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Abstract. When making measurements of air quality, having a reliable estimate of the measurement uncertainty 13 

is key to assessing the information content that an instrument is capable of providing, and thus its usefulness in a 14 

particular application. This is especially important given the widespread emergence of Low Cost Sensors (LCS) 15 

to measure air quality. To do this, end users need to clearly identify the data requirements a priori and design 16 

quantifiable success criteria by which to judge the data. All measurements suffer from errors, with the degree to 17 

which these impact the accuracy of the final data often determined by our ability to identify and correct for them. 18 

The advent of LCS has provided a challenge in that many error sources show high spatial and temporal variability, 19 

making laboratory derived corrections difficult. Characterising LCS performance thus currently depends primarily 20 

on colocation studies with reference instruments, which are very expensive and do not offer a definitive solution 21 

but rather a glimpse of LCS performance in specific conditions over a limited period of time. Despite the 22 

limitations, colocation studies do provide useful information on measurement device error structure, but the results 23 

are non-trivial to interpret and often difficult to extrapolate to future device performance. A problem that obscures 24 

much of the information content of these colocation performance assessments is the exacerbated use of global 25 

performance metrics (R2, RMSE, MAE, etc.). Colocation studies are complex and time-consuming, and it is easy 26 

to fall into the temptation to only use these metrics when trying to define the most appropriate sensor technology 27 

to subsequently use. But the use of these metrics can be limited, and even misleading, restricting our understanding 28 

of the error structure and therefore the measurements’ information content. In this work, the nature of common 29 

air pollution measurement errors is investigated, and the implications these have on traditional metrics and other 30 

empirical, potentially more insightful, approaches to assess measurement performance. With this insight we 31 

demonstrate the impact these errors can have on measurements, using a selection of LCS deployed alongside 32 

reference measurements as part of the QUANT project, and discuss the implications this has on device end-use. 33 
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 34 

1. Introduction 35 

The measurement of air pollutants is central to our ability to both devise and assess the effectiveness of policies 36 

to improve air quality and reduce human exposure (Molina & Molina, 2004). The emergence of low-cost sensor 37 

(LCS) based technologies means a growing number of measurement devices are now available for this purpose 38 

(Morawska et al., 2018), ranging from small low-cost devices that can be carried on an individual's person all the 39 

way through to large, expensive reference and research-grade instrumentation. A key question that needs to be 40 

asked when choosing a particular measurement technology is whether the data provided is fit for purpose 41 

(Andrewes et al., 2021; Lewis & Edwards, 2016). In order to answer this, the user must first clearly define the 42 

question that is to be asked of the data, and thus the information required. For example, a measurement to 43 

characterize “rush hour” concentrations, or to determine if the concentration of a pollutant exceeded an 8 h average 44 

legal threshold value at a particular location would demand a very different set of data requirements than a 45 

measurement to determine if a change in policy had modified the average pollutant concentration trend in a 46 

neighbourhood. Considerations such as measurement time resolution and ability to capture spatial variability 47 

would be important for such examples (Feinberg et al., 2019). Would the R2 or RMSE or any other global single-48 

value metric be enough to decide between the different device’s options? Considerations such as the origin of the 49 

performance data, type of experiment (laboratory or colocation) (Jiao et al., 2016), the test location (Feenstra et 50 

al., 2019) and period (i.e. duration, season, etc.), the LCS and reference measurement method (Giordano et al., 51 

2021), measurement time resolution and ability to capture spatial variability (Feinberg et al., 2019) would be 52 

important factors to consider for such examples. The measurement uncertainty is also of critical consideration, as 53 

this ultimately determines the information content of the data, and hence how it can be used (Tian et al., 2016). 54 

All measurements have an associated uncertainty, and even in highly controlled laboratory assessments, the true 55 

value is not known, with any measurement error defined relative to our best estimate of the range of possible true 56 

values. However, quantifying and representing error and uncertainty is a challenge for a wide range of analytical 57 

fields, and often what these concepts represent is not the same to all practitioners. This results in a spectrum of 58 

definitions that take into account the way truth, error, and uncertainty are conceived (Grégis, 2019; Kirkham et 59 

al., 2018; Mari et al., 2021). For atmospheric measurements assessing uncertainty is complex and non-trivial. 60 

Firstly, given the “true” value can never be known, an agreed reference is needed. Secondly, the constantly 61 

changing atmospheric composition means that repeat measurements cannot be made and the traditional methods 62 

for determining the random uncertainty are not applicable. And finally, a major challenge arises from the multiple 63 

sources of error both internal and external to the sensor that can affect a measurement. Signal responses from a 64 

non-target chemical or physical parameter or electromagnetic interference are examples of an almost limitless 65 

number of potential sources of measurement error. In this work, we will follow the definitions given by the 66 

International Vocabulary of Metrology (JCGM, 2012) for measurement error (“measured quantity value minus a 67 

reference quantity value”) and for measurement uncertainty (“non-negative parameter characterising the 68 

dispersion of the quantity values being attributed to a measurand, based on the information used”). Also, when 69 

the term “uncertainty” is used here, it is referring to “diagnosis uncertainty”, in contrast with “prognosis 70 

uncertainty” (see Sayer et al., 2020 for more details).  71 
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The covariance of many of the physical and chemical parameters of the atmosphere, makes accurately identifying 72 

particular sources of measurement interference or error very difficult in the real world. Unfortunately, specific 73 

laboratory experiments for the characterization of errors is complex and very expensive, resulting in many sources 74 

of error being essentially unknown for many measurement devices. The use of imperfect error correction 75 

algorithms that are not available to the end-user (e.g. in many LCS devices) makes error identification and 76 

quantification even more complex. For this reason, colocation experiments in relevant environments are often the 77 

best option to assess the applicability of a given measurement method for its intended purpose. 78 

The mentioned difficulties in defining and quantifying uncertainty across the full range of end-use applications of 79 

a measurement device, means that often the quoted measurement uncertainty is not applicable, or in some cases 80 

not provided or provided in an ambiguous manner. This makes assessing the applicability of a measurement device 81 

to a particular task difficult for users. In this work, we investigate the nature of common air pollution measurement 82 

errors, and the implications these have on traditional goodness-of-fit metrics and other, potentially more insightful 83 

approaches to assess measurement uncertainty. We then use this insight to demonstrate the impact these errors 84 

can have on measurements, using a selection of LCS deployed alongside reference measurements as part of the 85 

UK Clean Air program funded QUANT (Quantification of Utility of Atmospheric Network Technologies) project, 86 

a 2-year colocation study of 26 commercial LCS devices (56 gases measurements and 56 PM measurements) at 87 

multiple urban, background and roadside locations in the UK. After analysing some of the real-life uncertainty 88 

characteristics we discuss the implications this has on data use. 89 

2. Error characterization 90 

When characterising measurement error, in the absence of evidence to the contrary it is often assumed a linear 91 

additive model is often assumed. Once the analytical form of the model is defined, its parameters aim to capture 92 

the error characteristics, and in the case of linear models (Eq. (1)), these are typically separated into three types 93 

(Tian et al., 2016): (i) proportional bias or scale error (b1), (ii) constant bias or displacement error (b0) and (iii) 94 

random error (ε) (Tian et al., 2016). Any measurement (yi, e.g from the LCS) can therefore be thought of as a 95 

combination of the reference value (xi) and the three error types, such that: 96 

𝑦𝑖 = 𝑏1𝑥𝑖 +  𝑏0  +  𝜀                                                                                                                                                               (1) 97 

As the simplest approximation, this linear relationship for the error characteristics is often used to correct for 98 

observed deviations between measurements and the agreed reference. It is worth to note, however, that this 99 

equation assumes time-independent error contributions and that the three error components are not correlated, 100 

which is often not the case on both counts (e.g. responses to non-target compounds). The parameter values 101 

determined for Eq. (1) are also generally only applicable for individual instruments, potentially in specific 102 

environments, unless the transferability of these parameters between devices has been explicitly demonstrated. 103 

Figure 1 shows examples of how pure constant bias (a-panels), pure proportional bias (b-panels), and pure random 104 

noise (c-panels) would look like in time-series, regression, Bland-Altman (B-A) (Altman & Bland, 1983) and 105 

Relative Expanded Uncertainty (REU, as defined by the GDE (2010)) plots. In each of these ideal cases, the error 106 

plots enable the practitioner to view the error characteristics in slightly different ways, allowing the impacts of the 107 

observed measurement uncertainty to be placed into the context of the data requirements. In this work, we will 108 
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refer to them as “error types” (in contrast to “error sources”), which is the way they are distilled by the linear error 109 

model.  110 

111 

Figure 1. Time series (left panels), regression (middle-left panels), B-A Bland-Altman (middle-right panels) and REU 112 

(right panels, DQO for NO2 = 25%) plots for arbitrary examples of pure constant bias (Slope = 1, Intercept = 1, SDε = 113 

0; a-panels), pure proportional bias  (Slope = 1.4, Intercept = 0, SDε = 0; b-panels) and pure random noise  (Slope = 1, 114 

Intercept = 0, SDε = 4; c-panels) simulated errors. 115 

 116 

2.1 Performance indices, error structure and uncertainty 117 

A major challenge faced by end-users of measurement devices characterised using colocation studies is the non-118 

trivial question of how the comparisons themselves are performed and how the data are is communicated. Often 119 

single value performance metrics, such as the coefficient of determination (R2) or root mean squared error 120 

(RMSE), are calculated between the assessed method (e.g. LCS) and an agreed reference, and the user is expected 121 

to infer an expected device performance or uncertainty for a measurement in their application (Duvall et al., 2016; 122 

Malings et al., 2019). These metrics contain useful information about the measurement, but they are unable to 123 

fully describe the error characteristics, in part because they reduce the error down to a single value (Tian et al., 124 

2016). When evaluating multiple sensors during a colocation experiment, single metrics can be a useful way to 125 

globally compare instruments/sensors. However, these metrics do little to communicate the nature of the 126 

measurement errors and the impacts these will have in any end use application, in part because they reduce the 127 

error down to a single value (Tian et al., 2016). Even more if a specific concentration range is of paramount 128 

interest to the end-user, these metrics are not capable of characterising the weight of noise and/or the bias effect. 129 

The R2 shows globally the data set linearity and gives an idea of the measurement noise. However, it is unable to 130 

distinguish whether a specific range of concentrations is more or less linear (or more or less noisy) than another. 131 

Similarly, the RMSE is also a very useful metric and perhaps more complete than R2, as it considers both noise 132 

and bias (although they need to be explicitly decomposed from RMSE). Nevertheless, the RMSE is an average 133 

https://www.zotero.org/google-docs/?advwe9
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measure (of noise and bias) over the entire dataset under analysis. Using combinations of simple metrics increases 134 

the information communicated, but does not necessarily make it easy to assess how the errors will likely impact 135 

a particular measurement application. Visualising the absolute and relative measurement errors across the 136 

concentration range (unreachable by global metrics) enables end users to view the errors, and any features (non-137 

linearities, step changes, etc.) that would impact the measurement but that global metrics (and in some cases time-138 

series and/or regression plots) are incapable of showing.  139 

Unfortunately, the widespread use of a small number of metrics as the sole method to assess measurement 140 

uncertainty, without a thorough consideration of the nature of the measurement errors, means measurement 141 

devices are often chosen that are unable to provide data that is fit for purpose. In addition, unconscious about 142 

potential flaws, users (e.g. researchers) could communicate findings or guide decision making based on results 143 

that may not justify the conclusions drawn from the data. Figure 2 shows three simulated measurements compared 144 

with the true values. Despite the measurements having identical R2 and RMSE values, the time series and 145 

regression plots show that the error characteristics are significantly different, and would impact how the data from 146 

such a device could viably be used. 147 

148 

Figure 2. Time series (a-panels) and regression plots (b-panels) for three hypothetical instruments and a reference (1 149 

year of data). The most used metrics for evaluating the performance of LCS (R2 and RMSE) are identical for the 150 

systems shown, even when the errors have very different characteristics (time res 1 h).  151 

There are multiple performance metrics that can be used for the assessment of measurement errors and uncertainty. 152 

Tian et al (2016) present an excellent summary of some of the major pitfalls of performance metrics and promote 153 

an approach of error modelling as a more reliable method of uncertainty quantification. These modelling 154 

approaches, however, rely on the assumption of statistical stationarity, whereby the statistical properties of the 155 

error are constant in the temporal and spatial domains. The presence of unknown or poorly characterised sources 156 

of error, for example, due to interferences from other atmospheric constituents or drifts in sensor behaviour, makes 157 

this assumption difficult to satisfy, especially when the dependencies of these errors show high spatial and 158 
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temporal variability. Thus, if field colocation studies are the primary method for performance assessment, as is 159 

the case for LCS, only through a detailed assessment of the measurement errors across a wide range of conditions 160 

and timescales can the uncertainty of the measurement be realistically estimated.  161 

2.2 Dealing with errors: established techniques vs Low-Cost Sensors  162 

Different approaches are available to the user to minimise the impact of errors, generally by making corrections 163 

to the sensor data. For example, in the case of many atmospheric gas analysers, if the error is dominated by a 164 

proportional bias, a multi-point calibration can be performed using standard additions of the target gas. 165 

Displacement errors can be quantified, and then corrected for, by sampling a gas stream that contains zero target 166 

gas. And Random errors can be reduced by applying a smoothing filter (e.g moving average filter, time-averaging 167 

the data, etc.), at the cost of losing some information (Brown et al., 2008). These approaches work well for simple 168 

error sources that, ideally, do not change significantly over timescales from days to months. Unfortunately, more 169 

complex error sources can manifest in such a way that they contribute across all three error types, and also vary 170 

temporally and spatially. For example, an interference from another gas-phase compound could in part manifest 171 

itself as a displacement error, based on the instrument response to its background value, and in part as a 172 

proportional bias if its concentration correlates with the target compounds, with any short-term deviations from 173 

perfect correlation contributing to the random error component. In this case, time-averaging combined with 174 

periodic calibrations and zeros would not necessarily minimise the error, and the user would need to employ 175 

different tactics. One option would be to independently measure the interferent concentration, albeit with 176 

associated uncertainty, and then use this to derive a correction. This is feasible if a simple and cost-effective 177 

method exists for quantifying the interferent and its influence on the result is understood, but can make it very 178 

difficult to separate out error sources, and can become increasingly complex if this measurement also suffers from 179 

other interferences.  180 

For many measurement devices, in particular for LCS based instruments, a major challenge is that the sources and 181 

nature of all the errors are unknown or difficult to quantify across all possible end-use applications, meaning 182 

estimates of measurement uncertainty are difficult. In the case of most established research and reference-grade 183 

measurement techniques, comprehensive laboratory and field experiments have been used to explore the nature 184 

of the measurement errors (Gerboles et al., 2003; Zucco et al., 2003). Calibrations have then been developed, 185 

where traceable standards are sampled and measurement bias, both constant and proportional, can be corrected 186 

for. Interferences from variables such as temperature, humidity, or other gases, have also been identified and then 187 

either a solution engineered to minimise their effect or robust data corrections derived. Unfortunately, these 188 

approaches have been shown not to perform well in the assessment of LCS measurement errors, due to the 189 

presence of multiple, potentially unknown, sensor interferences from other atmospheric constituents (Thompson 190 

& Ellison, 2005). These significant sensitivities to constituents such as water vapour and other gases mean 191 

laboratory-based calibrations of LCS become exceedingly complex, and expensive, as they attempt to simulate 192 

the true atmospheric complexity, often resulting in observed errors being very different to real-world sampling 193 

(Rai et al., 2017; Williams, 2020). This has resulted in colocation calibration becoming the accepted method for 194 

characterising LCS measurement uncertainties (De Vito et al., 2020; Masson et al., 2015; Mead et al., 2013; 195 

Popoola et al., 2016; Sun et al., 2017), where sensor devices are run alongside traditional reference measurement 196 

systems for a period of time, and statistical corrections derived to minimise the error between the two. As the true 197 

https://www.zotero.org/google-docs/?OQgqNE
https://www.zotero.org/google-docs/?RTwGEj
https://www.zotero.org/google-docs/?w1R0fF
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https://www.zotero.org/google-docs/?OEVtD9
https://www.zotero.org/google-docs/?meaHP5
https://www.zotero.org/google-docs/?meaHP5
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value of a pollutant concentration cannot be known, this colocation approach assumes all the error is in the low-198 

cost measurement. Although this assumption may often be approximately valid (i.e. reference error variance << 199 

LCS error variance), no measurement is absent of uncertainty and this can be transferred from one measurement 200 

to another, obscuring attempts to identify its sources and characteristics. A further consideration when the fast 201 

time-response aspect of LCS data is important, is that reference measurement uncertainties are generally 202 

characterised at significantly lower reported measurement frequencies (typically 1 hr). This means that a high 203 

time-resolution (e.g. 1 min) reference uncertainty must be characterised in order to accurately estimate the LCS 204 

uncertainty (requiring specific experiments and additional costs). If a lower time-resolution reference data set is 205 

used as a proxy, then the natural variability timescales of the target compound should be known and any impact 206 

of this on the reported uncertainty caveated. 207 

Another challenge with this approach is that, unlike targeted laboratory studies, real-world colocation studies at a 208 

single location, and for a limited time period, are not able to expose the measurement devices to the full range of 209 

potential sampling conditions. As many error sources are variable, both spatially and temporally, using data 210 

generated under a limited set of conditions to predict the uncertainty on future measurements is risky. Deploying 211 

a statistical model makes the tacit assumption that all factors affecting the target variable are captured by the 212 

model (and the data set used to build the model). This is very often an unrealistic demand, and in the complex 213 

multifaceted system that is atmospheric chemistry, this is extremely unlikely to be tenable, resulting in a clear 214 

potential for overfitting to the training dataset. Ultimately, however, these colocation comparisons with 215 

instruments with a well-quantified uncertainty need to be able to communicate a usable estimate of the information 216 

content of the data to end-users, so that devices can be chosen that are fit for a particular measurement purpose.  217 

3. Methods 218 

In this work, we explore measurement errors, and their impacts, using the most common single value metrics: the 219 

Coefficient of Determination or R2, the Root Mean Squared Error or RMSE and the Mean Absolute Error or MAE 220 

(see the equation definitions in Cordero et al., 2018), along with two additional widely used approaches to 221 

visualise the error distribution across a dataset:. To visualise the error distribution across a dataset we have also 222 

employed two additional widely used approaches: the Bland-Altman plots (B-A) and Relative Expanded 223 

Uncertainty (REU).  224 

The performance metrics provide a single value irrespective of the size of the dataset, and might appear convenient 225 

for users when comparing across devices or datasets, but can encourage over-reliance on the metric, often at the 226 

expense of looking at the data in more detail or bringing an awareness of the likely physical processes driving the 227 

error sources. On the other hand, the use of visualisations such as B-A and REU is complementary to the 228 

aforementioned metrics, with the added value that the user is now more aware of how the data looks like in an 229 

absolute and/or relative error space, allowing them to distinguish some characteristics of interest. These 230 

visualizations The B-A and the REU plots are indeed more laborious techniques and the interpretation can be 231 

challenging for non-experts, but they provide additional insights into the nature of the errors, not attainable by 232 

one or more combined performance metrics: while B-A plots shows the noise (dispersion of the data) and the bias 233 

effect (tendency of the data) in an absolute scale, the REU can be explicitly decomposed in the noise and bias 234 

components (see Yatkin et al., 2022). 235 
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In order to understand how the different tools used here show different characteristics of the error structure, some 236 

errors commonly found in LCS are examined through simulation studies. Subsequently, two real world case 237 

studies are presented: (i) LCS duplicates for NO2 and PM2.5 belonging to the QUANT project located in two sites 238 

-the Manchester Natural Environment Research Council (NERC) measurement Supersite, and the York Fishergate 239 

Automatic Urban and Rural Network (AURN) roadside site- and (ii) a set of duplicate reference instruments (only 240 

at Manchester Supersite). Table S1 shows the research grade instrumentation used for this study. 241 

3.1 Visualisation tools 242 

An ideal performance metric should be able to deliver not only a performance index but also an idea of the 243 

uncertainty distribution (Chai & Draxler, 2014). This is difficult to deliver through a simple numerical value, and 244 

easy to interpret visualisations of the data are often much more useful for conveying multiple aspects of data 245 

performance. Figure 2 shows the two most common data visualisation tools, the time-series plot and the regression 246 

plot. In the time series plot the instrument under analysis and the agreed reference are plotted together as a function 247 

of time. This allows a user to visually assess tendencies of over or under prediction, differences in the base line 248 

or other issues, but can be readily over interpreted and does not allow for easy quantification of the observed 249 

errors. In the regression plot the data from the instrument under analysis is plotted against the agreed reference 250 

data. This allows for the correlation between the two methods to be more readily interpreted, in particular any 251 

deviations from linearity, but gives little detail on the nature of the errors themselves.  252 

In contrast to the regression plot -where the measured values from the two measurements (e.g. LCS vs Ref) are 253 

plotted against each other- the Bland-Altman plots essentially display the difference between measurements 254 

(abscissa) as a function of the average measurement (ordinate), enabling more information on the nature of the 255 

error to be communicated. This direct visualisation of the absolute error acknowledges that the true value is 256 

unknown and that both measurements have errors. The B-A plot enables the easy identification of any systematic 257 

bias between the measurements or possible outliers, and is the reason B-A plots are extensively used in analytical 258 

chemistry and biomedicine to evaluate agreement between measurement methods (Doğan, 2018). The mean 259 

difference between the measurements, (represented by the blue line in the figures), is the estimated bias between 260 

the two observations. The spread of error values around this average line indicates if the error shows purely 261 

random fluctuations around this mean, or if it has structure across the observed concentration range. 262 

In contrast to the regression plot, Bland-Altman (B-A) plots essentially display the difference between 263 

measurements, enabling more information on the nature of the error to be communicated. B-A plots (Altman & 264 

Bland, 1983) are extensively used in analytical chemistry and biomedicine to evaluate the differences between 265 

two measurement techniques (Doğan, 2018). The B-A is a scatter plot, in which the abscissa represents the average 266 

of these measures (e.g LCS and a reference measurement), acknowledging that the true value is unknown and that 267 

both measurements have errors, and the ordinate shows the difference between the two paired measurements.  268 

In the case where all the error is assumed to be in one of the measurements, e.g. comparing a LCS to a reference 269 

grade measurement, there is an argument that the B-A abscissa could be the agreed reference value instead of the 270 

average of two measurements. However, in this work we use the average of the two values as per the traditional 271 

https://www.zotero.org/google-docs/?hAMen9
https://www.zotero.org/google-docs/?omfrnY
https://www.zotero.org/google-docs/?omfrnY
https://www.zotero.org/google-docs/?9pIkup
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B-A analysis. To illustrate the B-A interpretation, from the error model (Eq. (1)) we can derive the following 272 

expression: 273 

𝑦𝑖 − 𝑥𝑖  =  𝑥𝑖  ( 𝑏1 − 1)  +  𝑏0  + 𝜀                                                                                                                                   (2) 274 

From Eq. (2) it can be seen that if b1 ≠ 1 or if the error term (ε) variance is non-constant (e.g. heteroscedasticity) 275 

the difference will not be normally distributed. The B-A plot (with xi as the reference instrument results) allows a 276 

quick visual assessment of the error distribution without the need to calculate the model parameters. In the case 277 

the differences are normally distributed, the so-called “agreement interval” (usually defined as ± 2σ around the 278 

mean) will hold 95% of the data points. Even though the estimated limits of agreement will be biassed if the 279 

differences are not normally distributed, it can still be a valuable indicator of agreement between the two 280 

measurements. 281 

If the ultimate goal of studying measurement errors is to diagnose the measurement uncertainty in a particular 282 

target measurement range, then visualising the uncertainty in pollutant concentration space can be very 283 

informative. The REU (GDE, 2010) provides a relative measure of the uncertainty interval about the measurement 284 

within which the true value can be confidently asserted to lie. The abscissa in an REU plot represents the agreed 285 

reference pollutant concentration, whose error is taken into account, something not considered by the other metrics 286 

or visualisations discussed. The REU is regularly used to assess measurement compliance with the Data Quality 287 

Objective (DQO) of the European Air Quality Directive 2008/50/EC, and is mandatory for the demonstration of 288 

equivalence of methods other than the EU reference methods. For LCS the REU is widely used as a performance 289 

indicator (Bagkis et al., 2021; Bigi et al., 2018; Castell et al., 2017; Cordero et al., 2018; Spinelle et al., 2015). 290 

However, the evaluation of this metric is perceived as arduous and cumbersome and it is not included in the 291 

majority of sensor studies (Karagulian et al., 2019). There is now a new published European Technical 292 

Specification (TS) for evaluating the LCS performance for gaseous pollutants (CEN/TS 17660-1:2021). It 293 

categorises the devices in 3 classes according to the DQO (Class 1 for “indicative measurements”, Class 2 for 294 

“objective estimations”, and Class 3 for non-regulatory purposes, e.g. research, education, citizen science, etc.). 295 

In the following sections, we use these established methods for assessing measurement uncertainty, alongside 296 

simple time series and regression plots, to explore different error sources and their implications for air pollution 297 

measurements. 298 

4. Case studies 299 

4.1 Simulated instruments 300 

In order to investigate the impact of different origins of measurement error on measurement performance, a set of 301 

simulated datasets have been created. These data are derived using real-world reference data as the true values, 302 

with the subsequent addition of errors of different origins to generate the simulated measurement data. Error 303 

origins were chosen for which examples have been described in the LCS literature. Performance metrics along 304 

with visualisation methods are then used to assess measurement performance.  305 

As the complexity of the error increases, the impact of the assumption of statistical stationarity can become more 306 

difficult to satisfy, with the magnitude of the errors becoming less uniform across the observed concentration, and 307 

https://www.zotero.org/google-docs/?T09Pnu
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hence spatial, or time domains. Figure 3 shows examples of modelled sources of errors on NO2 measurements: 308 

temperature interference (correction model taken from (Popoola et al., 2016), a-panels), a non-target gas (ozone) 309 

interference (correction model taken from (Peters et al., 2021), b-panels) and thermal electrical noise (white noise, 310 

c-panels). 311 

 312 

Figure 3. Time series (left panels), regression plots (middle-left panels, including R2, RMSE & MAE), Bland-Altman 313 

plots (middle-right panels) and REU (right panels, DQO for NO2 = 25%) for temperature (a-panels), ozone (b-panels) 314 

and thermal electrical noise (c-panels) modelled interferences on NO2 measurements (time res 1 h).  315 

The above simulations show examples of how individual sources of error can impact measurement performance. 316 

Figure S1 shows some more examples, this time for different drift effects (baseline drift, temperature interference 317 

drift and instrument sensitivity drift). This set of error origins is not exhaustive, with countless others potentially 318 

impacting the measurement, such as those coming from (i) hardware (sensor-production variability, sampling, 319 

thermal effects due to materials expansion, drift due to ageing, RTC lag, Analog-to-Digital conversion, 320 

electromagnetic interference, etc.), (ii) software (signal sampling frequency, signal-to-concentration conversion, 321 

concept drift, etc.), (iii) sensor technology/measurement method (selectivity, sensitivity, environmental 322 

interferences, etc.) and (iv) local effects (spatio-temporal variation of concentrations, turbulence, sampling issues 323 

etc.). 324 

Each error source impacts the uncertainty of the measurement, which in turn impacts its ability to provide useful 325 

information for a particular task. For example, the form of the temperature interference shown in Fig. 3 (a-panels) 326 

results in the largest errors being seen at the lower NO2 values. This is because NO2 concentrations are generally 327 

lowest during the day, due to photolytic loss when temperatures are highest. Thus this device would be better 328 

suited to an end-user intending to assess daily peak NO2 concentration compared with the daytime hourly exposure 329 

values, providing the environment the device was deployed in showed a similar relationship between temperature 330 

and true NO2 as that used here. The O3 interference shown in Fig. 3 (b-panels) is similar, due again to a general 331 

anti-correlation observed between ambient O3 and NO2 concentrations. This type of interference can often be 332 

https://www.zotero.org/google-docs/?ZGivYb
https://www.zotero.org/google-docs/?FvoYSZ
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interpreted incorrectly as a proportional bias, and a slope correction applied to the data. However, this type of 333 

correction will ultimately fail as O3 concentrations are dependent on a range of factors, such as hydrocarbon 334 

concentrations and solar radiation, and as these change the O3 concentration relative to the NO2 concentration will 335 

change. To further complicate matters, multiple error sources can act simultaneously, meaning that the majority 336 

of measurements will contain multiple sources of error. Figure 4 shows a simple linear combination of the 337 

modelled errors shown in Fig 3, and the impact this has on the performance metrics. 338 

339 

Figure 4. Time series (left panel), regression plot (middle-left panel, including R2, RMSE & MAE), Bland-Altman 340 

plot (middle-right panel) and REU (right panel, DQO for NO2 = 25%) for a linear combination of temperature, ozone 341 

and thermal electrical noise modelled interferences (time res 1 h). 342 

As the simulations show, the nature of the errors determine the observed effect on the measurement performance. 343 

In an ideal situation, like those shown in figures 3 and 4, the error sources would be well characterised, allowing 344 

the error to be modelled and approaches such as calibrations (for bias) and smoothing (for random errors) 345 

employed to minimise the total uncertainty. Unfortunately, in scenarios where sources of error and their 346 

characteristics are not known, modelling the error becomes more difficult and a more empirical approach to 347 

assessing the measurement performance and uncertainty may be required. The growing use of LCS represents a 348 

particular challenge in this regard. The susceptibility of LCS to multiple, often unknown or poorly characterised, 349 

error sources means that in order to determine if a particular LCS is able to provide data with the required level 350 

of uncertainty for a given task, a relevant uncertainty assessment is required. The following section explores the 351 

uncertainty characteristics of several LCS, with unknown error sources, deployed alongside reference 352 

instrumentation in UK urban environments as part of the QUANT study. 353 

4.2 Real-world instruments 354 

The difficulty in generating representative laboratory error characterisation data means for many measurement 355 

devices the error sources are essentially unknown. This, combined with the use of imperfect algorithms that are 356 

not available to the end-user (i.e. “black-box” models) to minimise errors, means that, colocation data is often the 357 

best option available to end-users in order to assess the applicability of a measurement method for their desired 358 

purpose. This is particularly the case for LCS air pollution measurement devices. In this section, we show 359 

colocation data collected as part of the UK Clean Air program funded QUANT project, and use the tools described 360 

above to investigate the impact of the observed errors on end-use.  361 

Figure 5 shows two colocated NO2 measurements, from two different LCS devices using only their out-of-box 362 

calibrations (i.e. no colocation data from that site was used to improve performance), compared with colocated 363 

reference measurements at an urban background site in the city of Manchester. Unlike the modelled instruments 364 

in Sect. 4.1, the combination of error sources is unknown in this case and we can thus only assess the LCS 365 
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measurement performance through comparison with the reference measurements using metrics and visual tools. 366 

There are obvious differences in the performance of both LCS instruments shown in Fig. 5. LCS1 (a-panels) 367 

shows an appreciable difference in the time-series baseline, which can be interpreted from both the regression (b1 368 

<1) and the B-A plots as a proportional bias. This bias also impacts the REU plot, with a minimum in the region 369 

where the regression best fit line crosses the 1:1 line (~17ppb). It is worth noting that these plots do not directly 370 

identify the source of the proportional bias, with sensor response to the target compound or another covarying 371 

compound possible, but provides information on how much it impacts the data. For LCS2 (Fig. 5, b-panels) any 372 

proportional bias is significantly smaller, with the B-A plot showing a much more symmetrical distribution of 373 

points around the central line across the observed mixing ratio range, although this is not a normal distribution as 374 

evidenced by the heteroscedastic nature of the differences, indicating the cause is not entirely random in nature. 375 

The lack of a large proportional bias also results in the REU plot showing a continued reduction in relative 376 

uncertainty as the true NO2 concentration increases. Interestingly, both LCS’s also show an additional bias at the 377 

highest NO2 values observed. This does not significantly impact the REU, due to its relative nature, but can be 378 

seen in the regression and B-A plots. Correcting for the observed proportional bias in LCS1 and LCS2 improves 379 

the observed performance by providing the errors with a more symmetrical distribution (LCS1* and LCS2* shown 380 

in Fig. S2). 381 

 382 

Figure 5. Time series (left panels), regression plots (middle-left panels), Bland-Altman plots (middle-right panels) and 383 

REU (right panels; NO2 Class 1 DQO = 25% & Class 2 DQO = 75%) for NO2 measurements by two LCS systems of 384 

different brands (a and b panels) in the same location (Manchester Supersite, December 2019 to February 2020. Time 385 

res 1 h). 386 

Figure 5 shows two colocated measurements from two different LCS devices: one measuring NO2 (a-panels) and 387 

the other O3 (b-panels). Both measurements are compared with colocated reference measurements at an urban 388 

background site in the city of Manchester. Unlike the modelled instruments in Sect. 4.1, the combination of error 389 

sources is unknown in this case, and we can thus only assess the LCS measurement performance through 390 

comparison with the reference measurements using global metrics and visual tools.  391 

Single value metrics indicate an acceptable performance for both measurements: high linearity (both R2 are higher 392 

than 0.8) and relatively low errors (RMSE ~ 5ppb). However, the plots present the data in a variety of ways that 393 

enable the user to identify patterns in the measurement errors that would be less obvious if only global metrics 394 
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were used. For example, the NO2 sensor (LCS1, a-panels) has a non-linear response that is almost imperceptible 395 

from the regression plot but stands out in the B-A plot. Furthermore (despite the high R2 and relatively low 396 

RMSE), the REU plot shows high relative errors that do not meet the Class 2 DQO for the measured concentration 397 

range. Regarding the O3 sensor (LCS2, b-panels), the B-A plot shows two high density measurement clusters, one 398 

with positive absolute errors (over-measuring) and a larger one with negative errors (under-measuring). These are 399 

the result of a step change in the correction algorithm applied by the manufacturer and could easily have been 400 

missed if only summary metrics and a regression plot were used, especially if the density of the data points was 401 

not coloured.  402 

It is worth noting that these plots do not directly identify the source of the proportional bias, with sensor response 403 

to the target compound or another covarying compound possible, but provides information on how much it impacts 404 

the data.  405 

406 

Figure 5. Time series (left panels), regression plots (middle-left panels), Bland-Altman plots (middle-right panels) and 407 

REU (right panels; NO2 Class 1 DQO = 25% & Class 2 DQO = 75% ; O3 Class 1 DQO = 30% & Class 2 DQO = 75%) 408 

for NO2 (a-panels) and O3 (b-panels) measurements by two LCS systems of different brands in the same location and 409 

time span (Manchester Supersite, July 2021 to February 2022. Time res 1 h). All but the time-series plots, have coloured 410 

by data density. 411 

Figure 6 shows three out-of-the-box PM2.5 measurements made by three devices from the same brand in spring, 412 

located at two sites: the first two at an urban background (LCS3 & LCS4, a and b panels) and the third at a roadside 413 

(LCS5, c-panels). As the regression and the B-A plots show, all LCS measurements in Fig. 6 have a proportional 414 

bias compared with the reference, with the LCS over predicting the reference values. Both LCS’s at the urban 415 

background site show very similar performance, indicating that the devices are similarly affected by errors. This 416 

internal consistency is highly desirable, especially when LCS’s are to be deployed in networks, as although mean 417 

absolute measurement error may be high, differences between identical devices are likely to be interpretable. 418 
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419 

Figure 6. Time series (left panels), regression plots (middle-left panels), Bland-Altman plots (middle-right panels) and 420 

REU (right panels, DQO for PM2.5 = 50%) for PM2.5 measurements by three LCS systems of the same brand (panels a, 421 

b and c) in different locations: an urban background (Manchester Supersite, panels a and b) and a roadside site (York, 422 

panel c) (April & May 2020, time res 1 h). 423 

Figure 6 shows three out-of-the-box PM2.5 measurements made by two devices (LCS3 & LCS4) from the same 424 

brand in spring (LCS3: a-panels; LCS4: c-panels) and in autumn (b-panels, only LCS3). The colocation shown 425 

correspond to two different sites: an urban background site (LCS3, a and c-panels) and a roadside site (LCS4, c-426 

panels).  427 

As the regression and the B-A plots show, all LCS measurements in Fig. 6 have a proportional bias compared 428 

with the reference, with the LCS over predicting the reference values. The device at the urban background site 429 

(LCS3) show a dissimilar performance in spring and autumn, indicating that the errors this device suffers are 430 

differently influenced by local conditions in the two seasons (all the duplicates at the urban background show the 431 

same pattern). While for LCS3 during spring the error have a more linear behaviour, in autumn a non-linear pattern 432 

is clearly observed in the regression and B-A plots. Despite the utility that single metrics can have in certain 433 

circumstances, the non-linear pattern goes completely unnoticed by them: while for the two different seasons 434 

RMSE and the MAE are almost constant the R2 indicates a higher linearity for autumn.  435 

A number of duplicates were deployed at both sites showing a very similar performance in terms of the single 436 

metric values but also in regard to the more visual tools (not shown here). This internal consistency is highly 437 

desirable, especially when LCS’s are to be deployed in networks, as although mean absolute measurement error 438 

may be high, differences between identical devices are likely to be interpretable.  439 

Having prior knowledge of the nature of the measurement errors allows informed experimental design prior to 440 

data collection. This is key if an end user is to maximise the power of a dataset, and the information it provides, 441 

to answer a specific question. For example, if an end-user wanted to identify pollution hotspots within a relatively 442 

small geographical area, then using a dense network of sensor devices that posses errors large and variable enough 443 

to make quantitative comparisons with limit values difficult (possibly due to an interference from a physical 444 
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parameter like relative humidity) but show internal consistency could be a viable option. Providing the hotspot 445 

signal is large enough relative to any random error magnitude. 446 

 447 

 448 

Figure 6. Two LCS systems (LCS3 & LCS4, same brand) measuring PM2.5 (Time res 1 h). While LCS3 is shown for 449 

the same location (Manchester) but unfolded in two different seasons (a-panels: Apr to May 2020; b-panels: Oct to Nov 450 

2020), LCS4 is at a different location (c-panels: York, Apr to May 2020). Time series (left panels), regression plots 451 

(middle-left panels), Bland-Altman plots (middle-right panels) and REU (right panels; DQOPM2.5 = 50%) are used to 452 

characterise the device's error structure. All but the time-series plots have been coloured by data density. 453 

 454 

The LCS data from the roadside location (LCS4) show significantly lower precision than those at the urban 455 

background site, as seen in the B-A plot. This could be caused by differences in particle properties and size 456 

distributions between the two sites (Gramsch et al., 2021), and by the high frequency variation of transport 457 

emissions close to the roadside site side and turbulence effects (Baldauf et al., 2009; Makar et al., 2021). Duplicate 458 

measurements show that all sensors of this type responded similarly in this roadside environment (not shown 459 

here), supporting the high internal consistency of this device, but indicating a spatial heterogeneity in some key 460 

error sources. It is also worth noting that the gold standard instruments at the two sites are not “reference method” 461 

but “reference equivalent methods” (GDE, 2010), each using a different measurement technique: while an optical 462 

spectrometer (Palas Fidas 200) is used in Manchester, the York instrument uses a Beta attenuation method (Met 463 

One BAM 1020), which could also potentially lead to some of the observed differences. The increased apparent 464 

random variability for LCS4, combined with the proportional bias, results in significantly higher measurement 465 

uncertainty across the observed range, as can be seen by the REU plots, with LCS4 never reaching an acceptable 466 

DQO level (50% for PM2.5). As with the NO2 sensors (Fig. 5). If the observed proportional bias is corrected the 467 

linearly bias-corrected sensors (Fig. S3) show a much improved comparison with the reference measurement, 468 

specially LCS3* in autumn and LCS4*. The error distribution for the LCS3 (autumn) shown by the B-A plot is 469 

https://www.zotero.org/google-docs/?bTXiZm
https://www.zotero.org/google-docs/?ipj6tI
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greatly narrowed (~3x times) and now the sensor is accomplishing the DQO below 10 ugm-3 as the REU plot 470 

indicates. For LCS4 In this case the B-A plot shows an error characteristic more dominated by random errors, and 471 

the REU plots shows a significant reduction of the relative uncertainty, with the REU at 10 ugm-3 reducing from 472 

~75 to ~50%.  473 

As a comparison for the LCS data shown above, Fig. 7 shows two identical NO2 reference grade instruments, 474 

Teledyne T200U (Chemiluminescence method) at the Manchester urban background site (panels a and b) at during 475 

two different time periods, with a Teledyne T500U (CAPS detection method) used as the “ground truth” 476 

instrument. Instrument “a” manifests a significant proportional bias, in contrast to instrument “b”, but both show 477 

differences that could be non-negligible depending on the application. The deviations observed in instrument “a” 478 

was due to the cell pressure being above specification by ~20%, unnoticed while the instrument was in operation. 479 

This demonstrates the importance of checking instrument parameters regularly in the field even if the data appears 480 

reasonable. 481 

As the LCS error structure is determined relative to the performance of a reference measurement, if the reference 482 

instrument suffers from significant errors this will affect the outcomes of the performance assessment, due to the 483 

assumption that all the errors reside with the LCS. As Fig. 7 shows, however, this assumption is not necessarily 484 

always valid and potentially argues that reference instruments used in colocation studies should be subject to 485 

further error characterisation, including possible colocation with other reference instruments. As a similar 486 

comparison of reference instruments, Fig. S3 shows two ozone research grade instruments (a Thermo 49i and a 487 

2B). 488 

It is worth noting that even when using reference, or reference equivalent, grade instrumentation, inherent 489 

measurement errors mean that relative uncertainty, as shown in the REU plot, increases asymptotically at lower 490 

values. This is not unexpected, but is potentially important as ambient target concentration recommendations 491 

continue to fall based on updated health evidence (World Health Organization, 2021).  492 

 493 

https://www.zotero.org/google-docs/?a2Z2aK
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 494 

Figure 7. Time series (left panel), regression plots (middle-left panel), Bland-Altman plots (middle-right panel) and 495 

REU (right panel, DQO for NO2 = 25%) for two identical (Teledyne T200U) reference NO2 instruments (panels a and 496 

b) colocated at the Manchester Supersite (1h time res). The first instrument between October & November 2020 and 497 

the second between July & August 2021. All but the time-series plots have been coloured by data density. 498 

5. Discussion 499 

The widespread use of colocation studies to assess measurement device performance, means many examples exist 500 

in the LCS literature where different devices are compared using summary metrics for field or laboratory studies 501 

(Broday, 2017; Duvall et al., 2016; Hofman et al., 2022; Karagulian et al., 2019; Mueller et al., 2017; Rai et al., 502 

2017; van Zoest et al., 2019). Although these comparisons do provide useful information, they can be misleading 503 

for end users wanting to compare the performance of different devices, as they are often carried out under different 504 

conditions and do not present the data or experimental design in full. Even in the case where comparisons have 505 

been done under identical conditions, the data still needs to be treated with caution, as inevitable differences 506 

between assessment environment and proposed application environment, as well as any changes to 507 

instrument/sensor design or data processing, mean that past performance does not guarantee future performance. 508 

All measurement devices suffer from measurement errors, many of which are potentially significant depending 509 

on the application, with devices and their error susceptibility covering a broad spectrum. As evidenced by Fig. 7, 510 

reference instruments are not immune from this phenomena, with the proportional bias of one of the NOx 511 

instruments clearly affecting its measurements resulting in the absolute error increasing with concentration. As 512 

the requirements on measurement devices continue to increase, driven in part by new evidence supporting the 513 

reduction of air pollutant target values, the devices currently being used for a particular application could no longer 514 

be fit-for-purpose in the situation where the limit value has decreased to the point where it is small relative to the 515 

device’s uncertainty. 516 

Single value performance metrics, such as R2 and RMSE, can seem convenient when comparing multiple co-517 

located devices as they facilitate decision making when a threshold criterion is defined. However, these scalar 518 

values hide important information about the scale and / or distribution of the errors within a dataset; graphical 519 

summaries of the measurements themselves can offer significantly more insight into the impact of measurement 520 

errors on device performance and ultimate capabilities. Of particular use in air pollution measurements is the 521 

ability to see how the errors manifest themselves in relation to our best estimate of the true pollutant concentration, 522 

https://www.zotero.org/google-docs/?70YPws
https://www.zotero.org/google-docs/?70YPws
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as often applications have specific target pollutant concentration ranges of interest. For example, the two NO2 523 

LCS devices shown in Fig. 5 have similar R2 values of 0.83 and 0.89 , but one is suffering from a strong 524 

proportional bias that impacts on measurements either side of the 18ppb crossing-point considerably high R2 525 

values (0.92 and 0.84) and relatively low RMSE and MAE, but one suffering of non-linear errors (LCS1) and the 526 

other with data coming from two different calibration states (LCS2).  527 

Errors, or combinations of errors, frequently result in varying magnitude of the observed measurement 528 

inaccuracies across the concentration space observed, and it is often useful to assess both the absolute and relative 529 

effects of the errors. By getting a more complete picture of the device performance, decisions can be made on the 530 

effectiveness of simple corrections, such as correcting for an apparent proportional bias using an assumption of a 531 

linear error model. Ultimately end users need to identify the data requirements a priori and design quantifiable 532 

success criteria by which to judge the data. For example, rather than just wanting to measure the 8-hour average 533 

NO2, be more specific and require that this needs to be accurate to within 5 ppb, have demonstrated approximately 534 

normally distributed errors in a representative environment for the period of interest, and no statistical evidence 535 

of deviation from a linear correlation with the reference measurement over the target concentration range for the 536 

period of interest.  537 

A major challenge comes from complex errors, such as interferences from other compounds or with environmental 538 

factors, that vary temporally and/or spatially. Similar graphical techniques to those presented above can be used 539 

to identify the existence of such relationships, but correcting for them remains a challenge. For example, the 540 

correlation between measurement errors and relative humidity could be explored by replacing the abscissa with 541 

measured relative humidity in both the B-A and REU plots. This would visualise the relationship between absolute 542 

and relative errors with relative humidity, but would not be able to confirm causality. The complex and covarying 543 

nature of the atmosphere means that the best way to identify a device error source is through controlled laboratory 544 

experiments, where confounding variables can be controlled, although these experiments are often difficult and 545 

expensive to perform in a relevant way. 546 

This brings into question the power of colocation studies, as they can ultimately never be performed under the 547 

exact conditions for every intended application. The PM2.5 sensors shown in Fig. 6 demonstrate this, as if a 548 

colocation dataset generated at the urban background site was used to inform a decision about the applicability of 549 

these devices to a roadside monitoring task, then an overly optimistic assessment of the scale of the errors to be 550 

expected would be likely. It is therefore always desirable that colocation studies are as relevant as possible to the 551 

desired application, and this is even more paramount in the case where the error sources are poorly specified. For 552 

this reason, complete meta-data on the range of conditions over which a study was conducted is key information 553 

in judging its applicability to different users. 554 

Although there is no strict definition on what makes a device a LCS, we often make the categorization based on 555 

the hardware used. Standard reference measurement instruments are generally based on well-characterised 556 

techniques developed and improved over years, based primarily on the progressive refinement of hardware (e.g. 557 

materials used for the detection elements, electronic circuits to filter noise, refinement of production methods, 558 

etc.). Although LCS sensor technologies are improving, it is interesting that many of the significant improvements 559 

that have been made to LCS performance have been through software, rather than hardware advances. As more 560 
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colocation data are is generated in different environments, many LCS manufacturers have been able to develop 561 

data correction algorithms that minimise the scale of the errors that are present on the LCS hardware. This can 562 

greatly improve the performance of LCS devices, and has been a large factor in the improvements seen in these 563 

devices over recent years. These algorithms are, however, inevitably imperfect and can suffer from concept drift 564 

(De Vito et al., 2020), caused by the lack of available colocation data over a full spectrum of atmospheric 565 

complexity. Furthermore, any kind of statistical model introduces a new error source that can work in conjunction 566 

with the pre-existing measurement errors to drastically change the observed error characteristics, making it much 567 

more difficult for users to interpret and extrapolate from colocation study performance to intended application. If 568 

end users are to be able to make well informed decisions about device applicability to a particular task, then an 569 

argument can be made for information on the scale of the error corrections made to a reported measurement to be 570 

made available, ideally alongside and a demonstration of its benefits in a relevant environment. If end users are 571 

to be able to make well informed decisions about device applicability then information on the scale of the 572 

measurement errors, and the impact of corrections made to minimise these, should be made available. Exemplar 573 

case studies in a range of relevant environments would also be highly valuable. Unfortunately, this colocation 574 

data are is costly to generate, meaning relevant data often does not exist, and when it does is often not 575 

communicated in such a way that enables the user to make a fully informed decision. 576 

6. Conclusions 577 

In situ measurements of air pollutants are central to our ability to identify and mitigate poor air quality. 578 

Measurement applications are wide ranging, from assessing legal compliance to quantifying the impact of an 579 

intervention. The range of available measurement tools for key pollutants is also increasingly broad, with 580 

instrument price tags spreading several orders of magnitude. In order for a measurement device to be of use for a 581 

particular application it must be fit-for-purpose, with cost, useability and data quality all needing to be considered. 582 

Understanding measurement uncertainty is key in choosing the correct tool for the job, but in order for this to be 583 

assessed the job needs to be fully specified a priori. The specific data requirements of each measurement 584 

application need to be understood and a measurement solution chosen that is capable of providing data with 585 

sufficient information content.  586 

In order to aid end users in extrapolating from colocation study performance to potential performance in a specific 587 

application, performance metrics are often used. Although single value performance metrics do convey some 588 

useful information about the agreement between the data from the measurement device being assessed and the 589 

reference data, they can often be misleading in their evaluation of performance. This dictates a more rigorous and 590 

empirical approach to data uncertainty assessment in order to determine if a measurement is fit for purpose. The 591 

ability to assess device performance across the observed concentration range, as in the B-A and REU plots, enables 592 

an end-user to make an informed decision about the capabilities of a measurement device in the target 593 

concentration range. These visual tools also help identify any simple corrections that can be applied to improve 594 

performance. In contrast, if an end-user was only provided with a single value metric, such as R2 or RMSE then 595 

it would be significantly more difficult to understand the likely implications of the measurement uncertainties. 596 

All measurement devices suffer from errors, which result in deviations between the reported and true values. 597 

These errors can come from a multitude of sources, with the scale of the deviation from the true value being 598 

https://www.zotero.org/google-docs/?pVicfI
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dependent on the nature of the error. Although a known measurement uncertainty for all applications would be 599 

ideal for end users to be able to assess measurement device suitability for purpose, in many cases, especially for 600 

LCS, this is not possible due to the presence of poorly characterised, or sometimes unknown, error sources. In the 601 

absence of this, useful information on likely measurement performance can be obtained using colocation data 602 

compared with a measurement with a quantified uncertainty. It is important that such a colocation study is carried 603 

out in an environment as similar as possible to the application environment, as the unknown nature of many error 604 

sources means their magnitude can change significantly between different locations and/or seasons (e.g. Fig. 6). 605 

Ideally, depending on the measurement task, the user could use the colocation data to model the error causes and 606 

use this to develop strategies to minimise final measurement uncertainty. Unfortunately, relevant colocation study 607 

are is often not available, and to generate the data would be prohibitively costly, which limits the user’s ability to 608 

make a realistic assessment of likely uncertainties. The presence of, often complex, error minimisation post 609 

processing or calibration algorithms further complicates things. This additional uncertainty is most likely to bias 610 

any performance prediction if the end user is unaware of the purpose or scale of the data corrections, and their 611 

applicability to the target environmental conditions. Ideally, long term colocation data sets demonstrating the 612 

performance of measurement hardware and software, in a range of relevant locations, over multiple seasons, and 613 

carried out by impartial bodies would be available to inform measurement solution decisions. 614 

In order for end users to take full advantage of the ever increasing range of air pollution measurement devices 615 

available, the questions being asked of the data must be consummate with the information content of the data. 616 

Ultimately this information content is determined by the measurement uncertainty. Thus, providing end users with 617 

as accurate an estimate as possible of the likely measurement uncertainty, in any specific application, is essential 618 

if end users are to be able to make informed decisions. Similarly, end users must specify the data uncertainty 619 

requirements for each specific task if the correct tool for the job is to be identified. This requirement for air quality 620 

management strategies to acknowledge the capabilities of available devices, both in the setting and monitoring of 621 

limits, will only become increasingly important as target levels continue to decrease.  622 
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