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Abstract. This article assesses the individual and joint impact of pressure, temperature, and relative humidity on the accuracy

of atmospheric CO2 measurements collected by Unmanned Aerial Systems (UAS) using low-cost commercial Non-Dispersive

Infrared sensors (NDIR). We build upon previous experimental results in the literature and present a new dataset with increased

gradients for each environmental variable to match the abrupt changes found in UAS-based atmospheric vertical profiles. As

a key contribution, we present a low-complexity correction procedure to mitigate the impact of these variables and reduce5

errors in this type of atmospheric CO2 measurement. Our findings support the use of low-cost NDIR sensors for UAS-based

atmospheric CO2 measurements as a complementary in-situ tool for many scientific applications.
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1 Introduction

Over the past two decades, Unmanned Aerial Systems (UAS) have grown as a complementary in-situ observation tool for10

local atmospheric CO2 profiles (Villa et al., 2016). This growth is justified by the relatively low cost of UAS and its ability

to provide atmospheric CO2 measurements with high spatiotemporal resolution (Piedrahita et al., 2014). In a literature survey,

Villa et al. (2016) highlight other motivations, such as in-situ validation of remote instruments, autonomous plume tracking,

and locating hazardous emission sources. In many of these applications, the low-cost aspect of UAS-based solutions is crucial

to the application’s feasibility (Nelson et al., 2019; Cartier, 2019; Kunz et al., 2018; Martin et al., 2017; Mitchell et al., 2016;15

Kiefer et al., 2012; Yasuda et al., 2008; Watai et al., 2006). In addition, the sensor’s size, weight, and power requirements are

also critical to the design of UAS-based solutions (Martin et al., 2017). For these reasons, many UAS-based atmospheric CO2
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measurement systems use commercial low-cost Non-Dispersive Infrared (NDIR) sensors (B. H. de Azevedo, 2020; Kunz et al.,

2018; Martin et al., 2017; Gibson and MacGregor, 2013; Stephens et al., 2011; Yasuda et al., 2008; Pandey and Kim, 2007;

Watai et al., 2006; Chen et al., 2002). However, abrupt changes in pressure, temperature, and relative humidity associated with20

atmospheric vertical profiles can interfere with low-cost NDIR CO2 sensors.

In this article, we review the main concerns regarding the use of commercial low-cost NDIR sensors for atmospheric CO2

measurements found in the literature. We then build upon previous experimental results in the literature by investigating the

impact of each environmental variable on low-cost NDIR CO2 sensors. We also present a new dataset with stronger rates of

change than previously found in the literature. These stronger rates of change are obtained by increasing the span of change25

in the test variables and decreasing experimental time scales. Finally, we evaluate if a set of low-cost and simple benchtop

procedures can be used to characterize and mitigate the impact of these variables on the same sensors. All the experiments in

this article were performed with low-complexity and repeatable methods. These methods used reference gas analyzers, non-gas

specialized environmental chambers, and resources accessible to most researchers. The methods demonstrated were capable

of correcting the measurements of low-cost NDIR sensors to a few ppm of more expensive reference benchtop gas analyzers.30

We believe these low-complexity procedures are a way to lower the entry barriers to this research field while improving the

accuracy of UAS-based CO2 measurements.

1.1 Background and Motivation

Many low-cost NDIR CO2 sensors are available on the international market (Tab. S1, in the supplement, lists a few examples

with some basic specifications). Besides the attractive low cost, most of these sensors are also lightweight and have low35

power requirements. However, as shown in Tab. S1, the errors reported by their manufacturers are larger than what might be

measured as the maximum concentration variation when performing an atmospheric vertical profile. To mitigate this accuracy

issue, some researchers investigated methods to characterize and correct them in post-processing (Ashraf et al., 2018; Martin

et al., 2017; Gaynullin et al., 2016; Yasuda et al., 2012; Mizoguchi and Ohtani, 2005). In some cases, accuracy was improved

from ±30 ppm to ±1.9 ppm (Martin et al., 2017). However, according to Kunz et al. (2018), the improvements achieved by40

Martin et al. (2017); Piedrahita et al. (2014); Yasuda et al. (2012); Mizoguchi and Ohtani (2005) are not applicable to UAS-

based sampling due to the stronger rates of change in pressure, temperature, and relative humidity associated with UAS-based

atmospheric profiles. Recent publications, such as Arzoumanian et al. (2019), partially address these concerns by increasing

the variation range of the test variables. However, these newer results may also not be valid for UAS-based applications due

to their longer time scales. Results from Arzoumanian et al. (2019); Martin et al. (2017); Piedrahita et al. (2014); Yasuda45

et al. (2012); Mizoguchi and Ohtani (2005) were obtained for experiments done in months, weeks, and days. The changes in

pressure, temperature, and relative humidity associated with UAS atmospheric profiles occur in the time scales of minutes.

In their work, Martin et al. (2017) present a comparison between a sequential method to correct the impacts of pressure,

temperature, and humidity versus a joint correction method using multivariate linear regression. This provides some insight

into the impact of each variable on low-cost NDIR CO2 sensors. However, important questions for UAS-based measurements50

remain unanswered. For example, is the 0.1 ppm improvement in RMSE for temperature corrections (sequential method) a
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factor of the small impact of temperature on NDIR CO2 sensors or a factor of the small range of temperatures tested? Was the

impact of temperature obfuscated by the larger impact of pressure? Even though a realistic method to mitigate the impact of

environmental variables on low-cost NDIR CO2 sensors for UAS-based measurements should account for the joint variation

of pressure, temperature, and relative humidity, understanding the isolated behavior of each variable is important to inform the55

design of UAS-based sensor packages. This knowledge can help system developers address some of these measurement issues

during the sensor package design phase (e.g., heat shielding), thus reducing issues to be corrected in post-processing.

Another motivation for isolating the impacts of each of these three variables is the study of the impact of relative humidity.

Many low-cost systems for atmospheric CO2 measurements rely on desiccants to eliminate errors induced by variations in

relative humidity. Therefore, there are few correction methods for this variable in the literature. Understanding the impact60

of this variable is crucial for UAS-based applications due to the design impacts in aircraft size, weight, and power, from

the addition of a desiccant compartment. Desiccants need to be replaced periodically. Thus, their placement choice on the

aircraft is limited by their accessibility requirement. Furthermore, a desiccant container creates an additional air-volume in the

measurement system, which can impact the spatiotemporal resolution of UAS-based systems. Finally, using of desiccants in

UAS-based applications implies on the use of pumps to actively control the system’s airflow. The use of pumps increases the65

total system weight and power requirements when compared to ram-air solutions.

Finally, any system used to support long-term research or forecast operations should also account for temporal drift and

sensor decay. In the case of UAS-based applications, this decay may happen in short periods due to the intense exposure to

the elements and the amount of dust collected during aircraft take-off and landing. Sensor decay periods vary with application

and require a case-by-case length determination. Therefore, another concern regarding the adoption of the correction methods70

currently available in the literature is their complexity. Most of the correction methods for low-cost NDIR CO2 sensors avail-

able in the literature rely on periodic recalibration using a traceable gas canister. These can be done either through complex

laboratory setups or day-long field calibrations using ambient pressure and temperature variations. Although there is no ques-

tion that traceable gas canisters provide the most precise means of calibration and correction, this method is not practical for

UAS-based field applications. Certainly, a UAS-based measurement system can be calibrated in a laboratory before and after75

a field campaign. Nevertheless, for field operations involving multiple flights per day over multiple days, a low-complexity

method using a reference gas analyzer may be beneficial for field calibrations.

In this study, we attempt to address some of the abovementioned concerns. First, we test a low-complexity method using

a reference gas analyzer on a chamber setup to study the isolated impacts of pressure, temperature, and relative humidity on

low-cost NDIR CO2 sensors. Then, we evaluate a low-cost benchtop setup to characterize and correct the impact of these80

variables on the same sensors. For all of these experiments, we attempt to increase the test range for each variable and reduce

the experiment time scales. More details on each experiment and their results are shown in sections 2, 3, and 4.
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2 Methodology

As mentioned previously, the strong rates of changes in pressure (P ), temperature (T ), and relative humidity (RH) associated

with UAS-based atmospheric measurements can interfere with low-cost NDIR CO2 sensors. For a given test variable, these85

rates of change are determined by the number of units changed per time interval (e.g., ∆P/∆t, ∆T/∆t, and ∆RH/∆t, where

t is the time). In this study we are interested in variations between 10 and 45 ◦C, 5 and 95 %RH, and 60,000 and 101,325 Pa2

that occur in time intervals from 10 to 120 minutes. We have chosen these intervals based on the performance limitations of

most of the commercially available low-cost UAS and the sampling pattern recommendations for UAS-based measurements

found in the literature (Houston and Keeler, 2018; Hemingway et al., 2017). We are aware there is interest in UAS-based90

sampling of atmospheric CO2 outside of these intervals. However, as they may fall outside the capabilities of low-cost NDIR

CO2 sensors and low-cost UAS, they are not the focus of this study.

Besides the desire to characterize and mitigate the impact of pressure, temperature, and relative humidity on low-cost NDIR

CO2 sensors, this study is also focused on performing this task via a low-complexity method that would be accessible to a larger

portion of the scientific community and industry. Therefore, the experiments in this study were performed via comparison95

to a calibrated reference gas analyzer. This strategy eliminates the need for traceable gas canisters and their plumbing and

chamber-sealing requirements while increasing the number of potential instruments to produce the desired changes in pressure,

temperature, and relative humidity. Nonetheless, it is important to note that this strategy is limited to producing results relative

to the reference gas analyzer. It is also important to note that the selected reference gas analyzer must be independent of changes

in the test variables within the test range. More details about this requirement and other limitations of this method can be found100

in sections 2.2, 3, and 4.

The experiments in this article were organized into two parts. The first part is a collection of experiments done in the

environmental chambers of the Oklahoma Mesonet’s calibration laboratory. These experiments provide a baseline of the impact

of each variable on low-cost NDIR CO2 sensors and an initial evaluation of the correction methods based on a reference gas

analyzer. The second part is a collection of low-cost benchtop experiments performed to evaluate if a method using a reference105

gas analyzer and limited resources can be developed for field calibrations. A complete list of experiments can be found on

Tab. S3 (see supplement). The following subsections detail the selection process of the low-cost NDIR CO2 test sensors and

the characteristics of the selected reference sensors.

2.1 Test Sensors

Due to the large number of low-cost NDIR-based CO2 sensors available and the unfeasibility of evaluating all of them, we110

searched the literature for model comparison studies and the rate of adoption of each model. We used this methodology to select

a model that would represent the current state of the art for low-cost UAS-based atmospheric CO2 sampling. In a comparison

study, Yasuda et al. (2012) evaluated five different models and concluded that the Senseair K30 NDIR CO2 sensor offered the

2This pressure interval may seem large for low-cost commercially available UAS. However, these pressures are commonly experienced for UAS flights at

elevated locations. For example, flights near Boulder, Colorado (Barbieri et al., 2019)
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best combination of cost, weight, and accuracy among the models considered. A similar result was found by Al-Hajjaji et al.

(2017), who compared five other sensors to the K30.115

The adoption of the K30 for UAS-based measurements was compared to the adoption of other models by their use in

the reviewed literature, and the adoption of these sensor models in the literature was evaluated through a search on the

GoogleScholar™ database. This search followed the method from the literature review on UAS-based gas sampling by Villa

et al. (2016). The list of search terms and resulting analysis can be found in Tab. S2. The analysis suggests that the K30 is more

prevalent in the literature than the other models tested by Yasuda et al. (2012) and Al-Hajjaji et al. (2017). For these reasons,120

all experiments in this article were performed with the Senseair K30 NDIR CO2 sensor.

Neither the Senseair K30 nor the other low-cost NDIR CO2 sensors evaluated by Yasuda et al. (2012) and Al-Hajjaji et al.

(2017) were designed for UAS-based deployment. Their optical chambers assume a natural air exchange with the environment

over a long period (minutes to hours). This design characteristic creates an artificially slow time-response. To mitigate this

issue, some manufacturers offer optional airflow intakes for the sensors (e.g., CO2Meter’s pump cap for the K30), and some125

researchers design custom sensor housings to control airflow and integrate the sensors into the aircraft. These custom sensor

housings, such as the ones shown in B. H. de Azevedo (2020), can improve the sensor time response from 30 s to approximately

1 s (under 0.5 Ls−1 flow). However, it is important to note that spatiotemporal results from systems using this technique

are averaged and assume some degree of spatiotemporal homogeneity. Furthermore, sensor housings can directly impact the

propagation of changes in temperature and relative humidity from the environment to the sensors.130

Even though the impacts of sensor housing design are not within the scope of this study, the evaluation of a method to

mitigate environmental variables on UAS-based measurements that did not consider the requirements of UAS-based sensor

deployment would not be complete. For this reason, we collocated test sensors in different housing configurations whenever

the chamber space allowed for. In total, we used three housing configurations. The first housing configuration is a simple box

of approximately 200 mL that houses two K30 units and an IST HYT-2713 temperature and humidity sensor. The second135

configuration is similar to the first but has its volume reduced to only expose the optical chambers of the two K30 and the

HYT-271 sensor to the controlled airflow. Its volume is approximately 8 mL. Both configurations use a 0.5 Ls−1 diaphragm

pump to control the airflow in and out of the housing. Details for the shape and design of both sensor housings can be found

in B. H. de Azevedo (2020). The third and final configuration has two exposed K30 sensors without any sensor housing, and it

serves as a control.140

This strategy was adopted to increase the confidence in the results obtained and evaluate considerations found in the literature

regarding the need for distinct correction coefficients for each sensor unit. Finally, it is important to note that all results and

analyses in this article considered only the CO2 concentration values reported by each sensor unit. In other words, each unit was

assumed to be immutable from its factory-performed calibration. Therefore, no attempts were made to analyze and correct the

light absorption signals within the K30. Instead, each sensor unit was evaluated and corrected as a “black-box”. This method145

was adopted to evaluate if these sensors could produce satisfactory results only with post-processing techniques.

3https://www.ist-ag.com/en/products/humidity-module-hyt-271-pluggable-sil-contacts
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2.2 Reference Sensors

The reference gas analyzers used in this study were the LI-COR LI-840A and LI-820. These gas analyzers served as a control

for the experiments because they are also light-based sensors, but they use sample conditioning and auxiliary sensors to elim-

inate interference from pressure, temperature, and humidity. Both sensors heat the sampled air to 50 ◦C before measuring its150

CO2 concentration. Therefore, the temperature variations tested in this study do not affect their measurements. Both sensors

measure the pressure inside their optical chambers and use algorithms for active compensation. However, only the LI-840A

measures H20 (mmol/mol) for algorithmic compensation. For this reason, the LI-840A was used as the comparison reference,

placed inside the test volumes with the test sensors (when the designed experiment allowed for it), and the LI-820 monitored

the ambient near the experiment for potential variations in the experimental conditions.155

Monitoring the ambient conditions near the experiments is important for this comparative study because the unsealed cham-

bers and benchtop setups used can be affected by external increases in CO2. These chambers and benchtop-setups take ambient

air and condition it to create the desired test conditions (e.g., heating the air). Due to this experimental limitation, we reduced

external sources of CO2 and monitored the ambient conditions near the test chambers to ensure that pressure, temperature,

relative humidity, and CO2 did not change significantly during the experiments. This article’s supplement shows the ambi-160

ent conditions for all experiments in this study and two comparison experiments between the test and reference sensors (see

Fig. S4). More details on specific experimental setups are given in sections 3 and 4.

3 Chamber Experiments

To investigate the impact of pressure, temperature, and relative humidity on low-cost NDIR CO2 sensors and evaluate the

correction method based on a reference gas analyzer, we performed five chambered experiments at the Oklahoma Mesonet165

Calibration Laboratory. The environmental chambers of the Oklahoma Mesonet Calibration Laboratory are not specialized

for gas experiments and present many similarities to other environmental chambers found in other universities and research

laboratories. The two chambers used for these experiments were the Thunder Scientific 2500 and the Cincinnati Sub-Zero Z16.

This particular Z16 was outfitted with a custom gasket-based vacuum and compression system, developed by the laboratory’s

manager, David L. Grimsley. A description of the Oklahoma Mesonet and its facilities can be found in McPherson et al. (2007).170

3.1 Pressure

The pressure dependence experiment performed at the Oklahoma Mesonet Calibration Laboratory used the Cincinnati Sub-

Zero Z16 chamber and its custom gasket-based vacuum and compression system. This system produced a pressure variation

from 105,000 to 60,000 Pa, in 1,000 Pa increments, at 25 ◦C. Each pressure change was followed by a two-minute dwell

period. Even though the Cincinnati Sub-Zero Z16 chamber can control temperature and humidity, its controlled conditions are175

not reflected inside the custom pressure system. This occurs because the Thompson vacuum and compression pumps on the

Mesonet’s custom pressure system use air from outside the controlled chamber. Therefore, in this experiment, the temperature
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control is limited to the impacts caused by keeping the entire Mesonet custom pressure system at the chamber’s temperature.

This setup also does not allow for any active control of relative humidity. This characteristic also means that changes in CO2

concentration near the chamber could affect the experiment. This type of contamination can create effects that obfuscate the180

effects of pressure. To mitigate this problem, we reduced the experiment’s duration to the pressure system’s limits and used the

LI-840A to monitor potential contaminations and validate the experimental conditions.

Although the LI-840A pressure compensation range is specified within 15,000 and 115,000 Pa, we chose not to connect

this reference sensor to the pressure system based on a consultation with an LI-COR engineer. In this consultation, we were

informed that the compensation algorithm could fail for large pressure changes in short intervals. To avoid any problems, the185

reference sensor was placed adjacent to the intake and exhaust nozzles of the vacuum and compression pumps (as shown in

Fig. 1). This placement still allowed us to monitor the parameters of the air used by the pressure system to produce the changes

on the test sensor. The metrics for the experimental conditions can be seen on Tab. S10. In this experiment, it was only possible

to deploy the K30 sensors using the first housing configuration (200 mL box, see section 2.1 for more details). This limitation

was created by the connection requirements of the Mesonet custom pressure system.190

Z16 Chamber

CO2  
Reference 

Sensor

Airflow 
(OUT)

Airflow 
(IN)

Compression 
Pump

Vacuum 
Pump

CO2 

Test 
Sensors

Reference 
Pressure

Figure 1. Diagram for the Pressure Chamber Experiment. Two test sensors were placed inside the chamber, and a reference sensor was

placed outside to indicate possible contamination and monitor the experimental conditions.

As can be seen on Tab. S10, the HYT-271 sensor inside the K30 sensor housing reported standard deviations of 0.98 %RH

for relative humidity and 0.03 ◦C for temperature. This indicates that the majority of the 230 ppm change, seen in Fig. 2, in

both test sensors was caused by the 45,000 Pa change in pressure. This result is impressive considering that the air used by the

pumps to produce these pressures showed only a 2.55 ppm standard deviation for CO2 during the same period.
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Chamber Pressure Experiment 1
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Figure 2. Time-series data for the Pressure Chamber Experiment. The solid black curve represents the pressure inside the chamber. The

yellow curves represent the CO2 values reported by the test sensors. The dashed blue curve represents the CO2 values reported by the

reference sensor.

3.1.1 CO2 Pressure Correction195

Within the NDIR sensor literature, the article by Gaynullin et al. (2016) offers an excellent description of the determination of

the pressure correction coefficients for the Senseair K30 NDIR CO2 sensor. According to the authors, the CO2 concentration

reported by the sensors can be corrected by the following equation,

PPMcorrected =
PPMmeasured

k1 ∗ (P −P0)3 + k2 ∗ (P −P0)2 + k3 ∗ (P −P0) + k4
, (1)

where the coefficients k1 through k4 need to be determined for each sensor unit, and P0 is 101,325 Pa. In their article, Gaynullin200

et al. (2016) report a maximum deviation between the corrected and true value between 2 and 4 ppm. However, their results

were obtained using a complex multilayered chamber that pressurized a reference gas. Unfortunately, such an experimental

setup is not practical for low-cost UAS-based applications. In this section, we evaluate the feasibility of determining the

pressure correction coefficients using the CO2 values measured by the reference gas analyzer. We assume the low variability in

pressure, temperature, and humidity found in a short-duration experiment mimics the controlled conditions found in Gaynullin205

et al. (2016). Our results for this first evaluation can be found in Fig. 3 and Tab. 1.

Over the span of 45,000 Pa, the maximum absolute errors (MxAE) reported by the test sensors were 8.7 and 8 ppm, and the

root mean squared errors (RMSE) were 2.15 and 1.91 ppm. These are considerable improvements over the original 233.9 and

239.65 MxAE and the 140.09 and 143.75 RMSE. Nonetheless, it is important to highlight that these results are not absolute.

They are relative to the values reported by the reference gas analyzer. Unfortunately, the test sensors were damaged after this210
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Chamber Pressure Experiment 1 (Corrected)
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Figure 3. Time-series data for the Pressure Chamber Experiment after the application of the correction method. The solid black curve

represents the pressure inside the chamber. The yellow curves represent the CO2 values reported by the test sensors. The dashed blue curve

represents the CO2 values reported by the reference sensor.

Table 1. Coefficients from the pressure correction method and root mean square errors for the test sensors relative to the reference sensor,

before and after the correction.

Sensor k1 k2 k3 k4 R2
RMSE

Before After

K30_11 -2.3291e-16 4.1525e-12 1.2380e-05 1.0648 0.9995 140.09 2.15

K30_12 -3.4693e-16 2.8776e-12 1.2778e-05 1.0706 0.9996 143.75 1.91

experiment and a second validation run was not possible. However, the results for four other cases using this method on the

low-cost bench setup are reported in section 4.1.

3.2 Temperature

The temperature dependence experiment performed at the Oklahoma Mesonet Calibration Laboratory used the Thunder Sci-

entific 2500 chamber to produce a temperature variation from 10 to 40 ◦C, in ten-degree increments, at a constant 45 %RH. In215

this experiment, the temperature is slowly raised from 10 to 40 ◦C in approximately 210-minutes, then reduced back to 10 ◦C

in approximately 90-minutes. The operational limits of the chamber defined these time intervals. Nonetheless, this experiment

setup allows us to acquire many samples for each temperature and produces conditions that match UAS flight conditions in the

final 90-minutes.
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The Thunder Scientific 2500 chamber uses a three-chamber system where air from the laboratory is taken and conditioned220

to the desired set points in the first two inner chambers and then inserted into the test chamber. Besides the potential for

external interference through the chamber’s air intake, the chamber’s test volume also has a cable port that is only partially

closed. To counter this external potential external interference, the chamber constantly corrects small changes in temperature

and relative humidity, but it offers no control over pressure. For our experiments, besides any pressure-induced changes in the

reported CO2, actual concentration changes in the laboratory taken in by the chamber can also obfuscate the impacts of the test225

variables. To mitigate potential contamination, we reduced the experiment’s duration to the chamber’s operational limits and

performed our experiments overnight when there were no people in the laboratory. To validate the experimental conditions,

we adopted a strategy similar to the one used for the pressure experiment. However, in this case, the LI-840A reference sensor

(Ref) was colocated with the test sensors inside the chamber, and the LI-820 (Ref_Lab) was placed near the chamber’s air

intake to monitor the experimental conditions. Fig. 4 illustrates this sensor arrangement.230

Chamber

CO2  
Reference 

Sensor

CO2  
Reference 

Sensor 
(Laboratory)CO2 

Test 
Sensors

Figure 4. Diagram for the sensor placement during the temperature and relative humidity experiments at the Oklahoma Mesonet Calibration

Laboratory. Six test sensors were placed inside the chamber with a reference sensor, and another reference sensor was placed outside to

detect possible contamination.

In this experiment, we used six K30 test sensors, organized in three pairs, following the three sensor housing configurations

detailed in section 2.1. The sensors labeled K30_13 and _14 (Test System 1) are in the third configuration (without sensor

housing) and serve as a control. As can be seen on Tab. S11, the HYT-271 sensors inside the K30 sensor housings for Test

Systems 2 and 3 reported standard deviations of 1.3 and 1.51 %RH. The pressure sensors for all three test systems reported an

average standard deviation of 135 Pa. During the same period, the reference sensor inside the chamber showed a 4.02 ppm235

standard deviation for CO2. This leads us to believe that the majority of the 36 ppm change seen in five of the six test sensors

(Fig. 5) was caused by the 30 ◦C change in temperature.
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Chamber Temperature Experiment 
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Figure 5. Time-series data for the chambered temperature experiment. The solid black curve represents the temperature inside the chamber.

The yellow, green, and red curves represent the CO2 values reported by the test sensors. The dashed blue curve represents the CO2 values

reported by the reference sensor.

3.2.1 CO2 Temperature Correction

Many of the authors cited in section 1.1 employ a linear regression to correct the impacts of temperature on low-cost NDIR CO2

sensors. However, the fast reduction from 40 to. 10 ◦C in our experiments produced some variations in the CO2 values reported240

by the test sensors that were better captured by a cubic fitting (similar to the one presented in section 3.1.1, with T0 = 15 ◦C).

This cubic-like behavior could be a function of small variations in the other variables (e.g., pressure and CO2), given that our

simplified setup does not actively control them. However, the small scale of the variations in pressure and CO2 during the

experiment lead us to suspect other sources (e.g., a temperature time response effect). Unfortunately, our experimental setup

does not allow us to investigate this variation further. Table 2 shows the coefficients and the R-squared for the fitting, and the245

RMSE relative to the reference sensor, before and after the correction. Figure 6 shows the time series for the corrected test

sensors.

After we determined the coefficients for each sensor, we also used them to correct the data obtained by another run of the

same experiment (a test run). This independent test allows us to better evaluate the method’s performance. The plots and tables

with the data for the test run of the chambered temperature experiment can be found in this article’s supplement (S11 through250

S14). The RMSE for the test run can be found here in Tab.2. These two experiments demonstrate satisfactory error reductions

for all sensors except for K30_31. This sensor did not seem to respond to temperature in the same manner as the other five

test sensors. Evaluating the behavior of the K30_32, which was placed in the same sensor housing as the K30_31 and behaved

similarly to all other sensors, we can eliminate any housing-induced effects. Furthermore, the temperature and relative humidity
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Chamber Temperature Experiment  (Corrected)
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Figure 6. Time-series data for the chambered temperature experiment after the application of the correction method. The solid black curve

represents the temperature inside the chamber. The yellow, green, and red curves represent the CO2 values reported by the test sensors. The

dashed blue curve represents the CO2 values reported by the reference sensor.

Table 2. Coefficients for the temperature correction method. The RMSE values are relative to the reference sensor inside the test volume.

Sensor k1 k2 k3 k4 R2

RMSE

Learn Test

Before After Before After

K30_13 -2.7197e-06 0.0002 0.0023 1.0814 0.9873 15.77 1.12 - -

K30_14 -2.3352e-06 0.0002 0.0018 1.1381 0.9738 14.83 1.69 - -

K30_21 6.6562e-07 2.1862e-05 0.0048 0.8204 0.9823 23.99 2.38 20.84 4.09

K30_22 -5.9848e-06 0.0002 0.0043 1.0170 0.9887 19.26 3.91 19.28 3.25

K30_31 2.0487e-07 -1.4397 0.0008 1.2151 0.2949 4.3 2.99 5.87 4.79

K30_32 -7.8179e-07 6.3524e-05 0.0038 0.8544 0.9554 20.24 2.88 17.96 2.88

recorded by this test system’s internal HYT-271 followed the chamber’s state. Therefore, we have to consider the K30_31 as255

an outlier for these experiments.

3.3 Relative Humidity

The chambered relative humidity experiment was also performed on the Thunder Scientific 2500 chamber with the same sensor

arrangement described in section 3.2. The two runs for this relative humidity experiment were performed immediately after

each temperature experiment run. This strategy allowed us to use the contamination mitigation techniques in a stable laboratory260
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environment. In this experiment, the chamber produced a relative humidity (RH) variation from 15 to 85 %RH at a constant

25 ◦C. In the first 75 minutes, the RH was raised from 15 to 85 %RH and then reduced back to 15 %RH over a 13 minutes

interval. Again, these time intervals were defined based on the chamber’s operational limitations. For the duration of this

experiment, the HYT-271 sensors inside the K30 sensor housings for Test Systems 2 and 3 reported standard deviations of 0.43

and 0.31 ◦C for temperature, and all three test systems reported an average standard deviation of 94.5 Pa. This indicates that265

the average 16 ppm increase across the six test sensors was caused by the 70 %RH change in relative humidity (Fig. 7).

Chamber Rel. Humidity Experiment 
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Figure 7. Time-series data for the chambered relative humidity experiment. The solid black curve represents the relative humidity inside the

chamber. The yellow, green, and red curves represent the CO2 values reported by the test sensors. The dashed blue curve represents the CO2

values reported by the reference sensor.

3.3.1 CO2 Relative Humidity Correction

As mentioned in section 1.1, there are few methods in the literature to correct the impact of humidity on low-cost NDIR CO2

sensors. Most of the methods found adopt a simple linear regression correction, but for the reasons mentioned in section 3.2.1,

we also adopted a cubic fitting (see section 3.1.1) for our correction. In this case, with RH0 = 36%. We believe the 70 %RH270

change in 13 minutes is considerably stronger than any other experiments shown in the literature. Thus, more prone to reveal

effects not seen before. Table 3 shows each test sensor’s coefficients, the R-squared for the cubic fitting, and the RMSE relative

to the reference sensor. Figure 8 shows the results of this correction method.

To better evaluate the method’s performance, we repeated the experiment and applied the previously determined correction

coefficients to it. This independent test mimics how the method would be applied to correct field data. The plots and tables with275

the data for the other chambered relative humidity experiment run, the test run, can be found in this article’s supplement (S15

through S17). The RMSE for the test run can be found here in Tab. 3. These two experiments demonstrate satisfactory error
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Figure 8. Time-series data for the chambered relative humidity experiment after applying the correction method. The solid black curve

represents the relative humidity inside the chamber. The yellow, green, and red curves represent the CO2 values reported by the test sensors.

The dashed blue curve represents the CO2 values reported by the reference sensor.

Table 3. Coefficients from the relative humidity correction method. The RMSE values are relative to the reference sensor inside the test

volume.

Sensor k1 k2 k3 k4 R2

RMSE

Learn Test

Before After Before After

K30_13 8.1074e-08 -4.6056e-06 0.0008 1.1071 0.9180 9.02 1.31 - -

K30_14 1.200e-07 -7.4641e-06 0.0011 1.1559 0.9262 12.37 1.62 - -

K30_21 2.0367e-07 -4.5196e-06 0.0009 0.8858 0.9819 8.09 0.66 9.73 2.38

K30_22 5.2379e-07 -2.5196e-06 0.0009 1.0617 0.9848 8.82 0.58 10.91 2.52

K30_31 9.6294e-08 -5.9337e-06 0.0011 1.2191 0.9864 9.72 0.63 5.36 4.81

K30_32 1.4859e-07 -4.9691e-06 0.0007 0.9179 0.9681 8.07 0.85 16.14 9.58

reductions for all sensors except for the sensors in Test System 3 (K30_31 and K30_32) during the test run. Further evaluating

these results, we noted that the method overcorrected these two sensors on the test run. This overcorrection can be explained

by the difference in the range of %RH effectively transferred inside the sensor housing between the two experiments. In the280

first run of the experiment, when the coefficients were determined (“learn” case), the minimum and maximum %RH inside

the housing of TS_3 were 12.15 and 68.8 %RH. During the second run, when the coefficients were tested, the minimum and

maximum %RH inside the housing were 14.53 and 74.41 %RH.
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Even though this particular result may point to potentially negative effects of the sensor housings, we highlight that all

four housed sensors outperformed the unhoused (control sensors) in the first run (see Tab. 3). Similar errors, caused by slight285

differences in experimental conditions between the “learn” and “test” cases, were also seen in the development of the bench-

top pressure experiments. This error can be mitigated by increasing the number of “learn” cases presented to the coefficient

determination algorithm. This strategy creates an averaged set of coefficients for a particular sensor unit that is more robust.

3.4 Joint Correction

In their work, Martin et al. (2017) present a comparison between a sequential and joint method to correct the impacts of290

pressure, temperature, and humidity. The sequential method corrects each variable independently in a predetermined order,

and the joint method uses multivariate linear regression to correct all variables at once. Their results indicate that the joint

method was only 0.27 ppm (on average) better than the sequential method. This slight difference between the two methods

should allow researchers to choose the method that is better suited for their experimental setup. For example, in our setup,

the pressure experiments were performed in a different chamber than our temperature and relative humidity experiments.295

Therefore, the correction coefficients were determined based on different datasets. In this section, we offer an example of a

hybrid method where the coefficients for temperature and humidity were determined together, and the pressure coefficients

were determined separately. We then demonstrate the joint correction of all three variables on a test case.

Even though the pressure correction method was tested on sensors K30_11, K30_12, K30_21, and K30_22, in this example,

we only present the results for Test System 2, with test sensors K30_21 and K30_22 because sensors K30_11 and K30_12 were300

damaged after the chambered pressure experiments (see Sec. 3.1). The pressure correction coefficients were not determined

for the other test sensors used in this study because of the Mesonet pressure system’s custom connection requirement (see Sec.

3.1), and the benchtop pressure chamber’s size limitation (see Sec. 4.1) and radio frequency shielding requirement (see Sec.

5). Therefore, we test our assumption of the equivalence between the sequential and joint methods in Martin et al. (2017) using

the pressure correction coefficients determined in section 4.1 and a new cubic fitting of the joint variation of temperature and305

relative humidity obtained from the data shown in section 3.2. This hybrid set of coefficients requires the data to be corrected

for pressure first and then jointly corrected for temperature and relative humidity.

The coefficients, R2, and RMSE for the pressure correction step used here can be seen in section 4.1. This article’s sup-

plement shows the ten coefficients for the joint temperature and relative humidity cubic fitting (Tab. S18). The cubic fitting’s

R2 for sensors K30_21 and K30_22 were 0.9869 and 0.9855. The dataset for the test of the hybrid method presented changes310

of 378 Pa, 30.51 ◦C, and 34.76 %RH. During the same period, the reference gas analyzer presented a change in CO2 of

10.54 ppm. Table 4 and figure 9 show the results for this test. As mentioned above, this test was performed in a hybrid format.

The first step, pressure correction, only accounted for an average improvement in the RMSE relative to the reference sensor of

0.64 ppm. The second step, joint correction of temperature and relative humidity, produced an average improvement in RMSE

of 26.76 ppm across both sensors. The final RMSEs of 1.73 and 3.15 ppm support our assumption.315
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Figure 9. Time-series data for the joint correction test for pressure, temperature, and relative humidity. The solid black curve represents the

experimental conditions for the test. The red CO2 curves represent the test system and its sensors, the dashed curves represent original data,

and the solid curves represent the corrected data. The other solid red curves represent the conditions for the test system and its sensors. The

dashed blue curve represents the CO2 and validation conditions for the reference sensor.

Table 4. Root mean square error relative to the reference sensor. Step 1 represents the pressure correction, and step 2 represents the joint

temperature and relative humidity correction after the pressure correction.

Sensor
RMSE

Original Step 1 Step 2

K30_21 30.66 30.07 1.73

K30_22 29.02 28.33 3.15
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4 Benchtop Experiments

Many UAS-based atmospheric CO2 applications involve multiple flights per day over multiple days. In these intense operational

periods, the exposure to the elements and the dust collected during take-off and landing may greatly impact sensor decay

and temporal drift. Given the uncertainties regarding the decay period for each sensor unit, it is recommended to perform

system calibration and correction coefficient determination procedures as often as operationally possible. This recommendation320

is particularly important for systems supporting long-term research. Unfortunately, most of the procedures available in the

literature are not practical for many UAS-based field applications. In this section, we evaluate a series of low-cost benchtop

setups to characterize and correct the impact of pressure, temperature, and relative humidity on low-cost NDIR CO2 sensors.

4.1 Pressure

The experimental setup for this low-cost procedure (illustrated in Fig. 10) consists of a BACO Engineering 5-Gallon Vacuum325

Chamber Kit, available at multiple retailers for USD189.99, and the LI-840A gas analyzer. In this setup, the gas analyzer

provides the reference CO2 values for the experiment’s initial state. Then, the chamber is closed and isolated from the external

environment. Finally, the chamber is depressurized until the top of the emulated UAS flight is reached. The pressure changes

are produced by a microcontroller turning the system’s pump “ON” for 2 seconds and then “OFF” for 1.5 minutes. This method

uses the ambient CO2 concentration, pressure, temperature, and relative humidity as its initial state. Therefore, it also requires330

the ambient monitoring strategies detailed throughout section 3.

Besides the ambient monitoring strategies, the benchtop version of the coefficient determination method described in section

3.1 also requires multiple runs of the experiment to achieve a robust result. This is necessary due to the small variations in the

test range created by using the ambient conditions as an initial state. If only a small sample is used to determine the coefficients,

these small variations in the test range can bias the coefficients. In this section, we demonstrate an example of this technique.335

We used two “learning” cases to generate data points for the cubic fitting (shown in 3.1.1) and then evaluated the performance

of the correction on two “test” cases.

Since each test case is performed with two test sensors, the method was evaluated four different times. The use of only two

test sensors (one test system) was determined by the size of the BACO Engineering 5-Gallon Vacuum Chamber Kit. Still, the

variations in experimental conditions between all four cases provide insight into the method’s repeatability. Nevertheless, it is340

important to note that the initial pressures in all tests are lower than sea level pressure. This occurs because the experiments

were performed in Oklahoma (approximately 360 m above sea level). All cases emulate a UAS-based atmospheric CO2 vertical

profile, where there is a dwell period (in this case, 1.5 minutes) to ensure samples from the previous altitude are discarded from

the system after a change in altitude. The pressure range tested emulates a flight to the average height of the top of the

Atmospheric Boundary Layer in Oklahoma. The results for all four cases can be seen in Fig. 11 and Tab. 5, where the time-345

series data for the reference, original, and corrected concentrations (for both test sensors) are plotted together for comparison.

The results demonstrate how the low-cost coefficient determination method successfully produced errors smaller than 2.5 ppm
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Figure 10. Diagram for the benchtop pressure correction experiment. Chamber and sensors stabilize to environment conditions (pre-

experiment). Then, the chamber’s isolation maintains the initial CO2 values while pressure changes.

in all four cases. These results are even more impressive considering the data represents emulated flights up to 5,200 ft above

ground level in Oklahoma or 6,500 ft above sea level, performed in less than 30 minutes.

Pressure Correction Results

16:24 16:28 16:32 16:36 16:40 16:44 16:48
Sep 28, 2021   

80000

85000

90000

95000

Pr
es

su
re

 [
Pa

]

360

380

400

420

440

460
Learn Case 1

17:20 17:24 17:28 17:32 17:36 17:40 17:44
Sep 28, 2021   

80000

85000

90000

95000

360

380

400

420

440

460

C
ar

bo
n 

D
io

xi
de

 [
pp

m
]

Learn Case 2

18:12 18:16 18:20 18:24 18:28 18:32 18:36

Time (UTC) Sep 28, 2021   

80000

85000

90000

95000

Pr
es

su
re

 [
Pa

]

360

380

400

420

440

460
Test Case 1

23:08 23:12 23:16 23:20 23:24 23:28 23:32

Time (UTC) Sep 24, 2021   

80000

85000

90000

95000

360

380

400

420

440

460

C
ar

bo
n 

D
io

xi
de

 [
pp

m
]

Test Case 2

Pressure Ref K30_21 K30_22

Figure 11. Dataset for development and validation of the pressure correction coefficient determination method. The first row data was used

to determine the coefficients for each test sensor, and the second row data was used to evaluate the performance of the coefficients. The

solid black curve represents the pressure inside the chamber. The red curves represent the CO2 values reported by test sensors (dashed lines

represent the original data, and the solid lines represent the corrected data).
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Table 5. Coefficients from the benchtop pressure correction method.

Sensor k1 k2 k3 k4 R2
RMSE

Learn 1 Learn 2 Test 1 Test 2

K30_21 -3.6254e-12 -1.5353e-07 0.0027 22.3675 0.9952 1.6650 1.7060 1.6818 2.4470

K30_22 -1.7450e-12 -6.3144e-08 0.0040 26.2825 0.9992 0.9588 0.8368 2.3899 1.0270

4.1.1 Time Response to Pressure350

While analyzing the data for the pressure correction experiment, a delay in CO2 concentration change due to pressure change

was noticed. While time response to pressure, temperature, and relative humidity should have its own dedicated study, we

elected to add to this article a small experiment to illustrate the time response to pressure due to its impacts being independent

of sensor housing design. Another reason to add a small commentary here is to at least create awareness of its potential impact

since no mention of such an effect was found in all the literature reviewed for this article. In this experiment, we used the355

BACO Engineering 5-Gallon Vacuum Chamber Kit to produce examples of impulses, steps, and stairs. These three distinct

patterns of pressure variation are shown in Fig. 12.

Analyzing the four cases presented in Fig. 12, we noticed the effects of the time response to pressure had two components.

There is a constant delay that causes a time shift (illustrated in case 2) and an exponential delay similar to an e-folding effect.

Because the pressure chamber is completely isolated from the external environment, once closed, we can conclude that the time360

response to pressure is independent of the effects of the sensor’s time response to actual changes in CO2. This time response to

pressure can introduce errors when performing pressure corrections on low-cost NDIR CO2 sensors because fitting algorithms

would map multiple distinct CO2 values to a single pressure value. There are two strategies to mitigate this problem.

The first strategy is to discard CO2 samples near pressure changes. This strategy is fairly common when post-processing

data from UAS-based gas sampling that uses any sensor housing and controlled airflow. In these cases, removing samples near365

pressure changes is necessary because the plumbing and housing add a memory to the system. In other words, air samples from

one pressure/altitude are transported by the UAS to another pressure/altitude before the samples complete their course through

the plumbing and housing. Perhaps this common practice of discarding CO2 samples near pressure changes is why this effect

does not appear in the literature.

The second strategy is to correct the time-response induced errors before correcting the pressure-induced errors. Since no370

mentions of this error were found in the reviewed literature, no correction methods were found either. Therefore, we attempted

to correct this error using known techniques for other atmospheric sensors, following the time response modeling from Houston

and Keeler (2018) and Miloshevich et al. (2004). We used the steps and stairs (cases 3 and 4) to calculate an averaged constant

(τ ) for the exponential correction and the peak distances of the impulses (cases 1 and 2) for the averaged shift.

To evaluate the performance of this correction method, we created an artificial signal to represent the ideal response to375

pressure. This artificial signal represents what the sensor response to pressure should have been without the pressure time-
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Figure 12. Development data for investigation of the pressure time-response. Cases 2 and 4 highlight the time shift and exponential delay.

The solid black series represents the pressure inside the chamber for all plots. The two red series represent the CO2 values reported by the

test sensors.

response error. In this artificial signal, the pressure-induced error is instantaneously reflected on the sensor output. Such a

signal would minimize (or not produce) the mapping of multiple distinct CO2 values to a single pressure value during the

curve fitting algorithm for the pressure correction method. Therefore, this artificial signal represents the benchmark for a

pressure time-response correction method. The artificial signal representing the ideal response to pressure was created using the380

timestamps of the pressure changes and the average CO2 concentration for each pressure level. This average CO2 concentration

was obtained for each pressure level after all exponential delays. The results of our correction attempt are shown in Fig. 13.

Our proposed correction method improved the mean absolute error (MAE) for both sensor units, when compared to the

artificial signal. MAE for Sensor 1 improved from 0.9806 to 0.6633 ppm, and Sensor 2 improved from 0.8702 to 0.5940 ppm.

The improvements are even more expressive when we analyze the maximum absolute error (MxAE). Sensor 1 improved from385

MxAE = 12.965 to 5.3024 ppm and Sensor 2 improved fromMxAE = 11.533 to 4.4393 ppm. The experiment was repeated

on another test case with similar results (see supplement S19).

Although the results presented here indicate the feasibility of a repeatable method to correct pressure time-response errors

on low-cost NDIR CO2 sensors, we highlight again our intention to only create awareness of this potential source of error. As

mentioned above, the time response to pressure, temperature, and relative humidity should have its dedicated study. Despite390

improving MAE and MxAE, our proposed correction still presented errors. Most notably during the period from 18:26 to
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18:32, highlighted on the time series for Sensor 2 (Fig. 13). For those whom this time response is an issue, we recommend

repeating these experiments on a better quality chamber, one capable of producing smaller and better-defined pressure changes,

or adopting the first mitigation strategy presented in this section.

Pressure Time Response Correction Test Case 1
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Figure 13. Correction Results for Test Case 1 for the sensor’s time response to pressure changes. The solid black curve represents the pressure

inside the chamber. The red and green curves represent the test sensor’s original and corrected CO2 values.

4.2 Temperature and Relative Humidity395

In this section, we investigate four low-cost benchtop setups to characterize and correct the impact of temperature and relative

humidity on low-cost NDIR CO2 sensors. For these experiments, we are considering the combined effects of temperature

and relative humidity due to the difficulty of isolating them in a benchtop setting. As mentioned in section 4, the goal is

to devise practical methods for field calibrations. In all four experiments, the test sensors were compared to a reference gas

analyzer (LI-840A or LI-820), and the thermodynamic sensor package for UAS measurements described in B. H. de Azevedo400

(2020) was used to monitor the experimental conditions. This thermodynamic sensor package consists of three IMET glass

bead thermistors and three IST HYT-271 hygrometers. In the cases where the test sensors used sensor housing, the HYT-271

hygrometer inside the sensor housing was used to compare the experiment’s temperature and relative humidity to the values

inside the housing. For more information on the test sensor configuration and housings used, refer to section 2.1.

The first benchtop setup tested was a large plastic container with an electric heater and a water spray. Inside the container405

were the UAS thermodynamic sensor package, a medium mixing fan, and the reference and test sensors. In this setup, the

container (open lid) was placed near an open window and two large fans. After the temperature, relative humidity, and CO2

levels were stable, an experiment operator partially closed the lid and activated either the heater or the water spray. Our initial

assessment indicates that the large fans were not able to mitigate the impact of the CO2 produced by the proximity of the
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operator and the test sensors. To mitigate the impacts of the operator, we also attempted to reduce the experiment’s duration410

and intensify the test variable stimulus, similar to the pressure impulse shown in Fig. 12. In this short duration format, the UAS

thermodynamic sensor package registered the short stimulus (for temperature and relative humidity). However, the same was

not confirmed by the HYT-271 sensors inside the K30 housings, and the CO2 test sensors did not produce a coherent response.

Even though the UAS thermodynamic sensor package and the pump intake for the reference and test sensors were placed a few

centimeters apart, the approximately 68 L (18 gal) of the container may have been too large for the short stimulus to produce a415

relevant change inside the K30 sensor housings. An example of the results produced by this setup can be seen in this article’s

supplement (Fig. S20).

A B C D

EFG

Figure 14. Benchtop experiments to characterize and mitigate the impacts of pressure, temperature, and relative humidity on low-cost NDIR

sensors. Panel A shows the Baco Engineering pressure chamber. The remaining panels represent the second (B and C), third (D and E), and

fourth (F and G) benchtop temperature and relative humidity experimental setups.

In the second benchtop setup tested, we removed the large plastic container and allowed the room with the reference and

test sensors to stabilize to constant levels of pressure, temperature, relative humidity, and CO2. With a long extension cord,

we allowed the electric heater to simultaneously warm-up in a separate room. Then we moved the electric heater to the test420

room and placed it immediately in front of the reference and test sensors. In this experiment (panels B and C in Fig. 14), we

colocated all six test sensors in all three test configurations (see Sec. 2.1). An example of the results produced by this setup can

be seen in this article’s supplement (Fig. S21). Again, the HYT-271 sensors inside the housed test systems did not indicate the

same temperature and relative humidity changes as the UAS thermodynamic sensor package. Nonetheless, the behavior of the

housed test sensors was similar to the unhoused sensors (except for the sensor noise caused by temperature on the unhoused425

test sensor K30_13).

The third benchtop setup tested used a small plastic container (approx. 12 L). Inside the container were the UAS thermody-

namic sensor package, the test sensors, and a small mixing fan. Due to the container size, we could only use four test sensors
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Figure 15. Results for the third benchtop setup tested. The top panel shows the reported CO2 values for all sensors, the following panels

show the experimental conditions (pressure, temperature, and relative humidity) for the reference and test systems.

in this setup, and the reference sensor had to be placed outside the plastic container. To maintain reference colocation, we

used a plumbing port to allow the reference sensor to sample air from inside the container (panels F and G in Fig. 14). At the430

beginning of the experiment, the container’s lid was open, and all the sensors were allowed to stabilize to the room levels of

pressure, temperature, and relative humidity. Then, the container lid was closed, and an electric heater was turned on. After

five minutes, the heater was turned off, and the lid was opened. All four test sensors (both housed and unhoused) responded to

the increase in temperature. However, the reference also presented a slight increase in CO2 for the same period. An example of

the results produced by this setup can be seen in Fig. 15.435

The fourth and final benchtop setup tested used the same arrangement from the previous setup, with the heater being replaced

with a glass for boiling water (panels D and E in Fig. 14). Again, the container’s lid was open, and all the sensors were allowed

to stabilize to the room levels of pressure, temperature, and relative humidity. Then, the boiling water was added to the glass,
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Figure 16. Results for the fourth benchtop setup tested. The top panel shows the reported CO2 values for all sensors. The following panels

show the experimental conditions (pressure, temperature, and relative humidity) for the reference and test systems.

and the container’s lid was closed. After eight minutes, the lid was opened. This setup’s results can be seen in Fig. 16. All four

test sensors (both housed and unhoused) responded to the increase in temperature and relative humidity, while the reference440

sensor did not indicate a change in CO2.

The results from experiment setups three and four are encouraging. However, repeated executions of both showed some

variation on how much and how fast the test sensors reflected the chamber conditions. Also, potential contamination from

the experiment’s operator opening and closing the container lid make it less consistent. Therefore, we limit the analyses of

these results to indicate only that a low-cost, low-complexity method can be developed for field calibrations of low-cost NDIR445

CO2 sensors. A broader discussion of the general considerations for testing low-cost NDIR CO2 sensors is presented in the

following section.
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5 Discussion

In this article, we presented many different chambered and benchtop low-complexity experiments in hopes of exploring the

behavior of low-cost NDIR CO2 sensors under the strong rates of changes in pressure, temperature, and relative humidity450

commonly associated with UAS-based measurements. In our total time working with these sensors, we noticed some charac-

teristics worth highlighting in this section. The first characteristic worth discussing is the sensor’s construction. The Senseair

K30 and all other low-cost NDIR CO2 sensors commercially available were not designed for UAS-based applications. Many

of them were designed for indoor, medical, and industrial applications. This design assumes a natural air exchange with the en-

vironment over a long period (minutes to hours). Therefore, their optical chambers offer little control over the air entering and455

exiting the chamber. This long and uncertain permeation period directly impacts the spatiotemporal resolution of UAS-based

measurements with these sensors. To mitigate this permeation issue, some researchers and manufacturers adopt fans or custom

airflow solutions with diaphragm pumps (e.g., CO2Meter’s pump cap for the K30).

Even though we did not study the impacts of airflow control solutions on the sensors and their responses to pressure,

temperature, and relative humidity, the difference in results between the chambered and benchtop experiments indicates a460

possible impact. Within the scope of our study, the main impact noticed was the failure to generate impulse-like responses

on the test sensors with some setups of the benchtop experiments. For example, by comparing the temperature experiments

for the chambered and benchtop setups one, two, and three, we can identify cases where the airflow control solution may

have isolated the CO2 test sensors from the external temperature stimulus. During the chambered and benchtop (setup three)

experiments, the test sensors, sensor housing, and pump were exposed to the temperature stimulus. The CO2 test sensors465

presented the expected temperature-induced errors in these two cases. However, during the benchtop experiments for setups

one and two, where only the airflow control solution’s intake was exposed to the temperature stimulus, the CO2 test sensors did

not present the expected temperature-induced errors. The test conditions for these experiments were validated by comparison

with unhoused sensors and comparison of the temperature sensors inside and outside the sensor housings (more details in

sections 3.2 through 4.2). Similar errors in temperature and relative humidity probes associated with filters and airflow have470

been reported in the literature (e.g., Richardson et al., 1998). This potential impact of the airflow control solution limited our

analyses of the experiments to the cases where temperature and relative humidity changes occurred in intervals between 5 and

10 minutes, and the entire test system was immersed in the test conditions. We do not consider this limitation a problem for

UAS-based applications using these low-cost NDIR CO2 sensors because of the slower flight speeds already required to match

the system’s CO2 time-response and allow oversampling techniques necessary to improve their accuracy.475

Another interesting effect noticed during the study was the impact of radio frequency on the sensor’s reported values. To keep

the chamber and benchtop arrangements as simple as possible, we avoided using complementary computers to log the data from

the sensors. Instead, we used the sensors in their flight package format, completely independent from external resources. This

choice reduced the complexities of running power and data cables to the chambers and benchtop setups. This choice also better

reflected how the sensors were expected to behave and provide data during flights. The GPS and flight telemetry modules used480

to time-position stamp the CO2 data and transmit it, in near real-time, to the ground-station computer produce electromagnetic
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interference (EMI) on the K30 sensors. This EMI generates oscillations of the reported CO2 values in the order of hundreds of

ppm. Even though this effect can be mitigated with proper grounding and by adding EMI tape to the sensor’s airflow control

housing, this effect impacted our ability to colocate sensors in some experimental setups. This was particularly impactful for

the unhoused control sensors inside the BACO Engineering benchtop pressure chamber and the small plastic container for485

the benchtop temperature and relative humidity experiments. A video of this EMI effect is provided in this article’s video

supplement section.

Finally, it is important to highlight that the low-complexity methods shown in this study are very sensitive to changes in

background CO2. This sensitivity comes from using reference gas analyzers as the true CO2 values. This use of an external

reference implies the constant comparison of the values reported by the test sensors and the reference gas analyzer. However, the490

sensitivity to CO2 changes of these two different categories of sensors differs considerably. Therefore, obfuscating the impacts

of the environmental test variable. Thus, any repetition of the methods shown in this article requires an environment with small

to no changes in CO2 conditions. As mentioned previously, these conditions can be achieved by isolating the environment and

reducing the experiment’s duration.

6 Conclusions495

In this article, we reviewed the main concerns regarding the use of commercial low-cost NDIR sensors for atmospheric CO2

measurements found in the literature. We then built upon experimental results in the literature by investigating the isolated

impact of pressure, temperature, and relative humidity under emulated UAS flight conditions. We presented a new dataset with

stronger rates of change than previously found in the literature and a low-complexity method using a reference gas analyzer.

This low-complexity method successfully produced error correction algorithms for each studied variable within a few ppm of500

the more expensive reference sensors. Even though we were not able to successfully demonstrate the low-cost benchtop setups

to characterize and mitigate the impact of these variables on the same sensors, this article provides important insights for the

future development of these setups. We believe these low-complexity procedures are a way to lower the entry barriers to this

research field while improving the accuracy of UAS-based CO2 measurements through frequent recalibration.

Another important contribution of this study is to raise awareness around other issues associated with UAS-specific deploy-505

ment of low-cost NDIR CO2 sensors, in particular the potential impacts of these sensors’ time response to pressure, tempera-

ture, and relative humidity. We strongly believe these issues should have their own dedicated study. We also recommend the

investigation of the impact of custom airflow control solutions on the propagation of temperature through the measurement

system.

We also note that the statements from Gaynullin et al. (2016) regarding the need for a distinct set of correction coefficients for510

each sensor were verified in this study. This requirement is also supported by Martin et al. (2017), who found that a generalized

set of coefficients could make the accuracy worse than when uncorrected.

In our concluding remarks, we emphasize the importance of sensor placement, sensor housing design, and airflow control for

successful UAS-based measurements. Furthermore, the characterization of UAS-based systems should consider the potential
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contamination introduced by the aircraft and its mode of operation (e.g., vertical profile, transects, hover, and other flight515

patterns). Finally, any system used to support long-term research or forecast operations should also account for temporal drift

and sensor decay.

Video supplement. https://doi.org/10.5446/58195
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