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Abstract. Latent heating (LH) is an important quantity in both weather forecasting and climate analysis, being the essential 

factor driving convective systems. Yet, inferring LH rates from our current observing systems is challenging at best. For climate 

studies, LH has been retrieved from the Precipitation Radar on the Tropical Rainfall Measuring Mission (TRMM) using model 

simulations in the look-up table (LUT) that relates instantaneous radar profiles to corresponding heating profiles. These radars, 10 

first on TRMM and then Global Precipitation Measurement Mission (GPM), provide a continuous record of LH. However, 

temporal resolution is too coarse to have a significant impacts on forecast models. In operational forecast models such as High-

Resolution Rapid Refresh, convection is initiated from LH derived from ground based radar. Despite the high spatial and 

temporal resolution of ground-based radars, one disadvantage of using these sources is that its data are only available over well 

observed land areas. This study develops a method to derive LH from the Geostationary Operational Environmental Satellite-16 15 

(GOES-16) in near-real time. Even though the visible and infrared channels on the Advanced Baseline Imager (ABI) provide 

mostly cloud top information, rapid changes in cloud top visible and infrared properties, when formulated as a LUT similar to 

those used by the TRMM and GPM radars, can equally be used to derive LH profiles for convective regions based on model 

simulations with a convective classification scheme and channel 14 (11.2m) brightness temperatures. Convective regions 

detected by GOES-16 are assigned LH from the LUT, and they are compared with LH from the Next Generation Weather Radar 20 

(NEXRAD) and one of the Dual-frequency Precipitation Radar (DPR) products, the Goddard Convective-Stratiform Heating 

(CSH). LH obtained from GOES-16 show similar magnitude with NEXRAD and CSH, and vertical distribution of LH is also 

very similar with CSH. One month analysis of total LH from convective clouds from GOES-16 and NEXRAD shows good 

correlation between the two products. Finally LH profiles from GOES-16 and NEXRAD are applied to WRF simulations for 

convective initiation and their results are compared to investigate their impacts in precipitation forecasts. Results show that LH 25 

from GOES-16 have similar impacts as NEXRAD, and improves the forecast significantly. 

1 Introduction 

As the spatial resolution of numerical weather prediction models becomes finer, and even operational models are run at 

resolutions of a few kilometers, an effective way to assimilate observation data at this fine resolution has been sought 

(Gustafsson et al., 2018). At a few kilometers resolution, convection can be resolved explicitly (Seity et al., 2011). However, if 30 

the model environment is not favorable for convection, updrafts and clouds will not develop in the right place. In order to 

correctly initiate convection in operational regional models where both accuracy and speed are important, observed latent heating 

(LH) can be added in the model in the data assimilation cycle. LH is not only important to initiate convection, it also contributes 

to the intensification of convection. Adding LH induces lower level convergence and upper level divergence, thereby inducing 

convection, and it has become an important procedure that many operational models use for the initialization of convective 35 

events (Weygandt and Benjamin, 2007; Gustafsson et al., 2018).  
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The National Oceanic and Atmospheric Administration (NOAA)’s operational models, the Rapid Refresh (RAP) and High-

Resolution Rapid Refresh (HRRR), both use observed latent heating to drive convection, but in different ways (Benjamin et al., 

2016). RAP uses digital-filter initialization (Peckham et al., 2016) while HRRR replaces modeled temperature tendency with the 40 

observed LH (Benjamin et al., 2016) from the Next Generation Weather Radar (NEXRAD), which is a ground-based radar 

network over the United States. For this operational purpose, LH data must be available continuously in near-real time. 

Therefore, ground-based radars which have high spatial and temporal resolutions similar to HRRR’s resolution are used to 

calculate LH from NEXRAD reflectivity. While suitable for the HRRR region over the Contiguous United States (CONUS), the 

method is not applicable to regions beyond radar coverage such as the Gulf of Mexico and even some mountainous areas.  45 

 

Satellite data are used to infer climatology of LH over the globe. CloudSat which carries a W-band radar that is sensitive to light 

precipitation but experiences attenuation with heavy precipitation is used to derive LH for shallow precipitating regions (Huaman 

and Schumacher, 2018). Nelson et al., 2016 and Nelson and L’Ecuyer, 2018 created an a priori database using model simulations 

from the Regional Atmospheric Modeling System (RAMS) and used a Bayesian Monte Carlo algorithms to find the most 50 

appropriate LH profiles from the database for shallow convective clouds. For deeper convection, satellites that carry instruments 

with lower frequencies such as Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement Mission 

(GPM) satellites are more appropriate to retrieve LH. The Precipitation Radar (PR) on TRMM was the first meteorological radar 

in space, designed to provide vertical distributions of precipitation over the tropics (Kummerow et al., 1998). From its three-

dimensional hydrometeor observations, vertical profiles of LH have been retrieved. There are several retrieval algorithms using 55 

PR: Goddard Convective-Stratiform heating (CSH; Tao et al., 1993), Spectral Latent Heating (SLH; Shige et al., 2004), 

Hydrometeor heating (HH; Yang and Smith, 1999), and Precipitation Radar Heating algorithm (PRH; Satoh and Noda, 2001). 

Among these algorithms, CSH and SLH are the two most widely used products. Most recent versions of monthly gridded CSH 

and SLH products have spatial resolution of 0.250.25 and 0.50.5 respectively with 80 vertical layers and have been used to 

provide valuable insights on heat budgets and atmospheric dynamics over the tropics (Schumacher et al., 2004; Chan and Nigam, 60 

2009; Zhang et al., 2010; Liu et al., 2015; Huaman and Takahashi, 2016). The CSH and SLH algorithms have improved since 

their first development, and both algorithms are also applied to Dual-frequency Precipitation Radar (DPR) data on GPM, the 

successor of TRMM, to continue the climate record of LH and expand the regions of interest to mid-latitude.  

 

CSH and SLH both rely on a lookup table (LUT) based on cloud resolving model simulations. Inputs that are used to look for LH 65 

profiles in these LUT are different, but their common inputs to the LUT are echo top height and surface rainfall rate as well as 

convective-stratiform flag. Echo top height is important in determining the depth of heating in the vertical, and surface rainfall 

rate is a good indicator for the intensity of maximum heating. Even though the methods use different model simulations to create 

the LUT, and differ in other details, they seem to exhibit similar distributions when they are averaged spatially or temporally 

(Tao et al., 2016).  70 

 

Although these products are considered instantaneous heating, their temporal resolutions are low compared to 15-minute or 

hourly observations available from ground-based radars. The current generation of geostationary observing systems (e.g., GOES-

R, Himawari, GEO-KOMPSAT-2) is required to achieve a comparable sampling rate to ground-based radars. The visible (VIS) 

and infrared (IR) sensor on geostationary satellite, unfortunately, cannot provide as much vertical information as active sensor do 75 

in the presence of thick clouds, but their data contain cloud top information, and rapid refresh provides important information 
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about a cloud’s convective nature. Cloud top information from geostationary data is included when creating cloud analysis 

during data assimilation (Benjamin et al., 2016), and thus LH retrieved based on cloud top temperature, can be useful in the 

forecast model by keeping consistency of retrieved LH with the updated cloud analysis.  

 80 

This study examines if cloud top information from the Geostationary Operational-Environmental Satellite-16 (GOES-16) 

Advanced Baseline Imager (ABI), coupled with convective cloud identification can be sufficient to approximate NEXRAD-

derived LH. Following the lead of spaceborne radar LH algorithms, a LUT is created using model simulations. Once convective 

clouds are determined by using 10 consecutive one-minute ABI data, LH profiles for convective clouds are found in the LUT 

based on cloud top temperature of the convective cloud. Unlike DPR products that are not available continuously, ABI data in 85 

mesoscale sector mode are provided with one-minute interval, and thus LH can be obtained from GOES-16 as frequently as 

NEXRAD, making it possible for initiating convection during the forecast. LH from GOES-16 can be beneficial over the regions 

without radar coverage such as ocean or mountainous regions where beam blockage by terrain degrades the quality of radar data.  

 

Detailed descriptions of CSH and SLH products from GPM satellite and how NEXRAD converts reflectivity to LH are provided, 90 

followed by the retrieval process using GOES-16 ABI. One case study is provided to compare vertical profiles of LH from 

GOES-16 with other radar products, and statistical results using one-month of data are provided to evaluate whether total 

convective heating rates from GOES-16 are comparable to the ones from NEXRAD. Lastly, a Weather Research and Forecasting 

(WRF) simulation using LH from GOES-16 and NEXRAD is presented to compare impacts of LH from the two datasets in 

convective initialization. 95 

2 Existing LH retrieval methods 

2.1 Radiosonde networks 

LH is not an easily measurable quantity as it is almost impossible to single out temperature changes by phase changes from the 

total observed temperature changes. However, heat and moisture budget studies have been conducted using sounding network in 

a field campaigns, and apparent heat sources (Q1) and apparent moisture sinks (Q2) from the budget study can be expressed as a 100 

function of LH (Yanai et al., 1973; Johnson 1984; Demott 1996). It is achieved using a diagnostic heat budget method which is 

first presented by Yanai et al. 1973 (Tao et al., 2006). Over a certain horizontal area, Q1 can be expressed through the equation 

below that includes LH (Tao et al., 2006). 

𝑄1 −𝑄𝑅 = �̅� [−
1

�̅�
(
𝜕�̅�𝑤′𝜃

𝜕𝑧
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− ∇ ∙ 𝑉′𝜃′̅̅ ̅̅ ̅̅ ̅̅ ̅] +

1

𝑐𝑝
[𝐿𝑣(𝑐 − 𝑒) + 𝐿𝑓(𝑓 − 𝑚) + 𝐿𝑠(𝑑 − 𝑠)]                                                        (1) 

where prime denotes deviations from horizontal averages, which is denoted by upper bar. QR is the radiative heating rate,  is 105 

potential temperature,  is non-dimensional pressure,  is air density, cp is specific heat at constant pressure and R is gas constant 

for dry air. Lv, Lf, and Ls represent the latent heats of condensation, freezing, and sublimation while c, e, f, m, d, and s represent 

each microphysical process of condensation, evaporation, freezing, melting, deposition, and sublimation, respectively. The last 

six terms on the right-hand side that include these microphysical processes are LH from phase changes. Since Q1 can be obtained 

using vertical profiles of temperature, moisture, and wind data observed during the field campaign (Tao et al., 2006), the 110 

observed Q1 is used to indirectly validate GPM LH products that are retrieved together with Q1.  
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2.2 CSH and SLH from GPM DPR 

DPR has two operational LH algorithms: CSH and SLH. In the GPM products, LH is provided along with additional variables: 

Q1-QR and Q2 in SLH and Q1-QR-LH, QR, and Q2 in CSH as well as the rain type (Tao et al., 2019). These algorithms were first 

developed for TRMM data, but have been adapted to GPM data. Both algorithms use cloud resolving model simulations to create 115 

a LUT relating hydrometeor profiles to modeled heating rates. Although there is no direct measurement for LH to validate the 

results, retrieved Q1 and Q2 are compared instead with sounding data from various field campaigns through the method 

mentioned in section 2.1. The evolution of these products is well summarized in (Levizzani et al., 2020), but each algorithm is 

briefly explained here. 

 120 

The CSH algorithm was first introduced by Tao et al. 1993. The initial algorithm by Tao et al.1993 used surface rainfall rate and 

amount of stratiform rain as inputs to the LUT, but the LUT has been improved by increasing the number of LH profiles, using 

finer resolution in simulations, and adding new inputs such as echo-top heights and low-level vertical reflectivity gradients (Tao 

et al., 2019). For high-latitude regions observed by the GPM satellite, new LUTs have been created with simulations from NASA 

Unified-Weather Research and Forecasting model which is known to be suitable for high latitude weather system (Levizzani et 125 

al., 2020). Inputs to this new LUT are surface rainfall rate, maximum reflectivity height, freezing level height, echo top height, 

decreasing flag (whether reflectivity values drop by more than 10dBZ toward the surface or not), and maximum reflectivity 

intensity (Tao et al., 2019). 

 

The SLH algorithm is based on Shige et al. 2004 and Shige et al. 2007. For tropical regions, the LUT is created for three 130 

different rain types; convective, shallow stratiform, and anvil (or deep stratiform) clouds. Inputs to the LUT are precipitation top 

height (PTH), precipitation rate at the surface (Ps), precipitation rate at the level that separates upper-level heating and lower-

level heating (Pf) and precipitation at the melting level (Pm). Once non-convective rain is separated into either shallow stratiform 

or anvil, a vertical profile for anvil cloud is chosen based on Pm, and magnitudes of upper level heating and lower level cooling 

are normalized by Pm and (Pm - Ps), respectively. For convective and shallow stratiform clouds, a vertical profile corresponding 135 

to the PTH is chosen, and then upper-level heating and lower-level heating are normalized by Pf and Ps, respectively. For DPR, a 

new LUT is created for mid and higher latitude to account for expanded latitudinal coverage by GPM. For higher latitude 

regions, six precipitation types (convective, shallow stratiform, three types of deep stratiform, and other) instead of three are 

used, and therefore six respective LUTs exist. Inputs to these LUTs are precipitation type, PTH, precipitation bottom height, 

maximum precipitation, and Ps. 140 

 

Figure 1 shows monthly gridded products from these two algorithms over CONUS for July of 2020 at three different heights as 

well as their vertically integrated heating rates. Overall horizontal patterns in the two products look similar, but there is a 

difference in the vertical. At 2km or 5km, CSH tends to show higher heating rate especially over the mid-latitude, while at 10km, 

SLH shows higher heating rates. In addition, SLH tends to have larger cooling rates throughout the layers. If integrated over the 145 

whole vertical layers, CSH tends to show higher heating rates in general. These discrepancies would be attributed to different 

configuration setup such as microphysical scheme used to run simulations for the LUT. The results demonstrate that the vertical 

profiles of LH are highly dependent on the simulations that comprise the LUT as well as different inputs to the LUTs. 

 

 150 
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Figure 1: Monthly gridded LH from CSH at (a) 2km, (c) 5km, (e) 10km, and (g) vertically integrated LH from 

CSH and LH from SLH at (b) 2km, (d) 5km, (f) 10km, and (h) vertically integrated LH from SLH. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Orbital data for these products have finer spatial resolution of 5km, and although results may be interpreted as “instantaneous” 

LH, the temporal resolution is too coarse to have much impacts on regional forecast models that are initialized hourly if not more 

frequently. These scales are consistent with ground-based radar data which is why LH derived from ground-based radar is used 

almost universally.  

2.3 LH from NEXRAD 195 

In the operational HRRR model, LH profiles retrieved using radar reflectivity replace modeled LH profiles so that appropriate 

heating rate can help initiate convection. LH profiles in this case are obtained through a simple empirical formula that converts 

radar reflectivity to LH. In Eq. (2), reflectivity is converted to potential temperature tendency using model pressure field. This 

equation is only applied when radar reflectivity exceeds 28dBZ. The threshold of 28dBZ was chosen based on the effectiveness 

of adding heating from reflectivity in HRRR (Bytheway et al., 2017). 200 

𝑇𝑡𝑒𝑛 =
1000

𝑝

𝑅𝑑/𝑐𝑝𝑑 (𝐿𝑣+𝐿𝑓)𝑄𝑠

𝑛∙𝑐𝑝𝑑
    where 𝑄𝑠 = 1.5 ×

10𝑧/17.8

264083
                    (2) 

           z: grid radar/lightning-proxy reflectivity 

           Tten: temperature tendency 

           p: background pressure (hPa) 

           Rd: specific gas constant for dry air 205 

           cpd: specific heat of dry air at constant pressure 

           Lv: latent heat of vaporization at 0C 

           Lf: latent heat of fusion at 0C 

           n: number of forward integration steps of digital filter initialization 

 210 

Tten in Eq. (2) is produced in K/s to meet the needs during the short-term forecast. Although heating rate is not a general output in 

the forecast model, it is calculated every time step by dividing temperature change from microphysical scheme by time step 

which is usually on the order of few tens of seconds. Therefore, this empirical formula is developed to produce LH consistent 

with the model framework so that LH added does not produce computational instability when ingested. 

3 LH profiles from GOES-16 215 

The current operational geostationary satellite, GOES-16, carries the Advanced Baseline Imager (ABI), an instrument with 16 

VIS and IR channels. Mesoscale sectors, which are manually moved around to observe interesting weather events, provide data 

in one-minute intervals. Such high temporal resolution data have helped observe cloud developments in more detail. Using this 

high temporal resolution ABI data, convective clouds are detected, and LH profiles for the detected clouds are assigned from a 

LUT. The LUT is created running the Weather Research and Forecasting (WRF) model simulations. While CSH and SLH 220 

algorithm look for LH profiles in a model-based LUT according to precipitation type and precipitation top height, the LUT for 

GOES-16 ABI is created for convective clouds that appear bright and bubbling from ABI according to brightness temperature 

(Tb) at channel 14 (11.2m), which is a good indicator of cloud top temperature. LH is not assigned for stratiform clouds from 

GOES-16 as LH from stratiform clouds are not usually used to initiate convection in the forecast model. Once convective clouds 

are detected using temporal changes in reflectance and Tb, LH profile corresponding to the Tb of the detected cloud is assigned 225 

from the LUT.  
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3.1 Definition of convection in model simulations and GOES-16 ABI 

In order to make a LUT for LH profiles of convective clouds, convective grid points need to be defined in the model simulation. 

Convection can be defined in several different ways depending on variables that are available, but the most direct and accurate 

way of defining it would be to use vertical velocity (Zipser and Lutz, 1994; LeMone and Zipser, 1980; Xu and Randall, 2001; 230 

Houze 1997; Steiner et al., 1995; Del genio et al., 2012; Wu et al., 2009). Steiner et al., 1995 and Houze 1997 suggested that 

convective regions tend to have vertical velocity greater than 1 ms-1, and many previous studies that used vertical velocity to 

define convection used a threshold of 1 ms-1 (LeMone and Zipser, 1980; Xu and Randall, 2001; Wu et al., 2009). Similarly, this 

study uses a vertical velocity threshold to define the convective core as it is one of prognostic variables in the model simulations. 

However, in this study, a vertical velocity threshold is defined at a layer that has maximum hydrometeor contents. This is 235 

intended to exclude potentially high values of negative vertical velocity that can occur at high levels in the cloud if evaporative 

cooling is present. 

 

The vertical velocity threshold is chosen by comparing fractions of convective regions from using different thresholds with 

observed convective fractions from using GOES-16 convection detection algorithm so that it best represents convective area 240 

observed from GOES-16. This study uses a convection detecting algorithms for GOES-16 ABI from Lee et al. 2021. It uses 

mesoscale sector data with one-minute interval to detect convective regions from ABI imagery. Two separate detection methods 

are proposed for vertically growing clouds in early stages and mature convective clouds that move rather horizontally once they 

reach the tropopause and often have overshooting tops. A detailed description of the methods can be found in Lee et al. 2021, but 

it is briefly explained here. The method for vertically growing clouds measures Tb decrease over 10 minutes for two water vapor 245 

channels, and if the decrease is greater than the designated threshold (-0.5K/min for channel 8 and -1.0K/min for channel 10), it 

assigns the pixel as convective. For mature convective clouds, the method looks for grid points that have continuously high 

reflectance (reflectance greater than 0.8), low Tb (Tb less than 250K), and lumpy cloud top (horizontal gradient values between 

0.4 and 0.9) over 10 minutes. Lumpiness of the cloud top is calculated using the Sobel operator, which is commonly used for 

edge detection. These thresholds are chosen based on one-month analysis against “PrecipFlag” from the Multi-Radar/Multi-250 

Sensor System (MRMS), which classifies precipitation types combining data from ground-based radar and rain gauge 

observations. Combining the two methods yielded false alarm rates of 14.4% and a probability of detection of 45.3% against the 

ground-based radar product, but 96.4% of the false alarm cases were at least raining. Combining the two methods provides 

results comparable to radar product, and these methods are rather simple and fast. These methods detect any type of convective 

region, and therefore, the analysis is conducted without distinguishing different types of convective clouds. 255 

 

Table 1 shows convective fractions using the GOES-16 convection detecting algorithm and using different vertical velocity 

thresholds in the model outputs. Using higher thresholds can eliminate non-convective grids, but at the same time, it will only 

include the strongest part of convective regions. Using 1.5m/s shows a fractional area closest to the observed fraction, and 

therefore, 1.5m/s is used to define convection in the model output. This number is actually similar to values used in some 260 

previous modeling studies (1m/s in LeMone and Zipser 1980, Xu and Randall 2001, and Wu et al., 2009) and a satellite-based 

study (2-4m/s in Luo et al., 2014).  

 

Table 1. Fraction of convective area in observation and using different vertical velocity thresholds in the model output. 

Observation 1m/s 1.5m/s 2m/s 3m/s 4m/s 

1.34% 1.86% 1.19% 0.86% 0.52% 0.34% 
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 265 

3.2 Model simulations used to create a lookup table 

11 convective cases are simulated using WRF to obtain enough samples to populate each cloud top temperature bin. The 

convective cases are chosen over CONUS within NEXRAD network during May to August in 2017 or 2018. All simulations use 

the same configuration in Table 2 to avoid discrepancy between simulation results. Brightness temperatures (Tbs) at 11.2m are 

calculated using the Community Radiative Transfer Model (CRTM). In each scene, convective grid points are defined by the 270 

threshold found in the previous section (1.5m/s), and LH profiles from the convective grid points with the same channel 14 Tb 

are averaged to produce mean profiles for each Tb bin of the LUT. LH profiles gathered in the LUT are provided in K/s as for 

NEXRAD.  

 

Table 2. Table for WRF simulation setup. 275 

Version WRFv3.9 

Spatial resolution 3km 

Time step 10 seconds 

Microphysical scheme Aerosol-aware Thompson scheme (The original 

scheme is modified to produce vertical profiles 

of LH as outputs) 

Planetary boundary layer Mellor-Yamada Nakanishi Niino (MYNN) 

Level 2.5 and Level 3 schemes 

Land surface model Rapid update cycle (RUC) land surface model 

Long wave and short wave radiation physics Rapid radiative transfer model for general 

circulation models (RRTMG) schemes 

 

3.3 Mean LH profiles according to cloud top temperature 

LH profiles of convective clouds from 11 WRF simulations are collected according to 16 bins of the minimum cloud top 

temperature at 11.2m. The sixteen bins range from below 200K to above 270K with a bin size of 5K. Figure 2 shows mean 

vertical profiles of LH in each bin. All profiles exhibit slightly negative LH near the ground due to evaporation, but positive LH 280 

is shown at most layers. It is also nicely shown in the figure that as the Tb decreases, the profile stretches up in the vertical. 

Interestingly though, the maximum heating rate is not perfectly proportional to Tb. Considering the maximum LH that is allowed 

in HRRR model, which is 0.01K/s, these values seem quite reasonable. Table 3 shows mean surface precipitation rate for each 

bin. Precipitation rate is inversely proportional to Tb in Table 3. This is expected as deeper and higher clouds tend to precipitate 

more. This provides more evidence that mean LH profiles for each bin can reasonably be obtained from GOES-16.  285 
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Table 3. Table of mean precipitation rate for each cloud top temperature bin. 

 Mean precipitation rate (mm/hour) 

~200K 48.3 

200K ~ 205K 42.9 

205K ~ 210K 42.1 

210K ~ 215K 37.9 

215K ~ 220K 33.6 

220K ~ 225K 27.7 

225K ~ 230K 21.8 

230K ~ 235K 18.8 

235K ~ 240K 16.8 

240K ~ 245K 16.4 

245K ~ 250K 14.0 

250K ~ 255K 13.2 

255K ~ 260K 11.0 

260K ~ 265K 9.2 

265K ~ 270K 6.9 

270K ~ 4.7 

 

Figure 2: Mean vertical profiles for each cloud top temperature bin. 

~ 200K
200K ~ 205K
205K ~ 210K
210K ~ 215K
215K ~ 220K
220K ~ 225K
225K ~ 230K
230K ~ 235K
235K ~ 240K
240K ~ 245K
245K ~ 250K
250K ~ 255K
255K ~ 260K
260K ~ 265K
265K ~ 270K
270K ~
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4 Comparisons of LH profiles between GPR DPR, NEXRAD, and GOES-16 ABI 

4.1 A case study on 18 June 2019  315 

LH from three different instruments, GOES-16 ABI, NEXRAD, and GPM DPR are examined for comparison. Methods using 

GOES-16 and DPR products are similar in the sense that they use cloud top height or PTH to look for mean profiles in the LUT 

created with model simulations, although DPR has additional parameters such as surface rain rate which is used to vary the 

magnitude of the heating rate. In contrast, NEXRAD uses an empirical formula to convert radar reflectivity to LH regardless of 

PTH. They are all instantaneous heating, but provided in different units. LH from GOES-16 and NEXRAD are in K/s to easily 320 

match with modeled heating rate, while DPR products are in K/hour. Therefore, LH in K/hour from DPR products are converted 

to K/s for comparison. 

 

A scene on 18 June 2019 is shown in Fig. 3 to compare how each product determines precipitation type (convective or 

stratiform) which is one of the major factors in estimating LH profiles. The regions with reflectivity greater than 28dBZ in Fig. 325 

3a are regions where LH is estimated from NEXRAD reflectivity to be used in HRRR, but not necessarily convective regions. 

These regions are larger than convective regions defined by DPR products in Fig. 3c and include some of the stratiform regions 

assigned by DPR. Pink regions on top of the visible image at channel 2 (0.65m) in Fig. 3b are convective regions detected by 

GOES-16, and represent the smallest regions compared to others. Even though areal coverage differs by the methods, locations 

of convective core matches well between the products. 330 

 

 

 

 

 335 

 

 

 

 

 340 

 

 

 

 

 345 

 

 

 

 

 350 
Figure 3: A scene on 18 June 2019. (a) NEXRAD composite reflectivity. Only the regions with reflectivity greater than 28dBZ 

are shown in colors. Color bar is in dBZ. (b) Convective regions detected by GOES-16 are colored in pink on top of GOES-16 

visible image at channel 2 (0.65m). (c) Precipitation type defined by CSH. Convective regions are colored in pink while 

stratiform regions are colored in navy.  

(a) (b)

(c)
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Clouds in the colored boxes in Fig. 3 are all convective clouds, but in different evolutional stages. Clouds in red, green, and blue 

boxes respectively have high, low, and mid-level cloud top temperature. LH profiles from NEXRAD, GOES-16, and CSH for 

these clouds are interpolated into the same WRF grid with 3km resolution for comparison in Figs. 4, 5, and 6. CSH provides LH 

for both convective and stratiform regions, and thus different colors of lines in Figs. 4c, 5c, and 6c represent different cloud type. 

Lines with light blue color are LH profiles of convective grid points in the red box, and while the blue line is the mean of these 355 

profiles. Similarly, LH profiles of each stratiform gird point are in light green, while the mean of these profiles is in dark green. 

The total mean LH profile is colored in red. Convective LH profiles from CSH shows heating throughout the vertical layers as 

expected, except near the surface due to evaporation at lower levels. LH profiles in stratiform regions show cooling at low levels 

below a melting level and heating above. LH profiles from GOES-16 (GOES LH) corresponding to the three convective clouds 

are shown in Figs. 4b, 5b, and 6b, light blue line being each profile and blue line representing the mean. Even though mean 360 

profiles are assigned from GOES-16 for each convective cloud, a number of different lines are shown in the figure due to spatial 

interpolation. When GOES LH and CSH are compared, the mean profile of convective LH from CSH in blue (Figs. 4c, 5c, and 

6c) is similar to GOES LH in blue (Figs. 4b, 5b, and 6b) both in terms of the magnitude and the vertical shape.  

 

On the other hand, LH from NEXRAD (NEXRAD LH) shows a different vertical profile than GOES LH or CSH which uses the 365 

LUT consisting of model simulations. GOES LH or CSH peak around the middle of the atmosphere while NEXRAD LH in 

convective core (Figs. 4a, 5a, and 6a) tends to peak at low levels where radar reflectivity is high. At low levels where model 

simulations have cooling, NEXRAD LH does not show cooling due to Eq. (2) which is designed to only produce positive values. 

This heating at lower levels can help increase buoyancy in lower atmosphere, and thus, convection can be effectively initiated 

from the added heating.  370 

 

Although their vertical shape is different, the magnitude of the NEXRAD LH is similar to the other products. Overall values of 

mean LH profile from NEXRAD in blue are slightly smaller than mean profile of GOES LH or mean convective LH profile from 

CSH (blue line), but are closer to the total mean profile of CSH (red line), which indicates that 28dBZ threshold might include 

some stratiform regions as well. A smaller mean of NEXRAD LH is mainly attributed to anvil regions where reflectivity greater 375 

than 28dBZ only exist at few vertical layers and 0dBZ elsewhere. 
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 430 

Figure 4: LH profiles from (a) NEXRAD, (b) GOES-16, and (c) CSH for the red box region. Light blue lines are each 

LH profile for convective grid point and blue line is a mean profile of the light blue lines. In (c), each LH profile for 

stratiform grid point is coloered in light green and its mean profile is colored in dark green. The total mean of LH 

profiles for CSH is colored in red.  

Figure 5: Same as Fig. 4, but for the green box region. 

(a) (b) (c)

(a) (b) (c)
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Even though the mean NEXRAD LH is smaller, the total LH for the region can be similar when it is added up over the region 

due to broader area determined by the threshold of 28dBZ in Fig. 3a than GOES-16 detection in Fig. 3b. Therefore, the total LH 450 

of each cloud is again compared between the three products. Figure 7 shows vertical profiles of LH that are horizontally summed 

over each convective cloud, each color representing colors of the three box regions. As mentioned before, the altitude that 

NEXRAD LH peaks is different from the other two products. As seen from the different x-axis used in Fig. 7c, the magnitude of 

total CSH LH is much larger than the other two products, and this is probably because CSH classifies broader convective regions 

than GOES-16 (Fig. 3) but has higher LH values. On the other hand, the magnitude of the total heating from NEXRAD and 455 

GOES-16 is very similar. Finally, the total LH of each region is obtained by summing up the vertical profiles in Fig. 7 and 

presented in Table 4. The total LH is shown to be similar between NEXRAD and GOES-16, although GOES LH is slightly 

larger. Despite the smaller mean of NEXRAD LH that was shown in Figs. 4, 5, and 6, it shows a good agreement in total heating 

between GOES-16 and NEXRAD.  

 460 
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 470 

Figure 6: Same as Fig. 4, but for the blue box region. 

(a) (b) (c)
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Table 4. Total LH (K/s) from NEXRAD, GOES-16, and CSH in the red, green, and blue box regions. 
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 505 

 Red Green Blue 

NEXRAD 0.31 1.41 0.68 

GOES-16 0.44 1.52 0.89 

CSH 0.84 3.18 2.70 

Figure 7: Vertical profiles of the total heating in the boxed regions from (a) NEXRAD, (b) GOES-

16, and (c) CSH. Note that the x-axis of Fig. 7c is different from Figs. 7a and 7b. Different colors 

represent the color of the box region.  

(a) (b) (c)
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4.2 One-month analysis against NEXRAD LH 

A case study from section 4.1 is presented to show how vertical structure of GOES LH differs from other radar products. In this 

section, one-month of data during June of 2017 are used to compare total LH for convective clouds between GOES-16 and 

NEXRAD. Even though the vertical structure is different, its impacts in initiating convection can be similar if the total heating 510 

for each convective cloud is similar. Both GOES-16 brightness temperature and NEXRAD reflectivity are resampled to 3km 

HRRR grid for a direct comparison, and some conditions that are used during convective initiation are applied before the 

comparison to be useful for the real application. NEXRAD radar reflectivity is converted to LH following Eq. (2) if the layer is 

cloudy and under GOES cloud top (using Level 2 Cloud Top Pressure data) and if the layer is above the planetary boundary 

layer. In case of a layer with temperature greater than 277.15K, reflectivity is only converted to LH if the reflectivity is greater 515 

than 28dBZ, while in case of a layer with temperature less than 277.15K, any reflectivity value is converted to LH. These 

conditions are used during the initialization so that added LH does not disrupt existing model physics too much. Likewise, GOES 

LH is also set to 0 if the layer is clear or above GOES cloud top, and if the layer is below the planetary boundary layer. Total LH 

is calculated for each convective cloud from NEXRAD and GOES-16. In the case of NEXRAD, a convective cloud is defined by 

combining adjacent grid points whose composite reflectivity is greater than 28dBZ while in the case of GOES-16, adjacent 520 

convective grid points by the detection algorithm are clustered to define a convective cloud. In order to minimize errors coming 

from different definition of convection in GOES and NEXRAD, total LH is compared only in clouds where both NEXRAD and 

GOES detect convection. Since the area with composite reflectivity exceeding 28dBZ tends to be wider than what GOES-16 

defines convective cloud, total LH for each convective cloud system from NEXRAD is compared with total LH from convective 

cloud systems from GOES detection that overlap with the convective cloud from NEXRAD. Regions with low radar quality, as 525 

indicated by the radar quality flag, are excluded in the analysis. 

 

Using the total of 939 convective clouds collected from the one-month data, the total LH from GOES-16 and NEXRAD are 

fitted into a linear regression model. Figure 8 shows a scatter plot of NEXRAD LH and GOES LH for each convective cloud, 

and the red line is the regression line. A decent correlation coefficient of 0.83 is obtained between NEXRAD LH and GOES LH. 530 

According to the slope and the y-intercept of the regression line (1.01 and 1.35 respectively), GOES-16 tends to overestimate LH 

slightly compared to NEXRAD, which is consistent with the case study result in section 4.1. Around two thirds of the cases show 

overestimation by GOES, and this is probably because convective clouds with bubbling are detected as convective from GOES 

but sometimes they do not precipitate, thus undetected by NEXRAD. Most of cases with high discrepancy seems to be caused by 

differences in convection detection methods, which is inevitable, but overall, total LH values seem to agree well if the detection 535 

was similar. 
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 555 

5 Impacts of NEXRAD LH and GOES LH on precipitation forecast 

The WRF model was run for one convective case in 10 July 2019 to compare impacts of GOES LH on precipitation forecast with 

NEXRAD LH. HRRR data are used as initial and boundary condition, and the same configuration as the one used for making the 

LUT is used. Results are only compared from 17UTC to 00UTC as GOES-16 visible data are available (15UTC to 22UTC) for 

initialization. In order to initiate convection as HRRR does with NEXRAD, observed LH every 15 minute is replaced every time 560 

step for 15 minutes with the modeled LH during one hour pre-forecast period. After the pre-forecast run, the model is run freely 

for an hour, and after the one-hour free run, the one-hour accumulated rainfall rate results are compared. One-hour rain 

accumulation from simulations without using any observed LH (CTL), using NEXRAD LH (NL), and using GOES LH (GL) are 

validated against gauge bias corrected quantitative precipitation estimation (QPE; one-hour accumulation) from MRMS.  

 565 

Figure 9 shows one simulation where observed LH is applied from 15UTC to 16UTC, after which the model is freely run for an 

hour until 17UTC. The CTL run (Fig. 9a) misses many convective regions, and precipitation is markedly less than MRMS 

observations in Fig. 9b. Both the NL and GL runs initiated convection in the right place, and enhance precipitation. In the light 

green box region where CTL run totally misses convection, NL and GL runs both produce precipitation, although there is an 

overestimation in NL run while there is an underestimation of precipitation in the GL run. In the dark green box region where 570 

convection is weak in the CTL run, both NL and GL runs increased precipitation closer to the observation. The NL run correctly 

initiates convection in the yellow box region, but not in red box region, while the GL run correctly initiates convection in the red 

box but not in the yellow box.  

 

 575 

 

 

 

Figure 8: Scatter plot of NEXRAD total LH and GOES total LH in K/s. Red 

line is a regression line that is fitted into the one-month dataset. 
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These results can be further explained by looking at Fig. 10 which presents maps of vertically integrated NEXRAD LH and 605 

GOES LH that are applied to the model at 16UTC which is the last time that observed LH profiles are applied. As seen in the 

enlarged two green box regions in Fig. 10, NEXRAD shows very high total LH (up to 0.35K/s) in few grid points, and small LH 

in surrounding area, while most of GOES LH values in the two green boxes are similar and smaller than 0.2K/s. The reason why 

there was an overestimation in the NL run (Fig. 9c) could be due to this extremely high NEXRAD LH. Interestingly in the red 

box region, both NEXRAD and GOES have similar total LH values, but only the GL run produced precipitation (in Fig. 9d). 610 

Lastly, it makes sense that GL run did not initiate convection in the yellow box region because no heating is applied due to 

missed detection (Fig. 10b). Overall, both NEXRAD LH and GOES LH have positive impacts on the precipitation forecast, and 

their forecast results appear to have similar skills.  

 

 615 

 

 

 

(b)(a)

(c) (d)

Figure 9: One-hour rain accumulation at 17UTC in 10 July 2019 from (a) simulation without any LH 

observation, (b) MRMS gauge corrected quantitative precipitation estimation (QPE), (c) simulation using 

NEXRAD LH, and (d) simulation using GOES LH. 
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For a quantitative evaluation, Fraction Skill Scores (FSS) are calculated for the eight simulations that added LH for different one-

hour time periods (LH is added for an hour during 15-16UTC, 16-17UTC, …, 22-23UTC, and FSS are calculated after the one-635 

hour free run at 17UTC, 18UTC, …, 00UTC). FSS is one of the neighborhood-based precipitation verification metrics 

introduced by Roberts and Lean, 2008, and it is calculated using Eq. (3). 

𝐹𝑆𝑆(𝑛) = 1 −

1

𝑁𝑥𝑁𝑦
∑ ∑ [𝑂𝑖,𝑗−𝑃𝑖,𝑗]

2𝑁𝑦
𝑗=1

𝑁𝑥
𝑖=1

1

𝑁𝑥𝑁𝑦
[∑ ∑ 𝑂𝑖,𝑗

2+∑ ∑ 𝑃𝑖,𝑗
2𝑁𝑦

𝑗=1
𝑁𝑥
𝑖=1

𝑁𝑦
𝑗=1

𝑁𝑥
𝑖=1

]
,                      (3) 

where Nx and Ny are the number of columns and rows, and Oi,j and Pi,j are respectively an observed and model forecast fraction 

calculated over a small n  n domain. It calculates a fraction that passed a threshold value over n  n domain, and the fraction 640 

over the small domain is compared between observation and forecast, rather than comparing the skill at a grid point. In this 

study, a 15 km  15 km domain is used to calculate FSS for the six one-hour accumulated precipitation thresholds of 0.254, 2.54, 

6.35, 12.7, 25.4, and 50.8 mm/hour (0.01, 0.1, 0.25, 0.5, 1, and 2 inch/hour).  

 

 645 

 

 

 

 

 650 

 

 

 

 

 655 

 

Figure 11: Fraction Skill Score (FSS) using thresholds of 0.254, 2.54, 6.35, 12.7, 25.4, and 50.8 mm/hour 

(0.01, 0.1, 0.25, 0.5, 1, and 2 inch/hour) for CTL (black), NL (red), and GL (blue) runs.  

Figure 10: Vertically integrated LH at 16UTC in July 10th, 2019 from (a) NEXRAD and (b) GOES-16. Two 

green box regions are enlarged for better comparison. 

(a) (b)
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The overall FSS for the eight simulations is shown in Fig. 11. Black, red, and blue lines represent CTL, NL, and GL simulations, 

respectively. Compared to CTL, both NL and GL runs show significant improvements in FSS for all thresholds. Although NL 

runs outperform GL at smaller thresholds, GL run shows better results at higher thresholds of 25.4 and 50.8 mm/hour. This is not 

surprising given that light rain is more difficult for GOES to detect. Nonetheless, it shows that LH from GOES-16 presented in 660 

this study can be useful for improving precipitation forecast especially in the regions where ground-based radar data are not 

available.  

 

6 Conclusions 

A method to obtain vertical profiles of LH from GOES-16 ABI data was described. Convective clouds are first detected using 665 

temporal changes in reflectance and Tb, and LH profiles for the detected cloud are found by searching a LUT created using WRF 

model simulations. The LUT contains LH profiles of convective clouds that are defined by a threshold of 1.5m/s for the modeled 

vertical velocity, and these convective LH profiles are sorted according to Tb at 11.2m, which is a good indicator of cloud top 

height. Mean profiles that represent each Tb bin show good correlation with cloud top temperature, with lower Tb bin having 

deeper LH profiles. Precipitation rates corresponding to each bin are also well correlated to Tb. Even though one might think that 670 

this method only uses one infrared channel to estimate LH profiles and that is not enough to determine LH intensity, it is actually 

more than just one brightness value. GOES-16 convection detection algorithm uses 10 time steps of channel 2 reflectance and 

channel 8 and 10 brightness temperature data to find active convective regions with bubbling cloud top and brightness 

temperature decrease, and thus the overall algorithm uses more information than just one brightness temperature value. In 

addition, LH values in the LUT are well within the range that is allowed in HRRR to initiate convection using NEXRAD, which 675 

makes it reasonable to be used to initiate convection in the forecast model.  

 

To investigate how LH from GOES-16 differs from other radar products, LH from GOES-16, NEXRAD, and CSH are compared 

in three convective clouds with different cloud top heights. Vertical profiles of convective LH from GOES-16 are very similar to 

those from CSH that uses model simulations in the LUT. Their vertical profiles show heating throughout the vertical layer except 680 

near the surface where evaporation occurs, and heating peaks around the middle of the atmosphere. This vertical pattern differs 

from when using the empirical formulation used with radar reflectivity by HRRR. Vertical profiles of LH from NEXRAD highly 

depend on vertical profiles of reflectivity which typically peaks near the surface in convective regions, and thus, maximum LH is 

usually observed at lower level, which is not commonly shown in the modeled heating rate.  

 685 

Even though their vertical shape is different, the total LH over convective clouds is shown to be similar. One-month analysis 

shows that GOES-16 tends to slightly overestimate the total LH for each convective cloud over NEXRAD, but overall good 

correlation is obtained between GOES-16 and NEXRAD. Furthermore, in order to examine impacts of GOES LH in 

precipitation forecast compared to NEXRAD LH, one case study is provided. Applying LH derived from GOES-16 was able to 

correctly initiate convection in the scene, and the simulation result looks similar to the one applying NEXRAD LH. Although 690 

GOES convection detection algorithm is not perfect and misses some convection, and GOES LH is somewhat restricted to cloud 

top information, these results prove that LH obtained from GOES-16 have reasonable values, and it can be used to improve 

precipitation forecasts over the region where ground-based radar data are not available. 
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