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 Abstract 
 Ambient fine particulate matter (PM  2.5  ) pollution  is a major health risk. Networks of 
 low-cost sensors (LCS) are increasingly being used to understand local-scale air pollution 
 variation. However, measurements from LCS have uncertainties that can act as a 
 potential barrier to effective decision-making. LCS data thus need adequate calibration to 
 obtain good quality PM  2.5  estimates. In order to develop  calibration factors, one or more 
 LCS are typically co-located with reference monitors for short- or long -periods of time. A 
 calibration model is then developed that characterizes the relationships between the raw 
 output of the LCS and measurements from the reference monitors. This calibration model 
 is then typically  transferred  from the co-located  sensors to other sensors in the network. 
 Calibration models tend to be evaluated based on their performance only at co-location 
 sites. It is often implicitly assumed that the conditions at the relatively sparse co-location 
 sites are representative of the LCS network overall, and that the calibration model 
 developed is not overfitted to the co-location sites. Little work has explicitly evaluated how 
 transferable calibration models developed at co-location sites are to the rest of an LCS 
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 network, even after appropriate cross-validation. Further, few studies have evaluated the 
 sensitivity of key LCS use-cases such as hotspot detection to the calibration model 
 applied. Finally, there has been a dearth of research on how the duration of co-location 
 (short-term/long-term) can impact these results. This paper attempts to fill these gaps 
 using data from a dense network of LCS monitors in Denver deployed through the city’s 
 Love My Air program. It offers a series of transferability metrics for calibration models that 
 can be used in other LCS networks and some suggestions as to which calibration model 
 would be most useful for achieving different end goals. 

 Key words  : low-cost sensors, PM  2.5  , calibration, LoveMyAir 

 1 Introduction 
 Poor air quality is currently the single largest environmental risk factor to human health in 
 the world, with ambient air pollution responsible for approximately 6.7 million premature 
 deaths every year  (State of Global Air, 2020)  . Having  accurate air quality measurements 
 is crucial for tracking long-term trends in air pollution levels, identifying hotspots, and for 
 developing effective pollution management plans. The dry-mass concentration of fine 
 particulate matter (PM  2.5  ), a criterion pollutant  that poses more of danger to human health 
 than other widespread pollutants  (Kim et al., 2015)  ,  can vary over distances as small as ~ 
 10’s of meters in complex urban environments  (Brantley  et al., 2019; deSouza et al., 
 2020a)  . Therefore, dense monitoring networks are often  needed to capture relevant 
 spatial variations. Due to their costliness, Environmental Protection Agency (EPA) air 
 quality reference monitoring networks are sparsely positioned across the US  (Apte et al., 
 2017; Anderson and Peng, 2012)  . 

 Low-cost sensors (LCS) (<USD $2500 as defined by the US EPA Air Sensor Toolbox) 
 (Williams et al., 2014)  have the potential to capture  concentrations of PM in previously 
 unmonitored locations and to democratize air pollution information  (Castell et al., 2017; 
 Crawford et al., 2021; Kumar et al., 2015; Morawska et al., 2018; Snyder et al., 2013; 
 deSouza and Kinney, 2021; deSouza, 2022)  . However,  LCS measurements have several 
 sources of greater uncertainty than reference monitors  (Bi et al., 2020; Giordano et al., 
 2021; Liang, 2021)  . 

 Most low-cost PM sensors rely on optical measurement techniques. Optical instruments 
 face inherent challenges that introduce potential differences in mass estimates compared 
 to reference methods  (Barkjohn et al., 2021; Crilley  et al., 2018; Giordano et al., 2021; 
 Malings et al., 2020)  : 

 1.  Optical methods do not directly measure mass concentrations; rather, they estimate 
 mass based on calibrations that convert light scattering data to particle number and mass. 
 LCS come with factory-supplied calibrations, but in practice must be re-calibrated in the 
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 field to ensure accuracy, due to variations in ambient particle characteristics and 
 instrument drift. 

 2. High relative humidity (RH) can produce hygroscopic particle growth, leading to dry 
 mass overestimation unless particle hydration can accurately be taken into account or the 
 particles are dessicated by the instrument. 

 3.   LCS are not able to detect particles with diameters below a specific size, which is 
 determined by the wavelength of laser light within each device, and is generally in the 
 vicinity of 0.3 μm, whereas the peak in pollution particle number size distribution is 
 typically smaller than 0.3 μm. 

 4.   The physical and chemical parameters describing the aerosol (  particle size 
 distribution, shape, indices of refraction,  hygroscopicity,  volatility etc.), that might vary 
 significantly across different microenvironments with diverse sources, impact light 
 scattering; this in turn affects the aerosol mass concentrations reported by these 
 instruments. 

 The need for field calibration to correct LCS measurements is particularly important. This 
 is typically done by co-locating a small number of LCS with one or a few reference 
 monitors at a representative monitoring location or locations. The co-location could be 
 carried out for a brief period before and/or after the actual study or may continue at a 
 small number of sites for the duration of the study. In either case, the co-location provides 
 data from which a calibration model is developed that relates the raw output of the LCS as 
 closely as possible to the desired quantity as measured by the reference monitor. 
 Thereafter, the calibration model is transferred to other LCS in the network, based upon 
 the presumption that ongoing sampling conditions are within the same range as those at 
 the collocation site(s) during the calibration period. 

 Calibration models typically correct for 1) systematic error in LCS by adjusting for bias 
 using reference monitor measurements, and 2) the dependence of LCS measurements 
 on environmental conditions affecting the ambient particle properties such as relative 
 humidity (RH), temperature (T), and/or dew-point (D). Correcting for RH, T and D is 
 carried out through either a) a physics-based approach that accounts for aerosol 
 hygroscopic growth given particle composition using 𝜅-Köhler’s theory, or b) empirical 
 models, such as regression and machine learning techniques. In this paper, we focus on 
 the latter, as it is currently the most widely used  (Barkjohn et al., 2021)  . Previous work has 
 also shown that the two approaches yield comparable improvements in the case of PM  2.5 

 LCS  (Malings et al., 2020)  . 
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 Prior studies have used multivariate regressions, piecewise linear regressions, or 
 higher-order polynomial models to account for RH, T and D in these calibration models 
 (Holstius et al., 2014; Magi et al., 2020; Zusman et al., 2020)  . More recently, machine 
 learning techniques such as random forests, neural networks, and gradient boosted 
 decision trees have been used  (Considine et al., 2021; Liang, 2021; Zimmerman et al., 
 2018)  . Researchers have also started including additional  covariates in their models 
 besides what is directly measured by the LCS, such as time of day, seasonality, wind 
 direction, and site-type, which have been shown to yield significantly improved results 
 (Considine et al., 2021)  . 

 Past research has shown that there are several important decisions, in addition to the 
 choice of calibration model, that need to be made during calibration and that can impact 
 the results  (Bean, 2021; Giordano et al., 2021; Hagler  et al., 2018)  . These include a) the 
 kind of reference air quality monitor used, b) the time-interval (e.g., hour/day) over which 
 to average measurements used when developing the calibration model, c) how 
 cross-validation (e.g., leave one site out/10-fold cross-validation) is carried out, and d) 
 how long the co-location experiment takes place. 

 Calibration models are typically evaluated based on how well the corrected data agree 
 with measurements from reference monitors at the corresponding co-location site. A 
 commonly used metric is the Pearson correlation coefficient, R, which quantifies the 
 strength of the association. However, it is a misleading indicator of sensor performance 
 when measurements are observed close to the limit of detection of the instrument. 
 Therefore, Root Mean Square Error (RMSE) is often included in practice. Unfortunately, 
 neither of these metrics captures how well the calibration method developed at the 
 co-located sites  transfers  to the rest of the network  in both time and space. 

 If the conditions at the co-location sites (meteorological conditions, pollution source mix) 
 for the period of co-location are the same as for the rest of the network during the total 
 operational period, the calibration model developed at the co-location sites can be 
 assumed to be transferable to the rest of the network. In order to ensure that the sampling 
 conditions at the co-location site are representative of sampling conditions across the 
 network, most researchers tend to deploy monitors in the same general sampling area as 
 the network  (Zusman et al., 2020)  . However, it is  difficult to definitively test if the 
 co-location site during the period of co-location is representative of conditions at all 
 monitors in the network; ambient PM concentrations can vary on scales as small as a few 
 meters. Furthermore, LCS are often deployed specifically in areas where the air pollution 
 conditions are poorly understood, meaning that representativeness cannot be assessed in 
 advance. 
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 In order to evaluate whether calibration models are transferable in time, we test if models 
 generated using typical short-term co-locations at specific co-location sites perform well 
 during other time periods at all co-location sites. Where multiple co-location sites exist, 
 one way to evaluate how transferable calibration models are in space is to leave out one 
 or more co-location sites and test if the calibration model is transferable to the left-out 
 sites. This method was used in recent work evaluating the feasibility of developing a 
 US-wide calibration model for the PurpleAir low-cost sensor network  (Barkjohn et al., 
 2021; Nilson et al., 2022)  . 

 Although these approaches are useful, co-location sites are sparse relative to other sites 
 in the network. Even in the PurpleAir network (which is one of the densest low-cost 
 networks in the world) there were only 39 co-location sites in 16 US states, a small 
 fraction of the several thousand PurpleAir sites overall  (Barkjohn et al., 2021)  . It is thus 
 important to develop metrics to test how  sensitive  the spatial and temporal trends of 
 pollution derived from the entire network are to the calibration model applied. Finally, a 
 key use-case of LCS networks is to identify hotspots. It is important to also evaluate how 
 sensitive the hotspot identified in an LCS network is to the calibration model applied. 

 Examining the reliability of calibration models is timely because more researchers are 
 opting to use machine learning models. Although in most cases, such models have 
 yielded better results than traditional linear regressions, it is important to examine if these 
 models are overfitted to conditions at the co-location sites, even after appropriate 
 cross-validation, and how transferable they are to the rest of the network. Indeed, 
 because of concerns of overfitting, some researchers have explicitly eschewed employing 
 machine learning calibration models altogether  (Nilson  et al., 2022)  . It is important to test 
 under what circumstances such concerns might be warranted. 

 This paper uses a dense low-cost PM  2.5  monitoring  network deployed in Denver, the “Love 
 My Air” network deployed primarily outside the city’s public schools, to evaluate the 
 transferability of different calibration models in space and time across the network. To do 
 so, new metrics are proposed to quantify the Love My Air network spatial and temporal 
 trend uncertainty due to the calibration model applied. Finally, for key LCS network 
 use-cases such as hotspot detection, tracking high pollution events and evaluating 
 pollution trends at a high temporal resolution, the sensitivity of the results to the choice of 
 calibration model is evaluated. The methodologies and metrics proposed in this paper can 
 be applied to other low-cost sensor networks, with the understanding that the actual 
 results will vary with study region. 
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 2 Data and Methods 

 2.1 Data Sources 
 Between Jan 1 and Sep 30, 2021, Denver’s Love My Air sensor network collected 
 minute-level data from 24 low-cost sensors deployed across the city outside of public 
 schools and at 5 federal equivalent method (FEM) reference monitor locations (  Figure 1  ). 
 The Love My Air sensors are Canary-S models equipped with a Plantower 5003, made by 
 Lunar Outpost Inc. The Canary-S sensors detect PM  2.5  ,  T, and RH, and upload 
 minute-resolution measurements to an online platform via cellular data network. 

 We found that RH and T reported by the Love My Air sensors were well correlated with 
 that reported by the reference monitoring stations. We used the Love My Air LCS T and 
 RH measurements in our calibration models as they most closely represent the conditions 
 experienced by the sensors. 

 Figure 1  : Locations of all 24 Love My Air sensors.  Sensors displayed with an orange 
 triangle indicate that they were co-located with a reference monitor. The labels of the 
 co-located sensors include the name of the reference monitor with which they were 
 co-located after a hyphen. 

 2.1.1 Data cleaning protocol for measurements from the Love My Air network 
 A summary of the data cleaning and data preparation steps carried out on the Love My 
 Air data from the entire network are listed below: 
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 1)  Removed data for time-steps where key variables: PM  2.5  , T and RH measurements 
 were missing 

 2)  Removed unrealistic RH and T values (RH < 0 and T ≤ -30  0  C) 
 3)  Removed PM  2.5  values above 1,500 μg/m  3  (outside the  operational range of the 

 Plantower sensors used) from the Canary-S sensors  (Considine et al., 2021) 
 4)  We were left with 8,809,340 minute-level measurements and then calculated 

 hourly-average PM  2.5  , T, and RH measurements for each  sensor. We had a total of 
 147,101 hourly-averaged measurements 

 5)  From inspection, one of the monitors, CS13, worked intermittently in Jan and Feb, 
 before resuming continuous measurement in March (  Figure  S1  in Supplementary 
 Information  ). When CS13 worked intermittently, large  spikes in the measurements 
 were observed, likely due to power surges. We thus retained measurements taken 
 after March 1, 2021 for this monitor. The total number of hourly measurements was 
 thus reduced to 146,583. 

 Love My Air sensors (indicated by Sensor ID) were co-located with FEM reference 
 monitors from which we obtained high quality hourly PM  2.5  measurements at (  Table 1  ): 

 1)  La Casa (Sensor ID: CS5) 
 2)  CAMP (Sensor ID: CS13) 
 3)  I25 Globeville (Sensor ID: CS2, CS3, CS4) 
 4)  I25 Denver (Sensor ID: CS16) 
 5)  NJH (Sensor ID: CS1) for the entire period of the experiment 

 2.1.2 Data preparation steps for preparing a training dataset used to develop 
 the various calibration models 
 A summary of the data preparation steps for preparing a training dataset used to develop 
 the various calibration models are described below: 

 1)  We joined hourly averages from each of the seven co-located Love My Air monitors 
 with the corresponding FEM monitor. We had a total of 35,593 co-located hourly 
 measurements for which we had data for both the Love My Air sensor and the 
 corresponding reference monitor.  Figure S2  displays  time-series plots of PM  2.5 

 from all co-located Love My Air sensors.  Figure S3  displays time-series plots of 
 PM  2.5  from the corresponding reference monitors. 

 2)  The three Love My Air sensors co-located at the I25 Globeville sites (CS2, CS3, 
 CS4) agreed well with each other (Pearson correlation coefficient = 0.98) (  Figures 
 S4  and  Figure S5  ). To ensure that our co-located dataset  was well balanced 
 across sites, we only retained measurements from CS2 at the I25 Globeville site. 
 We were left with a total of 27,338 co-located hourly measurements that we used 
 to develop a calibration model.  Figure S6  displays  the time-series plots of PM  2.5 

 from all other Love My Air sensors in the network. 
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 Reference monitors at La Casa, CAMP, I25 Globeville and I25 Denver, also reported 
 minute-level PM  2.5  concentrations between April 23 11:16 and Sep 30, 22:49 local time. 
 We also joined minute-level Love My Air PM  2.5  concentrations  with minute-level reference 
 data at these sites. We had a total of 1,062,141 co-located minute-level measurements 
 during this time period. As with the hourly-averaged data, we only retained data from one 
 of the Love My Air sensors at the I25 Globeville site and were thus left with 815,608 
 minute-level measurements from one LCS at each of the four co-location sites. 

 Table S1  has information on the minute-level co-located  measurements. The data at the 
 minute-level displays more variation and peaks in PM  2.5  concentrations than the 
 hourly-averaged measurements (  Figure S7)  , likely due  to the impact of passing sources. 
 It is also important to mention that minute-level reference data may have some additional 
 uncertainties introduced due to the finer time resolution. We will use the minute-level data 
 in supplementary analyses only. Thus, unless explicitly referenced, we will be reporting 
 results from hourly-averaged measurements. 

 2.1.3 Deriving additional covariates 
 We derived dew-point (D) from T and RH reported by the Love My Air sensors using the 
 weathermetrics  package in the programming language  R  (Anderson and Peng, 2012)  , as 
 D has been shown to be a good proxy of particle hygroscopic growth in previous research 
 (Barkjohn et al., 2021; Clements et al., 2017; Malings et al., 2020)  . Some previous work 
 has also used a nonlinear correction for RH in the form of RH  2  /(1-RH), that we also 
 calculated for this study (Barkjohn et al., 2021). 

 We extracted hour, weekend, and month variables from the Canary-S sensors and 
 converted hour and month into cyclic values to capture periodicities in the data by taking 
 the cosine and sine of hour*2𝜋/24 and month*2𝜋/12, which we designate as cos_time, 
 sin_time, cos_month and sin_month, respectively. Sinusoidal corrections for seasonality 
 have been shown to improve accuracy of PM  2.5  measurements  in machine learning 
 models  (Considine et al., 2021)  . 

 Table 1  : Site location of each Love My Air sensor,  as well as summary statistics of hourly 
 measurements from each sensor 

 PM  2.5  (μg/m  3  )  Temperature 
 (  0  C) 

 RH (%)  Dewpoint 
 (  0  C) 

 Sensor ID  Co-location 
 Information 

 Latitude  Longitude  Hours 
 operati 
 onal 

 Mean  Median  Min-Max  Mean  Mean  Mean 

 CS1  Co-located at 
 NJH 

 39.739  -104.940  5,478  13  8  0 - 121  14.9  57.4  4.4 
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 CS2  Co-located at 
 I25 Globeville 

 39.786  -104.989  5,818  14  9  0 - 142  16.4  63.6  7.6 

 CS3  Co-located at 
 I25 Globeville 

 39.786  -104.989  2,490  18  13  0 - 159  9.3  62.5  0.1 

 CS4  Co-located at 
 I25 Globeville 

 39.786  -104.989  5,765  12  8  0 - 137  15.8  67.6  8.0 

 CS5  Co-located at 
 La Casa 

 39.779  -105.005  5,761  12  8  0 - 129  13.4  69.6  6.0 

 CS7  -  39.781  -104.955  6,540  13  8  0 - 136  16.5  55.6  5.0 

 CS8  -  39.777  -104.987  6,282  13  8  0 - 133  17.3  38.3  0.0 

 CS9  -  39.756  -104.967  6,552  12  8  0 - 115  15.3  62.8  6.1 

 CS10  -  39.776  -104.853  6,552  12  7  0 - 142  17.9  32.6  -2.4 

 CS11  -  39.659  -105.047  6,548  12  7  0 - 127  15.0  58.2  4.5 

 CS13  Co-located at 
 CAMP 

 39.751  -104.988  4,449  13  8  0 - 115  21.9  54.7  10.2 

 CS15  -  39.667  -105.032  6,552  10  6  0 - 106  17.0  34.6  -1.5 

 CS16  Co-located at 
 I25 Denver 

 39.732  -105.015  5,832  12  9  0 - 100  17.4  33.6  -2.2 

 CS17  -  39.757  -104.958  6,527  12  7  0 - 149  17.1  35.1  -1.3 

 CS18  -  39.692  -104.966  6,552  12  7  0 - 115  16.9  36.3  -1.0 

 CS19  -  39.772  -104.951  1,749  11  5  0 - 66  3.4  40.0  -11.1 

 CS20  -  39.769  -104.949  6,551  10  6  0 - 105  17.9  34.2  -1.2 

 CS21  -  39.659  -104.868  6,551  12  6  0 - 129  15.2  39.2  -1.2 

 CS22  -  39.758  -104.957  6,551  12  7  0 - 118  17.5  35.4  -0.9 

 CS23  -  39.772  -105.024  6,552  14  9  0 - 139  16.5  34.6  -2.0 

 CS25  -  39.776  -104.833  6,551  12  7  0 - 135  16.2  35.8  -1.8 

 CS26  -  39.674  -104.950  6,552  12  7  0 - 115  15.9  36.9  -1.2 

 CS27  -  39.775  -105.009  6,552  12  7  0 - 115  16.4  35.6  -1.4 

 CS29  -  39.760  -104.918  6,552  11  7  0 - 114  15.7  37.5  -1.2 

 2.2 Defining the Calibration Models Used 
 The goal of the calibration model is to predict, as accurately as possible, the ‘true’ PM  2.5 

 concentrations given the concentrations reported by the Love My Air sensors. At the 
 co-located sites, the FEM PM  2.5  measurements, which  we take to be the “true” PM  2.5 

 concentrations, are the dependent variable in the models. 

 We evaluated 21 increasingly complex models that included T, RH, D as well as metrics 
 that captured the time-varying patterns of PM  2.5  to  correct the Love My Air PM  2.5 

 measurements (  Tables 2  and  3  ). 
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 Sixteen models were multivariate regression models that were used in a recent paper 
 (Barkjohn et al., 2021)  to calibrate another network of low-cost sensors: the PurpleAir, that 
 rely on the same PM  2.5  sensor (Plantower) as the Canary-S  sensors in the current study. 
 As T, RH, and D are not independent (  Figure S8  ), the  16 linear regression models include 
 adding the meteorological conditions considered as interaction terms, instead of additive 
 terms. The remaining five calibration models relied on machine learning techniques. 

 Machine learning models can capture more complex nonlinear effects (for instance, 
 unknown relationships between additional spatial and temporal variables). We opted to 
 use the following machine learning techniques: Random Forest (RF), Neural Network 
 (NN), Gradient Boosting (GB), SuperLearner (SL) that have been widely used in 
 calibrating LCS. A description of each technique is described in detail in  section S1  in 
 Supplementary Information  . All machine learning models  were run using the  caret 
 package in R  (Kuhn, 2015)  . 

 We used both Leave-One-Site-Out (LOSO) (  Table 2  ) and  Leave-Out-By-Date, where we 
 left out a 3-weeks period of data at a time at all sites (LOBD) (  Table 3  ) cross-validation 
 (CV) methods to avoid overfitting in the machine learning models. For more details on the 
 cross-validation methods used to avoid overfitting in the machine learning models refer to 
 section S2  in  Supplementary Information  . 

 2.2.1 Corrections generated using different co-location time periods 
 (long-term, on-the-fly, short-term) 
 As described earlier, co-location studies in the LCS literature have been conducted over 
 different time periods. Some studies co-locate one or more LCS for brief periods of time 
 before or after an experiment, whereas others co-locate a few LCS for the entire duration 
 of the experiment. These studies apply calibration models generated using the co-located 
 data to measurements made by the entire network over the entire duration of the 
 experiment. We attempt to replicate these study designs in our experiment to evaluate the 
 transferability of calibration models across time by generating four different corrections: 

 (C1)  Entire data set correction  : The 21 calibration  models were developed using data at 
 all co-location sites for the entire period of co-location. 
 (C2)  On the fly correction:  The 21 calibration models  to correct a measurement during a 
 given week were developed using data across all co-located sites for the same week of 
 the measurement. 
 (C3)  2-week winter correction:  The 21 calibration  models were developed using 
 co-located data collected for a brief period (2 weeks) at the beginning of the study (Jan 1 - 
 Jan 14, 2021). They were then applied to measurements from the network during the rest 
 of the period of operation. 
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 (C4)  2-week winter + 2-week spring:  The 21 calibration models were developed using 
 co-located data collected for two 2-week periods in different seasons (Jan 1 - Jan 14, 
 2021 and May 1 - May 14, 2021). They were then applied to measurements from the 
 network during the rest of the period of operation. 

 Although models developed using co-located data over the entire time period (C1) tend to 
 be more accurate over the entire spatiotemporal data set, it is inefficient to re-run large 
 models frequently (incorporating new data). On-the-fly corrections (such as C2) can help 
 characterize short-term variation in air pollution and sensor characteristics. The duration 
 of calibration is a key question that remains unanswered  (Liang, 2021)  . We opted to test 
 corrections C3 and C4 as many low-cost sensor networks rely on developing calibration 
 models based on relatively short co-location periods (  deSouza et al., 2020b; West et al., 
 2020; Singh et al., 2021)  . Each of the 21 calibration  models considered was tested under 
 four potential correction schemes (C1, C2, C3 and C4). 

 For C1, the five machine-learning models were trained using two CV approaches: LOSO 
 and LOBD, separately. For C2, C3 and C4 only LOSO was conducted, as model 
 application is already being performed on a different time period from the training (for 
 more details refer to  section S2  ). Overall, we tested 89 calibration models (21 (C1, 
 CV=LOSO) + 5 (C1, CV=LOBD) + 21  3 (C2, C3, C4)  = 89) listed in  Tables 2  and  3  . ×

 2.3 Evaluating the calibration models developed under the four 
 different correction schemes 
 We first qualitatively evaluate transferability of the calibration models from the co-location 
 sites to the rest of the network by comparing the distribution of T and RH at the 
 co-location sites during time-periods used to construct the calibration models with that 
 experienced over the entire course of network operation (  Figure 2  ). 

 We then evaluate: How well different calibration models perform when using the 
 traditional methods of model evaluation (  Tables 2,  3, S2  ). We attempt to quantify the 
 degree of transferability of the calibration models in time by asking: How well do 
 calibration models developed during short-term co-locations (corrections: C3 and C4) 
 perform when transferred to long-term network measurements? In order to answer this 
 question, we evaluated calibration models using corrections C3 and C4 only for the 
 time-period over which the calibration models were developed, which was Jan 1 - Jan 14, 
 2021, for C3 and Jan 1 - Jan 14, 2021, and May 1 - May 14, 2021, for C4 (  Table S2  ). We 
 compared the performance of C3 and C4 corrections during this time period with that 
 obtained from applying these models over the entire time period of the network (  Table 2  ). 
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 We next ask how well calibration models developed at a small number of co-locations 
 sites transfer in space to other sites using the methodology detailed in the next 
 subsection. 

 2.3.1 Evaluating transferability of calibration models over space 
 To evaluate how transferable the calibration technique developed at the co-located sites 
 was to the rest of the network we left out each of the five co-located sites in turn and 
 using data from the remaining sites ran the models proposed in  Tables 2  and  3  . We then 
 applied the models generated to the left-out site. We report the distribution of RMSE from 
 each calibration model considered at the left-out sites using box-plots (  Figure 3  ). For 
 correction C1, we also left out a three-week period of data at a time and generated the 
 calibration models based on the data from the remaining time periods at each site. For the 
 machine learning models (Models 17 – 21), we used CV = LOBD. We plotted the 
 distribution of RMSE from each model considered for the left-out three week period 
 (  Figure 3  ). 

 We statistically compare the errors in predictions on each test dataset with errors in 
 predictions from using all sites in our main analysis. Such an approach is useful to 
 understand how well the proposed correction can transfer to other areas in the Denver 
 region. To compare statistical differences between errors, we used t-tests if the 
 distribution of errors were normally distributed (as determined by a Shapiro–Wilk test), 
 and Wilcoxon signed rank tests, if not, using a significance value of 0.05. 

 We have only five co-location sites in the network. Although evaluating the transferability 
 among these sites is useful, as we know the true PM  2.5  concentrations at these sites, we 
 also evaluated the transferability of these models in the larger network by predicting PM  2.5 

 concentrations using the models proposed in  Tables  2  and  3  at each of the 24 sites in the 
 Love My Air network. For each site, we display time series plots of corrected PM  2.5 

 measurements in order to visually compare the ensemble of corrected values at each site 
 (  Figure 4  ). 

 We next propose  different metrics to quantify the  uncertainty in spatial and temporal 
 trends in PM  2.5  reported by the LCS network introduced  by the choice of calibration model 
 applied in the subsection below. 

 2.3.2 Evaluating sensitivity of the spatial and temporal trends of the low-cost 
 sensor network to the method of calibration 
 We evaluate the spatial and temporal trends in the PM  2.5  concentrations corrected using 
 the 89 different calibration models using similar methods to that described in  (Jin et al., 
 2019; deSouza et al., 2022)  by calculating: 
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 (1)  The spatial root mean square difference (RMSD) (  Figure 5  ) between any two 

 corrected exposures at the same site:  ,  𝑆𝑅𝑀𝑆  𝐷 
 ℎ , 𝑑 

   =     1 
 𝑁 

 𝑖 = 1 

 𝑁 

∑ ( 𝐶𝑜𝑛𝑐 
 ℎ𝑖 

−  𝐶𝑜𝑛𝑐 
 𝑑𝑖 

) 2 

 where  Conc  hi  and  Conc  di  are Jan 1- Sep 30, 2021 averaged  PM  2.5  concentrations 
 estimated from correction  h  and  d  for site  i  .  N  is  the total number of sites. 

 (2)  The temporal RMSD (  Figure 6  ) between pairs of exposures: 

 , where  Conc  ht  and  Conc  dt  are hourly  𝑇𝑅𝑀𝑆  𝐷 
 ℎ , 𝑑 

=  1 
 𝑀 

 𝑡 = 1 

 𝑀 

∑ ( 𝐶𝑜𝑛𝑐 
 ℎ𝑡 

−  𝐶𝑜𝑛𝑐 
 𝑑𝑡 

) 2 

 corrected PM  2.5  concentrations averaged over all operational  Love My Air sites 
 estimated from correction  h  and  d  for time  t  .  M  is  the total number of hours of 
 operation of the network. 

 We characterized the uncertainty in the ‘corrected’ PM  2.5  estimates at each site across the 
 different models using two metrics: a normalized range (NR) (  Figure 7a  ) and uncertainty, 
 calculated from the 95% confidence interval (CI) assuming a t-statistical distribution 
 (  Figure 7b  ). NR for a given site represents the spread  of PM  2.5  across the different 
 correction approaches. 

 (3)  𝑁𝑅    =     1 
 𝑀 

 𝑡 = 1 

 𝑀 

∑
 𝑚𝑎  𝑥 

 𝑘  ∈  𝐾    
    𝐶 

 𝑘𝑡    
−    𝑚𝑖  𝑛 

 𝑘  ∈  𝐾 
    𝐶 

 𝑘𝑡 

 𝐶 
 𝑡 

 C  kt  is the PM  2.5  concentration at hour  t  from the  k  th model from the ensemble of  K  (which 
 in this case is 89) correction approaches.  represents the ensemble mean across the  K  𝐶 

 𝑡 

 different products at hour  t  .  M  is the total number  of hours in our sample for which we 
 have PM  2.5  data for the site under consideration. 

 For our sample (  K  = 89), we assume the variations  in PM  2.5  across multiple models 
 follows the Student-t distribution with the mean being the ensemble average. The 
 confidence interval (  CI  ) for the ensemble mean at  a given time  t  is: 

 (4)  𝐶𝐼 
 𝑡 

=     𝐶 
 𝑡 
   +     𝑡 *

 𝑆𝐷 
 𝑡 

 𝐾 

 Where  represents the ensemble mean at time  t  ;  t*  is the upper  critical value  for  𝐶 
 𝑡 

( 1    −    𝐶𝐼 )
 2 

 the t-distribution with  K  -1 degrees of freedom. For  K  =89,  t*  for the 95% double tailed 
 confidence interval is 1.99.  SD  t  is the sample standard  deviation at time  t  . 

 (5)  𝑆𝐷 
 𝑡 
   =  𝑘 = 1 

 𝐾 

∑ ( 𝐶 
 𝑘 , 𝑡 

− 𝐶 
 𝑡 
) 2 

 𝐾 − 1 

 We define an overall estimate of uncertainty as follows: 
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 (6)  , which can also be expressed as  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦       =  1 
 𝑀 

 𝑡 = 1 

 𝑀 

∑  𝑡 *
 𝑆𝐷 

 𝑡 

 𝐶 
 𝑡 

 𝐾 

 (6)  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦       =  1 
 𝑀 

 𝑡 = 1 

 𝑀 

∑
 𝐶𝐼 

 𝑡 
− 𝐶 

 𝑡 

 𝐶 
 𝑡 

 Finally, we evaluate the impact of the choice of calibration model on key LCS network 
 use-cases detailed in the sections below. 

 2.3.3 Evaluating the sensitivity of hotspot detection across the network of 
 sensors to the calibration method 
 One of the key use-cases of low-cost sensors is hotspot detection. We report the labels of 
 sites that are the most polluted using calibrated measurements from the 89 different 
 models using hourly data. We repeat this process for daily, weekly and monthly-averaged 
 calibrated measurements. We ignore missing measurements from the network when 
 calculating time averaged values for the different time periods considered. We report the 
 mean number of sensors that are ranked ‘most polluted’ across the different correction 
 functions for the different averaging periods (  Figure  8  ).  We do this to identify if the choice 
 of the calibration model impacts the hotspot identified by the network (i.e. depending on 
 the calibration model different sites show up as the most polluted). 

 2.3.4 Supplementary Analysis: Evaluating transferability of calibration 
 models developed in different pollution regimes 
 We evaluated model performance for true/reference PM  2.5  concentrations > 30 μg/m  3  and 
 ≤ 30 μg/m  3  , as Nilson et al. (2022) has shown that  calibration models can have different 
 performances in different pollution regimes. We chose to use 30 μg/m  3  as the threshold, 
 as these concentrations account for the greatest differences in health and air pollution 
 avoidance behavior impacts  (Nilson et al., 2022)  .  Lower concentrations (PM  2.5  ≤ 30 μg/m  3  ) 
 represent most measurements observed in our network; better performance at these 
 levels will ensure better day-to-day functionality of the correction. High PM  2.5  (> 30 μg/m  3  ) 
 concentrations in Denver typically occur during fires. Better performance of the calibration 
 models in this regime will ensure that the LCS network can accurately capture pollution 
 concentrations under smoky conditions. In order to compare errors observed in the two 
 different concentration ranges, in addition to reporting R and RMSE of the calibration 
 approaches, we also report the normalized RMSE (normalized by the mean of the true 
 concentrations) (  Tables S3  and  S4  ). 

 2.3.5 Supplementary Analysis: Evaluating transferability of calibration 
 models developed across different time aggregation intervals 
 One of the key advantages of LCS is that they report high frequency (time scales shorter 
 than an hour) measurements of pollution. As reference monitoring stations provide hourly 
 or daily average pollution values, most often the calibration model is developed using 
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 hourly averaged data and then applied to the unaggregated, high-frequency LCS 
 measurements. We applied the calibration models described in  Tables 2  and  3  developed 
 using hourly-averaged co-located measurements on minute-level measurements from the 
 co-located LCS described in  Table S1  . We evaluated  the performance of the corrected 
 high-frequency measurements against the ‘true’ measurements from the corresponding 
 reference monitor using the metrics R and RMSE (  Tables  S5  and  S6  ). 

 3 Results 
 We first report how representative meteorological conditions at the co-located sites were 
 of the overall network. Temperature at the co-located sites across the entire period of the 
 experiment (from Jan 1 – Sep 30, 2021) were similar to those at the rest of Love My Air 
 network (  Figure 2a  ). The sensor CS19 is the only one  that recorded lower temperatures 
 than those at any of the other sites, likely due to it being in the shade.  Relative humidity 
 at the co-located sites (three of the four co-located sites have a median RH close to 50 % 
 or higher) is higher than at the other sites in the network (7 of the 12 other sites have a 
 median RH < 50%) (  Figure 2b  ). The similarity in meteorological  conditions at the 
 co-located sites with those experienced by the rest of the network suggests that models 
 developed using long-term data (C1) are likely to be transferable to the overall network. 

 We also compared meteorological conditions during the development of corrections C3 
 (Jan 1 - Jan 14, 2021) and C4 (Jan 1 - Jan 14, 2021, and May 1 - May 14, 2021), to those 
 measured during the duration of network operation (C3:  Figures S10  and  S11  ; C4: 
 Figures  S12  and  S13  ). Unsurprisingly, temperatures  at the co-located sites during the 
 development of C4 were more representative of the network than C3, although they were 
 on average lower (median temperatures ~ 10 - 17  0  C)  than the average temperatures 
 experienced by the network (median temperatures ~ 5 - 23  0  C). RH values at co-located 
 sites during C3 and C4 tend to be higher than conditions experienced by Love My Air 
 sensors: CS8, CS10, CS15, CS16, CS17, CS18, CS20 likely due to the different 
 microenvironments experienced at each site. The differences in meteorological conditions 
 at the co-located sites for the time-period of calibration model developed with those 
 experienced by the rest of the network suggests that models developed using short-term 
 data (C3, C4) are not likely to be transferable to the overall network. 
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 Figure 2  : (a) Distribution of temperature recorded  by each Love My Air sensor, (b) 
 Distribution of RH recorded by each Love My Air sensor. The distribution of temperature 
 and RH recorded by co-located LCS is shown on the left. The distribution of temperature 
 and RH recorded by all LCS not used to construct the calibration models are displayed on 
 the right 

 When we evaluate the performance of applying each of the 89 calibration models on all 
 co-located data, we find that based on R and RMSE values, the on-the-fly C2 correction 
 performed better overall than the C1, C3 and C4 corrections for most calibration model 
 forms (  Tables 2  and  3  ). 

 Within corrections C1 and C2, we found that an increase in complexity of model form 
 resulted in a decreased RMSE. Overall, Model 21 yielded the best performance (RMSE = 
 1.281 μg/m  3  when using the C2 correction, 1.475 μg/m  3  when using the C1 correction with 
 a LOSO CV and 1.480 μg/m  3  when using a LOBD correction).  In comparison, the simplest 
 model yielded an RMSE of 3.421 μg/m  3  for the C1 correction,  and 3.008 μg/m  3  when 
 using the C2 correction. For correction C1, using a LOBD CV (  Table 3  ) with the machine 
 learning models resulted in better performance than using a LOSO CV (  Table 2  ), except 
 for Model 21 which is an RF model with additional time-of-day and month covariates, for 
 which performance using the LOSO CV was marginally better (RMSE: 1.475 μg/m  3 

 versus 1.480 μg/m  3  ). 

 We also found that for corrections of short-term calibrations, C3 and C4, more complex 
 models yielded a better performance (for example the RMSE for Model 16: 2.813 μg/m  3  , 
 RMSE for Model 2: 3.110 μg/m  3  generated using the  C3 correction) when evaluated 
 during the period of co-location, alone (  Table S2  ).  However, when models generated 
 using the C3 and C4 corrections were transferred to the entire time period of co-location, 
 we find that more complex multivariate regression models (Models 13-16) and the 
 machine learning model (Model 21) that include cos_time, performed significantly worse 
 than the simpler models (  Table 2  ). In some cases,  these models performed worse than 
 the uncorrected measurements. For example, applying Model 16 generated using C3 on 
 the entire dataset resulted in an RMSE of 32.951 μg/m  3  compared to 6.469 μg/m  3  for the 
 uncorrected measurements. 

 Including data from another season, spring in addition to winter, in the training sample 
 (C4), resulted in significantly improved performance of calibration models over the entire 
 dataset compared to C3 (winter), although it did not result in an improvement in 
 performance for all models compared to the uncorrected measurements. For example, 
 Model 16 generated using C4 yielded an RMSE of 6.746 μg/m  3  . Among the multivariate 
 regression models, we found that models of the same form that corrected for RH instead 
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 of T or D did best. The best performance was observed for models that included the 
 nonlinear correction for RH (Model 12) or included an  term (Model 5) (  Table 2  ).  𝑅𝐻     ×     𝑇 

 Table 2  : Performance of the calibration models as  captured using root mean square error 
 (RMSE), and Pearson correlation (R). LOSO CV was used to prevent overfitting in the 
 machine learning models. All corrected values were evaluated over the entire time-period 
 (Jan 1 - Sep 30, 2021) 

 ID  Name  Model  C1 
 Correction 
 developed on data 
 during the entire 
 period of network 
 operation 

 C2 
 On-the-fly 
 correction 
 developed using 
 data for the same 
 week of 
 measurement 

 C3 
 Correction 
 developed using 
 measurements 
 made in the first 
 two weeks of Jan 

 C4 
 Correction 
 developed using 
 measurements 
 from the first two 
 weeks of Jan 
 and the first two 
 weeks in May 

 R  RMSE 
 (μg/m  3  ) 

 R  RMSE 
 (μg/m  3  ) 

 R  RMSE 
 (μg/m  3  ) 

 R  RMSE 
 (μg/m  3 

 ) 

 Raw Love My Air measurements 

 0  Raw  0.927  6.469  -  -  -  -  -  - 

 Multivariate Regression (LOSO CV) 

 1  Linear  PM  2.5, corrected  = PM  2.5  s1 + b ×  0.927  3.421  0.944  3.008  0.927  3.486  0.927  3.424 

 2  +RH  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + b × ×  0.929  3.379  0.948  2.904  0.928  3.618  0.929  3.462 

 3  +T  PM  2.5, corrected  = PM  2.5  s  1  + T  s  2  + b × ×  0.928  3.409  0.949  2.896  0.925  3.948  0.928  3.460 

 4  +D  PM  2.5, corrected  = PM  2.5  s  1  + D  s  2  + b × ×  0.928  3.417  0.947  2.934  0.917  3.713  0.925  3.470 

 5  +RH x T  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + T × ×
 s  3  + RH  T  s  4  + b × × ×

 0.934  3.260  0.953  2.782  0.931  3.452  0.933  3.344 

 6  +RH x D  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + × ×
 D  s  3  + RH  D  s  4  + b × × ×

 0.930  3.361  0.953  2.785  0.911  3.973  0.929  3.461 

 7  +D x T  PM  2.5, corrected  = PM  2.5  s  1  + D  s  2  + T × ×
 s  3  + D  T  s  4  + b × × ×

 0.928  3.409  0.952  2.798  0.888  5.698  0.921  3.720 

 8  +RH x T x D  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + T × ×
 s  3  + D  s  4  + RH  T  s  5  + RH  D × × × × ×

 x s  6  + T  D  s  7  + RH  T  D  s  8  + × × × × ×
 b 

 0.935  3.246  0.955  2.724  0.779  7.077  0.926  3.625 

 9  PM x RH  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + × ×
 RH  PM  2.5  s  3  + b × ×

 0.930  3.362  0.950  2.854  0.925  3.949  0.925  3.767 

 10  PM x D  PM  2.5, corrected  = PM  2.5  s  1  + D  s  2  + D × ×
 PM  2.5  s  3  + b × ×

 0.932  3.324  0.950  2.871  0.883  4.460  0.913  3.777 

 11  PM x T  PM  2.5, corrected  = PM  2.5  s  1  + T  s  2  + T × ×
 PM  2.5  s  3  + b × ×

 0.930  3.365  0.952  2.809  0.906  6.509  0.928  3.466 
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 12  PM x nonlinear RH  PM  2.5, corrected  = PM  2.5  s  1  +  s  2 ×  𝑅𝐻  2 

( 1 − 𝑅𝐻 ) ×

 +  PM  2.5  s  3  + b  𝑅𝐻  2 

( 1 − 𝑅𝐻 ) × ×

 0.934  3.277  0.948  2.900  0.931  3.510  0.932  3.403 

 13  PM x RH x T  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + T × ×
 s  3  +  PM  2.5  RH  s  4  + PM  2.5  T × × × × ×

 s  5  + RH  T  s  6  + PM  2.5  RH  T × × × × ×
 s  7  +  b 

 0.938  3.165  0.956  2.672  0.891  6.220  0.928  3.497 

 14  PM x RH x D  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + × ×
 D  s  3  +  PM  2.5  RH  s  4  + PM  2.5  D × × × ×

 s  5  + RH  D  s  6  + PM  2.5  RH  D × × × × ×
 s  7  +  b ×

 0.933  3.288  0.957  2.663  0.879  7.289  0.917  4.033 

 15  PM x T x D  PM  2.5, corrected  = PM  2.5  s  1  + T  s  2  + D × ×
 s  3  +  PM  2.5  T  s  4  + PM  2.5  D  s  5 × × × × ×

 + T  D  s  6  + PM  2.5  T  D  s  7  +  b × × × × ×

 0.932  3.315  0.957  2.665  0.734  6.302  0.905  4.574 

 16  PM x RH x T x D  PM  2.5, corrected  = PM  2.5  s  1  + RH  s  2  + × ×
 T  s  3  +  D  s  4  + PM  2.5  RH  s  5  + × × × ×
 PM  2.5  T x s  6  + T  RH  s  7  + PM  2.5 × × × ×
 D  s  8  + D  RH  s  9  + D  T  s  10  + × × × × ×
 PM  2.5  RH  T  s  11  + PM  2.5  RH × × × × ×
 D  s  12  + PM  2.5  D  T  s  13  + D × × × × ×
 RH  T  s  14  + PM  2.5  RH  T  D × × × × × ×
 s  15  + b 

 0.940  3.115  0.960  2.557  0.324  32.951  0.765  6.746 

 Machine Learning (LOSO CV) 

 17  Random Forest  PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.983  1.713  0.988  1.450  0.913  3.926  0.911  3.824 

 18  Neural Network 
 (One hidden layer) 

 PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.933  3.286  0.948  2.916  0.932  3.550  0.913  4.725 

 19  Gradient Boosting  PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.950  2.870  0.964  2.452  0.910  3.854  0.909  3.834 

 20  SuperLearner  PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.950  2.855  0.970  2.236  0.910  3.917  0.923  3.582 

 21  Random Forest  For C1: 
 PM  2.5, corrected  = f(PM  2.5  , T, RH, D, 
 cos_time, cos_month, sin_month) 

 For C2, C3, C4 
 PM  2.5, corrected  = f(PM  2.5  , T, RH, D, 
 cos_time) 

 0.987  1.475  0.990  1.289  0.870  5.032  0.884  4.617 

 Table 3  : Performance of the calibration models using  the C1 correction as captured using 
 root mean square error (RMSE), and Pearson correlation (R) LOBD CV was used to 
 prevent overfitting in the machine learning models 

 ID  Machine Learning (LOBD CV)  R  RMSE 
 (μg/m  3  ) 

 17  Random Forest  PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.983  1.710 

 18  Neural Network (One 
 hidden layer) 

 PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.933  3.285 
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 19  Gradient Boosting  PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.953  2.759 

 20  SuperLearner  PM  2.5, corrected  = f(PM  2.5  , T, RH)  0.956  2.692 

 21  Random Forest  PM  2.5, corrected  = f(PM  2.5  , T, RH, D, cos_time, cos_month, 
 sin_month) 

 0.987  1.480 

 3.1.1 Evaluating transferability of the calibration algorithms in space 
 Large reductions in RMSE are observed when applying simple linear corrections (Models 
 1 - 4) developed using a subset of the co-located data to the left-out sites (  Figures 3a, c, 
 d, e  ) or time-periods (  Figure 3b  ) across C1, C2, C3,  and C4. Increasing the complexity of 
 the model does not result in marked changes in correction performance on different test 
 sets for C1 and C2. Although the performance of the corrected datasets did improve on 
 average for some of the complex models considered (Model 17, 20, 21  for example, 
 vis-a-vis simple linear regressions when using the C1 correction) (  Figures 3a, 3b  ), this 
 was not the case for  all  test datasets considered,  as evidenced by the overlapping 
 distributions of RMSE performances (e.g., Model 11 using the C2 correction resulted in a 
 worse fit for one of the test datasets). For C3 and C4, the performance of corrections was 
 worse across all datasets for the more complex multivariate model formulations (  Figures 
 3d  ,  3e  ), indicating that using uncorrected data is  better than using these corrections and 
 calibration models. 

 Wilcoxon tests and t-tests (based on whether Shapiro-Wilk tests revealed that the 
 distribution of RMSEs was normal) revealed significant improvements in the distribution of 
 RMSEs for all corrected test sets vis-a-vis the uncorrected data. There was no significant 
 difference in the distribution of RMSE values from applying C1 and C2 corrections to the 
 test sets, across the different models. For corrections C3 and C4, we found significant 
 differences in the distribution of RMSEs obtained from running different models on the 
 data, implying that the choice of model has a significant impact on transferability of the 
 calibration models to other monitors. 
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 Figure 3  : Performance (RMSE) of corrected Love My  Air PM  2.5  data by generating 
 corrections based on the 21 models (designated as fit) previously proposed using  (a) 
 Correction C1 when leaving out a co-location site in turn and then running the generated 
 correction on the test site (Note that for machine learning models (Models 17- 21),  we 
 performed CV using a LOSO CV as well as a LOBD CV approach),  (b)  Correction C1 
 when leaving out 3 week periods of data at a time and generating corrections based on 
 the data from the remaining time periods across each site, and evaluating the 
 performance of the developed corrections on the held-out 3 weeks of data (Note that for 
 machine learning models (Models 17- 21),  we performed CV using a LOBD CV 
 approach),  (c)  Correction C2 when leaving out a co-location  site in turn and then running 
 the generated correction on the test site,  (d)  Correction  C3 when leaving out a co-location 
 site in turn and then running the generated correction on the test site,  (e)  Correction C4 
 when leaving out a co-location site in turn and then running the generated correction on 
 the test site. Each point represents the RMSE for each test dataset permutation. The 
 distribution of RMSEs is displayed using box-plots and violin-plots. 
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 The time-series of corrected PM  2.5  values for Models 1, 2, 5, 16, and 21 (RF using 
 additional variables) (using CV = LOSO for the machine learning Models 17 and 21) for 
 corrections generated using C1, C2, C3 and C4 are displayed in  Figure 4  for Love My Air 
 sensor CS1. These subsets of models were chosen as they cover the range of model 
 forms considered in this analysis. 

 From  Figure 4  , we note that although the different  corrected values from C1 and C2 track 
 each other well, there are small systematic differences between the different corrections. 
 Peaks in corrected values using C2 tend to be higher than those using C1. Peaks in 
 corrected values using machine learning methods using C1 are higher than those 
 generated from multivariate regression models.  Figure  4  also shows marked differences 
 in the corrected values from C3 and C4. Specifically Model 16 yields peaks in the data 
 that corrections using the other models do not generate. This pattern was consistent 
 when applying this suite of corrections to other Love My Air sensors. 

 Figure 4  : Time-series of the different PM  2.5  corrected  values for Models 1, 2, 5, 16 and 21 
 across corrections (a) C1, (b) C2, (c) C3 and (d) C4 for the Love My Air monitor CS1. 
 Note that the scales are the same for C1, C2 and C4, but not for C3. 

 3.1.2 Evaluating sensitivity of the spatial and temporal trends of the low-cost 
 sensor network to the method of calibration 
 The spatial and temporal RMSD values between corrected values generated from 
 applying each of the 89 models using the four different correction approaches across all 
 monitoring sites in the Love My Air network are displayed  Figures 5  and  6  , respectively. 
 There is larger temporal variation (max 32.79 μg/m  3  ),  in comparison to spatial variations 
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 displayed across corrections (max: 11.95 μg/m  3  ). Model 16 generated using the C3 
 correction has the greatest spatial and temporal RMSD in comparison with all other 
 models. Models generated using the C3 and C4 corrections displayed the greatest spatial 
 and temporal RMSD vis-a-vis C1 and C2. 

 Figures S14  -  S17  display spatial RMSD values between  all models corresponding to 
 corrections C1-C4, respectively, to allow for a zoomed in view of the impact of the 
 different model forms for the 4 corrections. Similarly,  Figures S18  -  S21  display temporal 
 RMSD values between all models corresponding to corrections C1-C4, respectively. 
 Across all models the temporal RMSD between models is greater than the spatial RMSD. 
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 Figure 5  : Spatial RMSD  (μg/m  3  )  calculated using the method detailed in section 2.3.5 
 from applying each of the 89 calibration models using the four different correction 
 approaches to all monitoring sites in the Love My Air network. 

 Figure 6  : Temporal RMSD  (μg/m  3  )  calculated using the  method detailed in section 2.3.5 
 from applying each of the 89 calibration models using the four different correction 
 approaches to all monitoring sites in the Love My Air network. 

 The distribution of uncertainty and the NR in hourly-calibrated measurements over the 89 
 models by monitor are displayed in  Figure 7  . Overall,  there are small differences in 
 uncertainties and NR of the calibrated measurements across sites. The average NR and 
 uncertainty across all sites are 1.554 (median: 0.9768) and 0.044 (median: 0.033), 
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 respectively.  We note that although the uncertainties in the data are small, the average 
 normalized range tends to be quite large. 

 Figure 7  : Distribution of (a) uncertainty and (b)  normalized range (NR) in hourly-calibrated 
 measurements across all 89 calibration models at each site using the methodology 
 described in Section 2.3.5. 

 3.1.3 Evaluating the sensitivity of hotspot detection across the network of 
 sensors to the calibration method 
 Mean (95%  CI  ) PM  2.5  concentrations across the 89 different  calibration models listed in 
 Tables 1  and  2  ) at each Love My Air site for the duration  of the experiment (Jan 1 - Sep 
 30, 2021) are displayed in  Figure S22  . Due to overlap  between the different calibrated 
 measurements across sites, the ranking of sites based on pollutant concentrations is 
 dependent on the calibration model used. 

 Every hour, we ranked the different monitors for each of the 89 different calibration 
 models, in order to evaluate how sensitive pollution hotspots were to the calibration model 
 used. We found that there were on average 4.4 (median = 5) sensors that were ranked 
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 most polluted. When this calculation was repeated using daily-averaged calibrated data, 
 there were on average 2.5 (median = 2) sensors that were ranked the most polluted. The 
 corresponding value for weekly-calibrated data was 2.4 (median = 1), and for monthly 
 data was 3 (median = 3) (  Figure 8  ). 

 Figure 8:  Variation in the number of sites that were  ranked as ‘most polluted’ across the 
 89 different calibration models for different time-averaging periods displayed using 
 box-plots 

 3.1.4 Supplementary Analysis: Evaluating transferability of calibration 
 models developed in different pollution regimes 
 When we evaluated how well the models performed at high PM  2.5  concentrations (> 30 
 μg/m  3  ) versus lower concentrations (≤ 30 μg/m  3  ), we  found that multivariate regression 
 models generated using the C1 correction did not perform well in capturing peaks in PM  2.5 

 concentrations (normalized RMSE > 25%) (  Tables S3  and  S4  ). 

 Multivariate regression models generated using the C2 correction performed better than 
 those generated using C1 (normalized RMSE ~ 20 -25 %). Machine learning models 
 generated using both C1 and C2 corrections captured PM  2.5  peaks well (C1: normalized 
 RMSE ~ 10 - 25%, C2: normalized RMSE ~ 10 - 20%). Specifically, the C2 RF model 
 (Model 21) yielded the lowest RMSE values (4.180 μg/m  3  ,  normalized RMSE: 9.8%), of all 
 models considered. The performance of models generated using C1 and C2 corrections 
 in the low-concentration regime was the same as that over the entire dataset. This is 
 because most measurements made were < 30 μg/m  3  . 
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 Models generated using C3 and C4 had the worst performance in both concentration 
 regimes and yielded poorer agreement with reference measurements than even the 
 uncorrected measurements. As in the case with the entire dataset, more complex 
 multivariate regression models and machine learning models generated using C3 and C4 
 performed worse than more simple models in both PM  2.5  concentration intervals (  Tables 
 S3  and  S4  ). 

 3.1.5 Supplementary Analysis: Evaluating transferability of calibration 
 models developed across different time aggregation intervals 
 We then evaluated how well the models generated using C1, C2, C3 and C4 corrections 
 performed when applied to minute-level LCS data at co-located sites (  Tables S5  and  S6  ). 
 We found that the machine learning models generated using C1 and C2 improved the 
 performance of the LCS. Model 21 (CV=LOSO) generated using C1 yielded an RMSE of 
 15.482 μg/m  3  compared to 16.409 μg/m  3  obtained from  the uncorrected measurements. 

 The more complex multivariate regression models yielded a significantly worse 
 performance across all corrections. (Model 16 generated using C1 yielded an RMSE of 
 41.795 μg/m  3  ). As in the case with the hourly-averaged  measurements, using correction 
 C1, LOBD CV instead of LOSO for the machine learning models resulted in better model 
 performance except for Model 21. Few models generated using C3 and C4 resulted in 
 improved performance when applied to the minute-level measurements (  Tables S5  and 
 S6  ). 

 4 Discussion and Conclusions 
 In our analysis of how transferable the correction models developed at the Love My Air 
 co-location sites are to the rest of the network, we found that for C1 (corrections 
 developed on the entire co-location dataset) and C2 (on-the-fly corrections), more 
 complex model forms yielded better predictions (higher R, lower RMSE) at the co-located 
 sites. This is likely because the machine learning models were best able to capture 
 complex, non-linear relationships between the LCS measurements, meteorological 
 parameters and reference data when conditions at the co-location sites were 
 representative of that of the rest of the network. Model 21, which included additional 
 covariates intended to capture periodicities in the data, such as seasonality, yielded the 
 best performance, suggesting that in this study the relationship between LCS 
 measurements and reference data varies over time. One possible reason for this could be 
 the impact of changing aerosol composition in time which has been shown to impact the 
 LCS calibration function (Malings et al., 2020). 

 When examining the short-term, C3 (corrections developed on 2-weeks of co-located data 
 at the start of the experiment) and C4 (corrections developed on 2-weeks of co-located 
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 data in January and 2-weeks of co-located data in a May) corrections, we found that 
 although these corrections appeared to significantly improve LCS measurements during 
 the time period of model development (  Table S2  ), when  transferred to the entire time 
 period of operation they did not perform well (  Table  2  ). Many of the models, especially the 
 more complex multivariate regression models, performed significantly worse than even 
 the uncorrected measurements. This result indicates that calibration models generated 
 during short time periods, even if the time periods correspond to different seasons, may 
 not necessarily transfer well to other times, likely because conditions during co-location 
 (aerosol-type, meteorology) are not representative of that of network operating conditions. 
 Our results suggest the need for statistical calibration models to be developed over longer 
 time periods that better capture different LCS operating conditions. For C3 and C4, we did 
 however find models that relied on nonlinear formulations of RH, that serve as proxies for 
 hygroscopic growth, yielded the best performance, as compared to more complex models 
 (  Table 2  ). This suggests that physics-based calibrations  are potentially an alternative 
 approach, especially when relying on short co-location periods and need to be explored 
 further. 

 When evaluating how transferable different calibration models were to the rest of the 
 network, we found that for C1 and C2, more complex models that appeared to perform 
 well at the co-location sites did not necessarily transfer best to the rest of the network. 
 Specifically, when we tested these models on a co-located site that was left out when 
 generating the calibration models, we found that some of the more complex models using 
 the C2 correction yielded a significantly worse performance at some test sites (  Figure 3  ). 
 If the corrected data were going to be used to make site-specific decisions then such 
 corrections would lead to important errors. For C3 and C4, we observed a large 
 distribution of RMSE values across sites. For several of the more complex models 
 developed using C3 and C4 corrections, the RMSE values at some left-out sites were 
 larger than observed for the uncorrected data, suggesting that certain calibration models 
 could result in even more error-prone data than using uncorrected measurements. As the 
 meteorological parameters for the duration of the C3 and C4 co-locations are not 
 representative of overall operating conditions of the network, it is likely that the more 
 complex models were overfit to conditions during the co-location, leading to them not 
 performing well over the network operations. 

 For C1 and C2, we found that there were no significant differences in the distribution of 
 the performance metric RMSE of corrected measurements from simpler models in 
 comparison to those derived from more complex corrections at test sites (  Figure 3  ). For 
 C3 and C4, we found significant differences in the distribution of RMSE across test sites, 
 which indicates that these models are likely site-specific and not easily transferable to 
 other sites in the network. This suggests that less complex models might be preferred 
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 when short-term co-locations are carried out for sensor calibration, especially when 
 conditions during the short-term co-location are not representative of that of the network. 

 We found that the temporal RMSD (  Figure 6  ) was greater  than the spatial RMSD (  Figure 
 5  ) for the ensemble of corrected measurements developed  by applying the 89 different 
 calibration models to the Love My Air network. One of the reasons this may be the case is 
 that PM  2.5  concentrations across the different Love  My Air sites in Denver are highly 
 correlated (  Figure S5  ), indicating that the contribution  of local sources to PM  2.5 

 concentrations in the Denver neighborhoods in which Love My Air was deployed is small. 
 Due to the low variability in PM  2.5  concentrations  across sites, it makes sense that the 
 variations in the corrected PM  2.5  concentrations will  be seen in time rather than space. 
 The largest pairwise temporal RMSD were all seen between corrections derived from 
 complex models using the C3 correction. 

 Finally, we observed that the uncertainty in PM  2.5  concentrations across the ensemble of 
 89 calibration models (  Figure 7  ) was consistently  small for the Love My Air Denver 
 network. The normalized range in the corrected measurements, on the other hand, was 
 large; however, the uncertainty (95% CI) in the corrected measurements fall within a 
 relatively small interval. The average normalized range tends to be quite large, likely due 
 to outlier corrected values produced from some of the more complex models evaluated 
 using the C3 and C4 corrections. Thus, deciding which calibration model to pick has 
 important consequences for decision-makers when using data from this network. 

 Our findings reinforce the idea that evaluating calibration models at all co-location sites 
 using overall metrics like RMSE should not be seen as the only/best way to determine 
 how to calibrate a network of LCS. Instead, approaches like the ones we have 
 demonstrated, and metrics like the ones we have proposed should be used to evaluate 
 calibration transferability. 

 We found that the detection of the ‘most polluted’ site in the Love My Air network (an 
 important use-case of LCS networks) was dependent on the calibration model used on 
 the network. We also found that for the Love My Air network, the detection of the most 
 polluted site was sensitive to the duration of time-averaging of the corrected 
 measurements (  Figure 8  ). Hotspot detection was most  robust using weekly-averaged 
 measurements. A possible reason for this is that temporal variation in PM  2.5  in Denver 
 varied primarily on a weekly-scale, and therefore analysis conducted using weekly-values 
 resulted in the most robust results. Such an analysis thus provides guidance on the most 
 useful temporal scale for decision-making related to evaluating hotspots in the Denver 
 network. 
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 In supplementary analyses, when we evaluated the sensitivity of other LCS use-cases to 
 the calibration model applied such as tracking high pollution concentrations during fire or 
 smoke-events, we found that different models  yielded different performance results in 
 different pollution regimens. Machine learning models developed using C1, and models 
 developed using C2 were better than multivariate regression models generated using C1 
 at capturing peaks in pollution (> 30 μg/m  3  ). All  models using C3 and C4 yielded poor 
 performance results in tracking high pollution events (  Tables S3  and  S4  ). This is likely 
 because PM  2.5  concentrations during the C3 and C4  co-location tended to be low. The 
 calibration model developed thus did not transfer well to other concentrations. When 
 evaluating how well the calibration models developed using hourly-aggregated 
 measurements translated to high-resolution minute-level data (  Tables S5  and  S6  ), we 
 observed that machine learning models generated using C1 and C2, improved the LCS 
 measurements. More complex multivariate regression models performed poorly. All C3 
 and C4 models also performed poorly. This suggests that caution needs to be exercised 
 when transferring models developed at a particular time scale to another. Note that in this 
 paper, because pollution concentrations did not show much spatial variation, we focus on 
 evaluating transferability across time-scales, only. 

 In summary, this paper makes the case that it is not enough to evaluate calibration 
 models based on metrics of performance at co-located sites, alone. We need to: 

 1)  Determine how well calibration adjustments can  be transferred to other locations. 
 Specifically, although we found that in Denver some calibration models performed well at 
 co-location sites, the models could result in large errors at specific sites that would create 
 difficulties for site-specific decision making. 

 2) Examine how well calibration adjustments can be transferred to other time periods.  In 
 this study we found that models developed using the short-term C3 and C4 corrections 
 were not transferable to other time periods because the conditions during the co-location 
 were not representative of broader operating conditions in the network. 

 3)  Use a variety of approaches to quantify transferability  of calibration models  in the 
 overall network  (e.g., with spatio-temporal correlations  and RMSD). The metrics proposed 
 in this paper to evaluate model transferability can be used in other networks. 

 4)  Investigate how adopting a certain time-scale  for averaging measurements could 
 mitigate the uncertainty induced by the calibration process for specific use-cases.  Namely, 
 we found that in the Love My Air network, hotspot identification was more robust when 
 using daily-averaged data than hourly-averaged data. Our analyses also revealed which 
 models performed best when needing to transfer the calibration model developed using 
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 hourly-averaged data to higher-resolution data, and which models best captured peaks in 
 pollution during fire- or smoke- events. 

 In this work, the Love My Air network under consideration is located over a fairly small 
 area in a single city. In this network, for the time period considered, PM  2.5  seems to be 
 mainly a regional pollutant and the contribution of local sources is small. More work needs 
 to be done to evaluate model transferability in networks in other settings. Concerns about 
 model transferability are likely to be even more pressing when thinking about larger 
 networks that span different cities and should be considered in future research. In this 
 study, we present a first attempt to demonstrate the importance of considering the 
 transferability of calibration models. In future work, we also aim to explore the physical 
 factors that drive concerns about transferability to generalize our findings more broadly. 

 Author Contributions 
 PD conceptualized the study, developed the methodology, carried out the analysis and wrote the 
 first draft. PD and BC obtained funding for this study. BC produced Figure 1. All authors helped in 
 refining the methodology and editing the draft. 

 Acknowledgements 
 PD and BC gratefully acknowledge a CU Denver Presidential Initiative grant that 
 supported their work. The authors are grateful to the Love My Air team for setting up and 
 maintaining the Love My Air network. The authors are also grateful to Carl Malings for 
 useful comments 

 Competing Interests 
 The authors declare that they have no conflict of interest. 

 References 
 Anderson, G. and Peng, R.: weathermetrics: Functions to convert between weather metrics (R 
 package), 2012. 

 State of Global Air: https://www.stateofglobalair.org/, last access: 18 June 2022. 

 Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., 
 Portier, C. J., Vermeulen, R. C. H., and Hamburg, S. P.: High-Resolution Air Pollution Mapping 
 with Google Street View Cars: Exploiting Big Data, Environ. Sci. Technol., 51, 6999–7008, 
 https://doi.org/10.1021/acs.est.7b00891, 2017. 

 Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United 
 States-wide correction for PM  2.5  data collected with  the PurpleAir sensor, Atmospheric Meas. 
 Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. 

 31 

https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn


 Bean, J. K.: Evaluation methods for low-cost particulate matter sensors, Atmospheric Meas. Tech., 
 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, 2021. 

 Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into 
 High-Resolution PM2.5 Modeling at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–2162, 
 https://doi.org/10.1021/acs.est.9b06046, 2020. 

 Brantley, H. L., Hagler, G. S. W., Herndon, S. C., Massoli, P., Bergin, M. H., and Russell, A. G.: 
 Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia, 
 Int. J. Environ. Res. Public. Health, 16, 535, https://doi.org/10.3390/ijerph16040535, 2019. 

 Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and 
 Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and 
 exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 
 2017. 

 Clements, A. L., Griswold, W. G., Rs, A., Johnston, J. E., Herting, M. M., Thorson, J., 
 Collier-Oxandale, A., and Hannigan, M.: Low-Cost Air Quality Monitoring Tools: From Research to 
 Practice (A Workshop Summary), Sensors, 17, 2478, https://doi.org/10.3390/s17112478, 2017. 

 Considine, E. M., Reid, C. E., Ogletree, M. R., and Dye, T.: Improving accuracy of air pollution 
 exposure measurements: Statistical correction of a municipal low-cost airborne particulate matter 
 sensor network, Environ. Pollut., 268, 115833, https://doi.org/10.1016/j.envpol.2020.115833, 2021. 

 Crawford, B., Hagan, D.H., Grossman, I., Cole, E., Holland, L., Heald, C.L. and Kroll, J.H., 2021. 
 Mapping pollution exposure and chemistry during an extreme air quality event (the 2018 Kīlauea 
 eruption) using a low-cost sensor network. Proceedings of the National Academy of Sciences, 
 118(27), p.e2025540118. 

 Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. 
 D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air 
 monitoring, Atmospheric Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 
 2018. 

 deSouza, P. and Kinney, P. L.: On the distribution of low-cost PM 2.5 sensors in the US: 
 demographic and air quality associations, J. Expo. Sci. Environ. Epidemiol., 31, 514–524, 
 https://doi.org/10.1038/s41370-021-00328-2, 2021. 

 deSouza, P., Anjomshoaa, A., Duarte, F., Kahn, R., Kumar, P., and Ratti, C.: Air quality monitoring 
 using mobile low-cost sensors mounted on trash-trucks: Methods development and lessons 
 learned, Sustain. Cities Soc., 60, 102239, https://doi.org/10.1016/j.scs.2020.102239, 2020a. 

 deSouza, P., Lu, R., Kinney, P., and Zheng, S.: Exposures to multiple air pollutants while 
 commuting: Evidence from Zhengzhou, China, Atmos. Environ., 118168, 
 https://doi.org/10.1016/j.atmosenv.2020.118168, 2020b. 

 32 

https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn


 deSouza, P. N.: Key Concerns and Drivers of Low-Cost Air Quality Sensor Use, Sustainability, 14, 
 584, https://doi.org/10.3390/su14010584, 2022. 

 deSouza, P. N., Dey, S., Mwenda, K. M., Kim, R., Subramanian, S. V., and Kinney, P. L.: Robust 
 relationship between ambient air pollution and infant mortality in India, Sci. Total Environ., 815, 
 152755, https://doi.org/10.1016/j.scitotenv.2021.152755, 2022. 

 Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F., Westervelt, D. M., 
 Beekmann, M., and Subramanian, R.: From low-cost sensors to high-quality data: A summary of 
 challenges and best practices for effectively calibrating low-cost particulate matter mass sensors, 
 J. Aerosol Sci., 158, 105833, https://doi.org/10.1016/j.jaerosci.2021.105833, 2021. 

 Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air Quality Sensors and Data 
 Adjustment Algorithms: When Is It No Longer a Measurement?, Environ. Sci. Technol., 52, 
 5530–5531, https://doi.org/10.1021/acs.est.8b01826, 2018. 

 Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field calibrations of a low-cost aerosol 
 sensor at a regulatory monitoring site in California, Atmospheric Meas. Tech., 7, 1121–1131, 
 https://doi.org/10.5194/amt-7-1121-2014, 2014. 

 Jin, X., Fiore, A. M., Civerolo, K., Bi, J., Liu, Y., Donkelaar, A. van, Martin, R. V., Al-Hamdan, M., 
 Zhang, Y., Insaf, T. Z., Kioumourtzoglou, M.-A., He, M. Z., and Kinney, P. L.: Comparison of 
 multiple PM 2.5 exposure products for estimating health benefits of emission controls over New 
 York State, USA, Environ. Res. Lett., 14, 084023, https://doi.org/10.1088/1748-9326/ab2dcb, 
 2019. 

 Johnson, N. E., Bonczak, B., and Kontokosta, C. E.: Using a gradient boosting model to improve 
 the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment, 
 Atmos. Environ., 184, 9–16, https://doi.org/10.1016/j.atmosenv.2018.04.019, 2018. 

 Kim, K.-H., Kabir, E., and Kabir, S.: A review on the human health impact of airborne particulate 
 matter, Environ. Int., 74, 136–143, https://doi.org/10.1016/j.envint.2014.10.005, 2015. 

 Kuhn, M.: caret: Classification and Regression Training, Astrophys. Source Code Libr., 
 ascl:1505.003, 2015. 

 Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., 
 Norford, L., and Britter, R.: The rise of low-cost sensing for managing air pollution in cities, 
 Environ. Int., 75, 199–205, https://doi.org/10.1016/j.envint.2014.11.019, 2015. 

 Liang, L.: Calibrating low-cost sensors for ambient air monitoring: Techniques, trends, and 
 challenges, Environ. Res., 197, 111163, https://doi.org/10.1016/j.envres.2021.111163, 2021. 

 Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM2.5 measured in 

 33 

https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn


 an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta 
 Attenuation Monitor, Aerosol Sci. Technol., 54, 147–159, 
 https://doi.org/10.1080/02786826.2019.1619915, 2020. 

 Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., and 
 Subramanian, R.: Fine particle mass monitoring with low-cost sensors: Corrections and long-term 
 performance evaluation, Aerosol Sci. Technol., 54, 160–174, 
 https://doi.org/10.1080/02786826.2019.1623863, 2020. 

 Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, 
 F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. 
 H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., 
 Shafiei, M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of low-cost sensing 
 technologies for air quality monitoring and exposure assessment: How far have they gone?, 
 Environ. Int., 116, 286–299, https://doi.org/10.1016/j.envint.2018.04.018, 2018. 

 Nilson, B., Jackson, P. L., Schiller, C. L., and Parsons, M. T.: Development and Evaluation of 
 Correction Models for a Low-Cost Fine Particulate Matter Monitor, Atmospheric Meas. Tech. 
 Discuss., 1–16, https://doi.org/10.5194/amt-2021-425, 2022. 

 Singh, A., Ng’ang’a, D., Gatari, M. J., Kidane, A. W., Alemu, Z. A., Derrick, N., Webster, M. J., 
 Bartington, S. E., Thomas, G. N., Avis, W., and Pope, F. D.: Air quality assessment in three East 
 African cities using calibrated low-cost sensors with a focus on road-based hotspots, Environ. 
 Res. Commun., 3, 075007, https://doi.org/10.1088/2515-7620/ac0e0a, 2021. 

 Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., 
 Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air Pollution 
 Monitoring, Environ. Sci. Technol., 47, 11369–11377, https://doi.org/10.1021/es4022602, 2013. 

 Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Calibration of a 
 cluster of low-cost sensors for the measurement of air pollution in ambient air, in: 2014 IEEE 
 SENSORS, 2014 IEEE SENSORS, 21–24, https://doi.org/10.1109/ICSENS.2014.6984922, 2014. 

 Van der Laan, M. J., Polley, E. C., and Hubbard, A. E.: Super learner, Stat. Appl. Genet. Mol. Biol., 
 6, 2007. 

 West, S. E., Buker, P., Ashmore, M., Njoroge, G., Welden, N., Muhoza, C., Osano, P., Makau, J., 
 Njoroge, P., and Apondo, W.: Particulate matter pollution in an informal settlement in Nairobi: 
 Using citizen science to make the invisible visible, Appl. Geogr., 114, 102133, 
 https://doi.org/10.1016/j.apgeog.2019.102133, 2020. 

 Williams, R., Kilaru, V., Snyder, E., Kaufman, A., Dye, T., Rutter, A., Russel, A., and Hafner, H.: Air 
 Sensor Guidebook, US Environmental Protection Agency, Washington, DC, EPA/600/R-14/159 
 (NTIS PB2015-100610), 2014. 

 34 

https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn


 Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, 
 A. L., and R. Subramanian: A machine learning calibration model using random forests to improve 
 sensor performance for lower-cost air quality monitoring, Atmospheric Meas. Tech., 11, 291–313, 
 https://doi.org/10.5194/amt-11-291-2018, 2018. 

 Zusman, M., Schumacher, C. S., Gassett, A. J., Spalt, E. W., Austin, E., Larson, T. V., Carvlin, G., 
 Seto, E., Kaufman, J. D., and Sheppard, L.: Calibration of low-cost particulate matter sensors: 
 Model development for a multi-city epidemiological study, Environ. Int., 134, 105329, 
 https://doi.org/10.1016/j.envint.2019.105329, 2020. 

 35 

https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn
https://www.zotero.org/google-docs/?ZoPvEn

