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Abstract 22 

Ambient fine particulate matter (PM2.5) pollution is a major health risk. Networks of low-23 
cost sensors (LCS) are increasingly being used to understand local-scale air pollution 24 
variation. However, measurements from LCS have uncertainties that can act as a 25 
potential barrier to effective decision-making. LCS data thus need adequate calibration to 26 
obtain good quality PM2.5 estimates. In order to develop calibration factors, one or more 27 
LCS are typically co-located with reference monitors for short- or long periods of time. A 28 
calibration model is then developed that characterizes the relationships between the raw 29 
output of the LCS and measurements from the reference monitors. This calibration model 30 
is then typically transferred from the co-located sensors to other sensors in the network. 31 
Calibration models tend to be evaluated based on their performance only at co-location 32 
sites. It is often implicitly assumed that the conditions at the relatively sparse co-location 33 
sites are representative of the LCS network overall, and that the calibration model 34 
developed is not overfitted to the co-location sites. Little work has explicitly evaluated how 35 
transferable calibration models developed at co-location sites are to the rest of an LCS 36 
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network, even after appropriate cross-validation. Further, few studies have evaluated the 37 
sensitivity of key LCS use-cases such as hotspot detection to the calibration model 38 
applied. Finally, there has been a dearth of research on how the duration of co-location 39 
(short-term/long-term) can impact these results. This paper attempts to fill these gaps 40 
using data from a dense network of LCS monitors in Denver deployed through the city’s 41 
Love My Air program. It offers a series of transferability metrics for calibration models that 42 
can be used in other LCS networks and some suggestions as to which calibration model 43 
would be most useful for achieving different end goals.  44 
 45 
Key words: low-cost sensors, PM2.5, calibration, LoveMyAir 46 

1 Introduction 47 

Poor air quality is currently the single largest environmental risk factor to human health in 48 
the world, with ambient air pollution responsible for approximately 6.7 million premature 49 
deaths every year (State of Global Air, 2020). Having accurate air quality measurements 50 
is crucial for tracking long-term trends in air pollution levels, identifying hotspots, and for 51 
developing effective pollution management plans. The dry-mass concentration of fine 52 
particulate matter (PM2.5), a criterion pollutant that poses more of danger to human health 53 
than other widespread pollutants (Kim et al., 2015), can vary over distances as small as ~ 54 
10’s of meters in complex urban environments (Brantley et al., 2019; deSouza et al., 55 
2020a). Therefore, dense monitoring networks are often needed to capture relevant 56 
spatial variations. Due to their costliness, Environmental Protection Agency (EPA) air 57 
quality reference monitoring networks, the gold standard for measuring air pollutants, are 58 
sparsely positioned across the US (Apte et al., 2017; Anderson and Peng, 2012).  59 
 60 
Low-cost sensors (LCS) (<USD $2500 as defined by the US EPA Air Sensor Toolbox) 61 
(Williams et al., 2014) have the potential to capture concentrations of PM in previously 62 
unmonitored locations and to democratize air pollution information (Castell et al., 2017; 63 
Crawford et al., 2021; Kumar et al., 2015; Morawska et al., 2018; Snyder et al., 2013; 64 
deSouza and Kinney, 2021; deSouza, 2022). However, LCS measurements have several 65 
sources of greater uncertainty than reference monitors (Bi et al., 2020; Giordano et al., 66 
2021; Liang, 2021).  67 
 68 
Most low-cost PM sensors rely on optical measurement techniques. Optical instruments 69 
face inherent challenges that introduce potential differences in mass estimates compared 70 
to reference methods (Barkjohn et al., 2021; Crilley et al., 2018; Giordano et al., 2021; 71 
Malings et al., 2020): 72 
 73 
1.  Optical methods do not directly measure mass concentrations; rather, they estimate 74 
mass based on calibrations that convert light scattering data to particle number and mass. 75 
LCS come with factory-supplied calibrations, but in practice must be re-calibrated in the 76 
field to ensure accuracy, due to variations in ambient particle characteristics and 77 
instrument drift. 78 
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 79 
2. High relative humidity (RH) can produce hygroscopic particle growth, leading to dry 80 
mass overestimation unless particle hydration can accurately be taken into account or the 81 
particles are dessicated by the instrument. 82 
 83 
3.   LCS are not able to detect particles with diameters below a specific size, which is 84 
determined by the wavelength of laser light within each device, and is generally in the 85 
vicinity of 0.3 μm, whereas the peak in pollution particle number size distribution is 86 
typically smaller than 0.3 μm. 87 
 88 
4.   The physical and chemical parameters describing the aerosol (particle size 89 
distribution, shape, indices of refraction, hygroscopicity, volatility etc.), that might vary 90 
significantly across different microenvironments with diverse sources, impact light 91 
scattering; this in turn affects the aerosol mass concentrations reported by these 92 
instruments. 93 
 94 
The need for field calibration to correct LCS measurements is particularly important. This 95 
is typically done by co-locating a small number of LCS with one or a few reference 96 
monitors at a representative monitoring location or locations. The co-location could be 97 
carried out for a brief period before and/or after the actual study or may continue at a 98 
small number of sites for the duration of the study. In either case, the co-location provides 99 
data from which a calibration model is developed that relates the raw output of the LCS as 100 
closely as possible to the desired quantity as measured by the reference monitor. 101 
Thereafter, the calibration model is transferred to other LCS in the network, based upon 102 
the presumption that ongoing sampling conditions are within the same range as those at 103 
the collocation site(s) during the calibration period. 104 
 105 
Calibration models typically correct for 1) systematic error in LCS by adjusting for bias 106 
using reference monitor measurements, and 2) the dependence of LCS measurements 107 
on environmental conditions affecting the ambient particle properties such as relative 108 
humidity (RH), temperature (T), and/or dew-point (D). Correcting for RH, T and D is 109 
carried out through either a) a physics-based approach that accounts for aerosol 110 
hygroscopic growth given particle composition using 𝜅-Köhler’s theory, or b) empirical 111 
models, such as regression and machine learning techniques. In this paper, we focus on 112 
the latter, as it is currently the most widely used (Barkjohn et al., 2021). Previous work 113 
has also shown that the two approaches yield comparable improvements in the case of 114 
PM2.5 LCS (Malings et al., 2020).  115 
 116 
Prior studies have used multivariate regressions, piecewise linear regressions, or higher-117 
order polynomial models to account for RH, T and D in these calibration models (Holstius 118 
et al., 2014; Magi et al., 2020; Zusman et al., 2020). More recently, machine learning 119 
techniques such as random forests, neural networks, and gradient boosted decision trees 120 
have been used (Considine et al., 2021; Liang, 2021; Zimmerman et al., 2018). 121 
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Researchers have also started including additional covariates in their models besides 122 
what is directly measured by the LCS, such as time of day, seasonality, wind direction, 123 
and site-type, which have been shown to yield significantly improved results (Considine et 124 
al., 2021).  125 
 126 
Past research has shown that there are several important decisions, in addition to the 127 
choice of calibration model, that need to be made during calibration and that can impact 128 
the results (Bean, 2021; Giordano et al., 2021; Hagler et al., 2018). These include a) the 129 
kind of reference air quality monitor used, b) the time-interval (e.g., hour/day) over which 130 
to average measurements used when developing the calibration model, c) how cross-131 
validation (e.g., leave one site out/10-fold cross-validation) is carried out, and d) how long 132 
the co-location experiment takes place.  133 
 134 
Calibration models are typically evaluated based on how well the corrected data agree 135 
with measurements from reference monitors at the corresponding co-location site. A 136 
commonly used metric is the Pearson correlation coefficient, R, which quantifies the 137 
strength of the association. However, it is a misleading indicator of sensor performance 138 
when measurements are observed close to the limit of detection of the instrument. 139 
Therefore, Root Mean Square Error (RMSE) is often included in practice. Unfortunately, 140 
neither of these metrics captures how well the calibration method developed at the co-141 
located sites transfers to the rest of the network in both time and space.  142 
 143 
If the conditions at the co-location sites (meteorological conditions, pollution source mix) 144 
for the period of co-location are the same as for the rest of the network during the total 145 
operational period, the calibration model developed at the co-location sites can be 146 
assumed to be transferable to the rest of the network. In order to ensure that the sampling 147 
conditions at the co-location site are representative of sampling conditions across the 148 
network, most researchers tend to deploy monitors in the same general sampling area as 149 
the network (Zusman et al., 2020). However, it is difficult to definitively test if the co-150 
location site during the period of co-location is representative of conditions at all monitors 151 
in the network; ambient PM concentrations can vary on scales as small as a few meters. 152 
Furthermore, LCS are often deployed specifically in areas where the air pollution 153 
conditions are poorly understood, meaning that representativeness cannot be assessed in 154 
advance.  155 
 156 
In order to evaluate whether calibration models are transferable in time, we test if models 157 
generated using typical short-term co-locations at specific co-location sites perform well 158 
during other time periods at all co-location sites. Where multiple co-location sites exist, 159 
one way to evaluate how transferable calibration models are in space is to leave out one 160 
or more co-location sites and test if the calibration model is transferable to the left-out 161 
sites. This method was used in recent work evaluating the feasibility of developing a US-162 
wide calibration model for the PurpleAir low-cost sensor network (Barkjohn et al., 2021; 163 
Nilson et al., 2022). 164 
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 165 
Although these approaches are useful, co-location sites are sparse relative to other sites 166 
in the network. Even in the PurpleAir network (which is one of the densest low-cost 167 
networks in the world) there were only 39 co-location sites in 16 US states, a small 168 
fraction of the several thousand PurpleAir sites overall (Barkjohn et al., 2021). It is thus 169 
important to develop metrics to test how sensitive the spatial and temporal trends of 170 
pollution derived from the entire network are to the calibration model applied. Finally, a 171 
key use-case of LCS networks is to identify hotspots. It is important to also evaluate how 172 
sensitive the hotspot identified in an LCS network is to the calibration model applied. 173 
 174 
Examining the reliability of calibration models is timely because more researchers are 175 
opting to use machine learning models. Although in most cases, such models have 176 
yielded better results than traditional linear regressions, it is important to examine if these 177 
models are overfitted to conditions at the co-location sites, even after appropriate cross-178 
validation, and how transferable they are to the rest of the network. Indeed, because of 179 
concerns of overfitting, some researchers have explicitly eschewed employing machine 180 
learning calibration models altogether (Nilson et al., 2022). It is important to test under 181 
what circumstances such concerns might be warranted. 182 
 183 
This paper uses a dense low-cost PM2.5 monitoring network deployed in Denver, the 184 
“Love My Air” network deployed primarily outside the city’s public schools, to evaluate the 185 
transferability of different calibration models in space and time across the network. To do 186 
so, new metrics are proposed to quantify the Love My Air network spatial and temporal 187 
trend uncertainty due to the calibration model applied. Finally, for key LCS network use-188 
cases such as hotspot detection, tracking high pollution events and evaluating pollution 189 
trends at a high temporal resolution, the sensitivity of the results to the choice of 190 
calibration model is evaluated. The methodologies and metrics proposed in this paper can 191 
be applied to other low-cost sensor networks, with the understanding that the actual 192 
results will vary with study region. 193 

2 Data and Methods 194 

2.1 Data Sources 195 
Between Jan 1 and Sep 30, 2021, Denver’s Love My Air sensor network collected minute-196 
level data from 24 low-cost sensors deployed across the city outside of public schools and 197 
at 5 federal equivalent method (FEM) reference monitor locations (Figure 1). The Love 198 
My Air sensors are Canary-S models equipped with a Plantower 5003, made by Lunar 199 
Outpost Inc. The Canary-S sensors detect PM2.5, T, and RH, and upload minute-200 
resolution measurements to an online platform via cellular data network.  201 
 202 
We found that RH and T reported by the Love My Air sensors were well correlated with 203 
that reported by the reference monitoring stations. We used the Love My Air LCS T and 204 
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RH measurements in our calibration models as they most closely represent the conditions 205 
experienced by the sensors. 206 

 207 
Figure 1: Locations of all 24 Love My Air sensors. Sensors displayed with an orange 208 
triangle indicate that they were co-located with a reference monitor. The labels of the co-209 
located sensors include the name of the reference monitor with which they were co-210 
located after a hyphen. 211 

2.1.1 Data cleaning protocol for measurements from the Love My Air network 212 
A summary of the data cleaning and data preparation steps carried out on the Love My 213 
Air data from the entire network are listed below: 214 
 215 

1) Removed data for time-steps where key variables: PM2.5, T and RH measurements 216 
were missing  217 

2) !"#$%"&'()*"+,-./-0'!1'+)&'2'%+,(".'3!1'4'5'+)&'2'6'7850C) 218 

3) Removed PM2.5 values above 1,500 μg/m3 (outside the operational range of the 219 
Plantower sensors used) from the Canary-S sensors (Considine et al., 2021) 220 

4) We were left with 8,809,340 minute-level measurements and then calculated 221 
hourly-average PM2.5, T, and RH measurements for each sensor. We had a total of 222 
147,101 hourly-averaged measurements 223 

5) From inspection, one of the monitors, CS13, worked intermittently in Jan and Feb, 224 
before resuming continuous measurement in March (Figure S1 in Supplementary 225 
Information). When CS13 worked intermittently, large spikes in the measurements 226 
were observed, likely due to power surges. We thus retained measurements taken 227 
after March 1, 2021 for this monitor. The total number of hourly measurements was 228 
thus reduced to 146,583. 229 
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 230 
Love My Air sensors (indicated by Sensor ID) were co-located with FEM reference 231 
monitors from which we obtained high quality hourly PM2.5 measurements at (Table 1): 232 

1) La Casa (Sensor ID: CS5) 233 
2) CAMP (Sensor ID: CS13) 234 
3) I25 Globeville (Sensor ID: CS2, CS3, CS4) 235 
4) I25 Denver (Sensor ID: CS16) 236 
5) NJH (Sensor ID: CS1) for the entire period of the experiment  237 

2.1.2 Data preparation steps for preparing a training dataset used to develop 238 
the various calibration models 239 
A summary of the data preparation steps for preparing a training dataset used to develop 240 
the various calibration models are described below: 241 
 242 

1) We joined hourly averages from each of the seven co-located Love My Air 243 
monitors with the corresponding FEM monitor. We had a total of 35,593 co-located 244 
hourly measurements for which we had data for both the Love My Air sensor and 245 
the corresponding reference monitor.  246 
Figure S2 displays time-series plots of PM2.5 from all co-located Love My Air 247 
sensors. Figure S3 displays time-series plots of PM2.5 from the corresponding 248 
reference monitors.  249 

2) The three Love My Air sensors co-located at the I25 Globeville sites (CS2, CS3, 250 
CS4) agreed well with each other (correlation = 0.98) (Figures S4 and Figure S5). 251 
To ensure that our co-located dataset was well balanced across sites, we only 252 
retained measurements from CS2 at the I25 Globeville site. We were left with a 253 
total of 27,338 co-located hourly measurements that we used to develop a 254 
calibration model. Figure S6 displays the time-series plots of PM2.5 from all other 255 
Love My Air sensors in the network. 256 

 257 
Reference monitors at La Casa, CAMP, I25 Globeville and I25 Denver, also reported 258 
minute-level PM2.5 concentrations between April 23 11:16 and Sep 30, 22:49. We also 259 
joined minute-level Love My Air PM2.5 concentrations with minute-level reference data at 260 
these sites. We had a total of 1,062,141 co-located minute-level measurements during 261 
this time period. As with the hourly-averaged data, we only retained data from one of the 262 
Love My Air sensors at the I25 Globeville site and were thus left with 815,608 minute-level 263 
measurements from one LCS at each of the four co-location sites.   264 
 265 
Table S1 has information on the minute-level co-located measurements. The data at the 266 
minute-level displays more variation and peaks in PM2.5 concentrations than the hourly-267 
averaged measurements (Figure S7), likely due to the impact of passing sources. It is 268 
also important to mention that minute-level reference data may have some additional 269 
uncertainties introduced due to instrument error given the finer time resolution. We will 270 
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use the minute-level data in supplementary analyses, only. Thus, unless explicitly 271 
referenced, we will be reporting results from hourly-averaged measurements.  272 

2.1.3 Deriving additional covariates 273 
We derived dew-point (D) from T and RH reported by the Love My Air sensors using the 274 
weathermetrics package in the programming language R (Anderson and Peng, 2012), as 275 
D has been shown to be a good proxy of particle hygroscopic growth in previous research 276 
(Barkjohn et al., 2021; Clements et al., 2017; Malings et al., 2020). Some previous work 277 
has also used a nonlinear correction for RH in the form of RH2/(1-RH), that we also 278 
calculated for this study (Barkjohn et al., 2021).  279 
 280 
We extracted hour, weekend, and month variables from the Canary-S sensors and 281 
converted hour and month into cyclic values to capture periodicities in the data by taking 282 
the cosine and sine of hour*2𝜋/24 and month*2𝜋/12, which we designate as cos_time, 283 
sin_time, cos_month and sin_month, respectively. Sinusoidal corrections for seasonality 284 
have been shown to improve accuracy of PM2.5 measurements in machine learning 285 
models (Considine et al., 2021).  286 
 287 
Table 1: Site location of each Love My Air sensor, as well as summary statistics of hourly 288 
measurements from each sensor 289 
     PM2.5 (μg/m3) Temperature (0C) RH (%) Dewpoint (0C) 

Sensor ID Co-location 
Information 

Latitude Longitude Hours 
operati
onal 

Mean Median Min-Max Mean Mean Mean 

CS1 Co-located at NJH 39.739 -104.940 5,478 13 8 0 - 121 14.9 57.4 4.4 

CS2 Co-located at I25 
Globeville 

39.786 -104.989 5,818 14 9 0 - 142 16.4 63.6 7.6 

CS3 Co-located at I25 
Globeville 

39.786 -104.989 2,490 18 13 0 - 159 9.3 62.5 0.1 

CS4 Co-located at I25 
Globeville 

39.786 -104.989 5,765 12 8 0 - 137 15.8 67.6 8.0 

CS5 Co-located at La 
Casa 

39.779 -105.005 5,761 12 8 0 - 129 13.4 69.6 6.0 

CS7 - 39.781 -104.955 6,540 13 8 0 - 136 16.5 55.6 5.0 

CS8 - 39.777 -104.987 6,282 13 8 0 - 133 17.3 38.3 0.0 

CS9 - 39.756 -104.967 6,552 12 8 0 - 115 15.3 62.8 6.1 

CS10 - 39.776 -104.853 6,552 12 7 0 - 142 17.9 32.6 -2.4 

CS11 - 39.659 -105.047 6,548 12 7 0 - 127 15.0 58.2 4.5 

CS13 Co-located at 
CAMP 

39.751 -104.988 4,449 13 8 0 - 115 21.9 54.7 10.2 

CS15 - 39.667 -105.032 6,552 10 6 0 - 106 17.0 34.6 -1.5 

CS16 Co-located at I25 
Denver 

39.732 -105.015 5,832 12 9 0 - 100 17.4 33.6 -2.2 
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CS17 - 39.757 -104.958 6,527 12 7 0 - 149 17.1 35.1 -1.3 

CS18 - 39.692 -104.966 6,552 12 7 0 - 115 16.9 36.3 -1.0 

CS19 - 39.772 -104.951 1,749 11 5 0 - 66 3.4 40.0 -11.1 

CS20 - 39.769 -104.949 6,551 10 6 0 - 105 17.9 34.2 -1.2 

CS21 - 39.659 -104.868 6,551 12 6 0 - 129 15.2 39.2 -1.2 

CS22 - 39.758 -104.957 6,551 12 7 0 - 118 17.5 35.4 -0.9 

CS23 - 39.772 -105.024 6,552 14 9 0 - 139 16.5 34.6 -2.0 

CS25 - 39.776 -104.833 6,551 12 7 0 - 135 16.2 35.8 -1.8 

CS26 - 39.674 -104.950 6,552 12 7 0 - 115 15.9 36.9 -1.2 

CS27 - 39.775 -105.009 6,552 12 7 0 - 115 16.4 35.6 -1.4 

CS29 - 39.760 -104.918 6,552 11 7 0 - 114 15.7 37.5 -1.2 

2.2 Defining the Calibration Models Used 290 
The goal of the calibration model is to predict, as accurately as possible, the ‘true’ PM2.5 291 
concentrations given the concentrations reported by the Love My Air sensors. At the co-292 
located sites, the FEM PM2.5 measurements, which we take to be the “true” PM2.5 293 
concentrations, are the dependent variable in the models.  294 
 295 
We evaluated 21 increasingly complex models that included T, RH, D as well as metrics 296 
that captured the time-varying patterns of PM2.5 to correct the Love My Air PM2.5 297 
measurements (Tables 2 and 3). 298 
 299 
Sixteen models were multivariate regression models that were used in a recent paper 300 
(Barkjohn et al., 2021) to calibrate another network of low-cost sensors: the PurpleAir, 301 
that rely on the same PM2.5 sensor (Plantower) as the Canary-S sensors in the current 302 
study. As T, RH, and D are not independent (Figure S8), the 16 linear regression models 303 
include adding the meteorological conditions considered as interaction terms, instead of 304 
additive terms. The remaining five calibration models relied on machine learning 305 
techniques.  306 
 307 
Machine learning models can capture more complex nonlinear effects (for instance, 308 
unknown relationships between additional spatial and temporal variables). We opted to 309 
use the following machine learning techniques: Random Forest (RF), Neural Network 310 
(NN), Gradient Boosting (GB), SuperLearner (SL) that have been widely used in 311 
calibrating LCS. A description of each technique is described in detail in section S1 in 312 
Supplementary Information. All machine learning models were run using the caret 313 
package in R (Kuhn, 2015).  314 
 315 
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We used both Leave-One-Site-Out (LOSO) (Table 2) and Leave-Out-By-Date, where we 316 
left out a 3-weeks period of data at a time at all sites (LOBD) (Table 3) cross-validation 317 
(CV) methods to avoid overfitting in the machine learning models. For more details on the 318 
cross-validation methods used to avoid overfitting in the machine learning models refer to 319 
section S2 in Supplementary Information. 320 

2.2.1 Corrections generated using different co-location time periods (long-321 
term, on-the-fly, short-term) 322 
As described earlier, co-location studies in the LCS literature have been conducted over 323 
different time periods. Some studies co-locate one or more LCS for brief periods of time 324 
before or after an experiment, whereas others co-locate a few LCS for the entire duration 325 
of the experiment. These studies apply calibration models generated using the co-located 326 
data to measurements made by the entire network over the entire duration of the 327 
experiment. We attempt to replicate these study designs in our experiment to evaluate the 328 
transferability of calibration models across time by generating four different corrections: 329 
 330 
(C1) Entire data set correction: The 21 calibration models were developed using data at 331 
all co-location sites for the entire period of co-location. 332 
(C2) On the fly correction: The 21 calibration models to correct a measurement during a 333 
given week were developed using data across all co-located sites for the same week of 334 
the measurement. 335 
(C3) 2-week winter correction: The 21 calibration models were developed using co-336 
located data collected for a brief period (2 weeks) at the beginning of the study (Jan 1 - 337 
Jan 14, 2021). They were then applied to measurements from the network during the rest 338 
of the period of operation.  339 
(C4) 2-week winter + 2-week spring: The 21 calibration models were developed using co-340 
located data collected for two 2-week periods in different seasons (Jan 1 - Jan 14, 2021 341 
and May 1 - May 14, 2021). They were then applied to measurements from the network 342 
during the rest of the period of operation.  343 
 344 
Although models developed using co-located data over the entire time period (C1) tend to 345 
be more accurate over the entire spatiotemporal data set, it is inefficient to re-run large 346 
models frequently (incorporating new data). On-the-fly corrections (such as C2) can help 347 
characterize short-term variation in air pollution and sensor characteristics. The duration 348 
of calibration is a key question that remains unanswered (Liang, 2021). We opted to test 349 
corrections C3 and C4 as many low-cost sensor networks rely on developing calibration 350 
models based on relatively short co-location periods (deSouza et al., 2020b; West et al., 351 
2020; Singh et al., 2021). Each of the 21 calibration models considered was tested under 352 
four potential correction schemes (C1, C2, C3 and C4).  353 
 354 
For C1, the five machine-learning models were trained using two CV approaches: LOSO 355 
and LOBD, separately. For C2, C3 and C4 only LOSO was conducted, as model 356 
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application is already being performed on a different time period from the training (for 357 
more details refer to section S2).  358 
 359 
Overall, we test 89 calibration models (21 (C1, CV=LOSO) + 5 (C1, CV=LOBD) + 21 × 3 360 
(C2, C3, C4) = 89) listed in Tables 2 and 3.  361 

2.3 Evaluating the calibration models developed under the four 362 
different correction schemes 363 
Uncorrected Love My Air measurements tend to be biased upwards from the 364 
corresponding reference PM2.5 levels by an average of ~12% (Figure S9). We first 365 
evaluate: 366 

1) Were meteorological conditions at the co-location sites representative of network 367 
operating conditions? 368 

2) How well do different calibration models perform when using the traditional method 369 
of model evaluation at co-location sites, during the period of co-location? 370 

 371 
We then evaluate transferability of the calibration models in time and space by evaluating: 372 

1) How well do calibration models developed during short-term co-locations 373 
(corrections: C3 and C4) perform when transferred to long-term network 374 
measurements? 375 

2) How well do calibration models developed at a small number of co-locations sites 376 
transfer in space to other sites, even after appropriate cross-validation to prevent 377 
overfitting? 378 

3) Different metrics to quantify the uncertainty in spatial and temporal trends in PM2.5 379 
reported by the LCS network to the calibration model applied. 380 

 381 
Finally, we evaluate the impact of the choice of calibration model on key LCS network 382 
use-cases, such as hotspot detection, or detection of the most-polluted site. In 383 
supplementary analyses, we also evaluate how much the calibration model impacts the 384 
following additional use-cases: 385 

1) LCS are increasingly used to evaluate pollution trends on increasingly short 386 
timescales. We evaluated how well calibration models developed using hourly 387 
aggregated data to minute-level LCS measurements 388 

2) LCS have been deployed to track smoke from fires. We evaluate how well different 389 
calibration models perform at high PM2.5 concentrations. 390 

2.3.1 Evaluating the representativeness of meteorological conditions at the 391 
co-location sites of the entire network 392 
LCS measurements are impacted by T and RH. We thus, first evaluated if meteorological 393 
conditions (T and RH) at the co-location sites during time-periods used to construct the 394 
calibration models were representative of conditions of operation for the rest of the 395 
network by comparing distributions of these parameters across sites (Figure 2).  396 
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2.3.2 Traditional Evaluation of the different Calibration Models	397 
We evaluated the performance of the calibration models for the time period of co-location 398 
in our sample using: R (Pearson correlation coefficient), and RMSE (Tables 2 and 3).   399 

2.3.3 Evaluating transferability of short-term calibrations developed to the 400 
entire period of operation of the network 401 
We evaluated calibration models using corrections C3 and C4 only for the time-period 402 
over which the calibration models were developed, which was Jan 1 - Jan 14, 2021, for 403 
C3 and Jan 1 - Jan 14, 2021, and May 1 - May 14, 2021, for C4 (Table S2) and compared 404 
the performance with applying these models to the entire time period of the network 405 
(Table 2). 406 

2.3.4 Evaluating whether the calibration models are overfitted to the co-407 
location sites even after appropriate cross-validation 408 
To evaluate how transferable the calibration technique developed at the co-located sites 409 
was to the rest of the network, even after conducting LOSO CV, we left out each of the 410 
five co-located sites in turn and using data from the remaining sites ran the models 411 
proposed in Tables 2 and 3. We then applied the models generated to the left-out site. 412 
We report the distribution of RMSE from each calibration model considered at the left-out 413 
sites using box-plots (Figure 3). For correction C1, we also left out a three-week period of 414 
data at a time and generated the calibration models based on the data from the remaining 415 
time periods at each site. For the machine learning models (Models 17 – 21), we used CV 416 
= LOBD. We plotted the distribution of RMSE from each model considered for the left-out 417 
three week period (Figure 3). 418 
 419 
We statistically compared the errors in predictions on each test dataset with errors in 420 
predictions from using all sites in our main analysis. Such an approach is useful to 421 
understand how well the proposed correction can transfer to other areas in the Denver 422 
region. To compare statistical differences between errors, we used t-tests if the 423 
distribution of errors were normally distributed (as determined by a Shapiro–Wilk test), 424 
and Wilcoxon signed rank tests, if not, using a significance value of 0.05 (Section 3.1.4).  425 
 426 
We have only five co-location sites in the network. Although evaluating the transferability 427 
among these sites is useful, as we know the true PM2.5 concentrations at these sites, we 428 
also evaluated the transferability of these models in the larger network by predicting PM2.5 429 
concentrations using the models proposed in Tables 2 and 3 at each of the 24 sites in the 430 
Love My Air network. For each site, we display time series plots of corrected PM2.5 431 
measurements in order to visually compare the ensemble of corrected values at each site 432 
(Figure 3). 433 
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2.3.5 Evaluating sensitivity of the spatial and temporal trends of the low-cost 434 
sensor network to the method of calibration 435 
We evaluate the spatial and temporal trends in the PM2.5 concentrations corrected using 436 
the 89 different calibration models using similar methods to that described in (Jin et al., 437 
2019; deSouza et al., 2022) by calculating: 438 
 439 

(1) The spatial root mean square difference (RMSD) (Figure 5) between any two 440 

corrected exposures at the same site: 𝑆𝑅𝑀𝑆𝐷!,# 	= 	*
1
$
∑$%&1 (𝐶𝑜𝑛𝑐!% − 𝐶𝑜𝑛𝑐#%)2, 441 

where Conchi and Concdi are Jan 1- Sep 30, 2021 averaged PM2.5 concentrations 442 
estimated from correction h and d for site i. N is the total number of sites. 443 

(2) The temporal RMSD (Figure 6) between pairs of exposures: 𝑇𝑅𝑀𝑆𝐷!,# =444 

* 1
'
∑'(&1 (𝐶𝑜𝑛𝑐!( − 𝐶𝑜𝑛𝑐#()2, where Concht and Concdt are hourly corrected PM2.5 445 

concentrations averaged over all operational Love My Air sites estimated from 446 
correction h and d for time t. M is the total number of hours of operation of the 447 
network. 448 

(3) The spatial Pearson correlation coefficient (Figure 7): 𝑅) =449 
∑!"#1 (,-./$"0,-./$111111111)(,-./%"0,-./%111111111)

3∑!"#1 (,-./$"0,-./$111111111)2∑!"#1 (,-./%"0,-./%111111111)2
, where  𝐶𝑜𝑛𝑐!44444444)and 𝐶𝑜𝑛𝑐#44444444 are the average 450 

(across all sites and times) corrected PM2.5 concentrations estimated from 451 
corrections h and d respectively. 452 

(4) The temporal Pearson correlation coefficient (Figure 8): 𝑅4 =453 
∑&'#1 (,-./$'0,-./$111111111))(,-./%'0,-./%111111111)

3∑&'#1 (,-./$'0,-./$111111111))2 ∑!"#1 (,-./%'0,-./%111111111)2
 454 

 455 
We characterized the uncertainty in the ‘corrected’ PM2.5 estimates at each site across the 456 
different models using two metrics: a normalized range (NR) (Figure 9a) and uncertainty, 457 
calculated from the 95% confidence interval (CI) assuming a t-statistical distribution 458 
(Figure 9b). NR for a given site represents the spread of PM2.5 across the different 459 
correction approaches. 460 

(5) 𝑁𝑅	 = 	 1
'
∑'(&1

567(∈*		,('	0	5%.(∈*	,('
,'111

        461 

Ckt is the PM2.5 concentration at hour t from the kth model from the ensemble of K (which 462 
in this case is 89) correction approaches. 𝐶(6  represents the ensemble mean across the K 463 
different products at hour t. M is the total number of hours in our sample for which we 464 
have PM2.5 data for the site under consideration. 465 
 466 
For our sample (K = 89), we assume the variations in PM2.5 across multiple models 467 
follows the Student-t distribution with the mean being the ensemble average. The 468 
confidence interval (CI) for the ensemble mean at a given time t is: 469 
 470 
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(6) 𝐶𝐼( =	𝐶(6 	+	𝑡∗
):'
√<

        471 

Where 𝐶(6  represents the ensemble mean at time t; t* is the upper (1	0	,=)
2

 critical value for 472 
the t-distribution with K-1 degrees of freedom. For K=89, t* for the 95% double tailed 473 
confidence interval is 1.99. SDt is the sample standard deviation at time t. 474 

(7) 𝑆𝐷( 	= *∑
*
(#1 (,(,'0,'111)2

<01
 475 

 476 
 We define an overall estimate of uncertainty as follows: 477 

(8) 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦		 = 1
'
∑'(&1 𝑡∗ ):'

,'111√<
  , which can also be expressed as  478 

     (8) 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦		 = 1
'
∑'(&1

,='0,'111

,'111
  479 

2.3.6 Evaluating the sensitivity of hotspot detection across the network of 480 
sensors to the calibration method 481 
One of the key use-cases of low-cost sensors is hotspot detection. We report the labels of 482 
sites that are the most polluted using calibrated measurements from the 89 different 483 
models using hourly data (Section 3.1.6) We repeat this process for daily, weekly and 484 
monthly-averaged calibrated measurements. We ignore missing measurements from the 485 
network when calculating time averaged values for the different time periods considered. 486 
We report the mean number of sensors that are ranked ‘most polluted’ across the 487 
different correction functions for the different averaging periods (Figure 10).  We do this 488 
to identify if the choice of the calibration model impacts the hotspot identified by the 489 
network (i.e. depending on the calibration model different sites show up as the most 490 
polluted).  491 

2.3.7 Supplementary Analysis: Evaluating transferability of calibration 492 
models developed in different pollution regimes 493 

We evaluated model performance for true/reference PM2.5 concentrations > 30 μg/m3 +)&'494 

6'85'9:;#3, as Nilson et al. (2022) has shown that calibration models can have different 495 

performances in different pollution regimes. We chose to use 30 μg/m3 as the threshold, 496 
as these concentrations account for the greatest differences in health and air pollution 497 

avoidance behavior impacts (Nilson et al., 2022). Lower concentrations (PM2.5'6'85'498 

9:;#3) represent most measurements observed in our network; better performance at 499 

these levels will ensure better day-to-day functionality of the correction. High PM2.5 (> 30 500 
μg/m3) concentrations in Denver typically occur during fires. Better performance of the 501 
calibration models in this regime will ensure that the LCS network can accurately capture 502 
pollution concentrations under smoky conditions. In order to compare errors observed in 503 
the two different concentration ranges, in addition to reporting R and RMSE of the 504 
calibration approaches, we also report the normalized RMSE (normalized by the mean of 505 
the true concentrations) (Tables S3 and S4).  506 
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2.3.8 Supplementary Analysis: Evaluating transferability of calibration 507 
models developed across different time aggregation intervals 508 
One of the key advantages of LCS is that they report high frequency (time scales shorter 509 
than an hour) measurements of pollution. As reference monitoring stations provide hourly 510 
or daily average pollution values, most often the calibration model is developed using 511 
hourly averaged data and then applied to the unaggregated, high-frequency LCS 512 
measurements. We applied the calibration models described in Tables 2 and 3 developed 513 
using hourly-averaged co-located measurements on minute-level measurements from the 514 
co-located LCS described in Table S1. We evaluated the performance of the corrected 515 
high-frequency measurements against the ‘true’ measurements from the corresponding 516 
reference monitor using the metrics R and RMSE (Tables S5 and S6).  517 

3 Results 518 

3.1 Evaluating the correction models at the co-location sites 519 

3.1.1 Evaluating the representativeness of meteorological conditions at 520 
the co-location sites of the entire network 521 
Temperature at the co-located sites across the entire period of the experiment (from Jan 1 522 
– Sep 30, 2021) were similar to those at the rest of Love My Air network (Figure 2a). The 523 
sensor CS19 is the only one that recorded lower temperatures than those at any of the 524 
other sites. Relative humidity at the co-located sites (three of the four co-located sites 525 
have a median RH close to 50 % or higher) is higher than at the other sites in the network 526 
(7 of the 12 other sites have a median RH < 50%) (Figure 2b).  527 
 528 
We also compared meteorological conditions during the development of corrections C3 529 
(Jan 1 - Jan 14, 2021) and C4 (Jan 1 - Jan 14, 2021, and May 1 - May 14, 2021), to those 530 
measured during the duration of network operation (C3: Figures S10 and S11; C4: 531 
Figures S12 and S13). Unsurprisingly, temperatures at the co-located sites during the 532 
development of C4 were more representative of the network than C3, although they were 533 
on average lower (median temperatures ~ 10 - 170C) than the average temperatures 534 
experienced by the network (median temperatures ~ 5 - 230C). RH values at co-located 535 
sites during C3 and C4 tend to be higher than conditions experienced by some Love My 536 
Air sensors. 537 
 538 
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Figure 2: (a) Distribution of temperature recorded by each Love My Air sensor, (b)  540 
Distribution of RH recorded by each Love My Air sensor. The distribution of temperature  541 
and RH recorded by co-located LCS is shown on the left. The distribution of temperature 542 
and RH recorded by all LCS not used to construct the calibration models are displayed on 543 
the right 544 
 545 

3.1.2 Traditional Evaluation of the different Calibration Models 546 
When we evaluated the performance of applying each of the 89 calibration models on all 547 
co-located data, we found that based on R and RMSE values, the on-the-fly C2 correction 548 
performed better overall than the C1, C3 and C4 corrections for most calibration model 549 
forms (Tables 2 and 3).  550 
 551 
Within corrections C1 and C2, we found that an increase in complexity of model form 552 
resulted in a decreased RMSE. Overall, Model 21 yielded the best performance (RMSE = 553 
1.281 μg/m3 when using the C2 correction, 1.475 μg/m3 when using the C1 correction with 554 
a LOSO CV and 1.480 μg/m3 when using a LOBD correction). In comparison, the simplest 555 
model yielded an RMSE of 3.421 μg/m3 for the C1 correction, and 3.008 μg/m3 when 556 
using the C2 correction.  557 
 558 
For correction C1, using a LOBD CV (Table 3) with the machine learning models resulted 559 
in better performance than using a LOSO CV (Table 2), except for Model 21 which is an 560 
RF model with additional time-of-day and month covariates, for which performance using 561 
the LOSO CV was marginally better (RMSE: 1.475 μg/m3 versus 1.480 μg/m3). 562 
  563 
Table 2: Performance of the calibration models as captured using root mean square error 564 
(RMSE), and Pearson correlation (R). LOSO CV was used to prevent overfitting in the 565 
machine learning models. All corrected values were evaluated over the entire time-period 566 
(Jan 1 - Sep 30, 2021) 567 

ID Name Model C1 
Correction 
developed 
on data 
during the 
entire period 
of network 
operation 

C2 
On-the-fly 
correction 
developed 
using data 
for the same 
week of 
measureme
nt 

C3 
Correction 
developed 
using 
measureme
nts made in 
the first two 
weeks of 
Jan 

C4 
Correction 
developed 
using 
measurem
ents from 
the first 
two weeks 
of Jan and 
the first 
two weeks 
in May 
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R RMSE 
(μg/m3) 

R RMSE 
(μg/m3) 

R RMSE 
(μg/m3) 

R RMS
E 
(μg/m3) 

 Raw Love My Air measurements     

0 Raw  0.927 6.469 - - - - - - 

 Multivariate Regression (LOSO CV) 

1 Linear PM2.5, corrected = PM2.5 x s1 
+ b 

0.927 3.421 0.944 3.008 0.927 3.486 0.927 3.424 

2 +RH PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + b 

0.929 3.379 0.948 2.904 0.928 3.618 0.929 3.462 

3 +T PM2.5, corrected = PM2.5 x s1 
+ T x s2 + b 

0.928 3.409 0.949 2.896 0.925 3.948 0.928 3.460 

4 +D PM2.5, corrected = PM2.5 x s1 
+ D x s2 + b 

0.928 3.417 0.947 2.934 0.917 3.713 0.925 3.470 

5 +RH x T PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + T x s3 + RH x 
T x s4 + b 

0.934 3.260 0.953 2.782 0.931 3.452 0.933 3.344 

6 +RH x D PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + D x s3 + RH x 
D x s4 + b 

0.930 3.361 0.953 2.785 0.911 3.973 0.929 3.461 

7 +D x T PM2.5, corrected = PM2.5 x s1 
+ D x s2 + T x s3 + D x T x 
s4 + b 

0.928 3.409 0.952 2.798 0.888 5.698 0.921 3.720 

8 +RH x T x D PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + T x s3 + D x 
s4 + RH x T x s5 + RH x D 
x s6 + T x D x s7 + RH x T 
x D x s8 + b 

0.935 3.246 0.955 2.724 0.779 7.077 0.926 3.625 

9 PM x RH PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + RH x PM2.5 x 
s3 + b 

0.930 3.362 0.950 2.854 0.925 3.949 0.925 3.767 

10 PM x D PM2.5, corrected = PM2.5 x s1 
+ D x s2 + D x PM2.5 x s3 

0.932 3.324 0.950 2.871 0.883 4.460 0.913 3.777 



19 

+ b 

11 PM x T PM2.5, corrected = PM2.5 x s1 
+ T x s2 + T x PM2.5 x s3 + 
b 

0.930 3.365 0.952 2.809 0.906 6.509 0.928 3.466 

12 PM x 
nonlinear RH 

PM2.5, corrected = PM2.5 x s1 

+ >?2

(10>?)
 x s2 + >?2

(10>?)
x 

PM2.5 x s3 + b 

0.934 3.277 0.948 2.900 0.931 3.510 0.932 3.403 

13 PM x RH x T PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + T x s3 +  
PM2.5 x RH x s4 + PM2.5 x 
T x s5 + RH x T x s6 + 
PM2.5 x RH x T x s7 +  b 

0.938 3.165 0.956 2.672 0.891 6.220 0.928 3.497 

14 PM x RH x D PM2.5, corrected = PM2.5 x s1 
+ RH x s2 + D x s3 +  
PM2.5 x RH x s4 + PM2.5 x 
D x s5 + RH x D x s6 + 
PM2.5 x RH x D x s7 +  b 

0.933 3.288 0.957 2.663 0.879 7.289 0.917 4.033 

15 PM x T x D PM2.5, corrected = PM2.5 x s1 
+ T x s2 + D x s3 +  PM2.5 
x T x s4 + PM2.5 x D x s5 + 
T x D x s6 + PM2.5 x T x D 
x s7 +  b 

0.932 3.315 0.957 2.665 0.734 6.302 0.905 4.574 

16 PM x RH x T 
x D 

PM2.5, corrected = PM2.5 x s1 
+ RH  x s2 + T x s3 +  D x 
s4 + PM2.5 x RH x s5 + 
PM2.5 x T x s6 + T x RH x 
s7 + PM2.5 x D x s8 + D x 
RH x s9 + D x T x s10 + 
PM2.5 x RH x T x s11 + 
PM2.5 x RH x D x s12  + 
PM2.5 x D x T x s13 + D x 
RH x T x s14 + PM2.5 x RH 
x T x D x s15 + b 

0.940 3.115 0.960 2.557 0.324 32.951 0.765 6.746 

 Machine Learning (LOSO CV) 

17 Random 
Forest 

PM2.5, corrected = f(PM2.5, T, 
RH) 

0.983 1.713 0.988 1.450 0.913 3.926 0.911 3.824 
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18 Neural 
Network (One 
hidden layer) 

PM2.5, corrected = f(PM2.5, T, 
RH) 

0.933 3.286 0.948 2.916 0.932 3.550 0.913 4.725 

19 Gradient 
Boosting 

PM2.5, corrected = f(PM2.5, T, 
RH) 

0.950 2.870 0.964 2.452 0.910 3.854 0.909 3.834 

20 SuperLearner PM2.5, corrected = f(PM2.5, T, 
RH) 

0.950 2.855 0.970 2.236 0.910 3.917 0.923 3.582 

21 Random 
Forest 

For C1: 
PM2.5, corrected = f(PM2.5, T, 
RH, D, cos_time, 
cos_month, sin_month) 
 
For C2, C3, C4 
PM2.5, corrected = f(PM2.5, T, 
RH, D, cos_time) 

0.987 1.475 0.990 1.289 0.870 5.032 0.884 4.617 

 568 
Table 3: Performance of the calibration models using the C1 correction as captured using 569 
root mean square error (RMSE), and Pearson correlation (R) LOBD CV was used to 570 
prevent overfitting in the machine learning models  571 

ID Machine Learning (LOBD CV) R RMSE 
(μg/m3) 

17 Random Forest PM2.5, corrected = f(PM2.5, T, RH) 0.983 1.710 

18 Neural Network 
(One hidden 
layer) 

PM2.5, corrected = f(PM2.5, T, RH) 0.933 3.285 

19 Gradient 
Boosting 

PM2.5, corrected = f(PM2.5, T, RH) 0.953 2.759 

20 SuperLearner PM2.5, corrected = f(PM2.5, T, RH) 0.956 2.692 

21 Random Forest PM2.5, corrected = f(PM2.5, T, RH, D, 
cos_time, cos_month, sin_month) 

0.987 1.480 

3.1.3 Evaluating transferability of short-term calibrations developed to the 572 
entire period of operation of the network 573 
We also found that for corrections of short-term calibrations, C3 and C4, more complex 574 
models yielded a better performance (for example the RMSE for Model 16: 2.813 μg/m3, 575 
RMSE for Model 2: 3.110 μg/m3 generated using the C3 correction) when evaluated 576 
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during the period of co-location, alone (Table S3). However, when models generated 577 
using the C3 and C4 corrections were transferred to the entire time period of co-location, 578 
we find that more complex multivariate regression models (Models 13-16) and the 579 
machine learning model (Model 21) that include cos_time, performed significantly worse 580 
than the simpler models (Table 2). In some cases, these models performed worse than 581 
the uncorrected measurements. For example, applying Model 16 generated using C3 on 582 
the entire dataset resulted in an RMSE of 32.951 μg/m3 compared to 6.469 μg/m3 for the 583 
uncorrected measurements. 584 
 585 
Including data from another season, spring in addition to winter, in the training sample 586 
(C4), resulted in significantly increased performance of the calibration over the entire 587 
dataset compared to C3 (winter), although it did not result in an improvement in 588 
performance for all models compared to the uncorrected measurements. For example, 589 
Model 16 generated using C4 yielded an RMSE of 6.746 μg/m3. Among the multivariate 590 
regression models, we found that models of the same form that corrected for RH instead 591 
of T or D did best. The best performance was observed for models that included the 592 
nonlinear correction for RH (Model 12) or included an 𝑅𝐻	 × 	𝑇 term (Model 5) (Table 2). 593 

3.1.4 Evaluating if the calibration models are overfitted to the co-location 594 
sites even after appropriate cross-validation 595 
Figure 3 shows the performance (RMSE) of corrected Love My Air PM2.5 data by 596 
generating corrections based on the 21 models previously proposed using the C1 597 
correction, CV= LOSO and CV = LOBD for Models 17 - 21, when leaving out a test site 598 
(Figure 3a). Also shown is the result using the C1 correction when leaving out a three 599 
week period of data at a time and generating calibration models based on the data from 600 
the remaining time periods across each site, using CV = LOBD for Models 17 – 21, and 601 
applying the models to the remaining three-week period (Figure 3b). Finally, Figures 3c, 602 
3d and 3e illustrate using the C2, C3 and C4 corrections, respectively, (CV= LOSO for 603 
Models 17 - 21) when leaving out a test site. 604 
 605 
Large reductions in RMSE are observed when applying simple linear corrections (Models 606 
1 - 4) to the uncorrected data across C1, C2, C3 and C4. Increasing the complexity of the 607 
model does not result in marked changes in correction performance on different test sets 608 
for C1 and C2. Although the performance of the corrected datasets did improve on 609 
average for some of the complex models considered (Model 17, 20, 21 for example, vis-a-610 
vis simple linear regressions when using the C1 correction) (Figures 3a, 3b), this was not 611 
the case for all test datasets considered, as evinced by the overlapping distributions of 612 
RMSE performances (e.g., Model 11 using the C2 correction resulted in a worse fit for 613 
one of the test datasets). For C3 and C4, the performance of corrections was worse 614 
across all datasets for the more complex multivariate model formulations (Figures 3d, 615 
3e), indicating that using uncorrected data is better than using these corrections and 616 
calibration models.  617 
 618 
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Wilcoxon tests and t-tests (based on whether Shapiro-Wilk tests revealed that the 619 
distribution of RMSEs was normal) revealed significant improvements in the distribution of 620 
RMSEs for all corrected test sets vis-a-vis the uncorrected data. There was no significant 621 
difference in the distribution of RMSE values from applying C1 and C2 corrections to the 622 
test sets, across the different models. For corrections C3 and C4, we found significant 623 
differences in the distribution of RMSEs obtained from running different models on the 624 
data, implying that the choice of model has a significant impact on transferability of the 625 
calibration models to other monitors.  626 

 627 
Figure 3: Performance (RMSE) of corrected Love My Air PM2.5 data by generating 628 
corrections based on the 21 models (designated as fit) previously proposed using (a) 629 
Correction C1 when leaving out a co-location site in turn and then running the generated 630 
correction on the test site (Note that for machine learning models (Models 17- 21),  we 631 
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performed CV using a LOSO CV as well as a LOBD CV approach), (b) Correction C1 632 
when leaving out 3 week periods of data at a time and generating corrections based on 633 
the data from the remaining time periods across each site, and evaluating the 634 
performance of the developed corrections on the held out 3 weeks of data (Note that for 635 
machine learning models (Models 17- 21),  we performed CV using a LOBD CV 636 
approach), (c) Correction C2 when leaving out a co-location site in turn and then running 637 
the generated correction on the test site, (d) Correction C3 when leaving out a co-location 638 
site in turn and then running the generated correction on the test site, (e) Correction C4 639 
when leaving out a co-location site in turn and then running the generated correction on 640 
the test site. Each point represents the RMSE for each test dataset permutation. The 641 
distribution of RMSEs is displayed using box-plots and violin-plots. 642 
 643 
The time-series of corrected PM2.5 values for Models 1, 2, 5, 16, and 21 (RF using 644 
additional variables) (using CV = LOSO for the machine learning Models 17 and 21) for 645 
corrections generated using C1, C2, C3 and C4 are displayed in Figure 4 for Love My Air 646 
sensor CS1. These subsets of models were chosen as they cover the range of model 647 
forms considered in this analysis.  648 
 649 
From Figure 4, we note that although the different corrected values from C1 and C2 track 650 
each other well, there are small systematic differences between the different corrections. 651 
Peaks in corrected values using C2 tend to be higher than those using C1. Peaks in 652 
corrected values using machine learning methods using C1 are higher than those 653 
generated from multivariate regression models. Figure 4 also shows marked differences 654 
in the corrected values from C3 and C4. Specifically Model 16 yields peaks in the data 655 
that corrections using the other models do not generate. This pattern was consistent 656 
when applying this suite of corrections to other Love My Air sensors. 657 
 658 

 659 



24 

Figure 4: Time-series of the different PM2.5 corrected values for Models 1, 2, 5, 16 and 21 660 
across corrections (a) C1, (b) C2, (c) C3 and (d) C4 for the Love My Air monitor CS1. 661 
Note that the scales are the same for C1, C2 and C4, but not for C3. 662 

3.1.5 Evaluating sensitivity of the spatial and temporal trends of the low-cost 663 
sensor network to the method of calibration 664 
The spatial and temporal RMSD values between corrected values generated from 665 
applying each of the 89 models using the four different correction approaches across all 666 
monitoring sites in the Love My Air network are displayed Figures 5 and 6, respectively. 667 
There is larger temporal variation (max 32.79 μg/m3), in comparison to spatial variations 668 
displayed across corrections (max: 11.95 μg/m3). Model 16 generated using the C3 669 
correction has the greatest spatial and temporal RMSD in comparison with all other 670 
models. Models generated using the C3 and C4 corrections displayed the greatest spatial 671 
and temporal RMSD vis-a-vis C1 and C2.  672 
 673 
Figures S14- S17 display spatial RMSD values between all models corresponding to 674 
corrections C1-C4, respectively, to allow for a zoomed in view of the impact of the 675 
different model forms for the 4 corrections. Similarly, Figures S18- S21 display temporal 676 
RMSD values between all models corresponding to corrections C1-C4, respectively. 677 
Across all models the temporal RMSD between models is greater than the spatial RMSD. 678 
 679 
Spatial and temporal correlation coefficients between corrected measurements generated 680 
from applying all 89 models using the four different correction approaches across the 681 
entire network are displayed in Figures 7 and 8, respectively. The spatial correlations are 682 
lower than temporal correlations between corrected measurements.  683 
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 684 
 685 
Figure 5: Spatial RMSD (μg/m3) calculated using the method detailed in section 2.3.5 686 
from applying each of the 89 calibration models using the four different correction 687 
approaches to all monitoring sites in the Love My Air network.  688 
 689 
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 690 
Figure 6: Temporal RMSD (μg/m3) calculated using the method detailed in section 2.3.5 691 
from applying each of the 89 calibration models using the four different correction 692 
approaches to all monitoring sites in the Love My Air network.  693 
 694 
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 695 
 696 
Figure 7: Spatial Correlations from applying each of the 89 calibration models using 697 
corrections C1-C4 to all monitoring sites in the Love My Air network calculated using the 698 
method described in section 2.3.5. 699 
 700 
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 701 
Figure 8: Temporal Correlations from applying each of the 89 calibration models using 702 
corrections C1-C4 approaches to all monitoring sites in the Love My Air network 703 
calculated using the method described in section 2.3.5.  704 
 705 
The distribution of uncertainty and the NR in hourly-calibrated measurements over the 89 706 
models by monitor are displayed in Figure 9. Overall, there are small differences in 707 
uncertainties and NR of the calibrated measurements across sites. The average NR and 708 
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uncertainty across all sites are 1.554 (median: 0.9768) and 0.044 (median: 0.033), 709 
respectively.  We note that although the uncertainties in the data are small, the average 710 
normalized range tends to be quite large.  711 
 712 

 713 
Figure 9: Distribution of (a) uncertainty and (b) normalized range (NR) in hourly-calibrated 714 
measurements across all 89 calibration models at each site using the methodology 715 
described in Section 2.3.5. 716 

3.1.6 Evaluating the sensitivity of hotspot detection across the network of 717 
sensors to the calibration method 718 
Mean (95% CI) PM2.5 concentrations across the 89 different calibration models listed in 719 
Tables 1 and 2) at each Love My Air site for the duration of the experiment (Jan 1 - Sep 720 
30, 2021) are displayed in Figure S22. Due to overlap between the different calibrated 721 
measurements across sites, the ranking of sites based on pollutant concentrations is 722 
dependent on the calibration model used.  723 
 724 
Every hour, we ranked the different monitors for each of the 89 different calibration 725 
models, in order to evaluate how sensitive pollution hotspots were to the calibration model 726 
used. We found that there were on average 4.4 (median = 5) sensors that were ranked 727 
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most polluted. When this calculation was repeated using daily-averaged calibrated data, 728 
there were on average 2.5 (median = 2) sensors that were ranked the most polluted. The 729 
corresponding value for weekly-calibrated data was 2.4 (median = 1), and for monthly 730 
data was 3 (median = 3) (Figure 9).  731 

 732 
Figure 9: Variation in the number of sites that were ranked as ‘most polluted’ across the 733 
89 different calibration models for different time-averaging periods displayed using box-734 
plots 735 

3.1.7 Supplementary Analysis: Evaluating transferability of calibration 736 
models developed in different pollution regimes 737 
When we evaluated how well the models performed at high PM2.5 concentrations (> 30 738 

μg/m3<'%"*.(.',$="*'0$)0")/*+/-$).'36'85'9:;#3), we found that multivariate regression 739 

models generated using the C1 correction did not perform well in capturing peaks in PM2.5 740 
concentrations (normalized RMSE > 25%) (Tables S3 and S4).  741 
 742 
Multivariate regression models generated using the C2 correction performed better than 743 
those generated using C1 (normalized RMSE ~ 20 -25 %). Machine learning models 744 
generated using both C1 and C2 corrections captured PM2.5 peaks well (C1: normalized 745 
RMSE ~ 10 - 25%, C2: normalized RMSE ~ 10 - 20%). Specifically, the C2 RF model 746 
(Model 21) yielded the lowest RMSE values (4.180 μg/m3, normalized RMSE: 9.8%), of all 747 
models considered. The performance of models generated using C1 and C2 corrections 748 
in the low-concentration regime was the same as that over the entire dataset. This is 749 
because most measurements made were < 30 μg/m3.  750 
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 751 
Models generated using C3 and C4 had the worst performance in both concentration 752 
regimes and yielded poorer agreement with reference measurements than even the 753 
uncorrected measurements. As in the case with the entire dataset, more complex 754 
multivariate regression models and machine learning models generated using C3 and C4 755 
performed worse than more simple models in both PM2.5 concentration intervals (Tables 756 
S3 and S4). 757 

3.1.8 Supplementary Analysis: Evaluating transferability of calibration 758 
models developed across different time aggregation intervals 759 
We then evaluated how well the models generated using C1, C2, C3 and C4 corrections 760 
performed when applied to minute-level LCS data at co-located sites (Tables S5 and S6). 761 
We found that the machine learning models generated using C1 and C2 improved the 762 
performance of the LCS. Model 21 (CV=LOSO) generated using C1 yielded an RMSE of 763 
15.482 μg/m3 compared to 16.409 μg/m3 obtained from the uncorrected measurements. 764 
 765 
The more complex multivariate regression models yielded a significantly worse 766 
performance across all corrections. (Model 16 generated using C1 yielded an RMSE of 767 
41.795 μg/m3). As in the case with the hourly-averaged measurements, using correction 768 
C1, LOBD CV instead of LOSO for the machine learning models resulted in better model 769 
performance except for Model 21. Few models generated using C3 and C4 resulted in 770 
improved performance when applied to the minute-level measurements (Tables S5 and 771 
S6). 772 

4 Discussion and Conclusions 773 

In our analysis of how transferable the correction models developed at the Love My Air 774 
co-location sites are to the rest of the network, we found that for C1 and C2, more 775 
complex model forms yielded better predictions (higher R, lower RMSE) at the co-located 776 
sites. This is likely because the machine learning models were likely best able to capture 777 
complex, non-linear relationships between the LCS measurements, meteorological 778 
parameters and reference data. Model 21, which included additional covariates intended 779 
to capture periodicities in the data, such as seasonality yielded the best performance, 780 
suggesting that in this study the relationship between LCS measurements and reference 781 
data varies over time. One possible reason for this could be the impact of changing 782 
aerosol composition in time which has been shown to impact the LCS calibration function 783 
(Malings et al., 2020). 784 
 785 
When examining the short-term, C3 and C4 corrections, we found that although these 786 
corrections appeared to significantly improve LCS measurements during the time period 787 
of model development (Table S2), when transferred to the entire time period of operation 788 
they did not perform well (Table 2). Many of the models, especially the more complex 789 
multivariate regression models, performed significantly worse than even the uncorrected 790 
measurements. This indicates that calibration models generated during short time 791 
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periods, even if the time periods correspond to different seasons, may not necessarily 792 
transfer well to other times, likely due to changes in the aerosol composition, and 793 
differences in meteorological conditions, among other potential factors. This indicates the 794 
need for statistical calibration models to be developed over longer time periods that better 795 
capture different LCS operating conditions. For C3 and C4, we did however find models 796 
that relied on nonlinear formulations of RH, that serve as proxies for hygroscopic growth, 797 
yielded the best performance, as compared to more complex models (Table 2). This 798 
suggests that physics-based calibrations are potentially an alternative approach, 799 
especially when relying on short co-location periods and need to be explored further. 800 
 801 
When evaluating how transferable different calibration models were to the rest of the 802 
network, we found that for C1 and C2, more complex models that appeared to perform 803 
well at the co-location sites did not necessarily transfer best to the rest of the network. 804 
Specifically, when we tested these models on a co-located site that was left out when 805 
generating the calibration models, we found that some of the more complex models using 806 
the C2 correction yielded a significantly worse performance at some test sites (Figure 3). 807 
If the corrected data were going to be used to make site-specific decisions then such 808 
corrections would lead to important errors. For C3 and C4, we observed a large 809 
distribution of RMSE values across sites. For several of the more complex models 810 
developed using C3 and C4 corrections, the RMSE values at some left-out sites were 811 
larger than observed for the uncorrected data, suggesting that certain calibration models 812 
could result in even more error-prone data than using uncorrected measurements. As the 813 
meteorological parameters for the duration of the C3 and C4 co-locations are not 814 
representative of overall operating conditions of the network, it is likely that the more 815 
complex models were overfit to conditions during the co-location, leading to them not 816 
performing well over the network operations. 817 
 818 
For C1 and C2, we found that there were no significant differences in the distribution of 819 
the performance metric RMSE of corrected measurements from simpler models in 820 
comparison to those derived from more complex corrections at test sites (Figure 3). For 821 
C3 and C4, we found significant differences in the distribution of RMSE across test sites, 822 
which indicates that these models are likely site-specific and not easily transferable to 823 
other sites in the network. This suggests that less complex models might be preferred 824 
when short-term co-locations are carried out for sensor calibration, especially when 825 
conditions during the short-term co-location are not representative of that of the network. 826 
 827 
We found that the temporal RMSD (Figure 6) was greater than the spatial RMSD (Figure 828 
5) for the ensemble of corrected measurements developed by applying the 89 different 829 
calibration models to the Love My Air network. One of the reasons this may be the case is 830 
that PM2.5 concentrations across the different Love My Air sites in Denver are highly 831 
correlated (Figure S5), indicating that the contribution of local sources to PM2.5 832 
concentrations in the Denver neighborhoods in which Love My Air was deployed is small. 833 
Due to the low variability in PM2.5 concentrations across sites, it makes sense that the 834 
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variations in the corrected PM2.5 concentrations will be seen in time rather than space. 835 
The largest pairwise temporal RMSD were all seen between corrections derived from 836 
complex models using the C3 correction.  837 
 838 
However, we note that the temporal correlation coefficients (Figure 8) for all-pairwise 839 
correction models was higher than the corresponding spatial coefficient (Figure 7). This 840 
implies that although the corrections generated from all models considered tended to 841 
track each other (except for a few models using C3) some corrected values were biased 842 
low, whereas some were biased high. It’s important for future work to be done to 843 
characterize under what conditions these biases occur.  844 
 845 
Finally, we observed that the uncertainty in PM2.5 concentrations across the ensemble of 846 
89 calibration models (Figure 9) was consistently small for the Love My Air Denver 847 
network. The normalized range in the corrected measurements, on the other hand, was 848 
large; however, the uncertainty (95% CI) in the corrected measurements fall within a 849 
relatively small interval. Thus, deciding which calibration model to pick has important 850 
consequences for decision-makers when using data from this network. 851 
 852 
Our findings reinforce the idea that evaluating calibration models at all co-location sites 853 
using overall metrics like RMSE should not be seen as the only/best way to determine 854 
how to calibrate a network of LCS. Instead, approaches like the ones we have 855 
demonstrate, and metrics like the ones we have proposed should be used to evaluate 856 
calibration transferability.  857 
 858 
We found that the detection of the ‘most polluted’ site in the Love My Air network (an 859 
important use-case of LCS networks) was dependent on the calibration model used on 860 
the network. We also found that for the Love My Air network, the detection of the most 861 
polluted site was sensitive to the duration of time-averaging of the corrected 862 
measurements (Figure 10). Hotspot detection was most robust using weekly-averaged 863 
measurements. A possible reason for this is that temporal variation in PM2.5 in Denver 864 
varied primarily on a weekly-scale, and therefore analysis conducted using weekly-values 865 
resulted in the most robust results. Such an analysis thus provides guidance on the most 866 
useful temporal scale for decision-making related to evaluating hotspots in the Denver 867 
network. 868 
 869 
In supplementary analyses, when we evaluated the sensitivity of other LCS use-cases to 870 
the calibration model applied such as tracking high pollution concentrations during fire or 871 
smoke-events, we found that different models  yielded different performance results in 872 
different pollution regimens. Machine learning models developed using C1, and models 873 
developed using C2 were better than multivariate regression models generated using C1 874 
at capturing peaks in pollution (> 30 μg/m3). All models using C3 and C4 yielded poor 875 
performance results in tracking high pollution events (Tables S3 and S4). This is likely 876 
because PM2.5 concentrations during the C3 and C4 co-location tended to be low. The 877 
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calibration model developed thus did not transfer well to other concentrations. When 878 
evaluating how well the calibration models developed using hourly-aggregated 879 
measurements translated to high-resolution minute-level data (Tables S5and S6), we 880 
observed that machine learning models generated using C1 and C2, improved the LCS 881 
measurements. More complex multivariate regression models performed poorly. All C3 882 
and C4 models also performed poorly. This suggests that caution needs to be exercised 883 
when transferring models developed at a particular time scale to another. Note that in this 884 
paper, because pollution concentrations did not show much spatial variation, we focus on 885 
evaluating transferability across time-scales, only. 886 
 887 
In summary, this paper makes the case that it is not enough to evaluate calibration 888 
models based on metrics of performance at co-located sites, alone. We need to: 889 
 890 
1) Determine how well calibration adjustments can be transferred to other locations. 891 
Specifically, although we found that in Denver some calibration models performed well at 892 
co-location sites, the models could result in large errors at specific sites that would create 893 
difficulties for site-specific decision making. 894 
 895 
2) Examine how well calibration adjustments can be transferred to other time periods. In 896 
this study we found that models developed using the short-term C3 and C4 corrections 897 
were not transferable to other time periods because the conditions during the co-location 898 
were not representative of broader operating conditions in the network. 899 
 900 
3) Use a variety of approaches to quantify transferability of calibration models in the 901 
overall network (e.g., with spatio-temporal correlations and RMSD). The metrics proposed 902 
in this paper to evaluate model transferability can be used in other networks. 903 
 904 
4)  Investigate how adopting a certain time-scale for averaging measurements could 905 
mitigate the uncertainty induced by the calibration process for specific use-cases. 906 
Namely, we found that in the Love My Air network, hotspot identification was more robust 907 
to using daily-averaged data than hourly-averaged data. Our analyses also revealed 908 
which models performed best when needing to transfer the calibration model developed 909 
using hourly-averaged data to higher-resolution data, and which models best captured 910 
peaks in pollution during fire- or smoke- events. 911 
 912 
In this work, the Love My Air network under consideration is located over a fairly small 913 
area in a single city. In this network, for the time period considered, PM2.5 seems to be 914 
mainly a regional pollutant and the contribution of local sources is small. More work needs 915 
to be done to evaluate model transferability in networks in other settings. Concerns about 916 
model transferability are likely to be even more pressing when thinking about larger 917 
networks that span different cities and should be considered in future research. In this 918 
study, we present a first attempt to demonstrate the importance of considering the 919 
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transferability of calibration models. In future work, we also aim to explore the physical 920 
factors that drive concerns about transferability to generalize our findings more broadly. 921 
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