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Abstract. Various satellite imagers of the vertically integrated column of carbon dioxide (XCO2) are under development to

enhance the capabilities for the monitoring of the fossil fuel (FF) CO2 emissions. XCO2 images can be used to detect plumes

from cities and large industrial plants, and to quantify the corresponding emissions using atmospheric inversions techniques.

However, this potential and the ability to catch the signal from more diffuse FF CO2 sources can be hampered by the mix

between these FF signals and a background signal from other types of CO2 surface fluxes, and in particular of biogenic CO25

fluxes. The deployment of dense ground-based air-sampling networks for CO2 and radiocarbon (14CO2) could complement

the spaceborne imagery by supporting the separation between the fossil fuel and biogenic or biofuel (BF) CO2 signals. We

evaluate this potential complementarity with a high resolution analytical inversion system focused on Northern France, Western

Germany, Belgium, Luxembourg and a part of the Netherlands, and with pseudo-data experiments. The inversion system

controls the FF and BF emissions from the large urban areas and plants, in addition to regional budgets of more diffuse10

emissions or of biogenic fluxes (NEE, Net Ecosystem Exchange), at an hourly scale over a whole day. The system assimilates

pseudo data from a single track of a 300-km swath XCO2 imager at 2 km resolution and from surface ground-based CO2 and/or
14CO2 networks. It represents the diversity of 14CO2 sources and sinks and not just the dilution of radiocarbon-free FF CO2

emissions. The uncertainty in the resulting FF CO2 emissions at local (urban area/ plant) to regional scales is directly derived

and used to assess the potential of the different combinations of observation systems. The assimilation of satellite observations15

yield estimates of the morning regional emissions with an uncertainty down to 10% (1 sigma) in the satellite field of view,

from an assumed uncertainty of 15% in the prior estimates. However, it does not provide direct information about emissions

outside the satellite field of view and neither about afternoon or nighttime emissions. The co-assimilation of 14CO2 and CO2

data lead to a further reduction of the uncertainty in the estimates of FF emissions. However, this further reduction is significant

only in administrative regions with three or more 14CO2 and CO2 sampling sites. The uncertainty in the estimates of 1-day20

emission in North Rhine-Westphalia, a region with three sampling sites, decreases from 8 to 6.6% when assimilating the in
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situ 14CO2 and CO2 data in addition to the satellite data. Furthermore, this new decrease appears to be larger when the ground

stations are close to large FF emission areas, providing an additional direct constraint for the estimate of these sources rather

than supporting the characterization of the background signal from the NEE and its separation from that of the FF emissions.

1 Introduction25

Article 4 of the Paris Climate Agreement aims to reduce greenhouse gas (GHG) emissions within a few decades on the

basis of equity, until they are compensated by GHG removals. The monitoring of this international ambition implies some

operational observation of the GHG emissions, in particular those of carbon dioxide (CO2) from fossil fuels (FFs). A significant

contribution to this monitoring is expected from observations of atmospheric composition and atmospheric inversion systems

(IPCC, 2019; Ciais et al., 2015; Pinty et al., 2017). In particular, the development of spaceborne imagery of the vertically30

integrated column of CO2 (XCO2), at spatial resolution better than 5 km, should make it possible to detect plumes under the

wind from anthropogenic sources of CO2 (Pillai et al., 2016; Schwandner et al., 2017; Broquet et al., 2018). A key example of

such imagery is the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M; Pinty et al., 2017) constellation which is

schedule to launch in 2025-2026. Each satellite of the constellation will observe XCO2 with a∼300 km swath and a∼ 2×2 km2

spatial resolution.35

Previous analyses of the potential of high resolution satellite imagery (such as ESA, 2015; Broquet et al., 2018; Santaren

et al., 2021; Wang et al., 2020; Kuhlmann et al., 2019) have focused on its use as a stand-alone observation system. However,

the distinction between FF and natural CO2 signals and thus the separation between the FF and natural components in the

flux estimates remain difficult, even when using high-resolution images (Santaren et al., 2021). The separation between the

emissions from biofuel (BF) and FF combustion is another challenge because BF emissions can be located in the same hot-40

spots as FF ones (Ciais et al., 2020).

The deployment of dense ground-based networks of near-surface air sampling for radiocarbon (14CO2) has been considered

in complement to the spaceborne imagery (Ciais et al., 2015). Indeed FF-emitted CO2 is radiocarbon-free (Pinty et al., 2017;

Wang et al., 2018; Levin et al., 2003; Wang, 2016; Basu et al., 2016): 14CO2 surface data have a less ambiguous sensitivity to

the signal from FF emissions than CO2 surface data. However, practical constraints lead to sampling 14CO2 daily if not weekly45

to monthly. This prevents the direct identification of temporal variations at higher frequencies, e.g. hourly, associated with the

signal from cities and point sources, but time series of continuous hourly measurements of CO2 should enable these specific

temporal variations to be captures.

This study aims at assessing the potential of combination between a spaceborne XCO2 imager and ground based 14CO2

and CO2 networks to monitor FF emissions of CO2. More specifically, it aims at assessing how these additional ground-50

based networks decrease the uncertainty in FF emissions by improving the distinction between the FF and biogenic fluxes.

The inversion tests performed in this study with different sets of pseudo-data correspond to Observing System Simulation

Experiments (OSSEs). They include the simulation of the sampling of a CO2M-like spaceborne instrument from single orbits

over Western Europe at 12:00 (Universal Time Coordinated, UTC).
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The work performed relies on a Bayesian inversion framework, in which the knowledge of control parameters, here the55

CO2 fluxes, improves with the assimilation of related observations. It is focused on the direct computation of the uncertainty

in the control parameters. We analyse the uncertainty in the posterior values of the control parameters as a function of the

observation system that is used for the inversion, and the corresponding uncertainty reduction, i.e., the relative difference

between the posterior uncertainty and the prior uncertainty in the control parameters.

The analysis of this uncertainty reduction is made at the local scale (urban areas, industrial plants) to the regional scale,60

following the rationale and the general inverse modelling framework of Santaren et al. (2021). It focuses on a large part of

Western Europe, using a configuration of the CHIMERE regional transport model (Menut et al., 2013) with a 2 km horizontal

zoom over Northern France, Western Germany, Belgium, Luxembourg and a large part of the Netherlands. It controls FF

emissions from urban areas and industrial plants in addition to regional budgets of more diffuse emissions or of biogenic fluxes

at an hourly scale. The analytical expression of the inversion framework (Wu et al., 2016) allows for the results of the individual65

control parameters or for budgets integrated in space within the regions or in time within a day to be analyzed and for many

options for the observation system to be tested despite the dimension of the high resolution inversion problem.

The assimilation of 14CO2 and CO2 surface data in addition to XCO2 images and the inclusion of non-FF fluxes of 14CO2

in the inversion framework make use of the larger-scale inversion framework developed by Wang (2016). It takes into account

not only the 14CO2 emissions from nuclear power plants and fuel reprocessing plants, but also the specific isotopic signatures70

of the heterotrophic respiration (HR) and Net Primary Production (NPP) by land ecosystems and thus solves for these fluxes

separately. It also controls the emissions from BF burning.

The analytical inversion framework is described in section 2. Results from the pseudo-data experiments with the assimila-

tion of satellite observations alone are taken as a reference and presented in Section 3.1. Then a larger suite of experiments

combining 14CO2 and CO2 surface and XCO2 satellite observations is used to assess their complementarity in Sections 3.275

to 3.3. Section 4 provides some discussions about this inversion framework and a conclusion regarding complementarity of

XCO2 satellite, 14CO2 and CO2 surface observations.

2 Methodology of the inversion

This section presents the high dimensional inversion framework designed in this study for the co-assimilation of CO2 and
14CO2 data. It has strong similarities with the system developed by Santaren et al. (2021), which assimilates CO2 data only,80

and it borrows from Wang (2016) to assimilate 14CO2 data. The system relies on:

– An analytical inversion framework as presented in Section 2.1 in which budgets of surface anthropogenic and natural

fluxes are controlled at local (city or industrial plant) or regional scales and at hourly resolution (see the definition of the

control vector in Section 2.4).

– A zoomed configuration of the regional atmospheric transport model CHIMERE for most of Western Europe, described85

in section 2.2.
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– Hourly to annual maps of all types of surface CO2 and 14CO2 fluxes, at high spatial resolution from the CO2 Human

Emissions project (CHE, https://www.che-project.eu/), which are described in section 2.3, at temporal resolutions up to

1-hour. They are used to distribute the local-to-regional-scale budgets of the fluxes into corresponding high resolution

flux maps (see section 2.4).90

– Simulations of the location, time and uncertainty of the XCO2 retrievals and of the CO2 and 14CO2 ground-based data,

for different scenarios of the observing system, as described in Section 2.5. For the XCO2 data, we rely on the simulation

of the CO2M sampling during one satellite pass over the area of interest generated by the Institut für Umweltphysik

(IUPB) in the frame of the ESA-PMIF project (European Spacial Agency, Plume Monitoring Inversion Framework

Wang et al., 2020; Lespinas et al., 2020).95

Inversions are conducted over a 1-day window from 0:00 to 24:00, on July 1 2015, i.e. in summer when the biogenic fluxes

are relatively high. The restriction to 1 day is connected to results of Santaren et al. (2021), which show the lack of sensitivity of

observations made during a given day to the fluxes during other days over the modeling domain, and to the large computation

cost associated with the preparation of a full day of analytical inversion. With such an inversion window, wider than the one

chosen in Broquet et al. (2018) or Santaren et al. (2021), the system tracks the signal from the FF emissions up to 12 hours100

before the satellite overpass (see Section 2.5.1) and 10 hours before the in-situ data assimilation window (see Section 2.5.2).

After a few hours, the air masses having been transported over typically 100 km, the signal from individual FF CO2 sources

(industrial plants, cities, regions) is much diffused and hardly detectable in XCO2 images. Consequently this 1-day timescale

is large enough to represent the full extent of the CO2 FF plumes that can be exploited in images from CO2M-like instruments

to compute the corresponding emissions (Broquet et al., 2018; Santaren et al., 2021). The ability to track large-scale budgets of105

FF emissions over longer time periods relies on complementary observations of FF emission tracers. These tracers, such as the
14CO2 measurements considered here, may help filter a relatively low FF signal from the biogenic signal which is generally

much larger over long distances (Pinty et al., 2017; Fortems-Cheiney et al., 2021). CO2 and 14CO2 ground-based networks

could also reinforce the constraint on the FF CO2 emission estimates during the few hours before the satellite overpass. By

starting the inversion window 12 hours before the satellite overpass and 10 hours before the first surface measurement, we110

account for the full window of FF CO2 emission, the estimate of which can potentially be directly constrained by these

different datasets or by their combination.

2.1 Inversion general equation

Under the assumption that all uncertainties in the inversion problem have a Gaussian and unbiased distribution, these uncer-

tainties are fully characterized by their covariance matrices. The analytical Bayesian inversion allows for the computation of115

the covariance matrix of the posterior uncertainty (uncertainty in the posterior estimate of the fluxes) A as a function of the

observation operator H connecting the control parameters (the flux budgets, see section 2.4) to the observation vector (the

space defined by the ensemble of pseudo observations, see section 2.5), of the covariance matrix of the prior uncertainties

(uncertainty in the prior estimate of the fluxes, see section 2.4.2) B and of the model and observation errors covariance matrix
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R (in the observation space, see section 2.5.3), following Tarantola (2005):120

A = [B−1 + HTR−1H]−1 (1)

The observation operator H, is assumed to be linear and is decomposed, following the notations of Staufer et al. (2016), into :

H = HsampleHtranspHdistr (2)

Hdistr defines (i) the spatial and temporal distribution of the fluxes within each area corresponding to a control parameter

and beyond the temporal resolution of these control parameters, (ii) the flux budgets to be rescaled by the inversion for these125

areas at the control resolution, and (iii) the application of the isotopic signatures to CO2 fluxes. Here, it is based on the flux

products and on the signatures described in Section 2.3.

Htransp is the atmospheric transport operator, corresponding to our configuration of the transport model CHIMERE de-

scribed in section 2.2.

Hsample corresponds to the computation of XCO2 and to the sampling of XCO2 or of near ground concentrations of CO2130

and 14CO2 at the observation time and locations from the output of the CHIMERE model. Section 2.5 provides more details

on this operator. The derivation of the H matrix in the analytical system requires an extensive set of simulations with the

computation of the imprint (columns of H) of each of the control parameters (Santaren et al., 2021).

2.2 Atmospheric transport

2.2.1 Transport model configuration135

The transport operator of CO2 and 14CO2 in the atmosphere, Htransp, relies on the CHIMERE transport model, driven here

by the Community Inversion Framework (CIF, Berchet et al., 2021). The domain and the horizontal grid for the CHIMERE

configuration used here are represented in Figure 1. They cover a part of Western Europe (longitude: -6.82◦to 19.18◦; latitude:

42.0◦to 56.39◦). The resolution of the horizontal grid varies between 50 and 2 km. The 2 km×2 km-resolution zoom covers

Northern France, Luxemburg, Belgium, a large part of the Netherlands and Western Germany (longitude: -1.25◦to 10.64◦;140

latitude: 47.45◦to 53.15◦). The vertical grid is composed of 29 pressure layers extending from 997 hPa to 300 hPa (from the

surface to approximately 9 km above the ground level).

Our configuration of CHIMERE ignores chemistry since CO2 and 14CO2 are inert species at the time scale considered in

this study (24 h). This explains why the resulting atmospheric transport operator Htransp is assumed to be linear. It is forced

by meteorological variables provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the CHE145

project at 9 km resolution (Agusti-Panareda, 2018). Figure 2 provides indications on the typical horizontal transport conditions

during the day of inversions over the area of interest: on July 1st 2015, a South-East wind over the North East part of the

domain spreads the atmospheric signature of FF emissions in the North-West direction.
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Figure 1. CO2 flux map (based on values from the TNO inventory and VPRM simulations for 1 July 2015 at 12:00) over the atmospheric

transport modelling grid. The red lines delimit the spatial resolution changes within the domain (from 2 km to 10 km and then 50 km from

the middle to the edges of the domain)

2.2.2 Simulation of CO2 and 14CO2 transport

In this section, we present a formal decomposition of the CO2 and 14CO2 transport in order to introduce the notation and150

assumptions used in the inversion framework. The decomposition of the 14CO2 transport and its formulation in a specific unit

(parts per million per mil, ppm ‰) follow that of Wang (2016).

Ca,CO2 = Htransp [FFF,CO2 +FBF,CO2+

FNPP,CO2 +FHR,CO2]+

Hbc [Cbc,CO2]

(3)

Ca,CO2 · δa = Htransp [δFF ·FFF,CO2 + δBF ·FBF,CO2+

δNPP ·FNPP,CO2 + δHR ·FHR,CO2+

1/Rstd ·F 14C
Nucl

]
+

Hbc [Cbc,14CO2 · δbc]

(4)
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(a) Morning

(b) Afternoon

Figure 2. Morning (a) and afternoon (b) wind averaged in the first two vertical layers of the CHIMERE grid (i.e., heights between 0 and 28

m above the ground)

where:155

– Ca,CO2 is the CO2 atmospheric concentration.

– Fx terms correspond to different types x of CO2 fluxes within the transport modelling domain: FF emissions, BF emis-

sions, NPP and HR.

– Cbc,x are the boundary (top and lateral) and initial conditions of CO2 and 14CO2 concentrations, and Hbc their transport

within the modeling domain, but they are ignored in this inversion study (see Section 2.3.3).160

– δa are the 14CO2/
12CO2 ratios in the atmosphere (R), normalized by the 14C/12C ratio in the Modern Standard

((R/Rstd− 1);Rstd = 1.176× 10−12). Similarly, in the following, all δ are also normalized ratios.

– δx isotopic signature of the 14CO2 fluxes listed above.
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– F 14
Nucl corresponds to 14CO2 fluxes from nuclear power plants.

2.3 Flux maps165

2.3.1 CO2 flux maps

The anthropogenic CO2 emissions, from both FF and BF combustion, are derived from two inventories of the annual emissions

produced by Netherlands Organisation for Applied Scientific Research (TNO) over Europe for the year 2015 (Denier van der

Gon et al., 2017; Super et al., 2020). The emissions in the 2-km-resolution area of the domain are interpolated from a ∼1

km (1/60◦× 1/120◦) resolution inventory (TNO_GHGco_1x1km_v1_1) which entirely covers this area but not the whole170

CHIMERE domain (its extent being -2◦to 19◦in longitude and 47◦to 56◦in latitude). The emissions in the rest of the CHIMERE

domain are interpolated from a ∼ 6 km (1/10◦× 1/20◦) resolution inventory (TNO_GHGco_v1_1, covering -30◦to 60◦, in

longitude and 30◦to 72◦in latitude). These data are projected on the CHIMERE horizontal grid ensuring mass-conservation.

The temporal disaggregation at hourly scale is based on coefficients depending on the sector of activity and the time zone

provided in the CHE project (Marshall et al., 2019). Emissions from point sources are projected on the CHIMERE vertical175

grid depending on activity sectors while emissions from diffused sectors of activity (traffic, heating etc.) are emitted from the

ground in the model.

No distinctions between CO2 BF emissions from woods and crops is done in the TNO inventories. However this split is

needed to derive 14CO2 fluxes (see below). Consequently, assumptions are made based on emission categories used in TNO

inventory, i.e. the Gridded Nomenclature For Reporting (GNFR) of the United Nations Framework Convention on Climate180

Change (UNFCCC). In this study, we consider that BF from woods is burned in power plants and in the industry and residential

sectors only, i.e. in categories A to C. BF from crops is burned in categories F and L only, that correspond to road transport

and agriculture. We assume that the BF emissions from the other sectors are negligible since they represent less than 2 % of

the total BF emissions in the vast majority of countries.

The CO2 biogenic fluxes are interpolated from simulations at 1 h and 5 km resolution with the VPRM model (Vegetation185

Photosynthesis and Respiration Model, Mahadevan et al., 2008) for the year 2015, provided by MPI-Jena over Europe (over

latitude 31◦to 68.7◦; longitude -35.5◦to 60.5◦). The VPRM simulations provide estimates of gross primary production (GPP)

and total respiration. Daily partition coefficients (αHR) are derived from ORCHIDEE-MICT simulations at 0.5◦resolution

over Europe in 2015 (Guimberteau et al., 2018) to scale GPP and Respiration from VPRM into NPP and HR fluxes. The total

biogenic fluxes correspond to the Net Ecosystem Exchange (NEE = NPP + HR = GPP + Resp).190

The total CO2 fluxes for 1st July 2015 at 12:00 are presented in Figure 1.

2.3.2 Isotopic signatures and 14CO2 flux maps

To produce 14CO2 fluxes, corresponding isotopic signatures are applied to the CO2 fluxes.

195
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δFF =−1000‰ was applied to FFF on the whole year and domain.

We distinguish δBF,wood from δBF,crop because crops and wood have a different age at harvest resulting in different 14C

abundance. In a first approximation, we determined these δBF as a spatial and temporal average of 14CO2 contains in vege-

tation, δbiomass, simulated with the emulator of the ORCHIDEE-MICT model (Guimberteau et al., 2018; Naipal et al., 2018;200

Wang, 2016) over the whole ORCHIDEE-MICT Europe domain in 2015, selecting the relevant plant functional types (PFT):

non-tropical trees for δBF,wood or crops for δBF,crop. Such a computation of δBF relies on the hypothesis that the wood or

cropfuel burnt in Europe comes from European (López et al., 2017) and recently cut vegetation. As a result, δBF,wood = 95‰

and δBF,crop = 19‰.

205

δNPP monthly maps at 5 km spatial resolution were derived for application to the VPRM biogenic fluxes:

δNPP = δa,surf − ε (5)

where δa,surf is the radiocarbon signature in the surface atmospheric layer and ε is the sum of kinetic and enzymatic 14CO2

fractionation with respect to 12CO2 depending on the C3 or C4 photosynthesis pathway of the vegetation.

δa,surf is characterized by a conversion of ∆14C monthly background measurements at Schauinsland in Germany, in 2015210

(Hammer and Levin, 2017) following Stuiver and Polach (1977) with δ13C from Graven et al. (2017). This ratio varies between

46 and 49 ‰. Here, we neglect the impact of variations of this δa,surf at high spatial and temporal resolution on the 14CO2

NPP fluxes themselves. Accounting for such variations for a precise computation of the δNPP , and so 14CO2 NPP fluxes,

would have required a dynamical computation with δa,surf depending on 14CO2 concentrations calculated by the transport

model and would have introduced strong non-linearities in the inversion (with an evolving H). However, over one day, these215

variabilities are assumed to be negligible as was found by Wang (2016) within each region-month.

The value of ε is 36 ‰ for C3 vegetation and 8 ‰ for C4 vegetation as described by Wang (2016) from Farquhar et al. (1989)

and Degens (1969). We derive the C3/C4 distribution on the VPRM grid and per month, from the combination of three land

cover maps: the VPRM and ORCHIDEE land cover maps and monthly MIRCA2000 crop map (Portmann et al., 2010). This

combination allows us to capitalise on the high spatial resolution of the VPRM land cover map at 5 km derived from SYNMAP220

at 1-km-resolution (Jung et al., 2006) and a more precise PFT information in ORCHIDEE land cover maps at 0.5◦resolution

to determine the C3 or C4 photosynthesis type. In case of the crop PFT, the MIRCA2000 crop map at ∼ 0.08◦-resolution

indicates the surface area covered by each crop type, and thus the relevant photosynthesis type, with a finer resolution than in

ORCHIDEE and with the monthly variability of the year 2000. The resulting δNPP varies between 10 and 41‰.

225

δHR daily maps for the year 2015 are derived from simulations with the above-mentioned ORCHIDEE-MICT emulator.

For each grid cell, the daily CO2 and the corresponding 14CO2 emissions from litter respiration and 3 types of soil respiration

were aggregated. Their ratio, δHR, is then interpolated from the ORCHIDEE-MICT grid to the VPRM grid. The resulting δHR
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varies between 22 and 177 ‰.

230

Nuclear 14CO2 emissions are simply calculated following Graven and Gruber (2011) based on the annual activity of each

reactor, in 2015, reported in Zazzeri et al. (2018). For each reactor, activity data A in TBq · yr−1 is converted into 14C

production in kg14C · reactor−1 · yr−1:

F 14C
Nucl =A×α× 109 (6)

with α=Rstd/0.226, where 0.226 Bq · gC−1 is the conversion factor from activity to carbon production.235

2.3.3 Ignoring ocean fluxes, cosmogenic production, biomass burning emissions and the regional boundary conditions

The impact of uncertainty in the initial condition (at 0:00 on July 1 2015) and at the boundary conditions (at the lateral and

top boundaries of the CHIMERE domain) are assumed to be negligible following the results from Santaren et al. (2021): these

conditions are thus ignored in the definition of our inversion problem.

Regarding the CO2 (and thus 14CO2) ocean fluxes, we also assume that they can be neglected here because the CHIMERE240

domain is mostly continental.

The cosmogenic production of 14C becomes significant above∼700 hPa, well above the planetary boundary layer (Turnbull

et al., 2009), while we are interested in simulating 14CO2 concentrations near the ground. Even though we use some high-

altitude stations, we can assume that most of the influence from the cosmogenic production at these surface stations comes

from the model lateral boundaries and that the cosmogenic production within the modelling domain can be neglected.245

CO2 and 14CO2 biomass burning emissions are also neglected since they are generally relatively weak in our modelling

domain (especially in the 2-km resolution part of the modelling grid on which the analysis focuses).

2.4 Control Vector

2.4.1 Definition of the Control Vector

The control vector is spatialized based on a decomposition of the flux maps into large or administrative regions, large urban250

areas and large industrial plants.

The study focuses on a set of 23 regions, called “the main area of interest” hereafter: the nine administrative regions of

Belgium, Luxemburg, seven administrative regions of the southern Netherlands, three administrative regions in northern France

and three administrative regions in western Germany (all comprised in the 2 km × 2 km-resolution zoom of the CHIMERE

grid, see Figure 3).255
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Figure 3. Main area of interest i.e. the 23 administrative regions where major urban areas (contours of the urban areas also represented here)

and point sources emissions are controlled separately for anthropogenic emissions in the 2 km × 2 km-resolution zoom of the CHIMERE

transport model. The names of these administrative regions are listed in Table 1. Ground-based 14CO2 and CO2 observation sites are also

shown (red dots, see Fig. 6, for the network on the whole domain).
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Table 1. List of areas of control in the main area of interest and corresponding number of stations in these areas.

Number Area Name Number of Stations

1 Île-de-France 3

2 Lorraine 1

3 Nord-Pas-de-Calais 1

4 North Rhine Westphalia 3

5 Rhineland-Palatinate 1

6 Saarland 0

7 Gelderland 0

8 Limburg 1

9 North Brabant 3

10 Utrecht 1

11 Zeeland 1

12 Sheldt (see) 0

13 South Holland 0

14 Luxemburg 1

15 Brabant/Bruxelles 1

16 Anvers 0

17 Limburg 0

18 East Flanders 0

19 West Flanders 0

20 West Hainaut 0

21 East Hainaut 0

22 Liege 0

23 Namur/Luxembourg 0

In this main area of interest, the CO2 FF emission budgets from major industrial plants (22 plants for which the annual

emissions exceed 1 MtC for CO2, FFPS , see the red dots in Figure 3) and the FF, BFwood and BFcrop CO2 emission budgets

from the large urban areas (the 42 urban areas represented in Figure 3) are controlled separately. In each of these 23 regions,

the budget of the rest of the FF, BFwood and BFcrop CO2 emissions are controlled separately. Outside this main area of interest,

the FF, BFwood and BFcrop CO2 emission budgets of 43 administrative or larger regions are controlled (Fig. 4).260
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Figure 4. Administrative regions and coarser areas for which the biogenic flux budgets, and the anthropogenic emission budgets (with more

details for regions highlighted in Figure 3) are controlled. The red line delimits the 2 km × 2 km-resolution zoom of the CHIMERE transport

model.

Single 14C signatures of the BFwood and BFcrop fluxes are controlled assuming that they apply over the whole modelling

domain. The 14C fluxes from 47 nuclear power plants, across the whole modeling domain, are separately controlled.

Biogenic fluxes and isotopic signatures (NPP, HR and δHR) are only controlled at the resolution of the 66 administrative

regions and larger areas (23 in the main area of interest and 42 outside, Fig. 4), i.e., the spatial resolution of the control vector

is nearly the same as for anthropogenic emissions but it does not isolate urban areas and major point sources.265

The control vector is actually composed of scaling factors to be applied to maps of local (from plant and urban area) and

regional fluxes from the products presented in Section 2.3 over these spatial control areas at a 1-hour temporal resolution

except for the 14C signature of the HR, of wood burning and of crops BF emissions which are controlled at the daily scale. The

composition of the control vector is summarized in Table 2.
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Table 2. Number of parameters in the control vector. The control vector is composed of scaling factors to be applied to budgets and maps

of local and regional fluxes from the products presented in Section 2.3 (FFPS , FFother , BFcrop, BFwood, NPP, HR, 14CBFcrop, 14CBFwood,
14CHR and Nucl). This table gives number and type of areas in the control vector: 66 administrative or coarser regions (Reg) defined in

Figure 4 and more detailed areas in the main area of interest. PS: point source emissions, UA: large urban area emissions, NUA: non urban

area i.e the rest of the region when excluding the UA and Domain: whole domain budget. In a 24h-inversion-window, 24 temporal parameters

correspond to 1h temporal resolution and 1 parameter correspond to daily resolution.

FFPS FFother BFcrop BFwood NPP HR 14CBFcrop 14CBFwood 14CHR FNucl

Spatial

in Main Area
22 PS 42 UA 42 UA 42 UA

of Interest - 23 NUA 23 NUA 23 NUA 66 Reg 66 Reg 1 Domain 1 Domain 66 Reg 47 PS

outside 43 Reg 43 Reg 43 Reg

Total 22 108 108 108 66 66 1 1 66 47

Temporal 24 24 24 24 24 24 1 1 1 24

Total 528 2592 2592 2592 1584 1584 1 1 66 1128

Control Vector Size 1128

2.4.2 Prior error covariance matrix B270

B is built assuming a 3-hour temporal auto-correlation of the prior uncertainty in hourly budgets for each type of controlled

flux. An exponentially decaying function is used to model these temporal correlations: e−d/3, where d is the time lag, expressed

in hours, between two hourly fluxes. We also assume that there is no correlation of the prior uncertainties in space (between

different point sources, urban areas and regions) or between different types of fluxes or isotopic signatures. The standard

deviations of the prior uncertainties in control parameters for individual spatial areas at daily scale are set to 30% for FF and275

BF emissions, to 100% for 14C signatures and to 60% for biogenic fluxes (Table 3). The resulting standard deviations of prior

uncertainty in regional 24-h, morning and afternoon budgets of FF emissions in the main area of interest range from 10 to 45%

(Table 4).

Table 3. Standard deviations of the prior uncertainties in 24-h budgets of fluxes or in isotopic signatures for each control area.

FFPS FFother BFcrop BFwood NPP HR 14CBFcrop
14CBFwood

14CHR Nucl

Prior uncertainty (%) 30 30 30 30 60 60 100 100 100 100

2.5 Observation vector and corresponding sets of experiments

2.5.1 Satellite observations from an XCO2 spectral imager similar to CO2M280

Some of the experiments assimilate pseudo retrievals of XCO2 from a single orbit of a CO2M-like satellite passing over

Western Europe at 12:00 UTC. The simulation of these XCO2 satellite observations is based on the simulations of the CO2M

2-km-resolution sampling, with a ∼300 km swath, and L2 error statistics in the surface and atmospheric conditions for the
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Table 4. Range of standard deviations of the prior uncertainty in regional 24-h, morning and afternoon budgets of FF emissions in the main

area of interest. These budgets include the urban areas and point sources within the regions

Prior uncertainty in regional budget (%) 24-h Morning Afternoon

Min 10 15 16

Mean 20 29 31

Max 30 43 45

year 2014 from the ESA-PMIF project (Wang et al., 2020; Lespinas et al., 2020). These simulations account for cloud cover

which is moderate for the selected orbit (Figure 5). The observation vector is defined by the individual cloud free pixels of the285

satellite. The extraction of this observation vector from the model outputs is made by selecting the model grid cells in which

the centres of these pixels are located. The spatial resolution of our transport model in the area of interest is similar to that

of the satellite observation. However, since the satellite ground pixels do not perfectly correspond to the model grid cells in

this area, some model grid cells can correspond to several observations. In the coarser part of the model grid, model grid cells

correspond to several observations.290

XCO2 is computed from the CHIMERE 3D fields of CO2 following the rationale of Santaren et al. (2021), notably assuming

a constant vertical weighting function:

XCO2(lat, lon) =
CO2(Ptop)×Ptop +

∫ Psurf (lat,lon)

Ptop
(CO2(lat, lon,P )× dP )

Psurf (lat, lon)
(7)

where lat and lon are the latitude and the longitude, respectively, P is the atmospheric pressure. Psurf is the surface pressure

and Ptop (300 hPa) is the pressure at the top boundary of the model. For pressures lower than Ptop, we assume that the CO2295

concentrations equal the horizontal average of the top-level mixing ratios in CHIMERE (CO2(Ptop)).

2.5.2 Ground-based network

We use a surface network (Fig. 6) of which 113 stations in our modelling domain are located following the scenario proposed

by Marshall et al. (2019). This scenario is based on existing continuous CO2 measurement sites of the Integrated Carbon

Observation System (ICOS, https://www.icos-cp.eu/) or other air sampling stations of the National Oceanic and Atmospheric300

Administration (NOAA) and of the Global Atmosphere Watch Programme of World Meteorological Organization (GAW,

https://community.wmo.int/activity-areas/gaw). We assume that these stations have appropriate infrastructures and locations to

observe atmospheric CO2 and 14CO2. In order to complement this first network, local meteorological or air quality sampling

stations, or local science and engineering faculties were also chosen.

The sampling height at these stations ranges between 10 and 344 m above the ground level. We assume that all stations305

of this network measure simultaneously CO2 and/or 14CO2. Each virtual site is assumed to provide hourly CO2 data that are

assimilated between 10:00 and 17:00 UTC and/or a 7-hour-average sample of 14CO2 over 10:00-17:00 UTC, following the
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Figure 5. Simulation of the XCO2 sampling and observation error standard deviation (by IUPB in the ESA-PMIF project) for a selected

orbit of the spectral imaging satellite, in parts per million (ppm).

common practice of assimilating data only when the planetary boundary layer (PBL) is well developed (Broquet et al., 2011).

The availability of CO2 7-hour averages when deriving 14CO2 7-hour averages from air samples is ignored.

2.5.3 Observation error covariance matrix R310

The matrix R combines the uncertainty in the data that are assimilated and the corresponding uncertainty from the observation

operator. Here we assume that the uncertainty in the observation operator is dominated by that of the transport model and

we ignore temporal and spatial auto-correlations in these uncertainties. For individual data, the standard deviation of the

observation error is therefore:

σobs =
√
σ2
meas +σ2

mod (8)315

For satellite observations, σmeas is the uncertainty in the CO2M XCO2 data as simulated by IUPB. These values are repre-

sented in Figure 5. σmod is taken as 1 ppm for individual data (Basu et al., 2018; Marshall et al., 2019). As described in Section

2.5, since the satellite ground pixels do not perfectly correspond to the model grid cells, some model grid cells can correspond
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Figure 6. Ground-based 14CO2 and CO2 observation networks. 113 stations located following the scenario proposed by Marshall et al.

(2019), based on real or potential observation networks (ICOS, NOAA, GAW, more details in section 2.5.2).

to several observations. We assume that the observation errors are uncorrelated: the aggregation of N observations results in

decreasing errors by a factor 1/
√
N .320

For the near surface CO2 and 14CO2 observations, the configuration of σmeas follows the guidelines of Marshall et al. (2019,

Tables 5-1 to 5-3):

– The uncertainty in CO2 hourly measurements is taken as the target measurement uncertainty, σCO2,meas =0.05 ppm.

– The 1-sigma uncertainty on 14CO2 7-hour data is taken as 200 ppm ‰, based on the following uncertainty propagation:325

σ14CO2,meas =
√

(CO2×σδ14C,obs)2 + (δ14C,a×σCO2,obs/
√

7)2 (9)

with

– CO2 the atmospheric concentration set to 400 ppm

– the atmospheric δ14C,a set to 40 ‰
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– σCO2,meas/
√

7, the CO2 measurement uncertainty at the 7-hour scale, assuming that there is no autocorrelation in330

the CO2 measurement errors at the hourly scale

– σδ14C,meas = 0.5‰, the δ14C measurement uncertainty at the 7-hour scale

We use the estimate of the model error from Marshall et al. (2019, Table 5-3): σCO2,model =1 ppm and σ14CO2,model =

1.26×10−12 ppm multiplied by station class multipliers from 1 to 5 depending on the type of station. For 14CO2, the conversion

was done from ppm to ppm ‰by multiplying by 1000/Rstd. Ignoring auto correlations in the model error at the hourly scale,335

the model error for 7-hour 14CO2 mean concentration data is taken as 1/
√

7 times the model error derived at the 1-hour scale.

The range of the resulting error statistics on the different types of data and from the model are reported in Table 5.

Table 5. Data, model, and observation operator 1-sigma uncertainty

Error Near-surface Satellite

Meas Model Obs Meas Model Obs

CO2 (ppm) 0.05 1 to 5 1 to 5 0.38 to 0.75 1 1.07 to 1.11
14CO2 (ppm ‰) 200 405 to 2025 451 to 2034

2.5.4 List of experiments

Table 6 provides labels for the different sets of experiments as a function of the sets of pseudo observations that are assimilated,

using or combining the satellite data, the surface CO2 data and/or the surface 14CO2 data.

Table 6. List of performed experiments

Inversion System Observations Name

Satellite XCO2 INV-SAT

Surface CO2 INV-CO2

Surface 14CO2 INV-14C

Satellite XCO2 + Surface CO2 INV-SAT-CO2

Satellite XCO2 + Surface 14CO2 INV-SAT-14C

Satellite XCO2 + Surface CO2 + Surface 14CO2 INV-SAT-CO2-14C

340

2.6 Diagnostics

When analysing the results from the inversions and assessing the potential of the different types of observation networks, we

focus on the standard deviation of the prior and posterior uncertainties in flux budgets, and on their relative difference (called

uncertainty reduction or UR hereafter):

UR= 1− σpost
σprior

(10)345
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Hereafter, when analysing temporal budgets of uncertainties, “morning” and “afternoon” are used to designate 6:00-13:00

and 13:00-19:00 UTC, respectively. Our analyses are focused on budgets for regions in the 2-km-resolution area and more

particularly in the main area of interest as defined in Figure 3.

To evaluate the impact of ground-based networks, we also define ∆URRefTest as the difference between UR for 24-h FF

regional budgets, with a test configuration and UR with a reference configuration: ∆URRefTest=URtest-URRef . In these cases350

the reference configurations are the ones when assimilating the data from the satellite track, either alone or with CO2 data from

the ground network (INV-SAT and INV-SAT-CO2 see Table 6).

3 Results

3.1 Potential of the satellite observations as a standalone observation system

This section describes results when assimilating the data from the satellite track only, i.e. results from the INV-SAT inversion.355

3.1.1 General results in the morning

This section focuses on results on morning budgets for which the constraint in the inversion from the satellite observation is

the highest. Indeed, the maximal UR for regional morning budgets reaches 32% against 3% for afternoon budgets (Table 7).

Table 7. Best score statistics of the uncertainty reductions and the posterior uncertainty in inversions with and without NEE, for regional

24-h, morning and afternoon FF emission regional budgets. In the main area of interest, these budgets combine emissions from urban areas,

large plants and the more diffuse regional sources.

Uncertainties (%) INV-SAT INV-CO2 INV-SAT-CO2 INV-14C INV-SAT-CO2-14C

With NEE

24-h
UR max 18,4 12.6 23,6 23.0 32,9

Post min 8,0 8.6 7,5 7.6 6,6

Morning
UR max 32,4 17.7 37,8 32.7 50,8

Post min 10,0 12.2 9,2 10.0 7,3

Afternoon
UR max 2,9 14.7 15,8 10.8 20,5

Post min 15,6 14.9 14,6 15.1 14,0

Without NEE

24-h
UR max 32.2 26.4 39.2 23.4 40.7

Post min 6.7 7.2 6.0 7.5 5.8

Morning
UR max 59.9 36.9 64.4 33.3 66.0

Post min 5.9 9.3 5.3 9.9 5.0

Afternoon
UR max 3.9 17.0 17.0 10.8 21.2

Post min 15.5 13.7 13.4 15.1 13.2
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Figure 7 shows the example of a panel of URs from INV-SAT, for the morning budget of CO2 fluxes, at the scale of point

sources to that of regions. The URs for the morning budgets of large industrial plant emissions (FFPS) are significant in360

the satellite field of view (FOV, corresponding to the vertical projection of the satellite image on the ground), with values

larger than 50% (Fig. 7a), but is marginal outside this FOV. The northwest direction of the wind on the day of analysis (see

Section 2.2) explains that the observation footprint appears to be slightly extended out of this FOV, in the east, with, for

example, significant UR in the region of Essen. URs are also significant for other fossil fuel emission budgets (FFother) and

HR (heterotrophic respiration, as defined above) in the satellite FOV with URs up to 50% and more. The UR for NPP is much365

larger than for the other fluxes since this flux is relatively large in July. The UR for BF emissions is generally much smaller

than for the FF emissions. The much weaker level of emission related to BF combustion explains the lack of UR for this type

of fluxes.
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(a) FF PS (b) FF other

(c) BF

(d) NPP (e) HR

Figure 7. Uncertainty reduction in INV-Sat inversions: for morning budgets of large plants (a, FF_PS, magenta circled dots), other FF (b) and

BF (c, crop and wood) emissions (urban area and rest of the region budgets), Net Primary Production (d, NPP) and heterotrophic respiration

(e, HR) (regional budgets). Stripes are indicative of the satellite field of view (see Fig. 5 for the full track).
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3.1.2 Uncertainties in FF emissions

The uncertainty reductions for the 24-hour regional budgets of FF emissions (regional budgets aggregates emissions from370

urban areas, point source and the rest of the regions hereafter) range from 0 to 18% in the main area of interest (Fig. 9, a, Tab.

7). The URs are similar or rise in a range from 0 to 32% for the regional morning budget (Fig. 8, a and Tab. 7). Larger emission

budgets generally lead to larger URs. However, for similar or lower emission budgets (median 8 vs. 14 kTCO2·area−1 ·24h−1

respectively), URs are significantly higher for emissions from urban areas than for the other regional emissions (max 18%

vs. 10% respectively) since dense emissions areas generate atmospheric signatures with large amplitudes that are easier to375

filter from other signatures and from the observation noise than more extended but more diffuse emissions areas (Santaren

et al., 2021). URs for the afternoon emissions entirely rely on the specification of 3-h temporal auto-correlation in the prior

uncertainties in the emissions since these afternoon emissions are not directly seen by the satellite. Consequently, they are

low for all types of sources. Figure 8(b) and Table 7 show URs for afternoon regional budgets ranging from 0 to 3%. Overall,

the results show contrasting capacities for the monitoring of the FF emissions. The scores of URs result in various levels of380

precision on the emission estimates, with 8% to 30% posterior uncertainties in 24-hour and regional budgets of FF emissions

in the main area of interest (Tab. 7). The lack of constraint outside the satellite FOV and during periods other than the morning

confirms the need for complementary data to extrapolate the information derived from the satellite observations in space and

time.
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(a) FF Morning (b) FF Afternoon

(c) NEE Morning (d) NEE Afternoon

Figure 8. Uncertainty reduction in INV-Sat inversion: for morning (a, c) or afternoon (b, d) budgets of FF, biogenic fluxes (NEE). Stripes

are indicative of the satellite field of view (see Fig. 5 for the full track).

3.1.3 Impact of NEE and BF emissions on FF emissions uncertainties385

The UR for NEE is much larger than for the FF emissions (Fig. 8, b and c) while the UR for BF emissions is generally

much smaller than for the FF emissions (Fig. 7). The problem of the attribution of inferred fluxes to FF emissions, NEE or

BF emissions is investigated by conducting sensitivity tests in which the NEE or BF emissions are ignored, i.e. assuming no

uncertainty in these fluxes (results when ignoring BF emissions are not shown in the figures and tables for the reasons given

below). The INV-SAT experiment ignoring the NEE shows significantly larger URs for the FF regional 24-h budgets (Figure390

9), up to 60% in the satellite FOV, for the FF regional morning budget (Table 7, without NEE). This increase of the URs yields

posterior uncertainties in 24-h regional budgets which can reach values as low as 6.7% in the satellite FOV (Tab. 7).
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INV-Sat 24-h FF budget

(a) With NEE (b) Without NEE

Figure 9. Uncertainty reduction in INV-Sat inversion with (a) and without (b) NEE, for 24-h budgets of FF emissions. Stripes are indicative

of the satellite field of view (see Fig. 5 for the full track).

The sensitivity of INV-SAT experiment to the inclusion of BF emissions shows a very weak impact of BF emissions on the

UR for FF emissions (not shown) even though the spatial distribution of these two types of emissions are strongly correlated.

This is directly attributed to the weak amplitude of BF emissions compared to FF emissions. Typically, the posterior uncertainty395

in the FF emissions (6 to 30 % of the 24-h BF + FF emission budget) is much larger than the prior uncertainty in BF emissions

(0 to 7% of the 24-h BF + FF emission budget).

3.2 Potential of the ground-based hourly CO2 network

This section evaluates the impact of co-assimilating data from the ground-based hourly CO2 network and the potential com-

plementarity between the satellite and the CO2 ground-based hourly observations. This evaluation is based on the analysis of400

INV-CO2 and INV-SAT-CO2 and comparisons with the results from INV-SAT.

3.2.1 General results for the FF emissions

INV-CO2 (Fig. 10) reveals the limited role of the horizontal atmospheric transport near the surface to propagate URs from

regions with several measurement stations to other ones. URs of more than 4%, median at 12% and maximum at 13%, for 24-h

budgets can be achieved in regions with 3 stations, like Île-de-France (Reg. 1, 12%), and North Rhine-Westphalia (Reg.4, 13%)405

in the main area of interest (see also Fig. A1), or in regions with more stations outside this area like southeast England (10%)

and Baden-Württemberg (26%) which have 5 stations. However, the UR can also be much lower in regions with many stations,

e.g. for Lower-Saxony-and-Bremen which has 5 stations but a 4% UR. UR in regions with 1 or 2 stations range between 0%

and 6%. The URs are generally below 1% for other regions. These URs reach lower or comparable values than in the INV-

SAT experiment in the main area of interest (Fig.A1, Tab 7). However, outside the main area of interest, Baden-Württemberg410

reaches a higher value than the largest one with the INV-SAT experiment (Rhineland-Palatinate, Reg. 5, 18%).

24

https://doi.org/10.5194/amt-2022-48
Preprint. Discussion started: 15 March 2022
c© Author(s) 2022. CC BY 4.0 License.



24-h FF budget

(a) INV-CO2 (b) INV-Sat-CO2
24-h NEE budget

(c) INV-CO2 (d) INV-Sat-CO2

Figure 10. Uncertainty reduction in INV-CO2 (a, c) and INV-Sat-CO2 (b, d) inversions: for 24-h budgets of FF emissions and biogenic

fluxes (NEE). Stripes are indicative of the satellite field of view. Green dots indicate the ground stations.

Of note is that the highest UR in the whole inversion domain (47% for 24-hour budgets and 56% for morning budgets)

corresponds to large regions of the coarse resolution area of the transport model (not represented in Fig. 10). This result is

primarily driven by the optimistic extrapolation of information from the sites to the coarse model grid cells and further to the

whole extent of the control areas in which they stand. This optimistic bias from the inversion configuration actually results in415

representation and aggregation errors when conducting experiments with real data (Kaminski et al., 2001; Wang et al., 2017).

It justifies and supports the use of the finer resolution control vector in the main area of interest, and the focus of our analysis

on the 2-km resolution model subdomain. Unlike satellite data alone in INV-SAT, the ground-based CO2 data constrains both

afternoon and morning emission estimates, with URs of 4 to 18% and 4 to 15% respectively for morning and afternoon regional

budgets of FF emissions in the regions with 3 or more stations (Fig. A3 and A4).420
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3.2.2 Co-assimilation of the satellite observations

Only one region of the 2-km resolution model subdomain with 3 stations is located in the satellite FOV: North Rhine-

Westphalia. When comparing the URs for the 24-h regional budgets of FF emissions from INV-SAT-CO2 to that from INV-SAT

and INV-CO2 (Tab. 8, Fig. A1) two significant changes can be seen. The first one is the decrease of 5% of the posterior un-

certainty for this region, i.e. less than the UR for this region in INV-CO2 (12%). The second one is the increase of UR for425

the regions outside the satellite FOV with more than 3 ground-based stations from nearly 0% to values that are nearly the

same as in INV-CO2. The URs at 24-h scale in INV-SAT-CO2 are smaller than the addition of URs in INV-SAT and INV-CO2

experiment (Fig. 11 and Fig. A1)

Table 8. CO2 or/and 14CO2 ground network impact in addition to satellite observation: ∆URRef
Test on 24-h, Morning and Afternoon FF re-

gional budgets, Maximal value on the AOI (column MAX), and value of the 2 most impacted area (Île-de-France and North Rhine Westphalia,

column).

∆URRefTest(%)

Test Ref MAX MEAN Île-de-France North Rhine Westphalia

Daily

INV-SAT-CO2 INV-SAT 13,3 1,6 13,3 5,2

INV-SAT-14C INV-SAT 14,6 2,5 14,6 12,7

INV-SAT-CO2-14C INV-SAT 20,8 3,3 20,8 14,5

INV-SAT-CO2-14C INV-SAT-CO2 9,3 1,8 7,5 9,3

Morning

INV-SAT-CO2 INV-SAT 12,7 1,7 12,7 5,4

INV-SAT-14C INV-SAT 16,5 2,7 11,9 16,5

INV-SAT-CO2-14C INV-SAT 19,2 3,7 19,2 18,4

INV-SAT-CO2-14C INV-SAT-CO2 13 2,1 6,5 13

Afternoon

INV-SAT-CO2 INV-SAT 15,8 1,2 15,8 6,4

INV-SAT-14C INV-SAT 10,8 1 10,8 5,6

INV-SAT-CO2-14C INV-SAT 20,5 1,8 20,5 10

INV-SAT-CO2-14C INV-SAT-CO2 4,7 0,5 4,7 3,6
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Figure 11. Average on the main area of interest of the UR on 24-h FF regional budgets in a set of inversion configurations, with (blue)

and without (orange) NEE and average of the difference between ∆URSAT
test with and without NEE (green). Negative values highlight an

increase of the additional observation network potential when NEE is taken into account.Positive values highlight a decrease of the additional

observation network potential when NEE is taken into account. High absolute values highlight strong NEE impact.

The ground-based CO2 data constrains both afternoon and morning emission estimates, with URs of 3 to 30% and of 1 to

27% respectively for morning and afternoon regional budgets of FF emissions in the regions with three or more stations (data430

not shown). The comparison between results for afternoon budgets of the FF emissions from INV-SAT-CO2 and INV-SAT

shows again, in INV-SAT-CO2, an increased UR that is smaller than the sum of the URs obtained in INV-SAT and INV-

CO2 (Tab. 7). Combining the satellite data with the afternoon data from the ground network does not increase the ability to

extrapolate the spatially widely spread information from these satellite data to the afternoon.

3.2.3 Impact of NEE and BF emissions on FF emissions uncertainty435

INV-CO2 and the results of INV-SAT-CO2 outside the FOV of the satellite show different situations regarding the comparison

between UR for NEE and FF emissions (Fig. 10). In regions with large cities and industrial plants (like the Paris area and

Baden-Württemberg), the URs for NEE are smaller than that for FF as in INV-SAT. However, in other regions, the signal at the

surface stations is dominated by the signature of the biogenic fluxes and URs for NEE are larger than that for FF emissions.
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Due to the relatively weak signal from BF emissions, the URs for these emissions are much smaller than that for FF emissions440

(less than 3%, less than 0.1% on average) in INV-CO2.

The impact of the attribution problem when using the surface CO2 network is quantified, here again, by conducting sensitivity

tests in which NEE is ignored (Fig. 11 and Tab. 7). As the surface network has many stations mostly sensitive to the NEE

signal, it is expected to support the distinction between NEE and FF emissions in the inversion, even if the stations measure

CO2 only. In inversions INV-CO2, the UR for FF emissions is higher when ignoring the NEE, reaching a range between445

18 and 46% for 24-h budgets in the regions with more than 3 stations. However, the comparison between results from INV-

SAT-CO2 and INV-SAT when ignoring these fluxes hardly demonstrates a potential of the surface CO2 network to reduce the

problem of attribution between FF emissions and other fluxes (Fig. 11). Figures 11 show ∆URSATSAT−CO2,NoNEE larger than

∆URSATSAT−CO2 on average, i.e adding the CO2 network when ignoring the NEE yields a larger increase of the UR than when

accounting for NEE. This is linked to the smaller UR associated with CO2 data when accounting for NEE. There is a lack of450

indirect feedback on the UR for FF emissions from the lowering of uncertainties in NEE when complementing the satellite

data with CO2 data. However the results for each area taken independently show somewhat contrasting results (Fig. 12) with

∆URSATSAT−CO2,NoNEE lower than ∆URSATSAT−CO2 in some regions.

Figure 12. Impact of the NEE on the ground network capability on the top of the satellite observation for each area of control in the main area

of interest: differences between ∆URSAT
test on 24-h FF regional budgets, with and without NEE. Negative values highlight an increase of the

additional observation network potential when NEE is taken into account.Positive values highlight a decrease of the additional observation

network potential when NEE is taken into account. High absolute values highlight strong NEE impact. The number of stars indicates the

number of stations in each controlled area. The areas are listed in Appendix 1.

Regarding BF emissions, the results are similar to that described in section 3.1, i.e a very weak impact of BF emissions

on the UR for FF emissions. With INV-SAT-CO2 the posterior uncertainties in FF emissions (7 to 30% of the 24-h BF + FF455

emission budget) are much larger than the prior uncertainty in BF emissions (0 to 7% of the 24-h BF + FF emission budget).
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3.3 Potential of the ground-based 14CO2 network

This section evaluates the impact of co-assimilating data from the ground-based 7-h-average 14CO2 network and the potential

complementarities between the satellite and hourly-CO2, 7-h-average 14CO2 ground-based observations. This evaluation is

based on the analysis of INV-14C and INV-SAT-CO2-14C and comparisons with the results from INV-CO2 and INV-SAT-460

CO2.

3.3.1 General results for the FF emissions

The spatial distribution of the regional URs for 24-h, morning or afternoon budgets when using surface 7-h-average 14CO2

data alone is similar to that when using hourly-CO2 surface data only (Fig. 13). These URs are very low for regions with less

than 2 stations (<7%) and range between 12 to 34% for the morning budgets and between 4 to 14% for the afternoon budgets465

for regions with more than 3 sites. The URs on daily and morning budgets are larger in INV-14C (Tab. 7, Fig. A2 and A5),

i.e. when using the sampling of 14CO2 representative of 7-h-averages of the concentrations, than in INV-CO2 (Tab. 7, Fig. A1

and A3), when using 7 hourly CO2 data at each site. However, the URs on afternoon budgets are smaller in INV-14C than in

INV-CO2. In most regions these differences remain relatively small except in Region 4, North Rhine Westphalia, with up to

15 percentage points difference from the morning budget. The higher potential of 14CO2 data (7-hour averages) than hourly470

CO2 data to filter the signal from FF emissions, if both were measured at the same temporal resolution, is balanced by the

finer temporal resolution of the hourly CO2 continuous measurements. The hourly CO2 data’s finer temporal resolution helps

capture the high frequency patterns of the signal from FF emissions.
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24-h FF budget

(a) INV-14C (b) INV-Sat-CO2-14C
24-h NEE budget

(c) INV-14C (d) INV-Sat-CO2-14C

Figure 13. Uncertainty reduction in INV-14C (a) and INV-Sat-CO2-14C (c) inversions: for 24-h budgets of FF emissions (a, b, c) and

biogenic fluxes (NEE, d, e, f). Stripes are indicative of the satellite field of view (see Fig. 5 for the full track). Green dots indicate the ground

stations.

3.3.2 Co-assimilation of the satellite and surface hourly-CO2 observations

The fact that the URs when combining two networks is smaller than the sum of the URs when using each of these networks475

shown when comparing INV-SAT, INV-CO2 and INV-SAT-CO2, also applies when adding the surface network i.e. when com-

paring e.g. INV-SAT-14C to INV-SAT and INV-14C or INV-SAT-CO2-14C to INV-SAT-CO2 and INV-14C. The combination

of 7-h-average 14CO2 data with other types of data does not lead to further synergies of the advantages for each network: the

spatial extent of the satellite observation, the temporal coverage of the ground-based networks, the temporal resolution of the

hourly-CO2 surface network, and the higher sensitivity to FF emissions of the 7-h-average 14CO2 network. In North Rhine-480

Westphalia, where the configuration is favourable, with 3 stations in the satellite FOV, the UR for the daily budget increases

from 18% with INV-SAT to 33% with INV-SAT-CO2-14C (Fig. 13, Reg. 4). This configuration leads to 6.6% posterior un-
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certainty. In Île-de-France (Reg. 1) outside the satellite FOV and with 3 stations, the UR reaches 21% in INV-SAT-CO2-14C,

reaching 18% posterior uncertainty. In Saarland (Reg. 6), in the satellite FOV and without stations, the UR remains similar in

INV-SAT-CO2-14C as in INV-SAT, 17%, corresponding to 15% posterior uncertainty.485

3.3.3 Impact of 14CO2 sources: nuclear emissions, NEE and BF emissions

The impact of nuclear emissions in the inversions assimilating 14CO2 data is analysed by conducting experiments where these

emissions are ignored. The comparison of INV-14C experiments with and without nuclear emissions shows a decrease of the

URs, in the range of 0-1.7 percentage points (Fig. A7, a), when these 14C emissions are taken into account. In the main area of

interest, the most impacted areas are the Zeeland, Brabant/Bruxelles, Anvers and Flanders regions where the stations are close490

to nuclear power plants (Fig. A7, b). Outside the main area of interest, Baden-Wurttemberg is also strongly impacted, with up

to 9% points difference.

Concerning the impact of NEE, in INV-14C, the URs for FF emissions in the regions with more than 3 stations are higher

when ignoring the NEE, reaching a range between 15 and 33% for 24-h budgets. The comparison of the experiments INV-14C

with and without NEE shows a much smaller impact of NEE on the URs for FF emissions than in experiments INV-CO2 or495

INV-SAT, which confirms the much smaller sensitivity of 14CO2 data to NEE than CO2 data. An interesting consequence is

that, on average, ∆URSAT14C , ∆URSATSAT−14C (Fig. 11) or ∆URSAT−CO2
SAT−CO2−14C (not shown) are slightly larger when accounting

for the NEE than when ignoring them. The potential of the 14CO2 network to complement the satellite observation is higher

when NEE is accounted for, while section 3.2 showed more contrasting results for the surface CO2 network. This increase of

the impact of the 14CO2 network when accounting for NEE is however relatively small, reaching its maximum in the region500

North Rhine-Westphalia, which has 3 stations, and where the posterior uncertainty decrease for the 24-h regional budgets of

FF emissions from INV-SAT to INV-SAT-14C is 15%.

4 Discussion and Conclusions

4.1 Configuration of the inversion

Several caveats should be raised for the interpretation of these results. Part of the lack of amplification of the impact from505

the different observation subsystems when combining them could be due to our set-up of the prior uncertainties in which we

ignore spatial correlations and assume that the temporal correlations are relatively low. These assumptions are conservative

and, we believe, safer, in a context where the correlations of uncertainties in current inventories are still poorly characterized

and, since they are probably highly complex and far from isotropic, homogeneous, decreasing with distance or time. For

instance, distant plants or cities can have more similar processes than close ones, and the emissions and their underlying510

processes can vary rapidly depending on the time, weather, or socio-economic drivers. . . Inversions assuming large temporal

and spatial correlations in the prior uncertainties in inventories would indicate a stronger ability to extrapolate the information

from atmospheric data but would be overly optimistic.
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Our model of the uncertainty in the atmospheric transport is relatively simple here: a Gaussian distribution without any

spatial and temporal correlations, as traditionally done in atmospheric inversions (Santaren et al., 2021). Complex modelling515

errors could actually shift or modify the patterns of the atmospheric signature of the FF emissions, which could increase the

weight of the attribution problem, and thus the potential of the combination between satellite and surface data. However, very

dense surface networks would be needed to support the identification and adjustment of transport errors.

The results demonstrate the need for a complex simulation of the CO2 and 14CO2 transport, taking into account the diversity

of 14CO2 sources and sinks, and more realistic than the common simplification which consists of representing only the dilution520

of radiocarbon-free FF CO2 emissions. This and an inversion system at high resolution is more suitable for assessing the real

ability to extrapolate information from the 14CO2 atmospheric data. However, given its high spatial and temporal resolution,

the analytical inversion framework used here can hardly be run over several days, because the size of the matrices to be inverted

would become too large. Therefore, inversions have been run for one day only, on July 1 2015 i.e. for very specific atmospheric

conditions and biogenic fluxes. In summer the biogenic fluxes are relatively high. Tests over different days, e.g. in winter, could525

bring a more precise characterization of the complementarity of in situ networks with satellite data, but the primary focus of

this study was to investigate the problem of the separation between the biogenic fluxes and FF emissions. By limiting the

inversion window to a single day, we avoid analyzing to which extent the temporal correlations of the uncertainties in the FF

CO2 emission inventories allow for cross-referencing the information of data from different days. This assessment should rely

on a strong knowledge on the structures of uncertainties in the FF emissions, which is still incomplete, as illustrated above,530

even though efforts have been conducted to improve this issue (Wang et al., 2020; Super et al., 2020).

Finally our study tested a surface network roughly corresponding to the extension of a continental network like ICOS for

the monitoring of regional FF emission budgets. The deployment of networks dedicated to specific cities with stations around

and within the urban areas (Wu et al., 2016) would correspond to a different strategy and could result in different conclusions

for the monitoring of city emissions.535

4.2 Insights from the results

The results presented here raise contrasting conclusions regarding the potential of the combination between the satellite obser-

vation and the surface networks. The satellite observation, as a stand-alone system, can yield estimates of the regional budgets

of FF emissions in the morning corresponding to its days of overpass with uncertainties down to 10% (prior 15%, UR 32%) in

its FOV. However, it does not provide direct information on emissions during the afternoon or during the night, and it hardly540

provides information on plants, cities and regions outside its FOV. Furthermore, previous publications (Broquet et al., 2018;

Wang et al., 2020; Lespinas et al., 2020; Kuhlmann et al., 2019) have shown that, even with a CO2M constellation of three or

more satellites, the number of overpasses producing local images with low cloud cover is limited each year. The data gaps are

not random over time and hamper the estimation of annual budgets or their anomalies, as illustrated in the case of the "Great

Lockdown" (Chevallier et al., 2020). The need for complementary sources of information to derive daily to annual budgets is545

thus critical.
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The problem of attributing the inferred CO2 fluxes to specific emission and absorption types appears to be nearly secondary

compared to that of the satellite observation precision but our results confirm that there is a significant impact of the uncertainty

in the NEE for the estimate of FF emissions. The uncertainty in BF emissions does not appear to have a large impact on the

estimate of FF emissions but this is related to the fact that the posterior uncertainty in FF emissions remains larger than the550

prior uncertainty in BF emissions i.e. to the relatively low level of BF emissions compared to the typical uncertainties in FF

emissions at regional to local scales. If the goal is to achieve higher precision estimates of the FF emissions than those obtained

with the present configuration, for example with higher precision spaceborne instruments, and if the share of BF emissions

increases in the future, the uncertainty in BF emissions would probably become a major problem due to the strong correlation

between the spatial distributions of FF and BF emissions. The problem of attribution to NEE fluxes would also increase with555

this goal of higher precision estimates of the FF emissions in the future.

Surface CO2/14CO2 networks can help further decrease the uncertainty in the FF emissions estimates when combined with

satellite observations. In North Rhine-Westphalia, the addition of CO2 and 14CO2 stations decreases the posterior uncertainty

in daily regional emissions from 8% with the satellite alone to 6.6% However, relatively dense networks close to highly

emitting areas are needed to support such a decrease. The isolated stations far from the urban areas do not provide a direct560

strong constraint for the estimate of the FF emissions, nor a significant indirect constraint for this estimate by solving for the

attribution problem. Our results suggest that surface CO2 and/or 14CO2 measurements in support of the FF emission monitoring

should be targeting FF emission areas directly rather than the surrounding NEE. Both hourly CO2 and daily 14CO2 data can

provide useful information on the FF emissions, the former catching the signature of these emissions at high frequency and the

latter being much less sensitive to the uncertainty in the NEE.565

Overall, the results illustrate a decrease of the potential of each observation subsystem rather than an amplification of these

potentials when combining them together into a large observation system with satellite and surface data. This is the natural

consequence of the asymptotic convergence of the precision of inversions towards some low value when adding observations.

Tn our experiments, crossing the spatial extent of the satellite observation, the temporal coverage of the ground-based networks,

the temporal resolution of the CO2 surface network, and the higher sensitivity to FF emissions of the 14CO2 network does not570

lead to the expected synergy with wide spatio-temporal coverage of the FF emissions at high resolution. There is a lack of

new extrapolation of information from the combination of observation subsystems. This may be due to the specificities of the

attribution and extrapolation problems in our inversion case.

Therefore, these results support the deployment of very dense CO2/14CO2 surface networks to support the satellite obser-

vation, with at least three sites per European administrative region. The large-scale deployment of such dense networks is575

probably unaffordable in the coming decade, but some regions are now equipped with many stations and in some locations,

the complementarity between satellite and surface networks could thus be demonstrated. Frequent (up to daily) samplings of
14CO2 would be needed to ensure 14CO2 data can bring information on FF emissions more precise than that of hourly CO2

measurements.
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Figure A1. Uncertainty reduction in INV-SAT, INV-CO2 and INV-SAT-CO2 inversions for 24-h budgets of FF emissions of each controlled

area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The areas are listed in Table 1.

Figure A2. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C and INV-SAT-CO2-14C inversions for 24-h budgets of FF emissions

of each controlled area in the main area of interest. The number of stars indicate the number of stations in each controlled area. The areas are

listed in Table 1.
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Figure A3. Uncertainty reduction in INV-SAT, INV-CO2, INV-SAT-CO2 inversions for morning budgets of FF emissions of each controlled

area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The controlled areas are listed

in Table 1.
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Figure A4. Uncertainty reduction in INV-SAT, INV-CO2, INV-SAT-CO2 inversions for afternoon budgets of FF emissions of each controlled

area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The names of the controlled

areas are listed in Table 1.
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Figure A5. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C and INV-SAT-CO2-14C inversions for morning budgets of FF

emissions of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area.

The names of the controlled areas are listed in Table 1.
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Figure A6. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C and INV-SAT-CO2-14C inversions for afternoon budgets of FF

emissions of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area.

The names of the controlled areas are listed in Table 1.
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(a) UR on FF

(b) ∆UR on FF budgets and UR on F14C nuclear power plant budgets

Figure A7. (a) Uncertainty reductions, on 24-h FF budgets, with and without nuclear emissions in INV-14C inversion, for each controlled area

in the main area of interest. The names of the controlled areas are listed in Table 1. (b) Maps, on the 2-km-resolution area, of the differences

between uncertainty reductions with and without nuclear emissions (red palette) in INV-14C inversions and uncertainty reductions on F14C

nuclear power plant budgets (dots, blue palette). Green dots indicate the ground stations.
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