and to the large compu-

tation cost associated with the preparation of a full day of analytical inversion. With such an inversion window, wider than130

the one chosen in Broquet et al. (2018) or Santaren et al. (2021), the system tracks the signal from the FF emissions up to 12

hours before the satellite overpass (see Section 2.6.1) and 10 hours before the in-situ data assimilation window (see Section

2.6.2). After a few hours, the air masses having been transported over typically ∼30-100 kmtypically 100km, the signal from

individual FF CO2 sources (industrial plants, cities, regions) is much diffused and hardly detectable in XCO2 images. Conse-

quently this 1-day timescale is large enough to represent the full extent of the CO2 FF plumes that can be exploited in images135

from CO2M-like instruments to compute the corresponding emissions (Broquet et al., 2018; Santaren et al., 2021). The ability

to track large-scale budgets of FF emissions over longer time periods relies on complementary observations of FF emission

tracers. These tracers, such as the 14CO2 measurements considered here, may help filter a relatively low FF signal from the bio-

genic signal, which is generally much larger over long distances (Pinty et al., 2017; Palmer et al., 2006; Fortems-Cheiney et al.,

2021; Sadiq et al., 2021)(Pinty et al., 2017)(Fortems-Cheiney et al., 2021). CO2 and 14CO2 ground-based networks could also140

reinforce the constraint on the FF CO2 emission estimates during the few hours before the satellite overpass. By starting the

inversion window 12 hours before the satellite overpass and 10 hours before the first surface measurement, we account for the

full window of FF CO2 emission, the estimate of which can potentially be directly constrained by these different datasets or by

their combination.

2.1 Inversion general equation145

Under the assumption that all uncertainties in the inversion problem have a Gaussian and unbiased distribution, these uncer-

tainties are fully characterized by their covariance matrices. The inversion uses an observation operator to connect the control

parameters (the flux budgets, see section 2.5) to the observation vector (the space defined by the ensemble of pseudo observa-

tions, see section 2.6). Here, by construction, the observation operator is linear and is denoted H. On this basis, the analytical

Bayesian inversion allows for the computation of the covariance matrix of the posterior uncertainty (uncertainty in the posterior150

estimate of the fluxes) A as a function of H The analytical Bayesian inversion allows for the computation of the covariance

matrix of the posterior uncertainty (uncertainty in the posterior estimate of the fluxes) A as a function of the observation

operator H connecting the control parameters (the flux budgets, see section 2.5) to the observation vector (the space defined

by the ensemble of pseudo observations, see section 2.6), of the covariance matrix of the prior uncertaintyuncertainties (uncer-
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tainty in the prior estimate of the fluxes, see section 2.5.2) B and of the model and observation errors covariance matrix R (in155

the observation space, see section 2.6.3), following Tarantola (2005):

A = [B−1 + HTR−1H]−1 (1)

The observation operator H, is assumed to be linear and is decomposed, following the notations of Staufer et al. (2016), into :

H = HsampleHtranspHdistr (2)

Hdistr defines (i) the spatial and temporal distribution of the fluxes within each area corresponding to a control parameter160

and beyond the temporal resolution of these control parameters, (ii) the flux budgets to be rescaled by the inversion for these

areas at the control resolution, and (iii) the application of the isotopic signatures to CO2 fluxes. Here, this operatorit is based

on the flux products and on the signatures described in Section 2.3.

Htransp is the atmospheric transport operator, corresponding to our configuration of the transport model CHIMERE de-

scribed in section 2.2.165

Hsample corresponds to the computation of XCO2 and to the sampling of XCO2 or of near ground mole fractionsconcentrations

of CO2 and 14CO2 at the observation time and locations from the output of the CHIMERE model. Section 2.6 provides more

details on this operator.

The derivation of the H matrix in the analytical system requires an extensive set of simulations with the computation of

the imprint (columns of H) of each of the control parameters (Santaren et al., 2021). The H observation operator matrix is170

built explicitly to solve for Eq. (1) analytically, which requires an extensive set of simulations. The different columns of H

correspond to the imprints in the observation space of the different control variables. They are computed by applying the

sequence of operators Hdistr, Htransp and then Hsample to each control variable set to 1, keeping the others null (Broquet

et al., 2018). In practice, the application of the Htransp operator corresponds to passive tracer transport simulations with the

CHIMERE model which bears non-linearities that are assumed to be negligible (see section 2.2.1), and thus which is assumed175

to be well emulated via the building of H. A generalized H matrix is actually stored for the analytical inversion system to

anticipate any option for Hsample or for the control vector, by recording the full fields from the application of HdistrHtransp

to all control variables considered in this study.

By focusing on the analysis of uncertainties in the control parameters, this study requires the application of Eq. (1) but not

the actual computation of emission estimates based on synthetic data. The computation of H is the main and most demanding180

step in the preparation of the inversion system. In addition to this computation, the application of Eq. (1) only requires the

derivation of the B and R matrices, and the inversions of positive-definite matrices corresponding to the control space. This

analytical expression of the inversion framework allows for the uncertainties in the individual control parameters or for budgets

of emissions integrated in space or in time to be analyzed and for many options for the observation system to be tested despite

the dimension of the high resolution inversion problem.185
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2.2 Atmospheric transport

2.2.1 Transport model configuration

The transport operator of CO2 and 14CO2 in the atmosphere, Htransp, relies on the CHIMERE transport model, driven here by

the Community Inversion Framework (CIF, Berchet et al., 2021). The domain and the horizontal grid for the CHIMERE config-

uration used here are represented in Fig.Figure 1. The domain coversThey cover a part of Western Europe (longitude: -6.82◦to190

19.18◦; latitude: 42.0◦to 56.39◦). The resolution of the horizontal grid varies between 50 and 2 km. The 2 km×2 km-resolution

zoom covers Northern France, Luxemburg, Belgium, a large part of the Netherlands and Western Germany (longitude: -1.25◦to

10.64◦; latitude: 47.45◦to 53.15◦). The vertical grid is composed of 29 pressure layers extending from the surface997 hPa to

300 hPa (from the surface toapproximately 9 km above the ground level).

1

Figure 1. CO2 flux map (based on values from the TNO inventory and VPRM simulations for 1 July 2015 at 12:00) over the atmospheric

transport modelling grid. The red lines delimit the spatial resolution changes within the domain (from 2 km to 10 km and then 50 km from

the middle to the edges of the domain)

Our configuration of CHIMERE ignores chemistry since CO2 and 14CO2 are inert species at the time scale considered in195

this study (24 h). The actual transport of passive tracers is linear but non-linearities arise in the models due to their inherent dis-

cretization of the transport. Howevere these non-linearities are small and this explains why the resulting atmospheric transport

operator Htransp is assumed to be well emulated via the building of the H matrixlinear. CHIMEREIt is forced by meteorolog-

ical variables provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the CHE project at 9 km
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resolution (Agusti-Panareda, 2018). Figure 2 provides indications on the typical horizontal transport conditions during the day200

of inversions over the area of interest: on July 1st 2015, a South-East wind over the North East part of the domain spreads the

atmospheric signature of FF emissions in the North-West direction.

(a) Morning

(b) Afternoon

3

Figure 2. Morning (a) and afternoon (b) wind averaged in the first two vertical layers of the CHIMERE grid (i.e., heights between 0 and 28

m above the ground)

2.2.2 Simulation of CO2 and 14CO2 transport

In this section, we present a formal decomposition of the CO2 and 14CO2 transport in order to introduce the notation and

assumptions used in the inversion framework. The decomposition of the 14CO2 transport and its formulation in a specific unit205

(parts per million per mil, ppm ‰) follow that of Wang (2016).

Ca = Htransp [FFF +FBF +FNPP +FHR] + Hbc [Cbc] (3)

8



Ca · δa = Htransp [δFF ·FFF + δBF ·FBF+

δNPP ·FNPP + δHR ·FHR+

1/Rstd ·FNucl]+

Hbc [Cbc · δbc]

(4)

where:210

– CaCa,CO2 is the CO2 atmospheric mole fractionconcentration.

– Fx terms correspond to different types x of CO2 fluxes within the transport modelling domain: FF emissions, BF emis-

sions, NPP and HR. Of note is that the sign of fluxes in this equation corresponds to the atmosphere point of view: they

are positive when CO2 is emitted to the atmosphere, and negative when it is absorbed from the atmosphere. In particular,

FNPP is positive when the NPP is negative.215

– Cbc,x are the boundary (top and lateral) and initial conditions of CO2 and 14CO2 mole fractionconcentration, and Hbc

their transport within the modeling domain, but they are ignored in this inversion study (see Section 2.3.3).

– δa are the 14CO2/
12CO2 ratios in the atmosphere (R), normalized by the 14C/12C ratio in the Modern Standard

((R/Rstd− 1);Rstd = 1.176× 10−12). Similarly, in the following, all δ are also normalized ratios.

– δx are the 14CO2 isotopic signatures of the 14CO2 fluxes listed above.220

– FNuclFNucl
14 corresponds to 14CO2 fluxes from nuclear power plants.

2.3 Flux maps

2.3.1 CO2 flux maps

The anthropogenic CO2 emissions, from both FF and BF combustion, are derived from two inventories of the annual emissions

produced by Netherlands Organisation for Applied Scientific Research (TNO) over Europe for the year 2015 (Denier van der225

Gon et al., 2017; Super et al., 2020). These inventories provide emission maps for 15 activity sectors following the Gridded

Nomenclature For Reporting (GNFR) of the United Nations Framework Convention on Climate Change (UNFCCC). The

emissions in the 2-km-resolution area of the domain are interpolated from a ∼1 km (1/60◦× 1/120◦) resolution inventory

(TNO_GHGco_1x1km_v1_1) which entirely covers this area but not the whole CHIMERE domain (its extent being -2◦to

19◦in longitude and 47◦to 56◦in latitude). The emissions in the rest of the CHIMERE domain are interpolated from a ∼ 6 km230

(1/10◦× 1/20◦) resolution inventory (TNO_GHGco_v1_1, covering -30◦to 60◦, in longitude and 30◦to 72◦in latitude). These

data are projected on the CHIMERE horizontal grid ensuring mass-conservation. The temporal disaggregation at hourly scale
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is based on coefficients provided with the TNO inventories for each depending on the sector of activity and as a function of the

time zones provided in the CHE project (Marshall et al., 2019). Emissions from point sources are projected on the CHIMERE

vertical grid with coefficients depending on the activity sectors (Bieser et al., 2011), also provided with the TNO inventories,235

while emissions from diffused sectors of activity (traffic, heating etc.) are emitted from the ground in the model.

No distinctions between CO2 BF emissions from woods and crops is done in the TNO inventories. However this split is

needed to derive 14CO2 fluxes (see below). Consequently, assumptions are made based on emission categories used in TNO

inventory , i.e. the Gridded Nomenclature For Reporting (GNFR) of the United Nations Framework Convention on Climate

Change (UNFCCC). In this study, we consider that BF from woods is burned in power plants and in the industry and residential240

sectors only, i.e. in categories A to C. BF from crops is burned in categories F and L only, that correspond to road transport

and agriculture. We assume that the BF emissions from the other sectors are negligible since they represent less than 2 % of

the total BF emissions in the vast majority of countries.

The CO2 biogenic fluxes are interpolated from simulations at 1 h and 5 km resolution with the VPRM model (Vegetation

Photosynthesis and Respiration Model, Mahadevan et al., 2008) for the year 2015, provided by MPI-Jena over Europe (over245

latitude 31◦to 68.7◦; longitude -35.5◦to 60.5◦). The VPRM simulations provide estimates of gross primary production (GPP)

and total respiration . However, we need to split the biogenic fluxes into NPP and HR since they bear different isotopic signa-

tures. Therefore, we recombine GPP and Respiration from VPRM into NPP and HR fluxes, using dDaily partition coefficients

(αHR) that are derived from ORCHIDEE-MICT simulations at 0.5◦resolution over Europe in 2015 (Guimberteau et al., 2018)

to scale GPP and Respiration from VPRM into NPP and HR fluxes. The total biogenic fluxes correspond to the Net Ecosystem250

Exchange (FNEE = FNPP + FHR = FGPP + FResp)(NEE = NPP + HR = GPP + Resp).

The total CO2 fluxes for 1st July 2015 at 12:00 are presented in Fig.Figure 1.

2.3.2 Isotopic signatures and 14CO2 flux maps

To produce 14CO2 fluxes, corresponding isotopic signatures are applied to the CO2 fluxes.

255

δFF =−1000‰ was applied to FFF on the whole year and domain.

We distinguish δBF,wood from δBF,crop because crops and wood have a different age at harvest resulting in different 14C

abundance. In a first approximation, we determined these δBF as a spatial and temporal average of 14CO2 contentcontains in

vegetation, δbiomass, simulated with the emulator of the ORCHIDEE-MICT model (Guimberteau et al., 2018; Naipal et al.,260

2018; Wang, 2016) over the whole ORCHIDEE-MICT Europe domain in 2015, selecting the relevant plant functional types

(PFT): non-tropical trees for δBF,wood andor crops for δBF,crop. Such a computation of δBF relies on the hypothesis that

the wood or cropfuel burnt in Europe comes from European (López et al., 2017) and recently cut vegetation. As a result,

δBF,wood = 95‰ and δBF,crop = 19‰.

265
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δNPP monthly maps at 5 km spatial resolution were derived for application to the VPRM biogenic fluxes:

δNPP = δa,surf − ε (5)

where δa,surf is the radiocarbon signature in the surface atmospheric layer and ε is the sum of kinetic and enzymatic 14CO2

fractionation with respect to 12CO2 depending on the C3 or C4 photosynthesis pathway of the vegetation.

Monthly background measurements of the radiocarbon ratio in the conventional definition (∆14C, Stuiver and Polach,270

1977) are available, in 2015, at Schauinsland in Germany (Hammer and Levin, 2017). The conversion to the normalized

ratio, δa,surf , is done following Stuiver and Polach (1977), with δ13C from Graven et al. (2017).δa,surf is characterized by

a conversion of ∆14C monthly background measurements, at Schauinsland in Germany, in 2015 (Hammer and Levin, 2017)

following Stuiver and Polach (1977) with δ13C from Graven et al. (2017). The resulting δa,surfThis ratio varies between 46

and 49 ‰. Here, we neglect the impact of variations of this δa,surf at high spatial and temporal resolution on the 14CO2275

NPP fluxes themselves. Accounting for such variations for a precise computation of the δNPP , and so 14CO2 NPP fluxes,

would have required a dynamical computation with δa,surf depending on 14CO2 mole fractionsconcentrations calculated by

the transport model and would have introduced strong non-linearities. Accounting for such non-linearities in the observation

operator would have required a complex inversion framework including the use of synthetic data and the iterative linearization

of the observation operator into an evolving H matrix (Wang, 2016).in the inversion (with an evolving H). However, over280

one day, these variabilities within each region-month are assumed to be negligible as was found by Wang (2016) within each

region-month.

The value of ε is 36 ‰ for C3 vegetation and 8 ‰ for C4 vegetation as described by Wang (2016) from Farquhar et al. (1989)

and Degens (1969). We derive the C3/C4 distribution on the VPRM grid and per month, from the combination of three land

cover maps: the VPRM and ORCHIDEE land cover maps and monthly MIRCA2000 crop map (Portmann et al., 2010). This285

combination allows us to capitalise on the high spatial resolution of the VPRM land cover map at 5 km derived from SYNMAP

at 1-km-resolution (Jung et al., 2006) and a more precise PFT information in ORCHIDEE land cover maps at 0.5◦resolution

to determine the C3 or C4 photosynthesis type. In case of the crop PFT, the MIRCA2000 crop map at ∼ 0.08◦-resolution

indicates the surface area covered by each crop type, and thus the relevant photosynthesis type, with a finer resolution than in

ORCHIDEE and with the monthly variability of the year 2000. The resulting δNPP varies between 10 and 41‰.290

δHR daily maps for the year 2015 are derived from simulations with the above-mentioned ORCHIDEE-MICT emulator.

For each grid cell, the daily CO2 and the corresponding 14CO2 emissions from litter respiration and 3 types of soil respiration

were aggregated. Their ratio, δHR, is then interpolated from the ORCHIDEE-MICT grid to the VPRM grid. The resulting δHR

varies between 22 and 177 ‰.295
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Nuclear 14CO2 emissions are simply calculated following Graven and Gruber (2011) based on the annual activity of each

reactor, in 2015, reported in Zazzeri et al. (2018). For each reactor, activity data A in TBq · yr−1 is converted into 14C

production in kg14C · yr−1kg14C · reactor−1 · yr−1:

FNucl =A×α× 109 (6)300

with α=Rstd/0.226, where 0.226 Bq · gC−1 is the conversion factor from activity to carbon production.

2.3.3 Ignoring ocean fluxes, cosmogenic production, biomass burning emissions and the regional boundary conditions

This study is focused on the analysis of uncertainties and of their propagation between the control and observation space.

Therefore, the components that have to be taken into account in the transport simulation are those which bear uncertainties305

whose impact is accounted for or those which interfere with the transport of the components which bear uncertainties.

The impact of the uncertaintiesuncertainty in the initial condition (at 0:00 on July 1 2015) and inat the boundary condi-

tions (at the lateral and top boundaries of the CHIMERE domain) are assumed to be negligible. following the results from

Santaren et al. (2021): The analysis by Santaren et al. (2021) suggests that the large-scale uncertainties should not have large

impact on the results, due to the good distinction between smooth background signal from the initial and boundary conditions310

and the imprints of the local and regional fluxes. Furthermore, the fine-scale uncertainties should have a limited impact at the

observation times due to the 10-hour time lag between the initial conditions and the first observations (see Section 2.6.2) and

since the model boundaries are quite far from the area of interest. Tthese conditions are thus ignored in the definition of our

inversion problem and in the atmospheric transport operator.

Regarding the CO2 (and thus 14CO2) ocean fluxes, we also assume that they can be neglected here because the CHIMERE315

domain is mostly continental.

The cosmogenic production of 14C becomes significant above∼700 hPa, well above the planetary boundary layer (Turnbull

et al., 2009), while we are interested in simulating 14CO2 mole fractionsconcentrations near the ground. Even though we use

some high-altitude stations, we can assume that most of the influence from the cosmogenic production at these surface stations

comes from the model lateral boundaries and that the cosmogenic production within the modelling domain can be neglected.320

CO2 and 14CO2 biomass burning emissions are also neglected since they are generally relatively weak in our modelling

domain (especially in the 2-km resolution part of the modelling grid on which the analysis focuses).

2.4 Resulting CO2 and 14CO2 fields

Figure 3 illustrates the resulting signals simulated with CHIMERE at 12:00, on July 1 2015, after 12h of simulation. The CO2

(Fig. 3a) and 14CO2 (Fig. 3b) mole fractions surface fields and the XCO2 2D field (Fig. 3c) (as computed from the CHIMERE325

3D fields, see section 2.6.1) reveal the fine scale patterns associated to the anthropogenic emissions (with a strong negative

amplitude up to -10 ppm ‰ in the 14CO2 field) and larger scale variations associated to biogenic fluxes and diffuse emissions.
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The 14CO2 field also shows the positive signature from the nuclear emissions and, in particular, the plume from La Hague

nuclear reprocessing plan with large values, which can exceed 80 ppm ‰.

(a) CO2 (b) 14CO2 (c) XCO2

2

Figure 3. CO2 (ppm) and 14CO2 (ppm ‰) mole fractions at the surface and XCO2 (ppm) at 12:00, on July 1 2015: simulations from 00:00

to 12:00, without initial and boundary conditions.

2.5 Control Vector330

2.5.1 Definition of the Control Vector

The control vector is spatialized based on a decomposition of the flux maps into large or administrative regions, large urban

areas and large industrial plants.

The study focuses on a set of 23 regions, called “the main area of interest” hereafter: the nine administrative regions of

Belgium, Luxemburg, seven administrative regions of the southern Netherlands, three administrative regions in northern France335

and three administrative regions in western Germany (all comprised in the 2 km × 2 km-resolution zoom of the CHIMERE

grid, see Fig.Figure 4).
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Figure 4. Main area of interest i.e. the 23 administrative regions where major urban areas (contours of the urban areas also represented here)

and point sources emissions are controlled separately for anthropogenic emissions in the 2 km × 2 km-resolution zoom of the CHIMERE

transport model. The names of these administrative regions are listed in Table 1. Ground-based 14CO2 and CO2 observation sites are also

shown (red dots, see Fig. 7, for the network on the whole domain).
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Table 1. List of areas of control in the main area of interest and corresponding number of stations in these areas.

Number Area Name Number of Stations

1 Île-de-France 3

2 Lorraine 1

3 Nord-Pas-de-Calais 1

4 North Rhine Westphalia 3

5 Rhineland-Palatinate 1

6 Saarland 0

7 Gelderland 0

8 Limburg 1

9 North Brabant 3

10 Utrecht 1

11 Zeeland 1

12 Sheldt (see) 0

13 South Holland 0

14 Luxemburg 1

15 Brabant/Bruxelles 1

16 Anvers 0

17 Limburg 0

18 East Flanders 0

19 West Flanders 0

20 West Hainaut 0

21 East Hainaut 0

22 Liege 0

23 Namur/Luxembourg 0

In this main area of interest, the CO2 FF emission budgets from major industrial plants (22 plants for which the annual

emissions exceed 1 MtC for CO2, FFPS , see the red dots in Fig.Figure 4) and the FF, BFwood and BFcrop CO2 emission

budgets from the large urban areas (the 42 urban areas represented in Fig.Figure 4) are controlled separately. In each of these340

23 regions, the budget of the rest of the FF, BFwood and BFcrop CO2 emissions are controlled separately. Outside this main

area of interest, the FF, BFwood and BFcrop CO2 emission budgets of 43 administrative or larger regions are controlled (Fig.

5).
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Figure 5. Administrative regions and coarser areas for which the biogenic flux budgets, and the anthropogenic emission budgets (with more

details for regions highlighted in Fig.Figure 4) are controlled. The red line delimits the 2 km × 2 km-resolution zoom of the CHIMERE

transport model.

Single 14C signatures of the BFwood and BFcrop fluxes are controlled assuming that they apply over the whole modelling

domain. The 14C fluxes from 47 nuclear power plants, across the whole modeling domain, are separately controlled.345

Biogenic fluxes and isotopic signatures (NPP, HR and δHR) are only controlled at the resolution of the 66 administrative

regions and larger areas (23 in the main area of interest and 42 outside, Fig. 5), i.e., the spatial resolution of the control vector

is nearly the same as for anthropogenic emissions but it does not isolate urban areas and major point sources.

The control vector is actually composed of scaling factors to be applied to maps of local (from plant and urban area) and

regional fluxes from the products presented in Section 2.3 over these spatial control areas at a 1-hour temporal resolution except350

for the 14C signature of the HR, of wood burning and of crops BF emissions which are controlled at the daily scale. Indeed,

anthropogenic emissions and biogenic fluxes of CO2 can have a high temporal variability at the hourly scale. While the product

used to define the component of Hdistr corresponding to nuclear emissions is based on annual values (see Section 2.3), the

actual nuclear emissions can vary a lot at fine temporal scales (studies such as that of Cany et al. (2018) show large variations

of the nuclear production of individual sites, and the emissions may actually be primarily driven by maintenance processes).355

The composition of the control vector is summarized in Table 2.
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Table 2. Number of parameters in the control vector. The control vector is composed of scaling factors to be applied to budgets and maps

of local and regional fluxes from the products presented in Section 2.3 (FFPS , FFother , BFcrop, BFwood, NPP, HR, 14CBFcrop, 14CBFwood,
14CHR and Nucl). This table gives number and type of areas in the control vector: 66 administrative or coarser regions (Reg) defined in Fig.

Figure 5 and more detailed areas in the main area of interest. PS: point source emissions, UA: large urban area emissions, NUA: non urban

area i.e the rest of the region when excluding the UA and Domain: whole domain budget. In a 24h-inversion-window, 24 temporal parameters

correspond to 1h temporal resolution and 1 parameter correspond to daily resolution.

FFPS FFother BFcrop BFwood NPP HR 14CBFcrop 14CBFwood 14CHR FNucl

Spatial

in Main Area
22 PS 42 UA 42 UA 42 UA

of Interest - 23 NUA 23 NUA 23 NUA 66 Reg 66 Reg 1 Domain 1 Domain 66 Reg 47 PS

outside 43 Reg 43 Reg 43 Reg

Total 22 108 108 108 66 66 1 1 66 47

Temporal 24 24 24 24 24 24 1 1 1 24

Total 528 2592 2592 2592 1584 1584 1 1 66 1128

Control Vector Size 126681128

2.5.2 Prior error covariance matrix B

B is built assuming a 3-hour temporal auto-correlation of the prior uncertainty in hourly budgets for each type of controlled

flux. An exponentially decaying function is used to model these temporal correlations: e−d/3, where d is the time lag, expressed

in hours, between two hourly fluxes. We also assume that there is no correlation of the prior uncertainties in space (between360

different point sources, urban areas and regions) or between different types of fluxes or isotopic signatures. The standard

deviations of the prior uncertainties in control parameters for individual spatial areas at daily scale are set to 30% for FF and

BF emissions, to 100% for 14C signatures and to 60% for biogenic fluxes (Table 3). The resulting standard deviations of prior

uncertainty in regional 24-h, morning and afternoon budgets of FF emissions in the main area of interest range from 10 to

45% (Table 4). Hereafter, when analysing uncertainties in temporal budgets of fluxes, “morning” and “afternoon” are used to365

designate the time windows 6:00-13:00 and 13:00-19:00 UTC, respectively.

Table 3. Standard deviations of the prior uncertainties in 24-h budgets of controlled fluxes or in controlled isotopic signatures for each control

area.

FFPS FFother BFcrop BFwood NPP HR 14CBFcrop
14CBFwood

14CHR Nucl

Prior uncertainty (%) 30 30 30 30 60 60 100 100 100 100
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Table 4. Range of standard deviations of the prior uncertainty in regional 24-h, morning and afternoon budgets of FF emissions in the main

area of interest. These budgets include the urban areas and point sources within the regions

Prior uncertainty in regional budget (%) 24-h Morning Afternoon

Min 10 15 16

Mean 20 29 31

Max 30 43 45

2.6 Observation vector and corresponding sets of experiments

2.6.1 Satellite observations from an XCO2 spectral imager similar to CO2M

Some of the experiments assimilate pseudo retrievals of XCO2 from a single orbit of a CO2M-like satellite passing over

Western Europe at 12:00 UTC. The simulation of these XCO2 satellite observations is based on the simulations of the CO2M370

2-km-resolution sampling, with a ∼300 km swath, and L2 error statistics in the surface and atmospheric conditions for the

year 2014 from the ESA-PMIF project (Wang et al., 2020; Lespinas et al., 2020). These simulations account for cloud cover

which is moderate for the selected orbit (Fig.Figure 6). The observation vector is defined by the individual cloud free pixels

of the satellite. The extraction of this observation vector from the model outputs is made by selecting the model grid cells in

which the centres of these pixels are located. The spatial resolution of our transport model in the area of interest is similar to375

that of the satellite observation. However, since the satellite ground pixels do not perfectly correspond to the model grid cells

in this area, some model grid cells can correspond to several observations. In the coarser part of the model grid, model grid

cells correspond to several observations.

XCO2 is computed from the CHIMERE 3D fields of CO2 following the rationale of Santaren et al. (2021), notably assuming

a constant vertical weighting function:380

XCO2
(lat, lon) =

CO2(Ptop)×Ptop +
∫ Psurf (lat,lon)

Ptop
(CO2(lat, lon,P )× dP )

Psurf (lat, lon)
(7)

where lat and lon are the latitude and the longitude, respectively, P is the atmospheric pressure. Psurf is the surface pressure

and Ptop (300 hPa) is the pressure at the top boundary of the model. For pressures lower than Ptop, we assume that the CO2

mole fractionsconcentration equal the horizontal average of the top-level mixing ratios in CHIMERE (CO2(Ptop)).

2.6.2 Ground-based network385

We use a surface network (Fig. 7) of which 113 stations in our modelling domain are located following the scenario proposed

by Marshall et al. (2019). This scenario is based on existing continuous CO2 measurement sites of the Integrated Carbon

Observation System (ICOS, https://www.icos-cp.eu/) ,or other air sampling stations of the National Oceanic and Atmospheric

Administration (NOAA) and of the Global Atmosphere Watch Programme of World Meteorological Organization (GAW,
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Figure 6. Simulation of the XCO2 sampling and observation error standard deviation (by IUPB in the ESA-PMIF project) for a selected

orbit of the spectral imaging satellite, in parts per million (ppm).

https://community.wmo.int/activity-areas/gaw), but also local meteorological or air quality sampling stations and local science390

and engineering faculties. We assume that these stations have appropriate infrastructures and locations to observe atmospheric

CO2 and 14CO2. In order to complement this first network, local meteorological or air quality sampling stations, or local

science and engineering faculties were also chosen.

The sampling height at these stations ranges between 10 and 344 m above the ground level. We assume that all stations

of this network measure simultaneously CO2 and/or 14CO2. In order to simplify the pseudo-data framework and since the395

main area of interest has a relatively low and flat topography, eEach virtual site is assumed to provide hourly CO2 data that

are suitably assimilated between 10:00 and 17:00 UTC and/or a 7-hour-average sample of 14CO2 over 10:00-17:00 UTC,

following the common practice of assimilating data from low-altitude stations only when the planetary boundary layer (PBL)

is well developed (Broquet et al., 2011; Monteil et al., 2020; Munassar et al., 2022)(Broquet et al., 2011). The availability of

CO2 7-hour averages when deriving 14CO2 7-hour averages from air samples is ignored.400

2.6.3 Observation error covariance matrix R

The matrix R combines the uncertainty in the data that are assimilated and the corresponding uncertainty from the observation

operator. Here we assume that the uncertainty in the observation operator is dominated by that of the transport model and we

ignore temporal and spatial auto-correlations in these uncertainties. The representation and aggregation errors associated to
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Figure 7. Ground-based 14CO2 and CO2 observation networks. 113 stations located following the scenario proposed by Marshall et al.

(2019), based on real or potential observation networks (ICOS, NOAA, GAW, more details in section 2.6.2).

the spatial and temporal resolutions of the transport model and control vector (Kaminski et al., 2001; Wang et al., 2017) are405

assumed to be small in the main area of interest since these resolutions are relatively high for this area in our inverse modeling

framework. They are neglected over the whole domain. For individual data, the standard deviation of the observation error is

therefore:

σobs =
√
σ2
meas +σ2

mod (8)

For satellite observations, σmeas is the uncertainty in the CO2M XCO2 data as simulated by IUPB. These values are rep-410

resented in Fig.Figure 6. σmod is taken as 1 ppm for individual data (Basu et al., 2018; Marshall et al., 2019). As described

in Section 2.6, since the satellite ground pixels do not perfectly correspond to the model grid cells, some model grid cells can

correspond to several observations. We assume that the observation errors are uncorrelated: the aggregation of N observations

results in decreasing errors by a factor 1/
√
N .

415

For the near surface CO2 and 14CO2 observations, the configuration of σmeas follows the guidelines of Marshall et al. (2019,

Tables 5-1 to 5-3):

– The uncertainty in CO2 hourly measurements is taken as the target measurement uncertainty, σCO2,meas =0.05 ppm.
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– The 1-sigma uncertainty on 14CO2 7-hour data is taken as 200 ppm ‰, based on the following uncertainty propagation:

σ14CO2,meas =

√
(CO2×σδ14C,measobs)2 + (δ14C,a×σCO2,measobs/

√
7)2 (9)420

with

– CO2 the atmospheric mole fractionconcentration set to 400 ppm

– the atmospheric δ14C,a set to 40 ‰

– σCO2,meas/
√

7, the CO2 measurement uncertainty at the 7-hour scale, assuming that there is no autocorrelation in

the CO2 measurement errors at the hourly scale425

– σδ14C,meas = 0.5‰, the δ14C measurement uncertainty at the 7-hour scale

We use the estimate of the model error from Marshall et al. (2019, Tables 5-2 and 5-3 ): σCO2,model =1 ppm and σ14CO2,model =

1.26× 10−12 ppm multiplied by a coefficient ranging between 1 and 5. This coefficient corresponds to the amplitude of the

variability of the signal, and to the level of complexity for the transport simulation at the different types of stations: 1.0 for tall

towers, 1.5 for mountain sites, 3.0 for continental low altitude stations and 5.0 for sites within urban areas or close to strong430

sources.by station class multipliers from 1 to 5 depending on the type of station. For 14CO2, the conversion was done from

ppm to ppm ‰ by multiplying by 1000/Rstd. Ignoring auto correlations in the model error at the hourly scale, the model error

for 7-hour 14CO2 mean mole fractionconcentration data is taken as 1/
√

7 times the model error derived at the 1-hour scale.

The range of the resulting error statistics on the different types of data and from the model are reported in Table 5.

Table 5. Data, model, and observation operator 1-sigma uncertainty

Error Near-surface Satellite

Meas Model Obs Meas Model Obs

CO2 (ppm) 0.05 1 to 5 1 to 5 0.38 to 0.75 1 1.07 to 1.11
14CO2 (ppm ‰) 200 405 to 2025 451 to 2034

2.6.4 List of experiments435

Table 6 provides labels for the different sets of experiments as a function of the sets of pseudo observations that are assimilated,

using or combining the satellite data, the surface CO2 data and/or the surface 14CO2 data. The problem of the attribution of

inferred fluxes to FF or BF emissions, to NEE or to nuclear emissions is investigated by conducting sensitivity tests in which

the NEE, the BF emissions or the nuclear emissions are ignored, i.e. assuming no uncertainty in these fluxes. For the sake of

simplicity, we do not define specific labels for this and the text will clarify whenever diagnostics refer to these tests "without440

BF emissions, NEE or nuclear emissions".
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Table 6. List of performed experiments

Inversion System Observations Name

Satellite XCO2 INV-SAT

Surface CO2 INV-CO2

Surface 14CO2 INV-14C

Satellite XCO2 + Surface CO2 INV-SAT-CO2

Satellite XCO2 + Surface 14CO2 INV-SAT-14C

Satellite XCO2 + Surface CO2 + Surface 14CO2 INV-SAT-CO2-14C

2.7 Diagnostics

When analysing the results from the inversions and assessing the potential of the different types of observation networks, we

focus on the standard deviation of the prior and posterior uncertainties in flux budgets, and on their relative difference (called

uncertainty reduction or UR hereafter):445

UR= 1− σpost
σprior

(10)

Hereafter, when analysing temporal budgets of uncertainties, “morning” and “afternoon” are used to designate 6:00-13:00

and 13:00-19:00 UTC, respectively. Our analyses are focused on budgets for regions in the 2-km-resolution area and more

particularly in the main area of interest as defined in Fig.Figure 4.

To evaluate the impact of ground-based networks, we also define ∆URRefTest as the difference between UR for 24-h FF450

regional budgets, with a test configuration and UR with a reference configuration: ∆URRefTest=URtest-URRef . In these cases

the reference configurations are the ones when assimilating the data from the satellite track, either alone or with CO2 data from

the ground network (INV-SAT and INV-SAT-CO2 see Table 6).

3 Results

3.1 Potential of the satellite observations as a standalone observation system455

This section describes results when assimilating the data from the satellite track only, i.e. results from the INV-SAT inversion.

3.1.1 General results in the morning

This section focuses on results on morning budgets for which the constraint in the inversion from the satellite observation is

the highest. Indeed, the maximummaximal UR for regional morning budgets reaches 32% against 3% for afternoon budgets

(Table 7).460
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Table 7. Best score statistics of the uncertainty reductions (UR max for the highest UR) and the posterior uncertainty (Post min for the

smallest posterior uncertainty) in inversions with and without NEE, for regional 24-h, morning and afternoon FF emission regional budgets.

In the main area of interest, these budgets combine emissions from urban areas, large plants and the more diffuse regional sources.

Uncertainties (%) INV-SAT INV-CO2 INV-SAT-CO2 INV-14C INV-SAT-CO2-14C

With NEE

24-h
UR max 18,4 12.6 23,6 23.0 32,9

Post min 8,0 8.6 7,5 7.6 6,6

Morning
UR max 32,4 17.7 37,8 32.7 50,8

Post min 10,0 12.2 9,2 10.0 7,3

Afternoon
UR max 2,9 14.7 15,8 10.8 20,5

Post min 15,6 14.9 14,6 15.1 14,0

Without NEE

24-h
UR max 32.2 26.4 39.2 23.4 40.7

Post min 6.7 7.2 6.0 7.5 5.8

Morning
UR max 59.9 36.9 64.4 33.3 66.0

Post min 5.9 9.3 5.3 9.9 5.0

Afternoon
UR max 3.9 17.0 17.0 10.8 21.2

Post min 15.5 13.7 13.4 15.1 13.2

Figure 8 shows the example of a panel of URs from INV-SAT, for the morning budget of CO2 fluxes, at the scale of point

sources to that of regions. The URs for the morning budgets of large industrial plant emissions (FFPS) are significant in

the satellite field of view (FOV, corresponding to the vertical projection of the satellite image on the ground), with values

larger than 50% (Fig. 8a), but is marginal outside this FOV. The northwest direction of the wind on the day of analysis (see

Section 2.2) explains that the observation footprint appears to be slightly extended out of this FOV, in the east, with, for465

example, significant UR in the region of Essen. URs are also significant for other fossil fuel emission budgets (FFother) and

HR (heterotrophic respiration, as defined above) in the satellite FOV with URs up to 50% and more. The UR for NPP is much

larger than for the other fluxes. This can be explained by the fact that the level of UR for a given flux is strongly driven by

the ratio in the observation space between the imprint of the uncertainty in this flux and that of the uncertainty in the other

fluxes added to the observation and transport model errors. The NPP is relatively large in July and thus bears a large absolute470

uncertainty with a widespread imprint, so that this ratio is high for this flux. since this flux is relatively large in July. The

UR for BF emissions is generally much smaller than for the FF emissions. The much weaker level of emission related to BF

combustion explains the lack of UR for this type of fluxes.
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(a) FF PS (b) FF other

(c) BF

(d) NPP (e) HR
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Figure 8. Uncertainty reduction in INV-Sat inversions: for morning budgets of large plants (a, FF_PS, magenta circled dots), other FF (b) and

BF (c, crop and wood) emissions (urban area and rest of the region budgets), Net Primary Production (d, NPP) and heterotrophic respiration

(e, HR) (regional budgets). Stripes are indicative of the satellite field of view (see Fig. 6 for the full track).
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3.1.2 Uncertainties in FF emissions

The uncertainty reductions for the 24-hour regional budgets of FF emissions (regional budgets aggregates emissions from urban475

areas, point source and the rest of the regions hereafter) range from 0 to 18% in the main area of interest (Fig. 10, a, TableTab.

7). The URs are similar or rise in a range from 0 to 32% for the regional morning budget (Fig. 9, a and TableTab. 7). Larger

emission budgets generally lead to larger URs. However, for similar or lower emission budgets (median 8 vs. 14 kTCO2 ·d−1

kTCO2 · area−1 · 24h−1 respectively), URs are significantly higher for emissions from urban areas than for the other regional

emissions (max 18% vs. 10% respectively) since dense emissions areas generate atmospheric signatures with large amplitudes480

that are easier to filter from other signatures and from the observation noise than more extended but more diffuse emissions

areas (Santaren et al., 2021). URs for the afternoon emissions entirely rely on the specification of 3-h temporal auto-correlation

in the prior uncertainties in the emissions since these afternoon emissions are not directly seen by the satellite in our regional

inverse problem with a satellite overpass at 12:00 UTC. Consequently, URsthey are low for all types of sources. Figure 9(b)

and Table 7 show URs for afternoon regional budgets ranging from 0 to 3%. Overall, the results show contrasting capacities for485

the monitoring of the FF emissions. The scores of URs result in various levels of precision on the emission estimates, with 8%

to 30% posterior uncertainties in 24-hour and regional budgets of FF emissions in the main area of interest (TableTab. 7). The

lack of constraint outside the satellite FOV and during periods other than the morning confirms the need for complementary

data to extrapolate the information derived from the satellite observations in space and time.
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(a) FF Morning (b) FF Afternoon

(c) NEE Morning (d) NEE Afternoon
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Figure 9. Uncertainty reduction in INV-Sat inversion: for morning (a, c) or afternoon (b, d) budgets of FF, biogenic fluxes (NEE). Stripes

are indicative of the satellite field of view (see Fig. 6 for the full track).

3.1.3 Impact of NEE and BF emissions on FF emissions uncertainties490

The UR for NEE is much larger than for the FF emissions (Fig. 9, b and c) while the UR for BF emissions is generally much

smaller than for the FF emissions (Fig. 8). The problem of the attribution of inferred fluxes to FF emissions, NEE or BF

emissions is investigated with theby conducting sensitivity tests in which the NEE or BF emissions are ignored, i.e. assuming

no uncertainty in these fluxes (results when ignoring BF emissions are not shown in the figures and tables for the reasons given

below). The INV-SAT experiment ignoring the NEE shows significantly larger URs for the FF regional 24-h budgets (Fig.495

Figure 10), up to 60% in the satellite FOV, for the FF regional morning budget (Table 7, without NEE). This increase of the

URs yields posterior uncertainties in 24-h regional budgets which can reach values as low as 6.7% in the satellite FOV (Table

Tab. 7).

26
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(a) With NEE (b) Without NEE
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Figure 10. Uncertainty reduction in INV-Sat inversion with (a) and without (b) NEE, for 24-h budgets of FF emissions. Stripes are indicative

of the satellite field of view (see Fig. 6 for the full track).

The sensitivity of the INV-SAT experiment to the inclusion of BF emissions shows a very weak impact of BF emissions on

the UR for FF emissions (not shown) even though the spatial distribution of these two types of emissions are strongly correlated.500

This is directly attributed to the weak amplitude of BF emissions compared to FF emissions. Typically, the posterior uncertainty

in the FF emissions (6 to 30 % of the 24-h BF + FF emission budget) is much larger than the prior uncertainty in BF emissions

(0 to 7% of the 24-h BF + FF emission budget).

3.2 Potential of the ground-based hourly CO2 network

This section evaluates the impact of co-assimilating data from the ground-based hourly CO2 network and the potential com-505

plementarity between the satellite and the CO2 ground-based hourly observations. This evaluation is based on the analysis of

INV-CO2 and INV-SAT-CO2 and comparisons with the results from INV-SAT.

3.2.1 General results for the FF emissions

INV-CO2 (Fig. 11) reveals the limited role of the horizontal atmospheric transport near the surface to propagate URs from

regions with several measurement stations to other regionsones. URs of more than 4%, median at 12% and maximum at 13%,510

for 24-h budgets can be achieved in regions with 3 stations, like Île-de-France (Reg. 1, 12%), and North Rhine-Westphalia

(Reg.4, 13%) in the main area of interest (see also Fig. A1), or in regions with more stations outside this area like southeast

England (10%) and Baden-Württemberg (26%) which have 5 stations. However, the UR can also be much lower in regions

with many stations, e.g. for Lower-Saxony-and-Bremen which has 5 stations but a 4% UR. UR in regions with 1 or 2 stations
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range between 0% and 6%. The URs are generally below 1% for other regions. These URs reach lower or comparable values515

than in the INV-SAT experiment in the main area of interest (Fig.A1, Tab 7). However, outside the main area of interest,

Baden-Württemberg reaches a higher value than the largest one with the INV-SAT experiment (Rhineland-Palatinate, Reg. 5,

18%).

24-h FF budget

(a) INV-CO2 (b) INV-Sat-CO2
24-h NEE budget

(c) INV-CO2 (d) INV-Sat-CO2

11

Figure 11. Uncertainty reduction in INV-CO2 (a, c) and INV-Sat-CO2 (b, d) inversions: for 24-h budgets of FF emissions and biogenic

fluxes (NEE). Stripes are indicative of the satellite field of view. Green dots indicate the ground stations.

Of note is that the highest UR in the whole inversion domain (47% for 24-hour budgets and 56% for morning budgets)

corresponds to large regions of the coarse resolution area of the transport model (not represented in Fig. 11). This result is520

primarily driven by the optimistic extrapolation of information from the sites to the coarse model grid cells and further to the

whole extent of the control areas in which they stand, which is suitable here because of the optimistic lack of account for the

representation and aggregation errors impact observations in the coarse resolution part of the transport and inverse modeling

domains (see section 2.6). This optimistic bias from the inversion configuration would actually results in representation and
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aggregation errors when conducting experiments with real data (Kaminski et al., 2001) (Wang et al., 2017). The difficulty to525

characterize these errors (Wang et al., 2017)It justifies and supports the use of the finer resolution control vector in the main

area of interest, and the focus of our analysis on the 2-km resolution model subdomain. Unlike satellite data alone in INV-SAT,

the ground-based CO2 data constrains both afternoon and morning emission estimates, with URs of 4 to 18% and 4 to 15%

respectively for morning and afternoon regional budgets of FF emissions in the regions with 3 or more stations (Fig. A3 and

A4).530

3.2.2 Co-assimilation of the satellite observations

Only one region of the 2-km resolution model subdomain with 3 stations is located in the satellite FOV: North Rhine-

Westphalia. When comparing the URs for the 24-h regional budgets of FF emissions from INV-SAT-CO2 to that from INV-SAT

and INV-CO2 (TableTab. 8, Fig. A1) two significant changes can be seen. The first one is the decrease of 5% of the posterior

uncertainty for this region, i.e. less than the UR for this region in INV-CO2 (12%). The second one is the increase of UR for535

the regions outside the satellite FOV with more than 3 ground-based stations from nearly 0% to values that are nearly the

same as in INV-CO2. The URs at 24-h scale in INV-SAT-CO2 are smaller than the addition of URs in INV-SAT and INV-CO2

experiment (Fig. 12 and Fig. A1)

Table 8. CO2 or/and 14CO2 ground network impact in addition to satellite observation: ∆URRef
Test on 24-h, Morning and Afternoon FF re-

gional budgets, Maximal value on the AOI (column MAX), and value of the 2 most impacted area (Île-de-France and North Rhine Westphalia,

column).

∆URRefTest(%)

Test Ref MAX MEAN Île-de-France North Rhine Westphalia

Daily

INV-SAT-CO2 INV-SAT 13,3 1,6 13,3 5,2

INV-SAT-14C INV-SAT 14,6 2,5 14,6 12,7

INV-SAT-CO2-14C INV-SAT 20,8 3,3 20,8 14,5

INV-SAT-CO2-14C INV-SAT-CO2 9,3 1,8 7,5 9,3

Morning

INV-SAT-CO2 INV-SAT 12,7 1,7 12,7 5,4

INV-SAT-14C INV-SAT 16,5 2,7 11,9 16,5

INV-SAT-CO2-14C INV-SAT 19,2 3,7 19,2 18,4

INV-SAT-CO2-14C INV-SAT-CO2 13 2,1 6,5 13

Afternoon

INV-SAT-CO2 INV-SAT 15,8 1,2 15,8 6,4

INV-SAT-14C INV-SAT 10,8 1 10,8 5,6

INV-SAT-CO2-14C INV-SAT 20,5 1,8 20,5 10

INV-SAT-CO2-14C INV-SAT-CO2 4,7 0,5 4,7 3,6
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Figure 12. Average on the main area of interest of the UR on 24-h FF regional budgets in a set of inversion configurations, with (blue)

and without (orange) NEE and average of the difference between ∆URSAT
test with and without NEE (green). Negative values highlight an

increase of the additional observation network potential when NEE is taken into account. Positive values highlight a decrease of the additional

observation network potential when NEE is taken into account. High absolute values highlight strong NEE impact.

The ground-based CO2 data constrains both afternoon and morning emission estimates, with URs of 3 to 30% and of 1 to

27% respectively for morning and afternoon regional budgets of FF emissions in the regions with three or more stations (data540

not shown). The comparison between results for afternoon budgets of the FF emissions from INV-SAT-CO2 and INV-SAT

shows again, in INV-SAT-CO2, an increased UR that is smaller than the sum of the URs obtained in INV-SAT and INV-CO2

(TableTab. 7). Combining the satellite data with the afternoon data from the ground network does not increase the ability to

extrapolate the spatially widely spread information from these satellite data to the afternoon.
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3.2.3 Impact of NEE and BF emissions on FF emissions uncertainty545

INV-CO2 and the results of INV-SAT-CO2 outside the FOV of the satellite show different situations regarding the comparison

between UR for NEE and FF emissions (Fig. 11). In regions with large cities and industrial plants (like the Paris area and

Baden-Württemberg), the URs for NEE are smaller than that for FF as in INV-SAT. However, in other regions, the signal at the

surface stations is dominated by the signature of the biogenic fluxes and URs for NEE are larger than that for FF emissions.

Due to the relatively weak signal from BF emissions, the URs for these emissions are much smaller than that for FF emissions550

(less than 3%, less than 0.1% on average) in INV-CO2.

The impact of the attribution problem when using the surface CO2 network is quantified, here again, by conducting sensitivity

tests in which NEE is ignored (Fig. 12 and TableTab. 7). As the surface network has many stations mostly sensitive to the NEE

signal, it is expected to support the distinction between NEE and FF emissions in the inversion, even if the stations measure

CO2 only. In inversions INV-CO2, the UR for FF emissions is higher when ignoring the NEE, reaching a range between555

18 and 46% for 24-h budgets in the regions with more than 3 stations. However, the comparison between results from INV-

SAT-CO2 and INV-SAT when ignoring these fluxes hardly demonstrates a potential of the surface CO2 network to reduce the

problem of attribution between FF emissions and other fluxes (Fig. 12). Figures 12 show ∆URSATSAT−CO2,NoNEE larger than

∆URSATSAT−CO2 on average, i.e adding the CO2 network when ignoring the NEE yields a larger increase of the UR than when

accounting for NEE. This is linked to the smaller UR associated with CO2 data when accounting for NEE. There is a lack of560

indirect feedback on the UR for FF emissions from the lowering of uncertainties in NEE when complementing the satellite

data with CO2 data. However the results for each area taken independently show somewhat contrasting results (Fig. 13) with

∆URSATSAT−CO2,NoNEE lower than ∆URSATSAT−CO2 in some regions.
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Figure 13. Impact of the NEE on the ground network capability on the top of the satellite observation for each area of control in the main area

of interest: differences between ∆URSAT
test on 24-h FF regional budgets, with and without NEE. Negative values highlight an increase of the

additional observation network potential when NEE is taken into account.Positive values highlight a decrease of the additional observation

network potential when NEE is taken into account. High absolute values highlight strong NEE impact. The number of stars indicates the

number of stations in each controlled area. The areas are listed in Appendix 1.

Regarding BF emissions, the results are similar to that described in section 3.1, i.e a very weak impact of BF emissions

on the UR for FF emissions. With INV-SAT-CO2 the posterior uncertainties in FF emissions (7 to 30% of the 24-h BF + FF565

emission budget) are much larger than the prior uncertainty in BF emissions (0 to 7% of the 24-h BF + FF emission budget).

3.3 Potential of the ground-based 14CO2 network

This section evaluates the impact of co-assimilating data from the ground-based 7-h-average 14CO2 network and the potential

complementarities between the satellite and hourly-CO2, 7-h-average 14CO2 ground-based observations. This evaluation is

based on the analysis of INV-14C and INV-SAT-CO2-14C and comparisons with the results from INV-CO2 and INV-SAT-570

CO2.

3.3.1 General results for the FF emissions

The spatial distribution of the regional URs for 24-h, morning or afternoon budgets when using surface 7-h-average 14CO2

data alone is similar to that when using hourly-CO2 surface data only (Fig. 14). These URs are very low for regions with

less than 2 stations (<7%) and range between 12 to 34% for the morning budgets and between 4 to 14% for the afternoon575
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budgets for regions with more than 3 sites. The URs on daily and morning budgets are larger in INV-14C (TableTab. 7, Fig.

A2 and A5), i.e. when using the sampling of 14CO2 representative of 7-h-averages of the mole fractionsconcentrations, than in

INV-CO2 (TableTab. 7, Fig. A1 and A3), when using 7 hourly CO2 data at each site. However, the URs on afternoon budgets

are smaller in INV-14C than in INV-CO2. In most regions these differences remain relatively small except in Region 4, North

Rhine Westphalia, with up to 15 percentage points difference from the morning budget. The higher potential of 14CO2 data580

(7-hour averages) than hourly CO2 data to filter the signal from FF emissions, if both were measured at the same temporal

resolution, is balanced by the finer temporal resolution of the hourly CO2 continuous measurements. The hourly CO2 data’s

finer temporal resolution helps capture the high frequency patterns of the signal from FF emissions.

24-h FF budget

(a) INV-14C (b) INV-Sat-CO2-14C
24-h NEE budget

(c) INV-14C (d) INV-Sat-CO2-14C

14

Figure 14. Uncertainty reduction in INV-14C (a) and INV-Sat-CO2-14C (c) inversions: for 24-h budgets of FF emissions (a, b, c) and

biogenic fluxes (NEE, d, e, f). Stripes are indicative of the satellite field of view (see Fig. 6 for the full track). Green dots indicate the ground

stations.
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3.3.2 Co-assimilation of the satellite and surface hourly-CO2 observations

The fact that the URs when combining two networks is smaller than the sum of the URs when using each of these networks585

shown when comparing INV-SAT, INV-CO2 and INV-SAT-CO2, also applies when adding the surface network i.e. when com-

paring e.g. INV-SAT-14C to INV-SAT and INV-14C or INV-SAT-CO2-14C to INV-SAT-CO2 and INV-14C. The combination

of 7-h-average 14CO2 data with other types of data does not lead to further synergies of the advantages for each network: the

spatial extent of the satellite observation, the temporal coverage of the ground-based networks, the temporal resolution of the

hourly-CO2 surface network, and the higher sensitivity to FF emissions of the 7-h-average 14CO2 network. In North Rhine-590

Westphalia, where the configuration is favourable, with 3 stations in the satellite FOV, the UR for the daily budget increases

from 18% with INV-SAT to 33% with INV-SAT-CO2-14C (Fig. 14, Reg. 4). This configuration leads to 6.6% posterior un-

certainty. In Île-de-France (Reg. 1) outside the satellite FOV and with 3 stations, the UR reaches 21% in INV-SAT-CO2-14C,

reaching 18% posterior uncertainty. In Saarland (Reg. 6), in the satellite FOV and without stations, the UR remains similar in

INV-SAT-CO2-14C as in INV-SAT, 17%, corresponding to 15% posterior uncertainty.595

3.3.3 Impact of 14CO2 sources: nuclear emissions, NEE and BF emissions

The impact of nuclear emissions in the inversions assimilating 14CO2 data is analysed by conducting experiments where these

emissions are ignored. The comparison of INV-14C experiments with and without nuclear emissions shows a decrease of the

URs, in the range of 0-1.7 percentage points (Fig. A7, a), when these 14C emissions are taken into account. In the main area of

interest, the most impacted areas are the Zeeland, Brabant/Bruxelles, Anvers and Flanders regions where the stations are close600

to nuclear power plants (Fig. A7, b). Outside the main area of interest, Baden-Wurttemberg is also strongly impacted, with up

to 9% points difference.

Concerning the impact of NEE, in INV-14C, the URs for FF emissions in the regions with more than 3 stations are higher

when ignoring the NEE, reaching a range between 15 and 33% for 24-h budgets. The comparison of the experiments INV-14C

with and without NEE shows a much smaller impact of NEE on the URs for FF emissions than in experiments INV-CO2 or605

INV-SAT, which confirms the much smaller sensitivity of 14CO2 data to NEE than CO2 data. An interesting consequence is

that, on average, ∆URSAT14C , ∆URSATSAT−14C (Fig. 12) or ∆URSAT−CO2
SAT−CO2−14C (not shown) are slightly larger when accounting

for the NEE than when ignoring them. The potential of the 14CO2 network to complement the satellite observation is higher

when NEE is accounted for, while section 3.2 showed more contrasting results for the surface CO2 network. This increase of

the impact of the 14CO2 network when accounting for NEE is however relatively small, reaching its maximum in the region610

North Rhine-Westphalia, which has 3 stations, and where the posterior uncertainty decrease for the 24-h regional budgets of

FF emissions from INV-SAT to INV-SAT-14C is 15%.
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4 Discussion and Conclusions

4.1 Configuration of the inversion

Several caveats should be raised for the interpretation of these results. Part of the lack of amplification of the impact from615

the different observation subsystems when combining them could be due to our set-up of the prior uncertainties in which we

ignore spatial correlations and assume that the temporal correlations are relatively low. These assumptions are conservative

and, we believe, safer, in a context where the correlations of uncertainties in current inventories are still poorly characterized

and, since they are probably highly complex and far from isotropic, homogeneous, decreasing with distance or time. For

instance, distant plants or cities can have more similar processes than emitters that are spatially near to each otherclose ones,620

and the emissions and their underlying processes can vary rapidly depending on the time, weather, or socio-economic drivers.

... Inversions assuming large temporal and spatial correlations in the prior uncertainties in inventories would indicate a stronger

ability to extrapolate the information from atmospheric data but would be overly optimistic.

The control of the diffuse anthropogenic emissions and natural fluxes at the regional scale, rather than at the spatial resolution

of the transport model, allowed for solving for Eq. 1 analytically, but its impact on the results could be questioned. However, the625

size of the control regions is quite small. Furthermore, the control of such diffuse fluxes is traditionally handled by assigning

isotropic spatial correlations to the prior uncertainty in these fluxes. When considering the fluxes at high spatial resolution,

this can hardly better correspond to actual errors than the partition among administrative regions, at least for the anthropogenic

emissions (as highlighted above).

The study focuses on the assessment of the potential and limitation of the observation samplings, but random transport model630

error statistics are assigned in order to reflect the respective weight of these errors on in situ and satellite data. The specific

values attributed to these statistics would directly impact the scores of posterior uncertainty and of URs. However, we assume

that the ratio of transport model error statistics between the different types of observations appropriately reflects modeling skills

to simulate in situ or satellite data (Marshall et al., 2019) so that the comparison of the scores of URs from the assimilation of

different subsets of observations is meaningful. Furthermore, the specific values given to the error statistics, within a realistic635

range, should not impact the more qualitative insights brought by our analysis, regarding the spatial and temporal coverage of

the information on the fluxes provided by the different types of observation networks and regarding the attribution problem.

When using real data, the actual precision of the flux estimates would be strongly impacted by atmospheric radiative transfer

and transport modeling uncertainties (Schuh et al., 2019; Crowell et al., 2019). Our model of the uncertainty in the atmo-

spheric transport is relatively simple here: a Gaussian distribution without any spatial and temporal correlation in the ob-640

servation space of the inversion problem, as traditionally done in atmospheric inversions (Peiro et al., 2022; Crowell et al.,

2019)(Santaren et al., 2021). Complex modelling errors could actually shift or modify the patterns of the atmospheric signa-

ture of the FF emissions, which could increase the weight of the attribution problem, and thus the potential of the combination

between satellite and surface data. However, very dense surface networks would be needed to support the identification and

adjustment of transport errors. Uncertainties in the radiative transfer inverse modeling underlying the retrieval of XCO2 yield645

systematic errors in the XCO2 data, i.e., errors with spatial correlations. These errors are a major component of the observation
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errors. Their impact on the inversions highly depends on their structure and on the ability, in the inversion systems, to antici-

pate for such a complex error component (Santaren et al., 2021). We deliberately avoided to account for such error components

resulting from numerical models because they can hardly be characterized appropriately by the type of OSSEs conducted here,

and because they consist in unknown time-evolving residuals, for which existing studies hardly provide more than qualitative650

insights, or case-specific values. They tend to diminish along with model and remote sensing progress, in contrast to random

errors, which explains the focus of this study on the potential and limitation of the observation systems.

Other types of errors may have been ignored in our inversion configuration while potentially having significant impact. Our

reasoning pushed for neglecting the uncertainty in the large- and fine-scale patterns of the initial and boundary conditions.

Santaren et al. (2021) showed a low impact of uncertainties in a single scaling factor for the whole initial and boundary655

conditions of the modeling window and domain at the 6-hour scale and the fine scale patterns are assumed to vanish quickly in

time. However uncertainties in the gradients along the boundaries and in synoptic patterns might actually have a large amplitude

which persists across the modelling domain and perturbs the identification of atmospheric imprints of the local and regional

fluxes. Results have shown that the representation and aggregation errors should be accounted for at the ground observation

stations outside the main area of interest, where the spatial transport and inversion resolutions are coarse. These errors might660

also need to be re-assessed in the high resolution part of the domain but Bréon et al. (2015) used similar transport and control

resolutions and they showed that there errors should be low, even at stations at the edge of urban areas. In a more general

way, the quantitative results from our experiments, like those from all OSSEs, can suffer from the lack of account for specific

sources of errors or for the lack of ability to characterize properly complex ones. However, they support a good understanding

of the inversion processes and of the potential of the observation networks.665

The use of XCO2 sampling and error simulations for a day in 2014 while the flux and transport modelling framework

corresponds to another day in 2015 raises an inconsistency between the cloud patterns and the meteorological forcing of the

atmospheric transport. However, the cloud cover in the selected satellite track is moderate, the gaps due to this cover are spread

relatively homogeneously along the track, and a redistribution of these gaps with similar fraction of cloudy scenes should not

impact the general results. Similarly, the potential inconsistency between the variations in space of the XCO2 errors (which are670

limited, in the range 0.4 to 0.7 ppm) and the atmospheric conditions are assumed to be negligible.

The results, in particular those of the sensitivity tests with and without NEE or nuclear emissions, demonstrate the need

for a complex simulation of the CO2 and 14CO2 transport, taking into account the diversity of 14CO2 sources and sinks,

and more realistic than the common simplification which consists of representing only the dilution of radiocarbon-free FF

CO2 emissions. This and an inversion system at high resolution is more suitable for assessing the real ability to extrapolate675

information from the 14CO2 atmospheric data. However, given its high spatial and temporal resolution, the analytical inversion

framework used here can hardly be run over several days, because the size of the matrices to be inverted would become too

large. Therefore, inversions have been run for one day only, on July 1 2015 i.e. for very specific atmospheric conditions and

biogenic fluxes. In summer the biogenic fluxes are relatively high. Tests over different days, e.g. in winter, could bring a more

precise characterization of the complementarity of in situ networks with satellite data, but the primary focus of this study was680

to investigate the problem of the separation between the biogenic fluxes and FF emissions. By limiting the inversion window
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to a single day, we avoid analyzing to which extent the temporal correlations of the uncertainties in the FF CO2 emission

inventories allow for cross-referencing the information of data from different days. This assessment should rely on a strong

knowledge on the structures of uncertainties in the FF emissions, which is still incomplete, as illustrated above, even though

efforts have been conducted to improve this issue (Wang et al., 2020; Super et al., 2020).685

Finally our study tested a surface network roughly corresponding to the extension of a continental network like ICOS for

the monitoring of regional FF emission budgets. The deployment of networks dedicated to specific cities with stations around

and within the urban areas (Wu et al., 2016) would correspond to a different strategy and could result in different conclusions

for the monitoring of city emissions.

4.2 Insights from the results690

The results presented here raise contrasting conclusions regarding the potential of the combination between the satellite obser-

vation and the surface networks. The satellite observation, as a stand-alone system, can yield estimates of the regional budgets

of FF emissions in the morning corresponding to its days of overpass with uncertainties down to 10% (prior 15%, UR 32%) in

its FOV. However, it does not provide direct information on emissions during the afternoon or during the night, and it hardly

provides information on plants, cities and regions outside its FOV. Furthermore, previous publications (Broquet et al., 2018;695

Wang et al., 2020; Lespinas et al., 2020; Kuhlmann et al., 2019) have shown that, even with a CO2M constellation of three or

more satellites, the number of overpasses producing local images with low cloud cover is limited each year. The data gaps are

not random over time and hamper the estimation of annual budgets or their anomalies, as illustrated in the case of the "Great

Lockdown" (Chevallier et al., 2020). The need for complementary sources of information to derive daily to annual budgets is

thus critical.700

The problem of attributing the inferred CO2 fluxes to specific emission and absorption types appears to be nearly secondary

compared to that of the satellite observation precision but our results confirm that there is a significant impact of the uncertainty

in the NEE for the estimate of FF emissions. The uncertainty in BF emissions does not appear to have a large impact on the

estimate of FF emissions but this is related to the fact that the posterior uncertainty in FF emissions remains larger than the

prior uncertainty in BF emissions i.e. to the relatively low level of BF emissions compared to the typical uncertainties in FF705

emissions at regional to local scales. If the goal is to achieve higher precision estimates of the FF emissions than those obtained

with the present configuration, for example with higher precision spaceborne instruments, and if the share of BF emissions

increases in the future, the uncertainty in BF emissions would probably become a major problem due to the strong correlation

between the spatial distributions of FF and BF emissions. The problem of attribution to NEE fluxes would also increase with

this goal of higher precision estimates of the FF emissions in the future.710

Surface CO2/14CO2 networks can help further decrease the uncertainty in the FF emissions estimates when combined with

satellite observations. In North Rhine-Westphalia, the addition of CO2 and 14CO2 stations decreases the posterior uncertainty

in daily regional emissions from 8% with the satellite alone to 6.6% However, relatively dense networks close to highly

emitting areas are needed to support such a decrease. The isolated stations far from the urban areas do not provide a direct

strong constraint for the estimate of the FF emissions, nor a significant indirect constraint for this estimate by solving for715
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the attribution problem. Our results suggest that surface CO2 and/or 14CO2 measurements in support of the FF emission

monitoring should be targeting FF emission areas directly and located close to these areas rather than in the more remote

countryside dominated by signals from the NEEthe surrounding NEE. Both hourly CO2 and daily 14CO2 data can provide

useful information on the FF emissions, the former catching the signature of these emissions at high frequency and the latter

being much less sensitive to the uncertainty in the NEE.720

Overall, the results illustrate a decrease of the potential of each observation subsystem rather than an amplification of these

potentials when combining them together into a large observation system with satellite and surface data. This is the natural

consequence of the asymptotic convergence of the precision of inversions towards some low value when adding observations.

ITn our experiments, crossing the spatial extent of the satellite observation, the temporal coverage (with observations between

10:00 and 17:00 UTC and a wider temporal representativity) of the ground-based networks, the temporal resolution (hourly) of725

the CO2 surface network, and the higher sensitivity to FF emissions of the 14CO2 network does not lead to the expected synergy

with wide spatio-temporal coverage of the FF emissions at high resolution. There is a lack of new extrapolation of information

from the combination of observation subsystems. This may be due to the specificities of the attribution and extrapolation

problems in our inversion case.

Therefore, these results support the deployment of very dense CO2/14CO2 surface networks to support the satellite obser-730

vation, with at least three sites per European administrative region. The large-scale deployment of such dense networks is

probably unaffordable in the coming decade, but some regions are now equipped with many stations and in some locations,

the complementarity between satellite and surface networks could thus be demonstrated. Frequent (up to daily) samplings of
14CO2 would be needed to ensure 14CO2 data can bring information on FF emissions more precise than that of hourly CO2

measurements.735
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Figure A1. Uncertainty reduction in INV-SAT, INV-CO2 and INV-SAT-CO2 inversions for 24-h budgets of FF emissions of each controlled

area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The areas are listed in Table 1.
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Figure A2. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C and INV-SAT-CO2-14C inversions for 24-h budgets of FF emissions

of each controlled area in the main area of interest. The number of stars indicate the number of stations in each controlled area. The areas are

listed in Table 1.
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Figure A3. Uncertainty reduction in INV-SAT, INV-CO2, INV-SAT-CO2 inversions for morning budgets of FF emissions of each controlled

area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The controlled areas are listed

in Table 1.
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Figure A4. Uncertainty reduction in INV-SAT, INV-CO2, INV-SAT-CO2 inversions for afternoon budgets of FF emissions of each controlled

area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The names of the controlled

areas are listed in Table 1.
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Figure A5. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C and INV-SAT-CO2-14C inversions for morning budgets of FF

emissions of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area.

The names of the controlled areas are listed in Table 1.

50



20

Figure A6. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C and INV-SAT-CO2-14C inversions for afternoon budgets of FF

emissions of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area.

The names of the controlled areas are listed in Table 1.
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(a) UR on FF

(b) ΔUR on FF budgets and UR on F14C nuclear power plant budgets
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Figure A7. (a) Uncertainty reductions, on 24-h FF budgets, with and without nuclear emissions in INV-14C inversion, for each controlled area

in the main area of interest. The names of the controlled areas are listed in Table 1. (b) Maps, on the 2-km-resolution area, of the differences

between uncertainty reductions with and without nuclear emissions (red palette) in INV-14C inversions and uncertainty reductions on F14C

nuclear power plant budgets (dots, blue palette). Green dots indicate the ground stations.
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