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Abstract. Latent heating (LH) is an important quantity in both weather forecasting and climate analysis, being the essential 

factor affecting intensity or structure of convective systems. Yet, inferring LH rates from our current observing systems is 

challenging at best. For climate studies, LH has been retrieved from the Precipitation Radar on the Tropical Rainfall Measuring 

Mission (TRMM) using model simulations in the look-up table (LUT) that relates instantaneous radar profiles to corresponding 10 

heating profiles. These radars, first on TRMM and then Global Precipitation Measurement Mission (GPM), provide a continuous 

record of LH. However, temporal resolution is too coarse to have significant impacts on forecast models. In operational forecast 

models such as High-Resolution Rapid Refresh (HRRR), convection is initiated from LH derived from ground based radar. 

Despite the high spatial and temporal resolution of ground-based radars, their data are only available over well-observed land 

areas. This study develops a method to derive LH from the Geostationary Operational Environmental Satellite-16 (GOES-16) in 15 

near-real time. Even though the visible and infrared channels on the Advanced Baseline Imager (ABI) provide mostly cloud top 

information, rapid changes in cloud top visible and infrared properties, when formulated as a LUT similar to those used by the 

TRMM and GPM radars, can equally be used to derive LH profiles for convective regions based on model simulations with a 

convective classification scheme and channel 14 (11.2m) brightness temperatures. Convective regions detected by GOES-16 

are assigned LH from the LUT, and they are compared with LH from the Next Generation Weather Radar (NEXRAD) and one 20 

of the Dual-frequency Precipitation Radar (DPR) products, the Goddard Convective-Stratiform Heating (CSH). LH obtained 

from GOES-16 show similar magnitude toh NEXRAD and CSH, and vertical distribution of LH is also very similar with CSH. A 

three month analysis of total LH from convective clouds from GOES-16 and NEXRAD shows good correlation between the two 

products. Finally LH profiles from GOES-16 and NEXRAD are applied to WRF simulations for convective initiation and their 

results are compared to investigate their impacts on precipitation forecasts. Results show that LH from GOES-16 have similar 25 

impacts as NEXRAD for improving the forecast. While only a proof of concept, this study demonstrates the potential of using 

LH derived from GOES-16 for convective initialization.  

1 Introduction 

As the spatial resolution of numerical weather prediction (NWP) models becomes finer, and even operational models are run at 

convection permitting resolutions of a few kilometers, an effective way to assimilate observation data at this fine resolution has 30 

been sought (Gustafsson et al., 2018). Along with the data assimilation, initializing cloud and precipitation in the right location is 

an important procedure in short-term forecasts (Geer et al., 2017), and modelers seek to use observation data that will create a 

favorable convection environment at this fine resolution. If the model environment is not favorable for convection, updrafts and 

clouds will not develop in the right place. Latent heating (LH) can be added in the model data assimilation cycle to help correctly 

initiate convection in operational regional models where both accuracy and speed are important. Adding LH induces lower level 35 

convergence and upper level divergence, thereby initiating convection, and it has become an important procedure that many 
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operational models use for the initialization of convective events (Weygandt and Benjamin, 2007; Gustafsson et al., 2018). LH is 

not only important to initiate convection, it also contributes to the intensification of convection. 

 

The National Oceanic and Atmospheric Administration (NOAA)’s operational models, the Rapid Refresh (RAP) and High-40 

Resolution Rapid Refresh (HRRR), both use observed latent heating to drive convection, but in different ways (Benjamin et al., 

2016). RAP uses digital-filter initialization (Peckham et al., 2016) while HRRR replaces modeled temperature tendency with the 

observed LH (Benjamin et al., 2016) from the Next Generation Weather Radar (NEXRAD), which is a ground-based radar 

network over the United States. For this operational purpose, LH data must be available continuously in near-real time. 

Therefore, ground-based radars which have high spatial and temporal resolutions similar to HRRR’s resolution are used to 45 

calculate LH from NEXRAD reflectivity. While suitable for the HRRR region over the Contiguous United States (CONUS), the 

method is not applicable to regions beyond radar coverage such as the Gulf of Mexico and some mountainous areas.  

 

Satellite data are used to infer climatology of LH over the globe. CloudSat which carries a W-band radar that is sensitive to light 

precipitation but experiences attenuation with heavy precipitation is used to derive LH for shallow precipitating regions (Huaman 50 

and Schumacher, 2018). Nelson et al., 2016 and Nelson and L’Ecuyer, 2018 created an a priori database using model simulations 

from the Regional Atmospheric Modeling System (RAMS) and used a Bayesian Monte Carlo algorithms to find the most 

appropriate LH profiles from the database for shallow convective clouds. For deeper convection, satellites that carry instruments 

with lower frequencies such as Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement Mission 

(GPM) satellites are more appropriate to retrieve LH. The Precipitation Radar (PR) on TRMM was the first meteorological radar 55 

in space, designed to provide vertical distributions of precipitation over the tropics (Kummerow et al., 1998). Vertical profiles of 

LH have been retrieved from its three-dimensional hydrometeor observations. There are several retrieval algorithms using PR: 

Goddard Convective-Stratiform heating (CSH; Tao et al., 1993), Spectral Latent Heating (SLH; Shige et al., 2004), Hydrometeor 

heating (HH; Yang and Smith, 1999), and Precipitation Radar Heating algorithm (PRH; Satoh and Noda, 2001). Among these 

algorithms, CSH and SLH are the two most widely used products. Most recent versions of monthly gridded CSH and SLH 60 

products have spatial resolution of 0.250.25 and 0.50.5 respectively with 80 vertical layers and have been used to provide 

valuable insights on heat budgets and atmospheric dynamics over the tropics (Schumacher et al., 2004; Chan and Nigam, 2009; 

Zhang et al., 2010; Liu et al., 2015; Huaman and Takahashi, 2016). The CSH and SLH algorithms have improved since their first 

development, and both algorithms are also applied to Dual-frequency Precipitation Radar (DPR) data on GPM, the successor of 

TRMM, to continue the climate record of LH and expand the regions of interest to mid-latitude.  65 

 

CSH and SLH both rely on a lookup table (LUT) based on cloud resolving model simulations. Inputs that are used to look for LH 

profiles in these LUT are different, but their common inputs to the LUT are echo top height and surface rainfall rate as well as 

convective-stratiform flag. Echo top height is important in determining the vertical depth of heating, and surface rainfall rate is a 

good indicator for the intensity of maximum heating. Even though the methods use different model simulations to create the 70 

LUT, and differ in other details, they seem to exhibit similar distributions when they are averaged spatially or temporally (Tao et 

al., 2016).  

 

Although these products have been useful for keeping climate records and understanding impacts of LH in long-lasting systems 

like tropical cyclones, their temporal resolutions are too low to be used for weather forecasting, especially compared to 2-minute 75 

observations available from ground-based radars. The current generation of geostationary observing systems (e.g., GOES-16 and 
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17, Himawari, GEO-KOMPSAT-2) are required to achieve comparable sampling rates to ground-based radars. The visible (VIS) 

and infrared (IR) sensor on geostationary satellite, unfortunately, cannot provide as much vertical information as active sensors 

do in the presence of thick clouds. Nonetheless, the rapid refresh provides important information about a cloud’s convective 

nature. Since the RAP model already uses cloud top information from geostationary data in its forecast (Benjamin et al., 2016), 80 

and the HRRR model uses the RAP model outputs as initial and lateral boundary conditions, LH profiles derived from cloud top 

temperature should be consistent with the model cloud field. 

 

This study examines if cloud top information from the Geostationary Operational-Environmental Satellite-16 (GOES-16) 

Advanced Baseline Imager (ABI), coupled with convective cloud identification can be sufficient to approximate NEXRAD-85 

derived LH. Following the lead of spaceborne radar LH algorithms, a LUT is created using model simulations. Once convective 

clouds are determined by using 10 consecutive one-minute ABI data, LH profiles for convective clouds are found in the LUT 

based on cloud top temperature of the convective cloud. Unlike DPR products that are not available continuously, ABI data in 

mesoscale sector mode are provided at one-minute resolution, and thus LH can be obtained from GOES-16 as frequently as 

NEXRAD, making it possible to initiate convection during the forecast. LH from GOES-16 can be beneficial over the regions 90 

without radar coverage such as ocean or mountainous regions where beam blockage by terrain degrades the quality of radar data.  

 

Detailed descriptions of CSH and SLH products from GPM satellite and how NEXRAD converts reflectivity to LH are provided, 

followed by the retrieval process using GOES-16 ABI. One case study is provided to compare vertical profiles of LH from 

GOES-16 with other radar products, and statistical results using one-month of data are provided to evaluate whether total 95 

convective heating rates from GOES-16 are comparable to the ones from NEXRAD. Lastly, a Weather Research and Forecasting 

(WRF) simulation using LH from GOES-16 and NEXRAD is presented to compare impacts of LH from the two datasets in 

convective initialization. 

2 Existing LH retrieval methods  

2.1 Radiosonde networks 100 

LH is not an easily measurable quantity as it is almost impossible to single out temperature changes by phase changes from the 

total observed temperature changes. However, heat and moisture budget studies have been conducted using sounding network in 

a field campaigns, and apparent heat sources (Q1) and apparent moisture sinks (Q2) from the budget study can be expressed as a 

function of LH (Yanai et al., 1973; Johnson 1984; Demott 1996). It is achieved using a diagnostic heat budget method which is 

first presented by Yanai et al. 1973 (Tao et al., 2006). Over a certain horizontal area, Q1 can be expressed through the equation 105 

below that includes LH (Tao et al., 2006). 

𝑄1 −𝑄𝑅 = 𝜋̅ [−
1

𝜌̅
(
𝜕𝜌̅𝑤′𝜃

𝜕𝑧
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− ∇ ∙ 𝑉′𝜃′̅̅ ̅̅ ̅̅ ̅̅ ̅] +

1

𝑐𝑝
[𝐿𝑣(𝑐 − 𝑒) + 𝐿𝑓(𝑓 − 𝑚) + 𝐿𝑠(𝑑 − 𝑠)]                                                        (1) 

where prime denotes deviations from horizontal averages, which is denoted by upper bar. QR is the radiative heating rate,  is 

potential temperature,  is non-dimensional pressure,  is air density, cp is specific heat at constant pressure and R is gas constant 

for dry air. Lv, Lf, and Ls represent the latent heats of condensation, freezing, and sublimation while c, e, f, m, d, and s represent 110 

each microphysical process of condensation, evaporation, freezing, melting, deposition, and sublimation, respectively. The last 

six terms on the right-hand side that include these microphysical processes are LH from phase changes. Since Q1 can be obtained 
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using vertical profiles of temperature, moisture, and wind data observed during the field campaign (Tao et al., 2006), the 

observed Q1 is used to indirectly validate GPM LH products that are retrieved together with Q1.  

2.2 CSH and SLH from GPM DPR 115 

LH is fundamentally a temperature change resulting from the phase change of water in the atmosphere. Given the difficulties 

associated with measuring temperature change where condensation is occurring and further attributing those temperature changes 

to phase changes is not possible on a regular basis. Instead, many methods rely on the detection of hydrometeors, generally from 

microwave sensors, and then infer the LH from the hydrometeor content. Precipitation observed from microwave sensors and 

latent heating are closely related, but since hydrometeors are created through condensation, LH derived from a microwave sensor 120 

is actually LH that is released at an earlier location before the observation time. However, LH products from ground-based 

radars, or from a microwave sensor on satellites such as DPR on GPM, can be routinely generated over broad scales, the 

advantages of which outweigh any time and space mismatch. 

 

DPR has two operational LH algorithms: CSH and SLH. In the GPM products, LH is provided along with additional variables: 125 

Q1-QR and Q2 in SLH and Q1-QR-LH, QR, and Q2 in CSH as well as the rain type (Tao et al., 2019). These algorithms were first 

developed for TRMM data, but have been adapted to GPM data. Both algorithms use cloud resolving model simulations to create 

a LUT relating hydrometeor profiles to modeled heating rates. Although there is no direct measurement for LH to validate the 

results, retrieved Q1 and Q2 are compared instead with sounding data from various field campaigns through the method 

mentioned in Section 2.1. The evolution of these products is well summarized in (Levizzani et al., 2020), but each algorithm is 130 

briefly explained here. 

 

The CSH algorithm was first introduced by Tao et al. 1993. The initial algorithm by Tao et al.1993 used surface rainfall rate and 

amount of stratiform rain as inputs to the LUT, but the LUT has been improved by increasing the number of LH profiles, using 

finer resolution in simulations, and adding new inputs such as echo-top heights and low-level vertical reflectivity gradients (Tao 135 

et al., 2019). For high-latitude regions observed by the GPM satellite, new LUTs have been created with simulations from the 

NASA Unified-Weather Research and Forecasting model which is known to be suitable for high latitude weather systems 

(Levizzani et al., 2020). Inputs to this new LUT are surface rainfall rate, maximum reflectivity height, freezing level height, echo 

top height, decreasing flag (whether or not reflectivity values drop by more than 10dBZ toward the surface), and maximum 

reflectivity intensity (Tao et al., 2019). 140 

 

The SLH algorithm is based on Shige et al. 2004 and Shige et al. 2007. For tropical regions, the LUT is created for three 

different rain types; convective, shallow stratiform, and anvil (or deep stratiform) clouds. Inputs to the LUT are precipitation top 

height (PTH), precipitation rate at the surface (Ps), precipitation rate at the level that separates upper-level heating and lower-

level heating (Pf) and precipitation at the melting level (Pm). Once non-convective rain is separated into either shallow stratiform 145 

or anvil, a vertical profile for anvil cloud is chosen based on Pm, and magnitudes of upper level heating and lower level cooling 

are normalized by Pm and (Pm - Ps), respectively. For convective and shallow stratiform clouds, a vertical profile corresponding 

to the PTH is chosen, and then upper-level heating and lower-level heating are normalized by Pf and Ps, respectively. For DPR, a 

new LUT is created for mid and higher latitude to account for expanded latitudinal coverage by GPM. For higher latitude 

regions, six precipitation types (convective, shallow stratiform, three types of deep stratiform, and other) are used instead of 150 
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three, and therefore six respective LUTs exist. Inputs to these LUTs are precipitation type, PTH, precipitation bottom height, 

maximum precipitation, and Ps. 

 

Figure 1 shows monthly gridded products from these two algorithms over CONUS for July of 2020 at three different heights as 

well as their vertically integrated heating rates. Overall horizontal patterns in the two products look similar, but there is a 155 

difference in the vertical. At 2km or 5km, CSH tends to show higher heating rates than SLH, while at 10km, SLH shows higher 

heating rates than CSH. In addition, SLH tends to have larger cooling rates throughout the layers. If integrated over the whole 

vertical layers, CSH tends to show higher heating rates in general. These discrepancies can be attributed to different 

configuration setup such as microphysical scheme used to run simulations for the LUT. The results demonstrate that the vertical 

profiles of LH are highly dependent on the simulations that comprise the LUT as well as different inputs to the LUTs. 160 
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Figure 1: Monthly gridded LH from CSH at (a) 2km, (c) 5km, (e) 10km, and (g) vertically integrated LH from 

CSH and LH from SLH at (b) 2km, (d) 5km, (f) 10km, and (h) vertically integrated LH from SLH. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)



7 

 

 

Orbital data for these products have finer spatial resolution of 5km, and although results may be interpreted as “instantaneous” 

LH, the temporal resolution is too coarse to have much impact on regional forecast models that are initialized hourly if not more 

frequently. These scales are consistent with ground-based radar data which is why LH derived from ground-based radar is used 

almost universally.  235 

2.3 LH from NEXRAD 

In the operational HRRR model, LH profiles retrieved using radar reflectivity replace modeled LH profiles, which helps initiate 

convection in the right places. LH profiles in this case are obtained through a simple empirical formula that converts radar 

reflectivity to LH. In Eq. (2), reflectivity is converted to potential temperature tendency using a model pressure field. This 

equation is only applied when radar reflectivity exceeds 28dBZ. The threshold of 28dBZ was chosen based on the effectiveness 240 

of adding heating from reflectivity in HRRR (Bytheway et al., 2017). 

𝑇𝑡𝑒𝑛 =
1000

𝑝

𝑅𝑑/𝑐𝑝𝑑 (𝐿𝑣+𝐿𝑓)𝑄𝑠

𝑛∙𝑐𝑝𝑑
    where 𝑄𝑠 = 1.5 ×

10𝑧/17.8

264083
                    (2) 

           z: grid radar/lightning-proxy reflectivity 

           Tten: temperature tendency 

           p: background pressure (hPa) 245 

           Rd: specific gas constant for dry air 

           cpd: specific heat of dry air at constant pressure 

           Lv: latent heat of vaporization at 0C 

           Lf: latent heat of fusion at 0C 

           n: number of forward integration steps of digital filter initialization 250 

 

Tten in Eq. (2) is produced in K/s to meet the needs during the short-term forecast. Although heating rate is not a general output in 

the forecast model, it is calculated at every time step by dividing temperature change from the microphysical scheme by the time 

step, which is usually on the order of few tens of seconds. Therefore, this empirical formula is developed to produce LH 

consistent with the model framework so that LH added does not produce computational instability when ingested. 255 

3 LH profiles from GOES-16 

The current operational geostationary satellite, GOES-16, carries the Advanced Baseline Imager (ABI), an instrument with 16 

VIS and IR channels. Mesoscale sectors, which are manually moved around to observe interesting weather events, provide data 

in one-minute intervals. Such high temporal resolution data have helped observe cloud developments in more detail. Using this 

high temporal resolution ABI data, convective clouds are detected, and LH profiles for the detected clouds are assigned from a 260 

LUT. The LUT is created running the Weather Research and Forecasting (WRF) model simulations. While the CSH and SLH 

algorithms look for LH profiles in a model-based LUT according to precipitation type and precipitation top height, the LUT for 

GOES-16 ABI is created for convective clouds that appear bright and bubbling from ABI according to brightness temperature 

(Tb) at channel 14 (11.2m), which is a good indicator of cloud top temperature. LH is not assigned for stratiform clouds from 

GOES-16 as LH from stratiform clouds are not usually used to initiate convection in the forecast model. Once convective clouds 265 

are detected using temporal changes in reflectance and Tb, LH profile corresponding to the Tb of the detected cloud is assigned 

from the LUT.  
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3.1 Definition of convection in model simulations and GOES-16 ABI 

In order to make a LUT for LH profiles of convective clouds, convective grid points need to be defined in the model simulation. 

Convection can be defined in several different ways depending on available variables, but the most direct and accurate way of 270 

defining it is to use vertical velocity (Zipser and Lutz, 1994; LeMone and Zipser, 1980; Xu and Randall, 2001; Houze 1997; 

Steiner et al., 1995; Del genio et al., 2012; Wu et al., 2009). Steiner et al., 1995 and Houze 1997 suggested that convective 

regions tend to have vertical velocity greater than 1 ms-1, and many previous studies that used vertical velocity to define 

convection used a threshold of 1 ms-1 (LeMone and Zipser, 1980; Xu and Randall, 2001; Wu et al., 2009). Similarly, this study 

uses a vertical velocity threshold to define the convective core as it is one of prognostic variables in the model simulations. 275 

However, in this study, a vertical velocity threshold is defined at a layer that has maximum hydrometeor contents. This is 

intended to exclude potentially high values of negative vertical velocity that can occur at high levels in the cloud if evaporative 

cooling is present. 

 

To establish the vertical velocity threshold in this study, several values are tested to produce corresponding convective fractions. 280 

Those are compared to the convective fractions from the GOES-16 convection detection algorithm (described in Lee et al. 0221), 

and the vertical velocity threshold whose convective fractions compared best to GOES-16 is chosen. The GOES-16 convection 

detection algorithm uses mesoscale sector data with one-minute intervals to detect convective regions from ABI imagery. Two 

separate detection methods are proposed: one for vertically growing clouds in early stages, and one for mature convective clouds 

that move rather horizontally once they reach the tropopause and often have overshooting tops. A detailed description of the 285 

methods can be found in Lee et al. 2021, but it is briefly explained here. The method for vertically growing clouds measures Tb 

decrease over 10 minutes for two water vapor channels, and if the decrease is greater than the designated threshold (-0.5K/min 

for channel 8 and -1.0K/min for channel 10), it assigns the pixel as convective. For mature convective clouds, the method looks 

for grid points that have continuously high reflectance (reflectance greater than 0.8), low Tb (Tb less than 250K), and lumpy 

cloud top (horizontal gradient values between 0.4 and 0.9) over 10 minutes. Lumpiness of the cloud top is calculated using the 290 

Sobel operator, which is commonly used for edge detection. These thresholds are chosen based on one-month analysis against 

“PrecipFlag” from the Multi-Radar/Multi-Sensor System (MRMS), which classifies precipitation types combining data from 

ground-based radar and rain gauge observations. Combining the two methods yielded false alarm rates of 14.4% and a 

probability of detection of 45.3% against the ground-based radar product, but 96.4% of the false alarm cases were at least 

raining. Combining the two methods provides results comparable to radar product, and these methods are rather simple and fast. 295 

These methods detect any type of convective region, and therefore, the analysis is conducted without distinguishing different 

types of convective clouds. 

 

Table 1 shows convective fractions using the GOES-16 convection detecting algorithm and using different vertical velocity 

thresholds in the model outputs. Using higher thresholds can eliminate non-convective grids, but at the same time, it will only 300 

include the strongest parts of convective regions. Using 1.5m/s shows a fractional area closest to the observed fraction, and 

therefore, 1.5m/s is used to define convection in the model output. This number is similar to values used in some previous 

modeling studies (1m/s in LeMone and Zipser 1980, Xu and Randall 2001, and Wu et al., 2009) and a satellite-based study (2-

4m/s in Luo et al., 2014).  

 305 
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Table 1. Fraction of convective area in observation and using different vertical velocity thresholds in the model output. 

Observation 1m/s 1.5m/s 2m/s 3m/s 4m/s 

1.34% 1.86% 1.19% 0.86% 0.52% 0.34% 

 

3.2 Model simulations used to create a lookup table 310 

Eleven convective cases are simulated using WRF to obtain enough samples to populate each cloud top temperature bin. The 

convective cases are chosen over CONUS within the NEXRAD network during May to August in 2017 or 2018. All simulations 

use the same configuration, shown in Table 2, and HRRR analysis data are used for initial and boundary conditions. All the 

convective cases are run from the start of convective activity in the scene, for at least several hours depending on the longevity of 

convective activities for each case, and model outputs are collected every 10 minutes so that the LUT includes LH profiles at all 315 

stages and types of convection. However, the LUT is not divided into different types of convection, as it is hard to distinguish 

convective types from observation. One thing to note is that the magnitude of LH can vary depending on the model configuration 

such as spatial resolution, time step, and microphysical scheme. This study uses the same model configuration as the HRRR 

model for all simulations, which avoids discrepancy in magnitude between the modeled LH and the derived LH that will be 

inserted into the forecast models. Tbs at 11.2m are calculated using the Community Radiative Transfer Model (CRTM). In each 320 

scene, convective grid points are defined by the threshold established in the previous section (1.5m/s), and LH profiles from the 

convective grid points with the same Tb from channel 14 are averaged to produce mean profiles for each Tb bin of the LUT. LH 

profiles gathered in the LUT are provided in K/s as for NEXRAD.  

 

Table 2. Table for WRF simulation setup. 325 

Version WRFv3.9 

Spatial resolution 3km 

Number of vertical layers 50 

Time step 10 seconds 

Microphysical scheme Aerosol-aware Thompson scheme (The original 

scheme is modified to produce vertical profiles 

of LH as outputs) 

Planetary boundary layer Mellor-Yamada Nakanishi Niino (MYNN) 

Level 2.5 and Level 3 schemes 

Land surface model Rapid update cycle (RUC) land surface model 

Long wave and short wave radiation physics Rapid radiative transfer model for general 

circulation models (RRTMG) schemes 

 

3.3 Mean LH profiles according to cloud top temperature 

LH profiles of convective clouds from 11 WRF simulations are collected according to 16 bins of the minimum cloud top 

temperature at 11.2m. The sixteen bins range from below 200K to above 270K with a bin size of 5K. Figure 2 shows mean 

vertical profiles of LH in each bin. All profiles exhibit slightly negative LH near the ground due to evaporation, but positive LH 330 

is shown at most layers. It is also nicely shown in the figure that as the Tb decreases, the profile stretches up in the vertical. 
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Interestingly though, the maximum heating rate is not perfectly proportional to Tb. Considering the maximum LH that is allowed 

in HRRR model, which is 0.01K/s, these values seem quite reasonable. Table 3 shows mean surface precipitation rate for each 

bin. Precipitation rate is inversely proportional to Tb in Table 3. This is expected as deeper and higher clouds tend to precipitate 

more. This provides more evidence that mean LH profiles for each bin can reasonably be obtained from GOES-16.  335 
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Table 3. Table of mean precipitation rate for each cloud top temperature bin. 

 Mean precipitation rate (mm/hour) 

~200K 48.3 

200K ~ 205K 42.9 

205K ~ 210K 42.1 

210K ~ 215K 37.9 

215K ~ 220K 33.6 

220K ~ 225K 27.7 

225K ~ 230K 21.8 

230K ~ 235K 18.8 

235K ~ 240K 16.8 

240K ~ 245K 16.4 

245K ~ 250K 14.0 

250K ~ 255K 13.2 

255K ~ 260K 11.0 

260K ~ 265K 9.2 

265K ~ 270K 6.9 

270K ~ 4.7 

 

Figure 2: Mean vertical profiles for each cloud top temperature bin. 

~ 200K
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215K ~ 220K
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The LUT in Fig. 2 is used throughout the later sections, but it can be further divided with additional inputs. Decrease in 

brightness temperature is one of the options, but it is not considered in this study for several reasons. Since clouds move over 

time, cloud advection adds uncertainty to the change in brightness temperature if calculated per pixel. In order to measure robust 355 

brightness temperature decrease, the decrease can be calculated per cloud, not per pixel; but in such a case, LH profiles will have 

to be assigned for each cloud, and the assigned profile will be inconsistent with the observed cloud top temperature for each 

pixel. Therefore, using brightness temperature decrease as additional inputs to the LUT is not included in this study, and it 

remains as future study. Instead, each cloud top temperature bin can be further divided according to composite radar reflectivity, 

and the additional LUT is presented in Appendix A. Composite reflectivity, if available, can be used to adjust the maximum 360 

intensity of LH profiles as the SLH algorithm adjusts the amplitude by multiplying Ps and Pf. Although it is challenging to get the 

whole vertical profile of radar reflectivity from GOES-16 data, there are algorithms developed to estimate composite reflectivity 

from GOES-16, such as GOES Radar Estimation via Machine Learning to Inform NWP (GREMLIN; Hilburn et al. 2021). 

Therefore, this additional LUT can be used along with such an estimator to assign LH profiles in more detail, but it is not further 

used in this study. 365 

4 Comparisons of LH profiles between GPR DPR, NEXRAD, and GOES-16 ABI 

4.1 A case study on 18 June 2019  

LH from three different instruments, GOES-16 ABI, NEXRAD, and GPM DPR are examined for comparison. Methods using 

GOES-16 and DPR products are similar in the sense that they use cloud top height or PTH to look for mean profiles in the LUT 

created with model simulations, although DPR has additional parameters such as surface rain rate which is used to vary the 370 

magnitude of the heating rate. In contrast, NEXRAD uses an empirical formula to convert radar reflectivity to LH regardless of 

PTH. They are all instantaneous heating, but provided in different units. LH from GOES-16 and NEXRAD are in K/s to easily 

match with modeled heating rate, while DPR products are in K/hour. Therefore, LH in K/hour from DPR products are converted 

to K/s for comparison. 

 375 

A scene on 18 June 2019 is shown in Fig. 3 to compare how each product determines precipitation type (convective or 

stratiform) which is one of the major factors in estimating LH profiles. The regions with reflectivity greater than 28dBZ in Fig. 

3a are regions where LH is estimated from NEXRAD reflectivity to be used in HRRR, but not necessarily convective regions. 

These regions are larger than convective regions defined by DPR products in Fig. 3c and include some of the stratiform regions 

assigned by DPR. Pink regions on top of the visible image at channel 2 (0.65m) in Fig. 3b are convective regions detected by 380 

GOES-16, and represent the smallest regions compared to others. The number of convective grid points from each product after 

interpolating into the 3km resolution WRF grid is presented in Table 4 for a quantitative comparison. Even though areal 

coverage differs by the methods, locations of convective core matches well between the products.  
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Table 4. Total number of grid points from NEXRAD, GOES-16, and CSH in the red, green, and blue box regions after 

interpolating into the same 3km WRF grid. 
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 Red Green Blue 

NEXRAD 30 41 35 

GOES-16 15 36 23 

CSH 34 50 43 

(a) (b)

(c)

Figure 3: A scene on 18 June 2019. (a) NEXRAD composite reflectivity. Only the regions with reflectivity greater than 28dBZ 

are shown in colors. Color bar is in dBZ. (b) Convective regions detected by GOES-16 are colored in pink on top of GOES-16 

visible image at channel 2 (0.65m). (c) Precipitation type defined by CSH. Convective regions are colored in pink while 

stratiform regions are colored in navy.  
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Clouds in the colored boxes in Fig. 3 are all convective clouds, but in different evolutional stages. Clouds in red, green, and blue 425 

boxes respectively have high, low, and mid-level cloud top temperature. Since the three products have different spatial 

resolutions, LH profiles from NEXRAD, GOES-16, and CSH for these clouds are interpolated into the same WRF grid with 3km 

resolution for a direct comparison in Figs. 4, 5, and 6. CSH provides LH for both convective and stratiform regions, and thus 

different colors of lines in Figs. 4c, 5c, and 6c represent different cloud type. Lines with light blue color are LH profiles of 

convective grid points in the red box, and while the blue line is the mean of these profiles. Similarly, LH profiles of each 430 

stratiform gird point are in light green, while the mean of these profiles is in dark green. The total mean LH profile is colored in 

red. Convective LH profiles from CSH shows heating throughout the vertical layers as expected, except near the surface due to 

evaporation at lower levels. LH profiles in stratiform regions show cooling at low levels below a melting level and heating 

above. LH profiles from GOES-16 (GOES LH) corresponding to the three convective clouds are shown in Figs. 4b, 5b, and 6b. 

Even though mean profiles are assigned from GOES-16 for each convective cloud, a number of different lines are shown in the 435 

figure due to spatial interpolation. When GOES LH and CSH are compared, the mean profile of convective LH from CSH in 

blue (Figs. 4c, 5c, and 6c) is similar to GOES LH in blue (Figs. 4b, 5b, and 6b) both in terms of the magnitude and the vertical 

shape.  

 

On the other hand, LH from NEXRAD (NEXRAD LH) shows a different vertical profile than GOES LH or CSH, which both 440 

use the LUT consisting of model simulations. GOES LH or CSH peak around the middle of the atmosphere while NEXRAD LH 

in the convective core (Figs. 4a, 5a, and 6a) tends to peak at low levels where radar reflectivity is high. At low levels where 

model simulations have cooling, NEXRAD LH does not show cooling due to Eq. (2) which is designed to only produce positive 

values. This heating at lower levels induces convergence in the lower atmosphere and divergence in the upper atmosphere, and 

thus, convection can be effectively initiated from the added heating.  445 

 

Although their vertical shape is different, the magnitude of the NEXRAD LH is similar to the other products. Overall values of 

mean LH profile from NEXRAD in blue are slightly smaller than mean profile of GOES LH or mean convective LH profile from 

CSH (blue line), but are closer to the total mean profile of CSH (red line), which indicates that the 28dBZ threshold might 

include some stratiform regions as well. A smaller mean of NEXRAD LH is mainly attributed to anvil regions where reflectivity 450 

greater than 28dBZ only exist at few vertical layers and reflectivity is equal to 0dBZ elsewhere. 
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Figure 4: LH profiles from (a) NEXRAD, (b) GOES-16, and (c) CSH for the red box region. Light blue lines are each 

LH profile for individual convective grid points and the darker blue line is a mean profile of the light blue lines. In 

(c), the LH profile for each stratiform grid point is coloered in light green and its mean profile is colored in dark 

green. The total mean of LH profiles for CSH is colored in red.  

Figure 5: Same as Fig. 4, but for the green box region. 

(a) (b) (c)

(a) (b) (c)
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Even though the mean NEXRAD LH is smaller, the total LH for the region can be similar when it is added up over the region 

due to broader area determined by the threshold of 28dBZ in Fig. 3a than GOES-16 detection in Fig. 3b. Therefore, the total LH 

of each cloud is again compared between the three products (Table 5). “Total LH” is defined here as vertically and horizontally 525 

integrated LH over each convective cloud. The reason why the total LH is used for a comparison is because NEXRAD LH has 

such a different vertical structure from GOES LH or CSH LH and such different convective areas, that it is difficult to makes 

direct comparison between vertical levels. In addition, comparing combined values will be meaningful as those are the values 

that will be used to initiate each convective cloud. Table 5 shows that the total LH from CSH tends to be higher than the other 

two products, while the total LH is shown to be similar between NEXRAD and GOES-16, although GOES LH is slightly larger. 530 

Despite the smaller mean of NEXRAD LH that was shown in Figs. 4, 5, and 6, it shows a good agreement with GOES-in total 

heating.  

 

Table 5. Total LH (K/s) from NEXRAD, GOES-16, and CSH in the red, green, and blue box regions. 

 535 

 

 

 

 

 540 

 Red Green Blue 

NEXRAD 0.31 1.41 0.68 

GOES-16 0.44 1.52 0.89 

CSH 0.84 3.18 2.70 

Figure 6: Same as Fig. 4, but for the blue box region. 

(a) (b) (c)
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4.2 Three-month analysis against NEXRAD LH 

A case study from section 4.1 is presented to show how the vertical structure of GOES LH compares to other radar products. In 

this section, three months of data from May, June, and July of 2020 are used to compare total LH for convective clouds between 

GOES-16 and NEXRAD. Total LH used in this section is again vertically and horizontally integrated LH over each convective 

cloud. Both GOES-16 brightness temperature and NEXRAD reflectivity are resampled to the 3km HRRR grid for a direct 545 

comparison, and are compared under several conditions that the HRRR model uses to avoid disruption in existing model physics 

when inserting LH into the model. During the convective initiation step in the HRRR model, LH is calculated form NEXRAD 

radar reflectivity following Eq. (2) if the layer: is cloudy, is under the GOES cloud top (using Level 2 Cloud Top Pressure data), 

is above the planetary boundary layer, and has a temperature less than 277.15K. Additionally, LH is calculated for temperatures 

greater than 277.15K only if the corresponding reflectivity exceeds 28dBZ.  550 

 

GOES LH is calculated with the same criteria described above, except for the additional 28dBZ categorization. Adjacent 

convective grid points by the detection algorithm are clustered to define a convective cloud. In order to minimize errors coming 

from different definitions of convection in GOES and NEXRAD, total LH is compared only in clouds where both NEXRAD and 

GOES detect convection. Since the area defined as convective cloud tends to be wider in NEXRAD than in GOES-16, and one 555 

convective cloud from NEXRAD tends to include multiple convective cloud systems defined by GOES, the comparison is done 

by combining all convective clouds by GOES-16 that overlap with each convective cloud by NEXRAD. Regions with low radar 

quality, as indicated by the radar quality flag, are excluded in the analysis. 

 

Among 4045 convective clouds collected from the three-month data, only 2660 convective clouds are within reasonable range of 560 

each other in both GOES-16 and NEXRAD. We define “reasonable range” here as: the number of convective grid points from 

GOES-16 does not exceed five times that of NEXRAD and vice versa. Those 2660 clouds are selected, and the total LH from 

both GOES-16 and NEXRAD for these clouds is fitted into a linear regression model. Figure 7 shows a scatter plot of NEXRAD 

LH and GOES LH for each convective cloud in log-log axes. A decent correlation coefficient of 0.83 is obtained between 

NEXRAD LH and GOES LH in Fig. 7. In most cases, high discrepancy in total LH seems to be caused by corresponding 565 

discrepancy in the number of convective grid points, which is inevitable, but overall, total LH values seem to agree well if the 

number of convective grid point is similar. 

 

 

 570 

 

 

 

 

 575 

 

 
Figure 7: Scatter plot of NEXRAD total LH and GOES total LH in K/s. It is 

plotted in log-log axes. 
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5 Impacts of NEXRAD LH and GOES LH on precipitation forecast 

The WRF model was run for one convective case on 10 July 2019 to compare impacts of GOES LH and NEXRAD LH on 

precipitation forecasts. HRRR data are used as initial and boundary conditions, and the same configuration is used as when 580 

making the LUT. GOES-16 visible data are only available for initialization from 15UTC to 22UTC, so results are compared after 

one hour of running freely, from 17UTC to 00UTC. In order to initiate convection as HRRR does with NEXRAD, modeled LH 

profiles are replaced with the observed LH profiles every time step for 15 minutes during one hour pre-forecast period. After the 

pre-forecast run, the model is run freely for an hour, and after the one-hour free run, the one-hour accumulated rainfall rate 

results are compared. One-hour rain accumulation from simulations without using any observed LH (CTL), using NEXRAD LH 585 

(NL), and using GOES LH (GL) are validated against gauge bias corrected quantitative precipitation estimation (QPE; one-hour 

accumulation) from MRMS.  

 

Figure 8 shows one simulation where observed LH is applied from 15UTC to 16UTC, after which the model is freely run for an 

hour until 17UTC. The CTL run (Fig. 8a) misses many convective regions, and precipitation is markedly less than MRMS 590 

observations in Fig. 8b. Both the NL and GL runs initiated convection in the right place, and enhance precipitation. In the light 

green box region where CTL run totally misses convection, NL and GL runs both produce precipitation, although there is an 

overestimation in NL run while there is an underestimation of precipitation in the GL run. In the dark green box region where 

convection is weak in the CTL run, both NL and GL runs increased precipitation closer to the observation. The NL run correctly 

initiates convection in the yellow box region, but not in the red box region, while the GL run correctly initiates convection in the 595 

red box but not in the yellow box.  

 

 

 Figure 8: One-hour rain accumulation at 17UTC in 10 July 2019 from (a) a simulation without any LH 

observation, (b) MRMS gauge corrected quantitative precipitation estimation (QPE), (c) a simulation 

using NEXRAD LH, and (d) a simulation using GOES LH. 

(b)(a)

(c) (d)
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 600 

These results can be further explained by looking at Fig. 9, which presents maps of vertically integrated NEXRAD LH and 

GOES LH that are applied to the model at 16UTC which is the last time that observed LH profiles are applied during the 

15UTC-16UTC period. As seen in the enlarged two green box regions in Fig. 9, NEXRAD shows very high total LH (up to 

0.35K/s) in a few grid points, and small LH in surrounding area, while most of the GOES LH values in the two green boxes are 

at or below 0.2K/s. The reason why there was an overestimation of precipitation in the NL run (Fig. 8c) could be due to this 605 

extremely high NEXRAD LH. Interestingly in the red box region, both NEXRAD and GOES have similar total LH values, but 

only the GL run produced precipitation (in Fig. 8d). Lastly, it makes sense that GL run did not initiate convection in the yellow 

box region (Fig. 8d) because no LH is applied due to missed convection by the GOES convection detection algorithm (Fig. 9b). 

Overall, both NEXRAD LH and GOES LH have positive impacts on the precipitation forecast, and their forecast results appear 

to have similar skills.  610 
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 625 

 

 

For a quantitative evaluation, Fraction Skill Scores (FSS) are calculated for the eight simulations that added LH for different one-

hour time periods (LH is added for an hour during 15-16UTC, 16-17UTC, …, 22-23UTC, and FSS are calculated after the one-

hour free run at 17UTC, 18UTC, …, 00UTC). FSS is one of the neighborhood-based precipitation verification metrics 630 

introduced by Roberts and Lean, 2008, and it is calculated using Eq. (3). 

𝐹𝑆𝑆(𝑛) = 1 −

1

𝑁𝑥𝑁𝑦
∑ ∑ [𝑂𝑖,𝑗−𝑃𝑖,𝑗]

2𝑁𝑦
𝑗=1

𝑁𝑥
𝑖=1

1
𝑁𝑥𝑁𝑦

[∑ ∑ 𝑂𝑖,𝑗
2+∑ ∑ 𝑃𝑖,𝑗

2𝑁𝑦
𝑗=1

𝑁𝑥
𝑖=1

𝑁𝑦
𝑗=1

𝑁𝑥
𝑖=1

]
,                      (3) 

where Nx and Ny are the number of columns and rows, and Oi,j and Pi,j are respectively an observed and model forecast fraction 

calculated over a small n  n domain. It calculates a fraction that passed a threshold value over n  n domain, and the fraction 

over the small domain is compared rather than individual grid points. In this study, a 15 km  15 km domain is used to calculate 635 

FSS for the six one-hour accumulated precipitation thresholds of 0.254, 2.54, 6.35, 12.7, 25.4, and 50.8 mm/hour (0.01, 0.1, 0.25, 

0.5, 1, and 2 inch/hour).  

Figure 9: Vertically integrated LH at 16UTC in July 10th, 2019 from (a) NEXRAD and (b) GOES-16. Two 

green box regions are enlarged for better comparison. 

(a) (b)
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The overall FSS for the eight simulations is shown in Fig. 10. Black, red, blue, and green lines represent CTL, NL, GL with 655 

Thompson scheme, and GL with WSM6 scheme, respectively. Compared to CTL, both NL and GL runs show significant 

improvements in FSS for all thresholds. Although NL run outperforms GL at smaller thresholds, GL run shows better results at 

higher thresholds of 25.4 and 50.8 mm/hour. This can be because GOES LH tends to have maximum heating in the middle 

atmosphere, which can develop deeper clouds, but further investigation is needed to study sensitivity of different vertical profiles 

to precipitation forecast. Additional GL run using different microphysical scheme of WSM6 is provided to briefly show impacts 660 

of using different microphysical scheme. It has less positive impacts, indicating that keeping consistency in microphysical 

scheme could be critical. Nonetheless, it shows that LH from GOES-16 presented in this study can be useful for improving 

precipitation forecast especially in the regions where ground-based radar data are not available.  

 

6 Conclusions 665 

A method to obtain vertical profiles of LH from GOES-16 ABI data was described. Convective clouds are first detected using 

temporal changes in reflectance and Tb, and LH profiles for the detected cloud are found by searching a LUT created using WRF 

model simulations. The LUT contains LH profiles of convective clouds that are defined by a threshold of 1.5m/s for the modeled 

vertical velocity, and these convective LH profiles are sorted according to Tb at 11.2m, which is a good indicator of cloud top 

height. Mean profiles that represent each Tb bin show good correlation with cloud top temperature, with lower Tb bin having 670 

deeper LH profiles. Precipitation rates corresponding to each bin are also well correlated to Tb. Even though the LUT in Fig. 2 

uses one infrared channel to estimate LH profiles, it is actually more than just one brightness value. The GOES-16 convection 

detection algorithm uses 10 time steps of channel 2 reflectance and channel 8 and 10 brightness temperature data to find active 

convective regions with bubbling cloud top and brightness temperature decrease, and thus the overall algorithm uses more 

information than just one brightness temperature value. In addition, LH values in the LUT are well within the range that is 675 

Figure 10: Fraction Skill Score (FSS) using thresholds of 0.254, 2.54, 6.35, 12.7, 25.4, and 50.8 mm/hour 

(0.01, 0.1, 0.25, 0.5, 1, and 2 inch/hour) for CTL (black), NL (red), GL with Thompson scheme (blue), and 

GL with WSM6 scheme (green) runs.  
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allowed in HRRR to initiate convection using NEXRAD, which makes it reasonable to use them to initiate convection in the 

forecast model.  

 

To investigate how LH from GOES-16 differs from other radar products, LH from GOES-16, NEXRAD, and CSH are compared 

in three convective clouds with different cloud top heights. Vertical profiles of convective LH from GOES-16 are very similar to 680 

those from CSH that use model simulations in the LUT. Their vertical profiles show heating throughout the vertical layer except 

near the surface where evaporation occurs, and heating peaks around the middle of the atmosphere. This vertical pattern differs 

from when using the empirical formulation used with radar reflectivity by HRRR. Vertical profiles of LH from NEXRAD highly 

depend on vertical profiles of reflectivity which typically peaks near the surface in convective regions, and thus, maximum LH is 

usually observed at lower level, which is not commonly shown in the modeled heating rate.  685 

 

Even though vertical profiles of LH from the different methods differ, the total LH which is calculated by integrating the 

horizontal and vertical LH for each convective cloud is shown to be similar between GOES-16 and NEXRAD. The three-month 

analysis shows a good correlation overall between GOES-16 and NEXRAD if the detected convection areas were similar. 

Besides the limitation in convection detection by GOES-16, GOES LH estimates can have large errors in case of multi-layer 690 

clouds or clouds with sheared structure, as it is based on the cloud top. 

 

In order to examine impacts of GOES LH in precipitation forecast compared to NEXRAD LH, one case study is presented. 

Applying LH derived from GOES-16 was able to correctly initiate convection in the scene, and the simulation result looks 

similar to the one applying NEXRAD LH. Although GOES convection detection algorithm is not perfect and misses some 695 

convection, and GOES LH is somewhat restricted to cloud top information, these results prove that LH obtained from GOES-16 

have reasonable values, and it can be used to improve precipitation forecasts over the region where ground-based radar data are 

not available.  

 

This work is a proof of concept study to show potential of using infrared data in initializing convection, and there are much room 700 

for improvements. The LUT can be improved by adding more input variables such as cloud top cooling rate. In case of using 

cloud top cooling rate as inputs, additional wind products will be needed for both model and observation to remove errors 

coming from cloud advection. Aside from changing input variables, other microphysical schemes can be tested for the LUT to 

compare intensities or vertical structures of the derived LH profiles using different microphysical schemes. In addition, more 

investigation will be needed to analyze the impacts of different vertical structure of LH in convective initiation.  705 
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Appendix A 

Additional LUT using composite reflectivity along with cloud top temperature is provided here. This LUTle can be used with 

NEXRAD composite reflectivity or other synthetic radar reflectivity simulator that uses GOES-16 data such as GREMLIN. This 

LUT includes vertical profiles of mean reflectivity for each cloud top temperature and composite reflectivity bin (Fig. A1) as 

well as vertical profiles of LH (Fig. A2). Radar reflectivity profiles retrieved using this LUT can be used directly in the model 720 

initialization step as ground-based radar reflectivity profiles are used in the HRRR model, or LH profiles in this LUT can be used 

with some modifications in model initialization step as in this study. Each plot shows mean profiles for each cloud top 

temperature bin while different color in the plot represents each composite reflectivity bin. Note that for higher cloud top 

temperature bin, high composite reflectivity bins (red or brown lines) are not shown because clouds with warmer cloud top do 

not show high composite reflectivity, and for lower cloud top temperature bin, low composite reflectivity bin (blue line) is not 725 

shown because deep convective clouds tend to have high composite reflectivity.  
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Figure A1: Mean reflectivity profiles for 16 cloud top temperature bins and 7 composite reflectivity bins. Each plot 

corresponds to each cloud top temperature bin, and different colors in the plot represent each composite reflectivity bin. 
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Figure A2: Mean LH profiles for 16 cloud top temperature bins and 7 composite reflectivity bins. Each plot corresponds to each 

cloud top temperature bin, and different colors in the plot represent each composite reflectivity bin.  
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