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Abstract. Latent heating (LH) is an important quantity in both weather forecasting and climate analysis, being the essential
factor affecting intensity or structure of convective systems. Yet, inferring LH rates from our current observing systems is
challenging at best. For climate studies, LH has been retrieved from the Precipitation Radar on the Tropical Rainfall Measuring
Mission (TRMM) using model simulations in the look-up table (LUT) that relates instantaneous radar profiles to corresponding
heating profiles. These radars, first on TRMM and then Global Precipitation Measurement Mission (GPM), provide a continuous
record of LH. However, temporal resolution is too coarse to have significant impacts on forecast models. In operational forecast
models such as High-Resolution Rapid Refresh (HRRR), convection is initiated from LH derived from ground based radar.
Despite the high spatial and temporal resolution of ground-based radars, their data are only available over well-observed land
areas. This study develops a method to derive LH from the Geostationary Operational Environmental Satellite-16 (GOES-16) in
near-real time. Even though the visible and infrared channels on the Advanced Baseline Imager (ABI) provide mostly cloud top
information, rapid changes in cloud top visible and infrared properties, when formulated as a LUT similar to those used by the
TRMM and GPM radars, can equally be used to derive LH profiles for convective regions based on model simulations with a
convective classification scheme and channel 14 (11.2um) brightness temperatures. Convective regions detected by GOES-16
are assigned LH from the LUT, and they are compared with LH from the Next Generation Weather Radar (NEXRAD) and one
of the Dual-frequency Precipitation Radar (DPR) products, the Goddard Convective-Stratiform Heating (CSH). LH obtained
from GOES-16 show similar magnitude toh NEXRAD and CSH, and vertical distribution of LH is also very similar with CSH. A
three month analysis of total LH from convective clouds from GOES-16 and NEXRAD shows good correlation between the two
products. Finally LH profiles from GOES-16 and NEXRAD are applied to WRF simulations for convective initiation and their
results are compared to investigate their impacts on precipitation forecasts. Results show that LH from GOES-16 have similar
impacts as NEXRAD for improving the forecast. While only a proof of concept, this study demonstrates the potential of using
LH derived from GOES-16 for convective initialization.

1 Introduction

As the spatial resolution of numerical weather prediction (NWP) models becomes finer, and even operational models are run at
convection permitting resolutions of a few kilometers, an effective way to assimilate observation data at this fine resolution has
been sought (Gustafsson et al., 2018). Along with the data assimilation, initializing cloud and precipitation in the right location is
an important procedure in short-term forecasts (Geer et al., 2017), and modelers seek to use observation data that will create a
favorable convection environment at this fine resolution. If the model environment is not favorable for convection, updrafts and
clouds will not develop in the right place. Latent heating (LH) can be added in the model data assimilation cycle to help correctly
initiate convection in operational regional models where both accuracy and speed are important. Adding LH induces lower level

convergence and upper level divergence, thereby initiating convection, and it has become an important procedure that many

1



40

45

50

55

60

65

70

75

operational models use for the initialization of convective events (Weygandt and Benjamin, 2007; Gustafsson et al., 2018). LH is

not only important to initiate convection, it also contributes to the intensification of convection.

The National Oceanic and Atmospheric Administration (NOAA)’s operational models, the Rapid Refresh (RAP) and High-
Resolution Rapid Refresh (HRRR), both use observed latent heating to drive convection, but in different ways (Benjamin et al.,
2016). RAP uses digital-filter initialization (Peckham et al., 2016) while HRRR replaces modeled temperature tendency with the
observed LH (Benjamin et al., 2016) from the Next Generation Weather Radar (NEXRAD), which is a ground-based radar
network over the United States. For this operational purpose, LH data must be available continuously in near-real time.
Therefore, ground-based radars which have high spatial and temporal resolutions similar to HRRR’s resolution are used to
calculate LH from NEXRAD reflectivity. While suitable for the HRRR region over the Contiguous United States (CONUS), the

method is not applicable to regions beyond radar coverage such as the Gulf of Mexico and some mountainous areas.

Satellite data are used to infer climatology of LH over the globe. CloudSat which carries a W-band radar that is sensitive to light
precipitation but experiences attenuation with heavy precipitation is used to derive LH for shallow precipitating regions (Huaman
and Schumacher, 2018). Nelson et al., 2016 and Nelson and L’Ecuyer, 2018 created an a priori database using model simulations
from the Regional Atmospheric Modeling System (RAMS) and used a Bayesian Monte Carlo algorithms to find the most
appropriate LH profiles from the database for shallow convective clouds. For deeper convection, satellites that carry instruments
with lower frequencies such as Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement Mission
(GPM) satellites are more appropriate to retrieve LH. The Precipitation Radar (PR) on TRMM was the first meteorological radar
in space, designed to provide vertical distributions of precipitation over the tropics (Kummerow et al., 1998). Vertical profiles of
LH have been retrieved from its three-dimensional hydrometeor observations. There are several retrieval algorithms using PR:
Goddard Convective-Stratiform heating (CSH; Tao et al., 1993), Spectral Latent Heating (SLH; Shige et al., 2004), Hydrometeor
heating (HH; Yang and Smith, 1999), and Precipitation Radar Heating algorithm (PRH; Satoh and Noda, 2001). Among these
algorithms, CSH and SLH are the two most widely used products. Most recent versions of monthly gridded CSH and SLH
products have spatial resolution of 0.25°x0.25° and 0.5°x0.5° respectively with 80 vertical layers and have been used to provide
valuable insights on heat budgets and atmospheric dynamics over the tropics (Schumacher et al., 2004; Chan and Nigam, 2009;
Zhang et al., 2010; Liu et al., 2015; Huaman and Takahashi, 2016). The CSH and SLH algorithms have improved since their first
development, and both algorithms are also applied to Dual-frequency Precipitation Radar (DPR) data on GPM, the successor of

TRMM, to continue the climate record of LH and expand the regions of interest to mid-latitude.

CSH and SLH both rely on a lookup table (LUT) based on cloud resolving model simulations. Inputs that are used to look for LH
profiles in these LUT are different, but their common inputs to the LUT are echo top height and surface rainfall rate as well as
convective-stratiform flag. Echo top height is important in determining the vertical depth of heating, and surface rainfall rate is a
good indicator for the intensity of maximum heating. Even though the methods use different model simulations to create the
LUT, and differ in other details, they seem to exhibit similar distributions when they are averaged spatially or temporally (Tao et
al., 2016).

Although these products have been useful for keeping climate records and understanding impacts of LH in long-lasting systems
like tropical cyclones, their temporal resolutions are too low to be used for weather forecasting, especially compared to 2-minute

observations available from ground-based radars. The current generation of geostationary observing systems (e.g., GOES-16 and
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17, Himawari, GEO-KOMPSAT-2) are required to achieve comparable sampling rates to ground-based radars. The visible (VIS)
and infrared (IR) sensor on geostationary satellite, unfortunately, cannot provide as much vertical information as active sensors
do in the presence of thick clouds. Nonetheless, the rapid refresh provides important information about a cloud’s convective
nature. Since the RAP model already uses cloud top information from geostationary data in its forecast (Benjamin et al., 2016),
and the HRRR model uses the RAP model outputs as initial and lateral boundary conditions, LH profiles derived from cloud top

temperature should be consistent with the model cloud field.

This study examines if cloud top information from the Geostationary Operational-Environmental Satellite-16 (GOES-16)
Advanced Baseline Imager (ABI), coupled with convective cloud identification can be sufficient to approximate NEXRAD-
derived LH. Following the lead of spaceborne radar LH algorithms, a LUT is created using model simulations. Once convective
clouds are determined by using 10 consecutive one-minute ABI data, LH profiles for convective clouds are found in the LUT
based on cloud top temperature of the convective cloud. Unlike DPR products that are not available continuously, ABI data in
mesoscale sector mode are provided at one-minute resolution, and thus LH can be obtained from GOES-16 as frequently as
NEXRAD, making it possible to initiate convection during the forecast. LH from GOES-16 can be beneficial over the regions

without radar coverage such as ocean or mountainous regions where beam blockage by terrain degrades the quality of radar data.

Detailed descriptions of CSH and SLH products from GPM satellite and how NEXRAD converts reflectivity to LH are provided,
followed by the retrieval process using GOES-16 ABI. One case study is provided to compare vertical profiles of LH from
GOES-16 with other radar products, and statistical results using one-month of data are provided to evaluate whether total
convective heating rates from GOES-16 are comparable to the ones from NEXRAD. Lastly, a Weather Research and Forecasting
(WRF) simulation using LH from GOES-16 and NEXRAD is presented to compare impacts of LH from the two datasets in

convective initialization.

2 Existing LH retrieval methods
2.1 Radiosonde networks

LH is not an easily measurable quantity as it is almost impossible to single out temperature changes by phase changes from the
total observed temperature changes. However, heat and moisture budget studies have been conducted using sounding network in
a field campaigns, and apparent heat sources (Q1) and apparent moisture sinks (Qz) from the budget study can be expressed as a
function of LH (Yanai et al., 1973; Johnson 1984; Demott 1996). It is achieved using a diagnostic heat budget method which is
first presented by Yanai et al. 1973 (Tao et al., 2006). Over a certain horizontal area, Q1 can be expressed through the equation
below that includes LH (Tao et al., 2006).

(B2) - T-7F |+ 2 Lule =)+ Ly (= m) + Ly(@ = 5) g

zZ
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P

Q:—Qr = ﬁ[
where prime denotes deviations from horizontal averages, which is denoted by upper bar. Qr is the radiative heating rate, 6 is
potential temperature, 7 is non-dimensional pressure, p is air density, ¢, is specific heat at constant pressure and R is gas constant
for dry air. Ly, Ls, and Ls represent the latent heats of condensation, freezing, and sublimation while c, e, f, m, d, and s represent
each microphysical process of condensation, evaporation, freezing, melting, deposition, and sublimation, respectively. The last

six terms on the right-hand side that include these microphysical processes are LH from phase changes. Since Q1 can be obtained
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using vertical profiles of temperature, moisture, and wind data observed during the field campaign (Tao et al., 2006), the
observed Q; is used to indirectly validate GPM LH products that are retrieved together with Q;.

2.2 CSH and SLH from GPM DPR

LH is fundamentally a temperature change resulting from the phase change of water in the atmosphere. Given the difficulties
associated with measuring temperature change where condensation is occurring and further attributing those temperature changes
to phase changes is not possible on a regular basis. Instead, many methods rely on the detection of hydrometeors, generally from
microwave sensors, and then infer the LH from the hydrometeor content. Precipitation observed from microwave sensors and
latent heating are closely related, but since hydrometeors are created through condensation, LH derived from a microwave sensor
is actually LH that is released at an earlier location before the observation time. However, LH products from ground-based
radars, or from a microwave sensor on satellites such as DPR on GPM, can be routinely generated over broad scales, the

advantages of which outweigh any time and space mismatch.

DPR has two operational LH algorithms: CSH and SLH. In the GPM products, LH is provided along with additional variables:
Q1-Qr and Q in SLH and Q1-Qr-LH, Qg, and Q2 in CSH as well as the rain type (Tao et al., 2019). These algorithms were first
developed for TRMM data, but have been adapted to GPM data. Both algorithms use cloud resolving model simulations to create
a LUT relating hydrometeor profiles to modeled heating rates. Although there is no direct measurement for LH to validate the
results, retrieved Q; and Q. are compared instead with sounding data from various field campaigns through the method
mentioned in Section 2.1. The evolution of these products is well summarized in (Levizzani et al., 2020), but each algorithm is

briefly explained here.

The CSH algorithm was first introduced by Tao et al. 1993. The initial algorithm by Tao et al.1993 used surface rainfall rate and
amount of stratiform rain as inputs to the LUT, but the LUT has been improved by increasing the number of LH profiles, using
finer resolution in simulations, and adding new inputs such as echo-top heights and low-level vertical reflectivity gradients (Tao
et al., 2019). For high-latitude regions observed by the GPM satellite, new LUTSs have been created with simulations from the
NASA Unified-Weather Research and Forecasting model which is known to be suitable for high latitude weather systems
(Levizzani et al., 2020). Inputs to this new LUT are surface rainfall rate, maximum reflectivity height, freezing level height, echo
top height, decreasing flag (whether or not reflectivity values drop by more than 10dBZ toward the surface), and maximum
reflectivity intensity (Tao et al., 2019).

The SLH algorithm is based on Shige et al. 2004 and Shige et al. 2007. For tropical regions, the LUT is created for three
different rain types; convective, shallow stratiform, and anvil (or deep stratiform) clouds. Inputs to the LUT are precipitation top
height (PTH), precipitation rate at the surface (Ps), precipitation rate at the level that separates upper-level heating and lower-
level heating (Ps) and precipitation at the melting level (Pn). Once non-convective rain is separated into either shallow stratiform
or anvil, a vertical profile for anvil cloud is chosen based on Py, and magnitudes of upper level heating and lower level cooling
are normalized by Pr, and (Pm - Ps), respectively. For convective and shallow stratiform clouds, a vertical profile corresponding
to the PTH is chosen, and then upper-level heating and lower-level heating are normalized by Prand Ps, respectively. For DPR, a
new LUT is created for mid and higher latitude to account for expanded latitudinal coverage by GPM. For higher latitude

regions, six precipitation types (convective, shallow stratiform, three types of deep stratiform, and other) are used instead of
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three, and therefore six respective LUTs exist. Inputs to these LUTs are precipitation type, PTH, precipitation bottom height,

maximum precipitation, and Ps.

Figure 1 shows monthly gridded products from these two algorithms over CONUS for July of 2020 at three different heights as
well as their vertically integrated heating rates. Overall horizontal patterns in the two products look similar, but there is a
difference in the vertical. At 2km or 5km, CSH tends to show higher heating rates than SLH, while at 10km, SLH shows higher
heating rates than CSH. In addition, SLH tends to have larger cooling rates throughout the layers. If integrated over the whole
vertical layers, CSH tends to show higher heating rates in general. These discrepancies can be attributed to different
configuration setup such as microphysical scheme used to run simulations for the LUT. The results demonstrate that the vertical

profiles of LH are highly dependent on the simulations that comprise the LUT as well as different inputs to the LUTSs.
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Figure 1: Monthly gridded LH from CSH at (a) 2km, (c) 5km, (¢) 10km, and (g) vertically integrated LH from
CSH and LH from SLH at (b) 2km, (d) 5km, (f) 10km, and (h) vertically integrated LH from SLH.
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Orbital data for these products have finer spatial resolution of 5km, and although results may be interpreted as “instantaneous”
LH, the temporal resolution is too coarse to have much impact on regional forecast models that are initialized hourly if not more
frequently. These scales are consistent with ground-based radar data which is why LH derived from ground-based radar is used

almost universally.

2.3 LH from NEXRAD

In the operational HRRR model, LH profiles retrieved using radar reflectivity replace modeled LH profiles, which helps initiate
convection in the right places. LH profiles in this case are obtained through a simple empirical formula that converts radar
reflectivity to LH. In Eq. (2), reflectivity is converted to potential temperature tendency using a model pressure field. This
equation is only applied when radar reflectivity exceeds 28dBZ. The threshold of 28dBZ was chosen based on the effectiveness
of adding heating from reflectivity in HRRR (Bytheway et al., 2017).
O]

1000Rd/Cpd (Ly+LF)Q 102/17.8
Tien = PEZLS where Q;=15x
p n-Cpa 264083

z: grid radar/lightning-proxy reflectivity

Teen: temperature tendency

p: background pressure (hPa)

Rq: specific gas constant for dry air

Cpa: Specific heat of dry air at constant pressure
L.: latent heat of vaporization at 0°C

L+ latent heat of fusion at 0°C

n: number of forward integration steps of digital filter initialization

Ten in EQ. (2) is produced in K/s to meet the needs during the short-term forecast. Although heating rate is not a general output in
the forecast model, it is calculated at every time step by dividing temperature change from the microphysical scheme by the time
step, which is usually on the order of few tens of seconds. Therefore, this empirical formula is developed to produce LH

consistent with the model framework so that LH added does not produce computational instability when ingested.

3 LH profiles from GOES-16

The current operational geostationary satellite, GOES-16, carries the Advanced Baseline Imager (ABI), an instrument with 16
VIS and IR channels. Mesoscale sectors, which are manually moved around to observe interesting weather events, provide data
in one-minute intervals. Such high temporal resolution data have helped observe cloud developments in more detail. Using this
high temporal resolution ABI data, convective clouds are detected, and LH profiles for the detected clouds are assigned from a
LUT. The LUT is created running the Weather Research and Forecasting (WRF) model simulations. While the CSH and SLH
algorithms look for LH profiles in a model-based LUT according to precipitation type and precipitation top height, the LUT for
GOES-16 ABI is created for convective clouds that appear bright and bubbling from ABI according to brightness temperature
(Tb) at channel 14 (11.2um), which is a good indicator of cloud top temperature. LH is not assigned for stratiform clouds from
GOES-16 as LH from stratiform clouds are not usually used to initiate convection in the forecast model. Once convective clouds
are detected using temporal changes in reflectance and Ty, LH profile corresponding to the Ty, of the detected cloud is assigned
from the LUT.
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3.1 Definition of convection in model simulations and GOES-16 ABI

In order to make a LUT for LH profiles of convective clouds, convective grid points need to be defined in the model simulation.
Convection can be defined in several different ways depending on available variables, but the most direct and accurate way of
defining it is to use vertical velocity (Zipser and Lutz, 1994; LeMone and Zipser, 1980; Xu and Randall, 2001; Houze 1997;
Steiner et al., 1995; Del genio et al., 2012; Wu et al., 2009). Steiner et al., 1995 and Houze 1997 suggested that convective
regions tend to have vertical velocity greater than 1 ms?, and many previous studies that used vertical velocity to define
convection used a threshold of 1 ms? (LeMone and Zipser, 1980; Xu and Randall, 2001; Wu et al., 2009). Similarly, this study
uses a vertical velocity threshold to define the convective core as it is one of prognostic variables in the model simulations.
However, in this study, a vertical velocity threshold is defined at a layer that has maximum hydrometeor contents. This is
intended to exclude potentially high values of negative vertical velocity that can occur at high levels in the cloud if evaporative

cooling is present.

To establish the vertical velocity threshold in this study, several values are tested to produce corresponding convective fractions.
Those are compared to the convective fractions from the GOES-16 convection detection algorithm (described in Lee et al. 0221),
and the vertical velocity threshold whose convective fractions compared best to GOES-16 is chosen. The GOES-16 convection
detection algorithm uses mesoscale sector data with one-minute intervals to detect convective regions from ABI imagery. Two
separate detection methods are proposed: one for vertically growing clouds in early stages, and one for mature convective clouds
that move rather horizontally once they reach the tropopause and often have overshooting tops. A detailed description of the
methods can be found in Lee et al. 2021, but it is briefly explained here. The method for vertically growing clouds measures Ty
decrease over 10 minutes for two water vapor channels, and if the decrease is greater than the designated threshold (-0.5K/min
for channel 8 and -1.0K/min for channel 10), it assigns the pixel as convective. For mature convective clouds, the method looks
for grid points that have continuously high reflectance (reflectance greater than 0.8), low Ty, (Tp less than 250K), and lumpy
cloud top (horizontal gradient values between 0.4 and 0.9) over 10 minutes. Lumpiness of the cloud top is calculated using the
Sobel operator, which is commonly used for edge detection. These thresholds are chosen based on one-month analysis against
“PrecipFlag” from the Multi-Radar/Multi-Sensor System (MRMS), which classifies precipitation types combining data from
ground-based radar and rain gauge observations. Combining the two methods yielded false alarm rates of 14.4% and a
probability of detection of 45.3% against the ground-based radar product, but 96.4% of the false alarm cases were at least
raining. Combining the two methods provides results comparable to radar product, and these methods are rather simple and fast.
These methods detect any type of convective region, and therefore, the analysis is conducted without distinguishing different

types of convective clouds.

Table 1 shows convective fractions using the GOES-16 convection detecting algorithm and using different vertical velocity
thresholds in the model outputs. Using higher thresholds can eliminate non-convective grids, but at the same time, it will only
include the strongest parts of convective regions. Using 1.5m/s shows a fractional area closest to the observed fraction, and
therefore, 1.5m/s is used to define convection in the model output. This number is similar to values used in some previous
modeling studies (1m/s in LeMone and Zipser 1980, Xu and Randall 2001, and Wu et al., 2009) and a satellite-based study (2-
4m/s in Luo et al., 2014).
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Table 1. Fraction of convective area in observation and using different vertical velocity thresholds in the model output.

Observation im/s 1.5m/s 2m/s 3m/s 4m/s
1.34% 1.86% 1.19% 0.86% 0.52% 0.34%

3.2 Model simulations used to create a lookup table

Eleven convective cases are simulated using WRF to obtain enough samples to populate each cloud top temperature bin. The
convective cases are chosen over CONUS within the NEXRAD network during May to August in 2017 or 2018. All simulations
use the same configuration, shown in Table 2, and HRRR analysis data are used for initial and boundary conditions. All the
convective cases are run from the start of convective activity in the scene, for at least several hours depending on the longevity of
convective activities for each case, and model outputs are collected every 10 minutes so that the LUT includes LH profiles at all
stages and types of convection. However, the LUT is not divided into different types of convection, as it is hard to distinguish
convective types from observation. One thing to note is that the magnitude of LH can vary depending on the model configuration
such as spatial resolution, time step, and microphysical scheme. This study uses the same model configuration as the HRRR
model for all simulations, which avoids discrepancy in magnitude between the modeled LH and the derived LH that will be
inserted into the forecast models. Tps at 11.2um are calculated using the Community Radiative Transfer Model (CRTM). In each
scene, convective grid points are defined by the threshold established in the previous section (1.5m/s), and LH profiles from the
convective grid points with the same Ty, from channel 14 are averaged to produce mean profiles for each Ty, bin of the LUT. LH
profiles gathered in the LUT are provided in K/s as for NEXRAD.

Table 2. Table for WRF simulation setup.

Version WRFv3.9
Spatial resolution 3km
Number of vertical layers 50
Time step 10 seconds
Microphysical scheme Aerosol-aware Thompson scheme (The original

scheme is modified to produce vertical profiles
of LH as outputs)

Planetary boundary layer Mellor-Yamada Nakanishi Niino (MYNN)
Level 2.5 and Level 3 schemes
Land surface model Rapid update cycle (RUC) land surface model
Long wave and short wave radiation physics Rapid radiative transfer model for general

circulation models (RRTMG) schemes

3.3 Mean LH profiles according to cloud top temperature

LH profiles of convective clouds from 11 WRF simulations are collected according to 16 bins of the minimum cloud top
temperature at 11.2um. The sixteen bins range from below 200K to above 270K with a bin size of 5K. Figure 2 shows mean
vertical profiles of LH in each bin. All profiles exhibit slightly negative LH near the ground due to evaporation, but positive LH

is shown at most layers. It is also nicely shown in the figure that as the T, decreases, the profile stretches up in the vertical.



Interestingly though, the maximum heating rate is not perfectly proportional to Ty. Considering the maximum LH that is allowed
in HRRR model, which is 0.01K/s, these values seem quite reasonable. Table 3 shows mean surface precipitation rate for each
bin. Precipitation rate is inversely proportional to Ty in Table 3. This is expected as deeper and higher clouds tend to precipitate

335 more. This provides more evidence that mean LH profiles for each bin can reasonably be obtained from GOES-16.
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Figure 2: Mean vertical profiles for each cloud top temperature bin.

350

Table 3. Table of mean precipitation rate for each cloud top temperature bin.

Mean precipitation rate (mm/hour)

~200K 48.3
200K ~ 205K 42.9
205K ~ 210K 42.1
210K ~ 215K 37.9
215K ~ 220K 33.6
220K ~ 225K 21.7
225K ~ 230K 21.8
230K ~ 235K 18.8
235K ~ 240K 16.8
240K ~ 245K 164
245K ~ 250K 14.0
250K ~ 255K 13.2
255K ~ 260K 11.0
260K ~ 265K 9.2
265K ~ 270K 6.9

270K ~ 4.7

10
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The LUT in Fig. 2 is used throughout the later sections, but it can be further divided with additional inputs. Decrease in
brightness temperature is one of the options, but it is not considered in this study for several reasons. Since clouds move over
time, cloud advection adds uncertainty to the change in brightness temperature if calculated per pixel. In order to measure robust
brightness temperature decrease, the decrease can be calculated per cloud, not per pixel; but in such a case, LH profiles will have
to be assigned for each cloud, and the assigned profile will be inconsistent with the observed cloud top temperature for each
pixel. Therefore, using brightness temperature decrease as additional inputs to the LUT is not included in this study, and it
remains as future study. Instead, each cloud top temperature bin can be further divided according to composite radar reflectivity,
and the additional LUT is presented in Appendix A. Composite reflectivity, if available, can be used to adjust the maximum
intensity of LH profiles as the SLH algorithm adjusts the amplitude by multiplying Ps and Px. Although it is challenging to get the
whole vertical profile of radar reflectivity from GOES-16 data, there are algorithms developed to estimate composite reflectivity
from GOES-16, such as GOES Radar Estimation via Machine Learning to Inform NWP (GREMLIN; Hilburn et al. 2021).
Therefore, this additional LUT can be used along with such an estimator to assign LH profiles in more detail, but it is not further

used in this study.

4 Comparisons of LH profiles between GPR DPR, NEXRAD, and GOES-16 ABI

4.1 A case study on 18 June 2019

LH from three different instruments, GOES-16 ABI, NEXRAD, and GPM DPR are examined for comparison. Methods using
GOES-16 and DPR products are similar in the sense that they use cloud top height or PTH to look for mean profiles in the LUT
created with model simulations, although DPR has additional parameters such as surface rain rate which is used to vary the
magnitude of the heating rate. In contrast, NEXRAD uses an empirical formula to convert radar reflectivity to LH regardless of
PTH. They are all instantaneous heating, but provided in different units. LH from GOES-16 and NEXRAD are in K/s to easily
match with modeled heating rate, while DPR products are in K/hour. Therefore, LH in K/hour from DPR products are converted

to K/s for comparison.

A scene on 18 June 2019 is shown in Fig. 3 to compare how each product determines precipitation type (convective or
stratiform) which is one of the major factors in estimating LH profiles. The regions with reflectivity greater than 28dBZ in Fig.
3a are regions where LH is estimated from NEXRAD reflectivity to be used in HRRR, but not necessarily convective regions.
These regions are larger than convective regions defined by DPR products in Fig. 3c and include some of the stratiform regions
assigned by DPR. Pink regions on top of the visible image at channel 2 (0.65um) in Fig. 3b are convective regions detected by
GOES-16, and represent the smallest regions compared to others. The number of convective grid points from each product after
interpolating into the 3km resolution WRF grid is presented in Table 4 for a quantitative comparison. Even though areal

coverage differs by the methods, locations of convective core matches well between the products.
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Figure 3: A scene on 18 June 2019. (a) NEXRAD composite reflectivity. Only the regions with reflectivity greater than 28dBZ
are shown in colors. Color bar is in dBZ. (b) Convective regions detected by GOES-16 are colored in pink on top of GOES-16
405 visible image at channel 2 (0.65um). (c) Precipitation type defined by CSH. Convective regions are colored in pink while
stratiform regions are colored in navy.
Table 4. Total number of grid points from NEXRAD, GOES-16, and CSH in the red, green, and blue box regions after
interpolating into the same 3km WRF grid.
410
Red Blue
NEXRAD 30 41 35
GOES-16 15 36 23
CSH 34 50 43
415
420
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Clouds in the colored boxes in Fig. 3 are all convective clouds, but in different evolutional stages. Clouds in red, green, and blue
boxes respectively have high, low, and mid-level cloud top temperature. Since the three products have different spatial
resolutions, LH profiles from NEXRAD, GOES-16, and CSH for these clouds are interpolated into the same WRF grid with 3km
resolution for a direct comparison in Figs. 4, 5, and 6. CSH provides LH for both convective and stratiform regions, and thus
different colors of lines in Figs. 4c, 5c, and 6¢c represent different cloud type. Lines with light blue color are LH profiles of
convective grid points in the red box, and while the blue line is the mean of these profiles. Similarly, LH profiles of each
stratiform gird point are in light green, while the mean of these profiles is in dark green. The total mean LH profile is colored in
red. Convective LH profiles from CSH shows heating throughout the vertical layers as expected, except near the surface due to
evaporation at lower levels. LH profiles in stratiform regions show cooling at low levels below a melting level and heating
above. LH profiles from GOES-16 (GOES LH) corresponding to the three convective clouds are shown in Figs. 4b, 5b, and 6b.
Even though mean profiles are assigned from GOES-16 for each convective cloud, a number of different lines are shown in the
figure due to spatial interpolation. When GOES LH and CSH are compared, the mean profile of convective LH from CSH in
blue (Figs. 4c, 5c, and 6c) is similar to GOES LH in blue (Figs. 4b, 5b, and 6b) both in terms of the magnitude and the vertical

shape.

On the other hand, LH from NEXRAD (NEXRAD LH) shows a different vertical profile than GOES LH or CSH, which both
use the LUT consisting of model simulations. GOES LH or CSH peak around the middle of the atmosphere while NEXRAD LH
in the convective core (Figs. 4a, 5a, and 6a) tends to peak at low levels where radar reflectivity is high. At low levels where
model simulations have cooling, NEXRAD LH does not show cooling due to Eq. (2) which is designed to only produce positive
values. This heating at lower levels induces convergence in the lower atmosphere and divergence in the upper atmosphere, and

thus, convection can be effectively initiated from the added heating.

Although their vertical shape is different, the magnitude of the NEXRAD LH is similar to the other products. Overall values of
mean LH profile from NEXRAD in blue are slightly smaller than mean profile of GOES LH or mean convective LH profile from
CSH (blue line), but are closer to the total mean profile of CSH (red line), which indicates that the 28dBZ threshold might
include some stratiform regions as well. A smaller mean of NEXRAD LH is mainly attributed to anvil regions where reflectivity

greater than 28dBZ only exist at few vertical layers and reflectivity is equal to 0dBZ elsewhere.
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Figure 4: LH profiles from (a) NEXRAD, (b) GOES-16, and (c) CSH for the red box region. Light blue lines are each
LH profile for individual convective grid points and the darker blue line is a mean profile of the light blue lines. In
(c), the LH profile for each stratiform grid point is coloered in light green and its mean profile is colored in dark
green. The total mean of LH profiles for CSH is colored in red.
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Figure 5: Same as Fig. 4, but for the green box region.
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Figure 6: Same as Fig. 4, but for the blue box region.

Even though the mean NEXRAD LH is smaller, the total LH for the region can be similar when it is added up over the region
due to broader area determined by the threshold of 28dBZ in Fig. 3a than GOES-16 detection in Fig. 3b. Therefore, the total LH
of each cloud is again compared between the three products (Table 5). “Total LH” is defined here as vertically and horizontally
integrated LH over each convective cloud. The reason why the total LH is used for a comparison is because NEXRAD LH has
such a different vertical structure from GOES LH or CSH LH and such different convective areas, that it is difficult to makes
direct comparison between vertical levels. In addition, comparing combined values will be meaningful as those are the values
that will be used to initiate each convective cloud. Table 5 shows that the total LH from CSH tends to be higher than the other
two products, while the total LH is shown to be similar between NEXRAD and GOES-16, although GOES LH is slightly larger.
Despite the smaller mean of NEXRAD LH that was shown in Figs. 4, 5, and 6, it shows a good agreement with GOES-in total

heating.

Table 5. Total LH (K/s) from NEXRAD, GOES-16, and CSH in the red, green, and blue box regions.

Red Blue

NEXRAD 0.31 1.41 0.68
GOES-16 0.44 1.52 0.89
CSH 0.84 3.18 2.70
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4.2 Three-month analysis against NEXRAD LH

A case study from section 4.1 is presented to show how the vertical structure of GOES LH compares to other radar products. In
this section, three months of data from May, June, and July of 2020 are used to compare total LH for convective clouds between
GOES-16 and NEXRAD. Total LH used in this section is again vertically and horizontally integrated LH over each convective
cloud. Both GOES-16 brightness temperature and NEXRAD reflectivity are resampled to the 3km HRRR grid for a direct
comparison, and are compared under several conditions that the HRRR model uses to avoid disruption in existing model physics
when inserting LH into the model. During the convective initiation step in the HRRR model, LH is calculated form NEXRAD
radar reflectivity following Eq. (2) if the layer: is cloudy, is under the GOES cloud top (using Level 2 Cloud Top Pressure data),
is above the planetary boundary layer, and has a temperature less than 277.15K. Additionally, LH is calculated for temperatures

greater than 277.15K only if the corresponding reflectivity exceeds 28dBZ.

GOES LH is calculated with the same criteria described above, except for the additional 28dBZ categorization. Adjacent
convective grid points by the detection algorithm are clustered to define a convective cloud. In order to minimize errors coming
from different definitions of convection in GOES and NEXRAD, total LH is compared only in clouds where both NEXRAD and
GOES detect convection. Since the area defined as convective cloud tends to be wider in NEXRAD than in GOES-16, and one
convective cloud from NEXRAD tends to include multiple convective cloud systems defined by GOES, the comparison is done
by combining all convective clouds by GOES-16 that overlap with each convective cloud by NEXRAD. Regions with low radar

quality, as indicated by the radar quality flag, are excluded in the analysis.

Among 4045 convective clouds collected from the three-month data, only 2660 convective clouds are within reasonable range of
each other in both GOES-16 and NEXRAD. We define “reasonable range” here as: the number of convective grid points from
GOES-16 does not exceed five times that of NEXRAD and vice versa. Those 2660 clouds are selected, and the total LH from
both GOES-16 and NEXRAD for these clouds is fitted into a linear regression model. Figure 7 shows a scatter plot of NEXRAD
LH and GOES LH for each convective cloud in log-log axes. A decent correlation coefficient of 0.83 is obtained between
NEXRAD LH and GOES LH in Fig. 7. In most cases, high discrepancy in total LH seems to be caused by corresponding
discrepancy in the number of convective grid points, which is inevitable, but overall, total LH values seem to agree well if the

number of convective grid point is similar.
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Figure 7: Scatter plot of NEXRAD total LH and GOES total LH in K/s. It is
plotted in log-log axes.
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5 Impacts of NEXRAD LH and GOES LH on precipitation forecast

The WRF model was run for one convective case on 10 July 2019 to compare impacts of GOES LH and NEXRAD LH on
precipitation forecasts. HRRR data are used as initial and boundary conditions, and the same configuration is used as when
making the LUT. GOES-16 visible data are only available for initialization from 15UTC to 22UTC, so results are compared after
one hour of running freely, from 17UTC to 00UTC. In order to initiate convection as HRRR does with NEXRAD, modeled LH
profiles are replaced with the observed LH profiles every time step for 15 minutes during one hour pre-forecast period. After the
pre-forecast run, the model is run freely for an hour, and after the one-hour free run, the one-hour accumulated rainfall rate
results are compared. One-hour rain accumulation from simulations without using any observed LH (CTL), using NEXRAD LH
(NL), and using GOES LH (GL) are validated against gauge bias corrected quantitative precipitation estimation (QPE; one-hour

accumulation) from MRMS.

Figure 8 shows one simulation where observed LH is applied from 15UTC to 16UTC, after which the model is freely run for an
hour until 17UTC. The CTL run (Fig. 8a) misses many convective regions, and precipitation is markedly less than MRMS
observations in Fig. 8b. Both the NL and GL runs initiated convection in the right place, and enhance precipitation. In the light
green box region where CTL run totally misses convection, NL and GL runs both produce precipitation, although there is an
overestimation in NL run while there is an underestimation of precipitation in the GL run. In the dark green box region where
convection is weak in the CTL run, both NL and GL runs increased precipitation closer to the observation. The NL run correctly
initiates convection in the yellow box region, but not in the red box region, while the GL run correctly initiates convection in the
red box but not in the yellow box.
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Figure 8: One-hour rain accumulation at 17UTC in 10 July 2019 from (a) a simulation without any LH
observation, (b) MRMS gauge corrected quantitative precipitation estimation (QPE), (c) a simulation
using NEXRAD LH, and (d) a simulation using GOES LH.
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These results can be further explained by looking at Fig. 9, which presents maps of vertically integrated NEXRAD LH and
GOES LH that are applied to the model at 16UTC which is the last time that observed LH profiles are applied during the
15UTC-16UTC period. As seen in the enlarged two green box regions in Fig. 9, NEXRAD shows very high total LH (up to
0.35K/s) in a few grid points, and small LH in surrounding area, while most of the GOES LH values in the two green boxes are
at or below 0.2K/s. The reason why there was an overestimation of precipitation in the NL run (Fig. 8c) could be due to this
extremely high NEXRAD LH. Interestingly in the red box region, both NEXRAD and GOES have similar total LH values, but
only the GL run produced precipitation (in Fig. 8d). Lastly, it makes sense that GL run did not initiate convection in the yellow
box region (Fig. 8d) because no LH is applied due to missed convection by the GOES convection detection algorithm (Fig. 9b).
Overall, both NEXRAD LH and GOES LH have positive impacts on the precipitation forecast, and their forecast results appear

to have similar skills.
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Figure 9: Vertically integrated LH at 16UTC in July 10%, 2019 from (a) NEXRAD and (b) GOES-16. Two
green box regions are enlarged for better comparison.

For a quantitative evaluation, Fraction Skill Scores (FSS) are calculated for the eight simulations that added LH for different one-
hour time periods (LH is added for an hour during 15-16UTC, 16-17UTC, ..., 22-23UTC, and FSS are calculated after the one-
hour free run at 17UTC, 18UTC, ..., 0OUTC). FSS is one of the neighborhood-based precipitation verification metrics
introduced by Roberts and Lean, 2008, and it is calculated using Eq. (3).

1 2
NxNyZ [011 lj]

1 Ny 2 Nx Ny 2
NxNyZl 1Z 100 521 850 Pl}]

where Ny and Ny are the number of columns and rows, and O;; and P;; are respectively an observed and model forecast fraction
calculated over a small n x n domain. It calculates a fraction that passed a threshold value over n x n domain, and the fraction
over the small domain is compared rather than individual grid points. In this study, a 15 km x 15 km domain is used to calculate
FSS for the six one-hour accumulated precipitation thresholds of 0.254, 2.54, 6.35, 12.7, 25.4, and 50.8 mm/hour (0.01, 0.1, 0.25,
0.5, 1, and 2 inch/hour).
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Figure 10: Fraction Skill Score (FSS) using thresholds of 0.254, 2.54, 6.35, 12.7, 25.4, and 50.8 mm/hour
(0.01, 0.1, 0.25, 0.5, 1, and 2 inch/hour) for CTL (black), NL (red), GL with Thompson scheme (blue), and
GL with WSM6 scheme (green) runs.

The overall FSS for the eight simulations is shown in Fig. 10. Black, red, blue, and green lines represent CTL, NL, GL with
Thompson scheme, and GL with WSM®6 scheme, respectively. Compared to CTL, both NL and GL runs show significant
improvements in FSS for all thresholds. Although NL run outperforms GL at smaller thresholds, GL run shows better results at
higher thresholds of 25.4 and 50.8 mm/hour. This can be because GOES LH tends to have maximum heating in the middle
atmosphere, which can develop deeper clouds, but further investigation is needed to study sensitivity of different vertical profiles
to precipitation forecast. Additional GL run using different microphysical scheme of WSM6 is provided to briefly show impacts
of using different microphysical scheme. It has less positive impacts, indicating that keeping consistency in microphysical
scheme could be critical. Nonetheless, it shows that LH from GOES-16 presented in this study can be useful for improving

precipitation forecast especially in the regions where ground-based radar data are not available.

6 Conclusions

A method to obtain vertical profiles of LH from GOES-16 ABI data was described. Convective clouds are first detected using
temporal changes in reflectance and Ty, and LH profiles for the detected cloud are found by searching a LUT created using WRF
model simulations. The LUT contains LH profiles of convective clouds that are defined by a threshold of 1.5m/s for the modeled
vertical velocity, and these convective LH profiles are sorted according to Ty, at 11.2um, which is a good indicator of cloud top
height. Mean profiles that represent each Ty bin show good correlation with cloud top temperature, with lower Ty bin having
deeper LH profiles. Precipitation rates corresponding to each bin are also well correlated to Ty. Even though the LUT in Fig. 2
uses one infrared channel to estimate LH profiles, it is actually more than just one brightness value. The GOES-16 convection
detection algorithm uses 10 time steps of channel 2 reflectance and channel 8 and 10 brightness temperature data to find active
convective regions with bubbling cloud top and brightness temperature decrease, and thus the overall algorithm uses more

information than just one brightness temperature value. In addition, LH values in the LUT are well within the range that is
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allowed in HRRR to initiate convection using NEXRAD, which makes it reasonable to use them to initiate convection in the

forecast model.

To investigate how LH from GOES-16 differs from other radar products, LH from GOES-16, NEXRAD, and CSH are compared
in three convective clouds with different cloud top heights. Vertical profiles of convective LH from GOES-16 are very similar to
those from CSH that use model simulations in the LUT. Their vertical profiles show heating throughout the vertical layer except
near the surface where evaporation occurs, and heating peaks around the middle of the atmosphere. This vertical pattern differs
from when using the empirical formulation used with radar reflectivity by HRRR. Vertical profiles of LH from NEXRAD highly
depend on vertical profiles of reflectivity which typically peaks near the surface in convective regions, and thus, maximum LH is
usually observed at lower level, which is not commonly shown in the modeled heating rate.

Even though vertical profiles of LH from the different methods differ, the total LH which is calculated by integrating the
horizontal and vertical LH for each convective cloud is shown to be similar between GOES-16 and NEXRAD. The three-month
analysis shows a good correlation overall between GOES-16 and NEXRAD if the detected convection areas were similar.
Besides the limitation in convection detection by GOES-16, GOES LH estimates can have large errors in case of multi-layer

clouds or clouds with sheared structure, as it is based on the cloud top.

In order to examine impacts of GOES LH in precipitation forecast compared to NEXRAD LH, one case study is presented.
Applying LH derived from GOES-16 was able to correctly initiate convection in the scene, and the simulation result looks
similar to the one applying NEXRAD LH. Although GOES convection detection algorithm is not perfect and misses some
convection, and GOES LH is somewhat restricted to cloud top information, these results prove that LH obtained from GOES-16
have reasonable values, and it can be used to improve precipitation forecasts over the region where ground-based radar data are

not available.

This work is a proof of concept study to show potential of using infrared data in initializing convection, and there are much room
for improvements. The LUT can be improved by adding more input variables such as cloud top cooling rate. In case of using
cloud top cooling rate as inputs, additional wind products will be needed for both model and observation to remove errors
coming from cloud advection. Aside from changing input variables, other microphysical schemes can be tested for the LUT to
compare intensities or vertical structures of the derived LH profiles using different microphysical schemes. In addition, more
investigation will be needed to analyze the impacts of different vertical structure of LH in convective initiation.

20



Appendix A
Additional LUT using composite reflectivity along with cloud top temperature is provided here. This LUTle can be used with
NEXRAD composite reflectivity or other synthetic radar reflectivity simulator that uses GOES-16 data such as GREMLIN. This
LUT includes vertical profiles of mean reflectivity for each cloud top temperature and composite reflectivity bin (Fig. Al) as
720 well as vertical profiles of LH (Fig. A2). Radar reflectivity profiles retrieved using this LUT can be used directly in the model
initialization step as ground-based radar reflectivity profiles are used in the HRRR model, or LH profiles in this LUT can be used
with some maodifications in model initialization step as in this study. Each plot shows mean profiles for each cloud top
temperature bin while different color in the plot represents each composite reflectivity bin. Note that for higher cloud top
temperature bin, high composite reflectivity bins (red or brown lines) are not shown because clouds with warmer cloud top do
725 not show high composite reflectivity, and for lower cloud top temperature bin, low composite reflectivity bin (blue line) is not

shown because deep convective clouds tend to have high composite reflectivity.
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Figure Al: Mean reflectivity profiles for 16 cloud top temperature bins and 7 composite reflectivity bins. Each plot
corresponds to each cloud top temperature bin, and different colors in the plot represent each composite reflectivity bin.
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Figure A2: Mean LH profiles for 16 cloud top temperature bins and 7 composite reflectivity bins. Each plot corresponds to each
cloud top temperature bin, and different colors in the plot represent each composite reflectivity bin.
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