

1 Development and Testing of a Novel Sulfur Dioxide Sonde

2 Subin Yoon¹, Alexander Kotsakis^{1,2}, Sergio L. Alvarez¹, Mark G. Spychala^{3,4}, Elizabeth Klovenski¹, Paul
3 Walter³, Gary Morris^{3,5}, Ernesto Corrales⁶, Alfredo Alan⁶, Jorge Andres Diaz^{6,7}, James H. Flynn¹

4 ¹ Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, 77004, USA

5 ² now at ERT, Inc., Laurel, MD, 20707, USA

6 ³St. Edward's University, Austin, TX, 78704, USA

7 ⁴ now at Hamelmann Communications, Pagosa Springs, CO, 81147, USA

8 ⁵ now at NOAA Global Monitoring Laboratory, Boulder, CO, 80305, USA

9 ⁶GasLAB, CICANUM, Universidad de Costa Rica, San José, Costa Rica

10 ⁷ now at INFICON, East Syracuse, NY, 13057, United States

11

12

13 *Correspondence to:* James H. Flynn (jhflynn@central.uh.edu)

14 **Abstract.** A novel technique has been developed to measure sulfur dioxide (SO_2) using a modification of the existing
15 electrochemical concentration cell (ECC) ozonesonde technology. The current sonde-based method to measure SO_2 (i.e., the
16 dual-sonde approach) involves launching two ozonesondes together with one of the sondes having a filter to remove SO_2 at
17 the inlet. The SO_2 profile is determined by taking the difference between the measurements from the two instruments. The
18 dual-sonde method works well in typical tropospheric conditions when $[\text{O}_3] > [\text{SO}_2]$ but saturates when $[\text{SO}_2] > [\text{O}_3]$ and has
19 large uncertainties in the upper troposphere/lower stratosphere that would limit its effectiveness in measuring SO_2 from an
20 explosive volcanic eruption. Due to these limitations, several modifications were made to create a single-sonde system that
21 would directly measure SO_2 (i.e., the SO_2 sonde). These modifications included (1) a positively biased ECC ~~background~~
22 current, (2) the addition of an O_3 removal filter, and (3) the addition of a sample dryer. The SO_2 sonde measures SO_2 as a
23 reduction in the cell current. There was a strong correlation ($r^2 > 0.94$) between the SO_2 sonde and a Thermo 43c analyzer
24 during controlled laboratory tests and pre-flight tests. Varying humidity levels affected the SO_2 sonde's sensitivity ($\text{avg} = 84.6$
25 $\pm 31.7 \text{ ppbv}/\mu\text{A}$, $1\sigma \text{ RSD} = 37\%$) during initial field tests, which was resolved by adding a sample dryer upstream of the O_3
26 removal filter and pump inlet. This modification significantly reduced the variability and increased the sensitivity of the SO_2
27 measurements ($\text{avg} = 47 \pm 5.8 \text{ ppbv}/\mu\text{A}$, $1\sigma \text{ RSD} = 12\%$). Field tests included measurements near Kilauea Volcano (before
28 and during the 2018 eruption of the Lower East Rift Zone), Costa Rica's Turrialba Volcano, and anthropogenic plumes from
29 the Athabasca Oil Sands region of Alberta, Canada. This single SO_2 sonde system is an effective, inexpensive instrument for
30 measuring both ground-based and vertical profiles of SO_2 from anthropogenic and natural sources (i.e., volcanic eruptions)
31 over a wide range of concentrations.

32 1 Introduction

33 Sulfur dioxide (SO_2) emissions result from anthropogenic activities, such as power generation and crude oil refining processes,
34 and natural sources, such as volcanoes. In gas form, SO_2 acts as a respiratory irritant leading to complications with asthma and
35 cardiovascular conditions (Chen et al., 2007; Sunyer et al., 2003; Tzortziou et al., 2015, 2018). Gaseous SO_2 can be converted
36 to sulfate aerosols (Zhang et al., 2015), which are highly scattering, reduce visibility, and can have a cooling effect on the
37 ~~surface~~ climate when injected into the stratosphere (Kiehl and Briegleb, 1993; Schmidt et al., 2010). SO_2 acidifies rain,
38 accelerating damage of infrastructure and vegetation, particularly near SO_2 sources such as volcanoes (Delmelle et al., 2002;
39 Krug and Frink, 1983; Tortini et al., 2017). Due to these various climate, environmental, and human health-related impacts,
40 anthropogenic SO_2 has been heavily monitored (Shannon, 1999; Zhang and Schreifels, 2011), and regulations have been
41 enacted to reduce these emissions (EPA, 2000).

42 The largest natural sources of SO_2 are volcanoes. The eruption of Mt. Pinatubo in the Philippines in June 1991 had global
43 climatic effects and significant impacts on the tropospheric and lower stratospheric composition (Bluth et al., 1992; Parker et
44 al., 1996). Apart from such catastrophic eruptions, SO_2 can be continually emitted from volcanoes. SO_2 plumes from over 90

46 volcanoes have been reliably detected by satellites, resulting in the injection of an estimated $23 \pm 2 \text{ Tg yr}^{-1}$ of SO_2 into the
47 atmosphere (Carn et al., 2017). However, unlike anthropogenic sources of SO_2 , most volcanoes lack routine ground monitoring
48 (Galle et al., 2010; Pieri et al., 2013) and few opportunities exist for routine validation of satellite retrievals of SO_2 with *in situ*
49 measurements. Small Unmanned-unmanned aerial vehicle (UAV) platforms can measure volcanic plumes at altitudes of 2 km
50 above the take-off altitude (Galle et al., 2010; Diaz et al., 2015); while larger UAVs can measure stratospheric plumes (e.g.,
51 Global Hawk). However, the lack and difficulty of monitoring and the possibility of another stratospheric injection of SO_2
52 motivated the development of an inexpensive but reliable balloon-borne instrument that could be deployed quickly after an
53 eruption to validate satellite observations with *in situ* measurements.

54
55 Radiosondes and ozonesondes have been widely used for measurements of various atmospheric parameters (e.g., temperature,
56 air pressure, relative humidity [RH], and wind speed and direction) and O_3 concentrations), respectively. These measurements
57 Electrochemical concentration cell (ECC) ozonesondes produce vertical O_3 profiles and allow for the validation of satellite
58 based O_3 vertical column density (VCD). A schematic of the ECC is included in Figure S1. The current sonde-based method
59 for measuring SO_2 , the dual-sonde method, uses two En-Sci (Environmental Science Inc., Westminster, CO) ECC ozonesondes
60 in tandem (Morris et al., 2010). For the dual-sonde method, an SO_2 removal filter is placed at the pump inlet of one of the
61 ozonesondes, scrubbing SO_2 from the sampled air before it enters the electrochemical concentration cell (ECC). The other
62 sonde samples unfiltered air (i.e., air containing both SO_2 and O_3). Due to the chemical reactions in the cathode cell, the filtered
63 sonde measures O_3 , while the unfiltered sonde measures the difference between O_3 and SO_2 ($[\text{O}_3] - [\text{SO}_2]$) since SO_2 has an
64 equal (relative to O_3) but negative signal in the ECC (Morris et al., 2010). The SO_2 concentrations are then determined from
65 the difference between the two sonde measurements. This method works well in the troposphere when the SO_2 concentration
66 is less than the O_3 concentration, but not as well in intense plumes, such as those found in eruptive volcanic environments.
67 When the SO_2 concentration exceeds the O_3 concentration, the cell current in the unfiltered sonde becomes zero. The excess
68 SO_2 saturates the dual-sonde and distorts the calculated SO_2 profile. Additionally, in the stratosphere, where the O_3 signal
69 grows much larger than in the troposphere, the combined uncertainty of the measurements of the filtered and unfiltered sondes
70 results in a large lower limit of detection (LLOD), on the order of tens of ppbv. Thus, a field deployment of the dual-sonde
71 method more than a few days after an explosive, tropical volcanic eruption such as Mt. Pinatubo would result in little useful
72 data in the critical upper troposphere/lower stratosphere region.

73
74 This study reports on the development of a single instrument capable of *in situ* SO_2 measurements in the presence or absence
75 of O_3 . This sonde can measure SO_2 at much greater concentrations than O_3 without saturating the system and can be configured
76 for a sub-ppbv LLOD (calculated using 3σ) at sea level. Since O_3 is removed from the sample stream, this SO_2 sonde avoids
77 the compounded uncertainties of the dual-sonde method. Field deployments of the SO_2 sonde include sampling of
78 volcanic emissions from Kīlauea on the Big Island of Hawai'i, U.S., Turrialba Volcano in Costa Rica, and the emissions from
79 petroleum extraction and processing at the Athabasca Oil Sands, Canada. Results from these field tests, covering a wide range

80 of SO_2 concentrations from both natural and anthropogenic emission sources, are described below. The SO_2 sonde has been
81 used for tethered and free-release balloons but can also be adapted for UAV platforms.

82 **2 Instrumentation**

83 **2.1 Ozonesondes**

84 The standard and modified ECC En-Sci ozonesondes were used for the O_3 and SO_2 sonde measurements in this study. The
85 basic functioning of the ECC ozonesonde is described in Komhyr (1969) and Morris et al. (2010). The ECC sensor is composed
86 of platinum cathode and anode electrodes, each in its own cell, immersed in a diluted and saturated solution of potassium
87 iodide (KI), respectively. The cells are connected by an ion bridge allowing for the transfer of electrical charges while
88 maintaining the separation of the solutions (Eq. 1 and 2). When the cells are charged with the solution, a transient potential
89 difference is generated ~~that is but~~ dissipated through the redistribution of charge across the ion bridge. The following equilibria
90 are established from these reactions:

93

94 Sampled air is ~~diffused-pumped~~ into the cathode cell, and the presence of O_3 initiates a reaction (Eq. 3) that causes an imbalance
95 in favor of $[\text{I}_2]$ in the cathode solution.

97 To rebalance the electrochemical potential of the cell, the iodine/iodide redox reactions in ~~Eq~~ 4 and 5 result in a flow of
98 electrons from the anode to the cathode via the ion bridge. This cell current, measured by an external ammeter, is proportional
99 to the O_3 concentration.

102 ~~As is also described in in Komhyr (1969) and Morris et al.(2010), when~~ When SO_2 is present in the sample air, an additional
103 reaction (Eq. 6) occurs in the cathode cell of the ECC, supplying the two electrons needed to rebalance the cathode cell after
104 the O_3 reaction (Eq. 3) (Komhyr, 1969; Morris et al., 2010).

106 Thus, each SO_2 molecule in the sampled air has the effect of cancelling the measurement of one O_3 molecule. In effect, the
107 standard ECC ozonesonde reports $[\text{O}_3] - [\text{SO}_2]$ for its measurement. In most places and at most times, $[\text{SO}_2] \ll [\text{O}_3]$, so there

108 is not a significant impact on the O₃ measurements, but in places downwind of SO₂ sources (e.g., coal-burning power plants
109 or volcanos), the O₃ measurement will be negatively impacted.

110 **2.2 Instrumentation**

111 Several SO₂ and O₃ instruments were used for validation of the SO₂ sonde during laboratory and field testing. A calibration
112 system was used to produce controlled concentrations of SO₂ and O₃. The calibration system relied on the operation of flow
113 controllers or restrictors, an SO₂ ultra-high purity (UHP) gas cylinder (4.87 ppm; Scott-Marrin, Inc., Riverside, CA) and/or a
114 U.V. Photometric O₃ calibrator (49C PS; Thermo Fisher Scientific, Franklin, MA), and zero air to produce desired pre-set
115 concentrations of SO₂ and/or O₃. The zero-air setup used for the field and laboratory testing was achieved using a dry zero air
116 UHP gas cylinder or else generated by scrubbing ambient air through activated charcoal and Purafil SP (Purafil, Inc., Doraville,
117 GA) canisters. The Thermo 43*i*-TL SO₂ analyzer (LLOD: 60-90 pptv at 5 min averaging) and the 49*i* O₃ analyzer (LLOD: 1.5
118 ppbv at 5 min averaging) were also used during laboratory testing, while a Thermo 43*c*-TL SO₂ analyzer was used during field
119 testing in Hawai'i. These instruments were set to report 10 s average measurements.

120 **3 Single-sonde SO₂ System and Laboratory Testing**

121 **3.1 SO₂ sonde system description**

122 The single-sonde The first version (version 1.0) of the single-sonde SO₂ system (i.e., SO₂ sonde v1.0) included threetwo major
123 modifications to the En-Sci ECC ozonesonde: (1) the application of a positively biased background current to the cathode cell,
124 and (2) the addition of an O₃ removal filter, and (3) a sample dryer (Fig. S1). The first version of the SO₂ system (SO₂ sonde
125 v1.0) included the first two modifications: the bias current and an O₃ removal filter. The bias current sets the upper limit of
126 detection (ULOD) for the SO₂ sonde and is set prior to measurement. The O₃ removal filter is placed in line with the inlet
127 allowing O₃-free air to be sampled in the SO₂ sonde. In a standardthe ECC, O₃ produces a positive response signal while SO₂
128 produces a negative signal when sufficient O₃ is present (i.e., positive signal) is present. With these two modifications, SO₂
129 can be measured directly as the reduction of the cell current from the pre-set biased background current (Flynn and Morris,
130 2021). Unlike the dual-sonde system, this approach allows for direct SO₂ measurements rather than an inference by subtraction
131 of signals from two separate instruments. A sample dryer was added to the SO₂ sonde in the second version (v1.1) to combat
132 humidity issues discovered after initial field tests. The addition of the dryer corrected the highly varying instrument sensitivity
133 observed in the field. All components of the SO₂ sonde fit within a standard ozonesonde foam box (approximately 8" x 8" x
134 10") except for the inlet filter. The free-release balloon payload's total mass is approximately 1 kg. The patent publication and
135 Fig. S1 provides a detailed description and schematic of the SO₂ sonde (Flynn and Morris, 2021).

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

136 **3.2 Testing of background-the bias current**

137 The background-bias current is supplied by inserting into the cathode cell an additional platinum electrode in the eathode cell
138 powered by a 9V battery (Fig. S1) (Flynn and Morris, 2021). To maintain consistent power, the circuit uses a 5V regulator.
139 Varying the resistorresistance allows for a range of bias currents to be introduced. The current version of the SO₂ sonde uses
140 a fixed resistor which requires *a priori* knowledge of the desired SO₂ concentration range. The desired resistor is installed in
141 series with the battery and the electrode allows for a range of bias currents to be introduced. An earlier Laboratory laboratory
142 tests compared the SO₂ sonde measurements (initially configured without an O₃ removal filter) to those made by a 43-i-TL SO₂
143 analyzer (Fig. 1, Table 1). O₃ and SO₂ gases were introduced using the laboratory calibration setup and a manifold to allow
144 the sonde and the Thermo trace gas instruments to sample the same air. Results in Fig. 1 show 60 s averaged data. The test
145 included (A) input of O₃ without an added background-bias current; (B) the same input of O₃ with the addition of a background
146 bias current (equivalent to a signal of approximately 90 ppbv of O₂); and the addition of SO₂ to the O₃ with the enhanced
147 background-bias signal where the SO₂ concentration was either (C) smaller or (D and E) larger than the O₃ concentration.
148 During (A), measurements made by O₃ and SO₂ sondes compare well to measurements made by the Thermo instruments
149 (Fig. 1, Table 1). The test included (E) the response of the SO₂ sonde to with a stepwise-reduction of the O₃ concentration
150 resulting in an equivalent decrease in signal, followed by (G – I) a stepwise-reduction in the SO₂ concentration resulting in an
151 equivalent increase in signal. At (F), the SO₂ concentration exceeded the biased background-current (90 ppbv), producing a
152 signal equivalent to 2.9 ± 0.1 ppbv, resulting in no sonde response. During the full test, The sonde successfully measured
153 SO₂ both with and without O₃ with approximately 99.97% efficiency.
154

155 Examination of the SO₂ sonde data showed that noise was proportional to the measured signal, with 1- σ noise at approximately
156 0.2 – 0.3% of the measured signal. Because increases in the SO₂ concentrations result in a decreases in the signal (i.e., lower
157 cell currents), the magnitude of the applied background current-bias current determines the saturation point (i.e., upper limit
158 of detection [ULOD]) of the SO₂ sonde; saturation occurs when the measured cell current drops to zero. Applying a higher
159 background-bias current increases the ULOD but also increases noise and the LLOD. The reported LLODs of bias currents are
160 calculated as 3 σ relative to the baseline signal when sampling zero air. During laboratory testing, the LLOD (3 σ) was calculated
161 for a range of applied background current-bias currents (0.25 to 10.0 μ A). The LLOD for the varying bias current of 0.25 to
162 10.0 μ A ranged from approximately 0.002 to 0.084 μ A, respectively. Results of calculated LLOD of a 0.25 μ A bias current at
163 varying replicated altitudes is included in Table S1. At the surface, the LLOD of 20s averaged measurements is 0.17 ppbv.
164 The final version of the SO₂ sonde (v1.1) requires the bias current to be selected prior to measurement. If the bias current is
165 set too low, a measurement of larger than expected SO₂ concentrations can saturate the sensor while a bias current that is set
166 too high will have higher LLOD due to the increase in noise. The applied magnitude of the bias current can be best determined
167 based on known SO₂ sources including volcanic emissions, urban and/or industrial emissions.

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

168 **3.3 Testing of O₃ removal filter**

169 Since the ECC responds to both O₃ and SO₂, an O₃ removal filter was developed to remove interference from O₃ in the sample.
170 This proprietary O₃ removal filter is placed upstream of the sonde inlet (Flynn and Morris, 2021). During laboratory testing,
171 the O₃ removal filter was exposed to a continual concentration of 487 ± 3 ppbv of O₃ and a varying concentration of SO₂
172 ranging from 0 to 111 ± 1 ppbv (Fig. 2). The O₃ was effectively and consistently removed from the sampled air by the O₃
173 removal filter ~~as during a stepwise dilution of SO₂ was diluted~~. The testing included measurements with (~~white-gray~~
174 background) and without (~~gray-white~~ background) the O₃ removal filter. The SO₂ and O₃ concentrations measured by the
175 Thermo 43i-TL and 49i instruments, respectively, and changes in SO₂ dilution levels are also indicated in Fig. 2. The O₃
176 removal filter destroyed the O₃ at all SO₂ dilution levels to below the detection limit of the O₃ instrument. By comparing the
177 Thermo 43i-TL SO₂ analyzer measurements with and without the O₃ removal filter, SO₂ passed through the filter with 88%
178 efficiency (Fig. S1a3a). The transmission efficiency was calculated by taking the ratio of SO₂ measured by the sonde to ~~that~~
179 ~~measured by~~ the analyzer. The SO₂ transmission efficiency increased to 97% when testing the O₃ removal filter with the dry
180 zero air UHP gas cylinder (Fig. S1b3b) instead of the ~~zero-air~~ generator that processes ambient laboratory air (Fig.
181 S1a3a). Additional testing of the O₃ removal filter demonstrated that the filter removed approximately 1 ppm of O₃ at sea level
182 with > 99.9% ~~in O₃ removal~~ efficiency, ~~concentrations~~ below the detection limit of the Thermo 49i O₃ monitor.

183 **3.4 Sample Dryer**

184 ~~The SO₂ sonde v1.0 had highly varying sensitivities during the initial field tests. The instrument sensitivity was determined by~~
185 ~~regression analysis of the sonde's cell current to the SO₂ concentration measured by an SO₂ analyzer. The variability in the~~
186 ~~sensitivities was hypothesized to be due to differing levels of humidity during each SO₂ sonde launch. SO₂ is soluble in water~~
187 ~~and through multiphase reactions can be oxidized to sulfuric acid in the atmosphere in the presence of water vapor (e.g.,~~
188 ~~precipitation, clouds, fog, etc.) (Carmichael and Peters, 1979; Zhang et al., 2013; Terraglio and Manganelli, 1967). Factors~~
189 ~~including liquid water content, aerosol composition, aerosol loading, and pH of the water are important in determining the~~
190 ~~adsorption and oxidation rates of SO₂ (Liu et al., 2021). When air with elevated humidity is flowing through a filter, SO₂ gas~~
191 ~~is likely adsorbing on the filter causing lower SO₂ transmission efficiency due to the potential uptake of SO₂ in water on the~~
192 ~~filter. Several laboratory tests confirmed the need to remove water from the sample upstream of the O₃ removal filter to improve~~
193 ~~the measurement of SO₂. A desiccant membrane dryer (Perma Pure LLC, Lakewood, NJ) composed of a Nafion™ tube in~~
194 ~~silica gel desiccant was placed in-line upstream of the O₃ removal filter. This sample dryer is lightweight, relatively~~
195 ~~inexpensive, and does not require power.~~

196 Formatted: Subscript

197 ~~Laboratory tests included exposing the SO₂ sonde, with and without a sample dryer, to controlled levels of humidity and SO₂.~~
198 ~~Without removing water vapor, the SO₂ transmission efficiency decreases as humidity increases, particularly above 50% RH~~
199 ~~(Fig. 6). As the O₃ removal filter is humidified, the SO₂ transmission efficiency decreases. With the sample dryer in place,~~

200 each of the laboratory SO₂ transmission efficiency (May 17-18 and 21, 2018) tests varied by an average of <1% across a range
201 of 0-85% RH (Fig. 6).

202
203 The dryer's useful lifetime was determined by continuously exposing it to high humidity (> 95% RH at approximately 23 °C)
204 sample stream. The downstream RH climbed from 5% to 16% after 2.3 h and to 25% after 6.3 h. At these downstream RH
205 levels, the SO₂ transmission efficiency remained above 95%. A typical SO₂ sonde's measurement time per flight, including
206 pre-flight calibration, is approximately three hours. The dryer's useful lifetime is likely much longer than required for a balloon
207 flight since exposure to 95% RH conditions for several hours is highly unusual outside of hurricanes and tropical systems. SO₂
208 sonde and Thermo 43c-TL measurements were strongly correlated ($r^2 = 0.99$) during a multipoint calibration conducted using
209 the O₃ removal filter and the dryer under relatively high humidity levels. During that calibration, the SO₂ sonde's sensitivity
210 was 45.43 ± 0.17 ppbv/µA. By comparison, the average sensitivity during the initial Hawaii deployment was 84.6 ± 31.7
211 ppbv/µA across 10 sondes. The sample dryer, therefore, improved both the sensitivity and stability of the measurements
212 observed. The addition of the sample dryer is necessary for providing accurate ambient SO₂ measurements.

213
214 **4. Field Deployments, Part I with SO₂ sonde v1.0**

215 Theis SO₂sonde (SO₂ sonde v1.0), single-SO₂ sonde without the sample dryer, was deployed and tested in Hawai'i and Costa
216 Rica (Fig. S2). The field sites were close to active volcanoes, which are significant sources of natural SO₂ (Tang et al., 2020;
217 Carn et al., 2017). In Hawai'i, field measurements were made near Kīlauea Volcano on the south-eastern shore of Island of
218 Hawai'i, the largest of Hawai'i's islands. Kīlauea is the youngest volcano on the island and one of Earth's most active volcanoes
219 (Kern et al., 2015; Nadeau et al., 2015). Kīlauea had been in a state of eruption since 1983 (Patrick et al., 2019) with an average
220 SO₂ release rate of approximately 5,500 T/d measured during 2014 – 2017 (Elias et al., 2018). In Costa Rica, field
221 measurements were made near Turrialba Volcano, one of the most active volcanoes in the Central American Volcanic Arc.
222 Studies of emissions from Turrialba prior to 2013 reported SO₂ release rates of up to 4,000 T/d (de Moor et al., 2016; Xi et al.,
223 2016). The Activity activity escalated of Turrialba increased after 2014, raising concerns for air quality and environmental
224 health (de Moor et al., 2016; Tortini et al., 2017).

225 **4.1 Kīlauea, Hawai'i - February 2018**

226 The first deployment of the SO₂ sonde v1.0 was during NASA's HyspIRI HyTES Hawaii Campaign (H3C) from February 3-
227 10, 2018, near Kīlauea Volcano. The instrument was tested in flights on free-release balloons and a tethered balloon system
228 (TBS), and at ground level with measurements in Hawaii Volcanoes National Park (HVNP) downwind of Kīlauea's summit
229 crater, Halema'uma'u. During the ground-level testing, an SO₂ sonde and a Thermo 43c-TL SO₂ analyzer's sample inlet were
230 mounted on the top of a van for co-located sampling.

Formatted: Normal

Formatted: Subscript

Formatted: Subscript

231 Figure 3a-4a depicts the measurements taken during the first encounter with an SO₂ plume while driving through the HVNP
232 on February 3, 2018. The strongly correlated SO₂ sonde and Thermo 43c-TL measurements ($r^2 = 0.99$) reached upward of
233 ~940 ppbv. The SO₂ sonde had a sensitivity of 118.4 ± 0.4 ppbv/ μ A, determined by regression analysis of the sonde's cell
234 current with the Thermo 43c-TL concentrations (Fig. 3a-4a). The SO₂ sonde sensitivity varied significantly during the field
235 deployment. During surface measurements on February 10, 2018, earlier zero-air calibrations measured a sensitivity of $86.5 \pm$
236 1.5 ppbv/ μ A, while measurements during an SO₂ plume event, with peak concentrations of up to 400 ppbv, found the SO₂
237 sonde's sensitivity was 73.9 ± 0.6 ppbv/ μ A (Fig. 3b-4b). Although the SO₂ sonde sensitivity varied significantly in ten
238 subsequent calibrations (84.6 ± 31.7 ppbv/ μ A), the measurements remained strongly correlated (range: $r^2 = 0.94 - 0.99$). The
239 variability in the sensitivity in the field was likely due to changes in the ambient RH impacting the SO₂ transmission efficiency
240 of the O₃ removal filter. This hypothesis was further confirmed by laboratory RH testing and discussed in Sect. 5.3 and 3.4.

241 4.2 Turrialba, Costa Rica (Dual-sonde versus SO₂ sonde comparison)

242 On March 23, 2018, the University of Houston/St. Edward's University team conducted a traditional SO₂ dual-sonde payload
243 (Morris et al., 2010) as well as the SO₂ sonde v1.0 were launched using a free-release balloon flight from the Universidad de
244 Costa Rica's campus in San Jose (approximately 31 km downwind of Turrialba Volcano) consisting of a traditional SO₂ dual-
245 sonde payload (Morris et al., 2010) as well as the SO₂ sonde v1.0. This flight provided the first direct *in situ* comparison of the
246 two SO₂ sonde methods. Figure 4-5 shows the response of the SO₂ sonde v1.0 and the calculated SO₂ dual-sonde profile. The
247 dual-sonde SO₂ method can only report concentrations of SO₂ up to a maximum of the concentration of O₃ present.
248 Furthermore, because the SO₂ concentration is determined by subtracting the signals from two instruments, its uncertainty is
249 higher than the uncertainty of a measurement from a single instrument. When [SO₂] > [O₃], the dual sonde's unfiltered
250 ozonesonde signal goes to zero, as happened for the Turrialba sonde launch between 3 – 5 km (Fig. 4-5). The SO₂ saturates the
251 cathode solution in the unfiltered sonde, not recovering until enough ambient O₃ has been processed to rebalance the cell,
252 resulting in a distorted profile (Fig. 4-5). For this flight, the SO₂ sonde was configured to its maximum range (ULOD of
253 approximately 450 ppbv at standard pressure) and was able to capture both the small plume below 2 km above mean sea level
254 (AMSL) (approximately 18 ppbv) as well as the primary plume between 3 – 4 km AMSL (approximately 230 ppbv). The SO₂
255 sonde v1.0 was able to capture the full shape of the profile, including the peak values and structure of the plume. The SO₂
256 sonde v1.0 reports the top of the plume around 4 km AMSL, whereas the dual-sonde remains saturated until closer to 5 km
257 AMSL. Thus, the dual-sonde SO₂ profiles, when saturated by high concentrations of SO₂, erroneously appear to have a greater
258 vertical extent. Further, the SO₂ sonde v1.0 showed no interference from O₃ at altitudes from the surface to altitude at 24.4 km
259 AMSL, with O₃ concentrations in the stratospheric O₃ layer reaching > 4 ppmv (not shown), demonstrating the effectiveness
260 of the O₃ filter. The SO₂ VCD was 8.3 DU (Dobson Units, 1 DU = 2.69×10^{16} molecules cm⁻²) for the SO₂ sonde but was only
261 3.4 DU for the dual-sonde measurement. Thus, once saturated, the dual-sonde method may be likely to underestimate the SO₂
262 VCD. Additional laboratory testing is planned to resolve this discrepancy.

263 5. Post Field Test Improvements and Laboratory Testing

← Formatted: Normal

264 The variability in the SO₂ sonde v1.0's sensitivity during the initial field tests was hypothesized to be due to varying levels of
265 humidity. SO₂ is soluble in water and through multiphase reactions can be oxidized to sulfuric acid in the atmosphere in the
266 presence of water vapor (e.g. precipitation, clouds, fog, etc.) (Carmichael and Peters, 1979; Zhang et al., 2013; Terraglio and
267 Manganelli, 1967). Factors including liquid water content, aerosol composition, aerosol loading, and pH of the water are
268 important in determining adsorption and oxidation rate of SO₂ (Liu et al., 2021). With increased humidity and presence of a
269 filter, SO₂ gas is likely adsorbing on the filter causing lower SO₂ transmission efficiency due to potential uptake of SO₂ in
270 water on the filter. Several laboratory tests were done to confirm the need to remove water from the sample upstream of the
271 O₃ removal filter. A desiccant membrane dryer (Perma Pure LLC, Lakewood, NJ) composed of a NafionTM tube in silica gel
272 desiccant was placed in line upstream of the O₃ removal filter. This sample dryer is lightweight, relatively inexpensive, and
273 does not require power.

274
275 Laboratory tests included exposing the SO₂ sonde, with and without a sample dryer, to controlled levels of humidity and SO₂.
276 Without removing water vapor, the SO₂ transmission efficiency decreases as humidity increases, particularly above 50% RH
277 (Fig. 5). As the O₃ removal filter is humidified, the SO₂ transmission efficiency decreases due to increased SO₂ loss in the
278 filter. With the sample dryer in place, the SO₂ transmission efficiency varies by an average of <1% across a range of 0-85%
279 RH (Fig. 5).

280
281 The dryer's useful lifetime was determined by continuously exposing it to high humidity (> 95% RH at approximately 23 °C)
282 sample stream. The downstream RH climbed from 5% to 16% after 2.3 h and to 25% after 6.3 h. At these downstream RH
283 levels, the SO₂ transmission efficiency remained above 95%. A typical SO₂ sonde's measurement time per flight, including
284 pre-flight calibration, is approximately three hours. The dryer's useful lifetime is likely much longer than required for a flight
285 since exposure to 95% RH conditions for several hours is highly unusual outside of hurricanes and tropical systems for balloon
286 measurements. SO₂ sonde and Thermo 43e TL measurements were strongly correlated ($r^2 = 0.99$) during a multipoint
287 calibration conducted using the O₃ removal filter and the dryer under relatively high humidity levels. During that calibration,
288 the SO₂ sonde's sensitivity was 45.43 ± 0.17 ppbv/µA. By comparison, the average sensitivity during the H3C campaign was
289 84.6 ± 31.7 ppbv/µA across 10 sondes. The sample dryer, therefore, improved both the sensitivity and stability of the
290 measurements observed.

291 **6.5 Field Deployments, with SO₂ Sonde v 1.1 Part II**

Formatted: Subscript

292 The updated SO₂ sonde (SO₂ sonde v1.1) with the dryer filter was deployed and tested in near Ft. McMurray Mackay, Canada,
293 and again in Hawai'i in June 2018. Ft. McMurray Mackay is in the Alberta province of Canada and is home to the Athabasca
294 Oil Sands, a large area of bitumen and heavy crude oil surface deposits high in sulfur content. Local processing of these
295 products (e.g., surface mining) and resulting by-products (e.g., tailing ponds) can release significant amounts of SO₂ into the

296 atmosphere (Bari et al., 2020; McLinden et al., 2016; Simpson et al., 2010). A second field deployment to Hawai'i followed
297 immediately after the deployment to Canada. On May 3, 2018, Kilauea Volcano on Hawai'i entered a new eruptive phase with
298 an outbreak of a series of fissures in the lower Puna area (Liu et al., 2021; Anderson et al., 2019; Gansecki et al., 2019; Patrick
299 et al., 2020). The active phase volcanic gas emissions resulted in localized evacuations in the Lower East Rift Zone (LERZ),
300 destroying more than 700 homes and displacing thousands of residents, and resulting in poor air quality for much of the
301 southern and western portions of the island (Tang et al., 2020). The eruption event entered a paused phase in early August, and
302 was declared over on December 5, 2018 (Kern et al., 2020).

303 **65.1 Athabasca Oil Sands, Canada**

304 The SO₂ sonde v1.1 was tested in Ft. MacKay (near Ft. McMurray: 57.1206° N, 111.4241° W), Alberta, in the
305 Athabasca Oil Sands from June 10 – 16, 2018 (Fig. S2c). This field project, conducted in conjunction with Environment
306 Canada and York University, evaluated SO₂ emissions from industrial activities in and near the oil sands region using a
307 combination of TBS and ground-based measurements. The SO₂ sonde v1.1 was flown on the York TBS payload recording
308 measurements from the ground to 300 m above ground level (AGL; 650 m AMSL). This deployment provided a dilute
309 anthropogenic plume to test the SO₂ sonde in a high-sensitivity, low-range configuration. The average sensitivity of the SO₂
310 sonde v1.1 during the project was $51 \pm 1.2 \text{ ppbv}/\mu\text{A}$. The SO₂ sonde was configured to sample in a range from $\sim 0.5\text{--}25 \text{ ppbv}$
311 of SO₂. The TBS SO₂ sonde's vertical profiles were averaged into 10 m altitude bins that measured SO₂ concentration ranges
312 that are more representative of anthropogenically-impacted SO₂ rather than large volcanic plumes (Fig. 67). This field
313 deployment also demonstrated the performance of the sonde at sub-ppbv levels of ambient SO₂.

314 **65.2 Kilauea, Hawai'i - June 2018**

315 In response to the larger eruption that started in May 2018, the SO₂ sonde v1.1 was deployed to Hawai'i for the NASA-funded
316 Big Island SO₂ Survey (BISOS). The SO₂ sonde launches occurred from Kahuku Ranch (19.0549° N, 155.6934° W) and
317 Na'alehu Elementary School (19.0610° N, 155.5788° W) approximately 90 km downwind of Kilauea's LERZ (Fig. S2d). The
318 site's distance from the source allowed the plume to disperse and dilute as compared with measurements at the vent. An SO₂
319 plume was detected during seven of the nine free-release balloon launches during the June 2018 BISOS campaign. The ten
320 SO₂ sonde v1.1 calibrations performed during BISOS had an SO₂ sensitivity of $47.0 \pm 5.8 \text{ ppbv}/\mu\text{A}$ and were similar to the
321 laboratory results using dry air ($45.43 \pm 0.17 \text{ ppbv}/\mu\text{A}$).

322 With the anticipated levels of SO₂, the sondes were configured to sample in the at the maximum range of 10–450 ppbv of
323 SO₂. Figure 78 shows four distinctive SO₂ profiles, and Table 2 includes the VCDs for each flight. No plumes above 5 km
324 AMSL were detected, at which point reductions in air density significantly impacted the LL0D. All but one of the observed
325 SO₂ plumes were below the capping inversion of the planetary boundary layer (PBL). On June 22 (Fig. 7a8a), the ascent
326 profile shows SO₂ below 3 km AMSL peaking at nearly 100 ppbv and additional features between 3–4 km AMSL peaking at
327

328 20-35 ppbv (Tang et al., 2020). The latter peaks were correlated with higher RH, perhaps the result of steam from a vent or
329 the ocean entry points having broken through the inversion. The early afternoon June 28 profile (Fig. 7b8b) shows the
330 highest concentration (325 ppbv) for a resolved SO₂ plume during the BISOS campaign. Typical for the trade winds, NOAA
331 HYSPLIT trajectories (Stein et al., 2015) showed the winds were out of the NE, consistent with the plume's transport from
332 vents in the LERZ or the lava ocean entry points. Although the descent profile from a June 29 early afternoon launch lost the
333 signal at 0.58 km AMSL, Fig. 7e-8c shows an SO₂ plume over the ocean with a peak concentration of 188 ppbv at 0.74 km
334 AMSL. HYSPLIT trajectories again showed the winds were out of the NE. Lastly, the SO₂ plume detected during the ascent
335 of the June 30 launch (Fig. 87d) exceeded the ULOD between 1-3 km AMSL for the SO₂ sonde configuration used. The
336 distorted SO₂ enhancement extending above the PBL as determined by the temperature inversion is most likely an artifact of
337 the saturated sonde, similar to what was seen in the dual-sonde profile from Costa Rica (Fig. 45). As the RH remains low
338 above the PBL, it is most likely that the SO₂ is contained entirely within the PBL.

339 **56. Conclusion and Future Work**

340 An innovative new method for measuring vertical profiles of SO₂ from TBS and free-release balloons was successfully tested
341 and demonstrated in controlled laboratory experiments and during four different field deployments covering SO₂
342 concentrations ranging from 0.5-325 ppbv during flights and up to 940 ppbv during ground measurements. This new method
343 requires three major modifications to the standard ECC ozone sonde: the addition of a positive background-bias current in the
344 cathode cell, an O₃ removal filter, and a sample dryer. Relative to the previous dual-sonde method, the new method measures
345 SO₂ using a single-sonde system (i.e., the SO₂ sonde). The SO₂ sonde and Thermo 43c-TL measurements were strongly
346 correlated during laboratory ($r^2 > 0.99$) and field-based ($r^2 > 0.94$) comparisons. Initial field tests and subsequent laboratory
347 testing of SO₂ sonde v1.0 highlighted the need to dry the sample upstream of the O₃ removal filter to achieve consistent results.
348 Follow-up field measurements in the Athabasca Oil Sands and Hawai'i clearly demonstrated the improvement in the SO₂ sonde
349 v1.1's sensitivity and consistency (51 ± 1.2 and 47 ± 5.8 ppbv/ μ A, respectively) as a result of drying the sample.

350
351 The SO₂ sonde v1.1 offers several advantages over the dual-sonde method, including the ability to measure [SO₂] independent
352 of [O₃], the capability of sub-ppbv detection limits, faster response and recuperation time when exposed to larger SO₂ plumes,
353 and reduced uncertainty. The lighter weight of the payload requires a smaller balloon and less helium to lift, which may prove
354 advantageous for deployment under some field conditions, particularly where helium supplies are limited. It's compactness
355 and weight can also make it a candidate for ~~small-drones and~~-UAV campaigns. Field deployments revealed specific issues and
356 areas for improvement. The present design requires pre-setting the sonde's background-bias current prior to the launch. Thus,
357 some *a priori* estimates of the plume are required to determine the appropriate background-bias current so that the instrument
358 can measure the full range of SO₂ concentrations present. In the current SO₂ sonde v1.1, increasing the ULOD by applying a
359 larger background-bias current also increases the LLOD. Further laboratory experiments are needed to identify the factors that

360 cause the remaining observed variability in the SO₂ transmission efficiency in the latest instrument version that includes the
361 sample dryer. Much of the testing and calibration completed to date assessed the complete SO₂ sonde system (i.e., sonde, filter,
362 dryer). Building a database of the various individual factors, including pump speeds and filter transmission efficiency, will
363 help us to better characterize the causes of sonde-to-sonde variability and allow future versions of the system to improve
364 performance characteristics so that the system can be made available for operational use. Additionally, future manuscripts
365 topics include intercomparison studies of the SO₂ sonde's vertical profile measurements with other column measurements (i.e.,
366 Pandora) and satellite measurements and more in-depth analysis of the SO₂ sonde measurements at the various field
367 deployments.

Formatted: Font: Not Italic

Formatted: Subscript

368 **Author Contributions**

369 Conceptualization by J.H.F. and G.M. Data curation by J.H.F., A.K., S.L.A., M.G.S., E.K., P.W., G.M., E.C., A.A., and J.A.D.
370 Formal analysis by A.K., S.L.A., S.Y. and P.W. Funding acquisition by J.H.F. Investigation by A.K., S.L.A., M.G.S., and E.K.
371 Methodology by J.H.F. and G.M. Writing – original draft preparation by S.Y. Writing – review and editing by P.W. G.M.,
372 J.A.D. and J.H.F. Supervision by J.H.F.

373 **Conflict of Interest:** The authors declare that they have no conflict of interest.

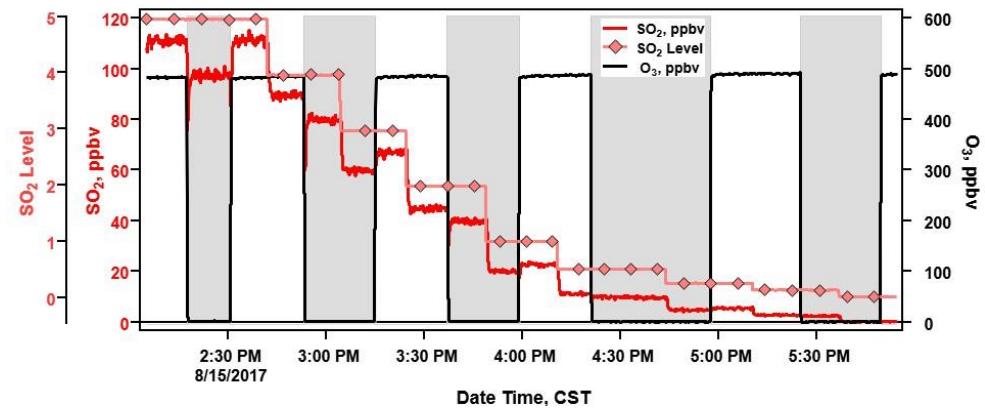
374 **Acknowledgments**

375 This work was supported by NASA grant numbers NNG11HP16A and 80NSSC18K1061. We especially appreciate our
376 collaboration with En-Sci in advancing this work. We would also like to thank Mark Gordon of York University and David
377 Tarasick of Environment Canada for their invitation and assistance with the deployment to Ft. Mackay Murray, to Henry
378 Selkirk and Holger Vomel from the TicoSonde Project for their support in the Turrialba Volcano testing campaign. A special
379 thanks to Principal Darlene Javar of Na'alehu Elementary School and its teachers, staff, and students for letting us install
380 equipment on a roof and helping us with a launch. Also, we thank the two anonymous reviewers for helpful comments on the
381 original draft of this manuscript.

Table 1: Averaged O₃ and SO₂ concentration measured by the SO₂ sonde version 1.0 and Thermo instruments during different stages of testing indicated in Fig. 1.

	O ₃ Thermo (ppbv)	O ₃ Sonde (ppbv)	SO ₂ Thermo (ppbv)	SO ₂ Sonde (ppbv)
A	103-105 \pm 0.4	100 \pm 1.3	-0.30 \pm 0.06	99-96 \pm 1.83
B	104-105 \pm 0.5	101.2 \pm 0.4	-0.40 \pm 0.06	190-188 \pm 2.3
C	103 \pm 0.4	100-99 \pm 0.4	57 \pm 0.3740	138-135 \pm 1.0
D	103-105 \pm 0.55	98-97 \pm 0.6	116 \pm 1.9	84-78 \pm 1.0
E	-	-	-	-
F	0.431.3 \pm 0.5	0.53-0.13 \pm 0.208	116 \pm 1.4	5.32.9 \pm 0.1
G	0.441.1 \pm 0.4	0-0.51 \pm 0.11	58 \pm 0.7	30-29 \pm 0.65
H	0.0-0.61 \pm 0.439	0.40-15 \pm 0.0403	24 \pm 0.8	67-64 \pm 0.86
I	0.31-1.3 \pm 0.2931	10-12.64 \pm 0.278	-0.25 \pm 0.22	91-89 \pm 0.76

Table 2. The SO₂ vertical column density (VCD) for profiles shown in Fig. 7-8 from BISOS in June 2018. For profile c, the descent profile VCD is reported for the flight without extrapolation (shown without parentheses) and using linear extrapolation assuming the SO₂ concentration to be 0 ppbv at sea level (shown in parentheses).


Profile	Launch Time (UTC)	SO ₂ VCD
a (ascent)	06/22/2018 00:32	8.6 DU
b (ascent)	06/28/2018 20:45	12.5 DU
c (descent)	06/29/2018 21:36	6.2 (9.8 [*]) DU
d (ascent)	06/30/2018 20:48	79.1 DU ^{**}

* VCD from extrapolated data

** Saturation of SO₂ at altitudes of 1 to 3 km AMSL**Formatted:** Font: Not Bold**Formatted****Formatted:** Font: Not Bold**Formatted****Formatted****Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted****Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted****Formatted:** Font: Not Bold**Formatted:** Font: Not Bold**Formatted****Formatted:** Font: Not Bold**Formatted****Formatted:** Font: Not Bold**Formatted****Formatted:** Font: Not Bold**Formatted****Formatted:** Centered**Formatted:** Centered**Formatted:** Centered**Formatted:** Centered

388
 389 Figure 1: Test of the SO₂ sonde v1.0 (without an O₃ removal filter) with an applied background-bias current responding to O₃ and
 390 SO₂. See the text for further details.

391
 392 Figure 2: Time of series of a multipoint test of the O₃ filter removal efficiency and impact on SO₂ measurements taken by a Thermo
 393 43i-TL SO₂ analyzer. Changes in SO₂ dilution levels are indicated by the blue-pink lines (diamond markers).

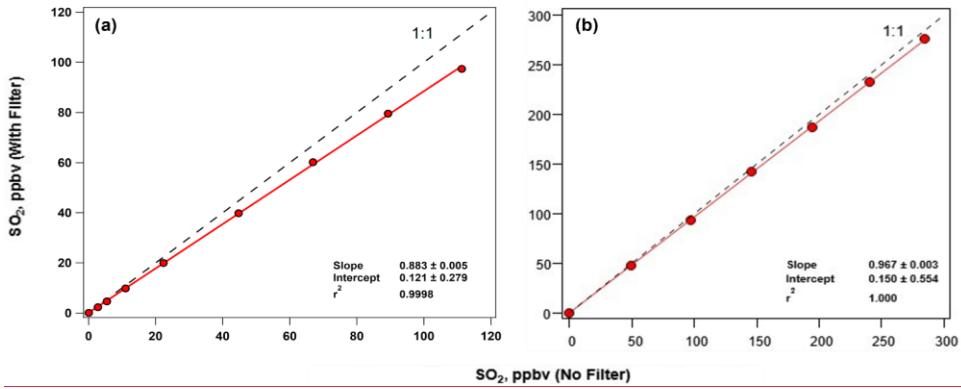
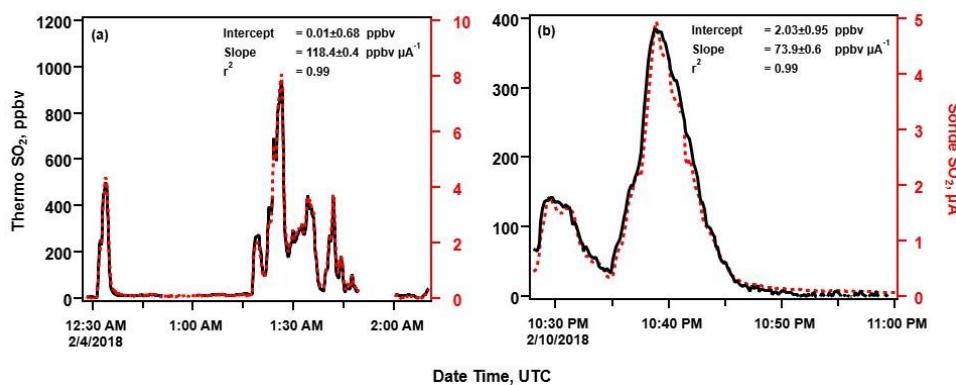
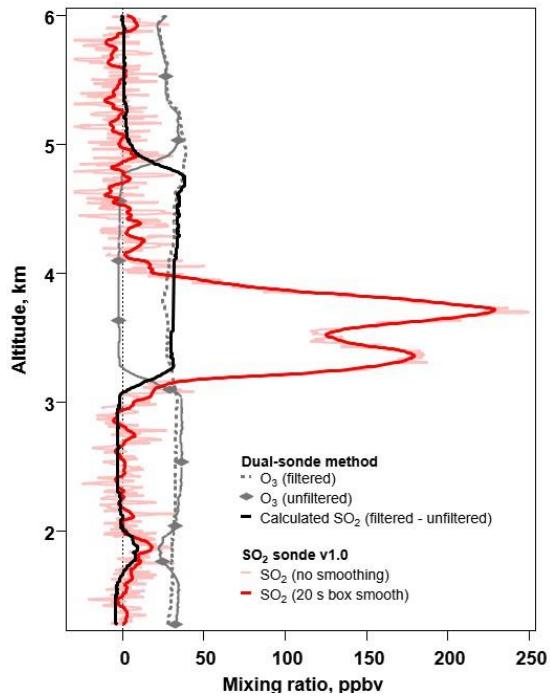
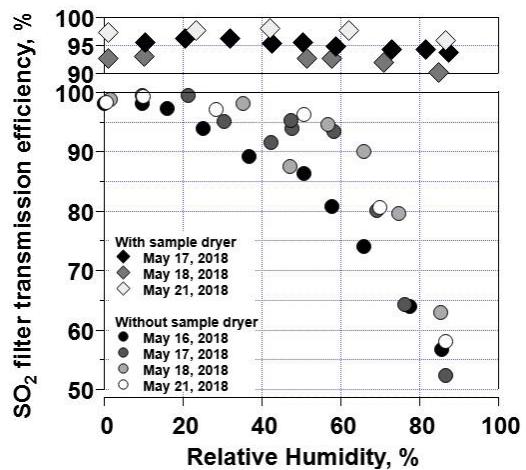
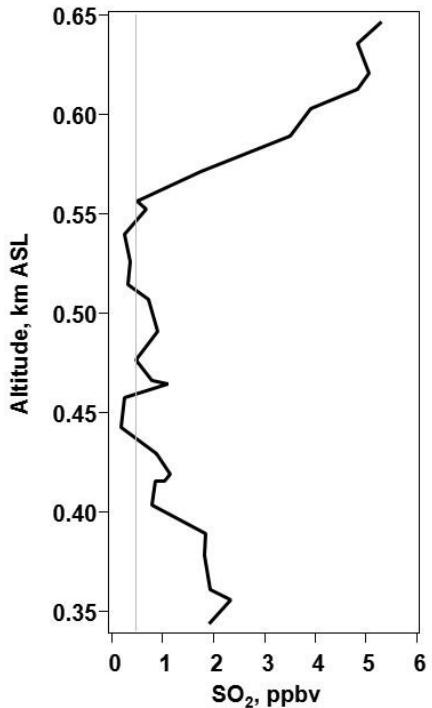
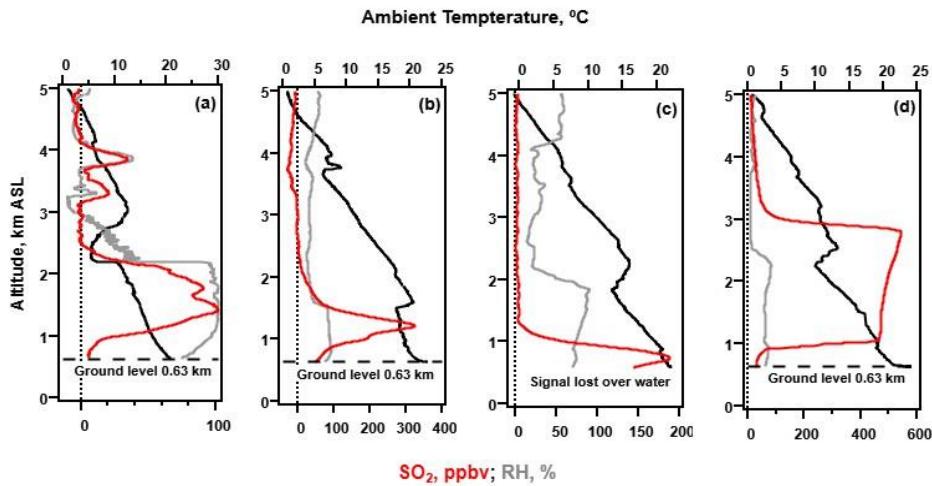


Figure 3: Response of Thermo 43i-TL SO₂ analyzer with (y-axis) and without (x-axis) an O₃ removal filter using a calibration system with (a) a processed zero air system and (b) a dry zero air gas cylinder.


Figure 34: SO₂ sonde v1.0 and Thermo Environmental SO₂ analyzer measurements at Kilauea, Hawai'i during H3C for (a) initial SO₂ plume encounter on February 3, 2018, and (b) a pre-flight measurement on February 10, 2018, approximately 6 km downwind of Kilauea's summit crater.


402
 403 Figure 45: The profiles of a triple-sonde payload, which consisted of a dual-sonde in tandem with an SO₂ sonde v1.0, launched from
 404 the Universidad de Costa Rica's campus in San Jose (approximately 31 km downwind of the volcano Turrialba) on March 23, 2018.

405
406 Figure 56: Tests of SO₂ transmission efficiency as a function of relative humidity without (circles) and with [\(diamonds\)](#) an upstream
407 sample dryer [\(diamonds\)](#).

408
409 Figure 67: The profile, constructed using 20 s average changes in altitude (ranging from 1 to 15 km), is for a tethered SO₂ sonde v1.1
410 in the Athabasca Oil Sands region of Alberta, Canada. The SO₂ sonde background bias current was 0.5 μ A, and the LLOD was 0.47
411 ppbv.

412
 413 Figure 78: Vertical profiles of SO_2 (20 s box smoothing) from the SO_2 sonde v1.1 during BISOS in June 2018 with free-release
 414 balloon launches occurring at the Kahuku Ranch on the Big Island of Hawai'i. Profiles are from (a) 6/22/2018 00:32; (b) 6/28/2018
 415 20:45; (c) 6/29/2018 21:36; and (d) 6/30/2018 20:48. All times are UTC.

416 **References**

417 Anderson, K. R., Johanson, I. A., Patrick, M. R., Gu, M., Segall, P., Poland, M. P., Montgomery-Brown, E. K., and Miklius,
418 A.: Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018, *Science*, 366, 2019.

419 Bari, M. A., Kindzierski, W. B., and Roy, P.: Identification of ambient SO₂ sources in industrial areas in the lower Athabasca
420 oil sands region of Alberta, Canada, *Atmospheric Environment*, 231, 117505, 2020.

421 Bluth, G. J., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and Walter, L. S.: Global tracking of the SO₂ clouds from the
422 June, 1991 Mount Pinatubo eruptions, *Geophysical Research Letters*, 19, 151–154, 1992.

423 Carmichael, G. R. and Peters, L. K.: Some aspects of SO₂ absorption by water-generalized treatment, *Atmospheric*
424 *Environment* (1967), 13, 1505–1513, 1979.

425 Carn, S., Fioletov, V., McLinden, C., Li, C., and Krotkov, N.: A decade of global volcanic SO₂ emissions measured from
426 space, *Scientific reports*, 7, 1–12, 2017.

427 Chen, T.-M., Kuschner, W. G., Gokhale, J., and Shofer, S.: Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon
428 monoxide health effects, *The American journal of the medical sciences*, 333, 249–256, 2007.

429 Delmelle, P., Stix, J., Baxter, P., Garcia-Alvarez, J., and Barquero, J.: Atmospheric dispersion, environmental effects and
430 potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua, *Bulletin of Volcanology*,
431 64, 423–434, 2002.

432 Diaz, J. A., Pieri, D., Wright, K., Sorensen, P., Kline-Shoder, R., Arkin, C. R., Fladeland, M., Bland, G., Buongiorno, M. F.,
433 and Ramirez, C.: Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis, *Journal of the American*
434 *Society for Mass Spectrometry*, 26, 292–304, 2015.

435 Elias, T., Kern, C., Horton, K. A., Sutton, A. J., and Garbeil, H.: Measuring SO₂ emission rates at Kīlauea Volcano, Hawaii,
436 using an array of upward-looking UV spectrometers, 2014–2017, *Frontiers in Earth Science*, 6, 214, 2018.

437 EPA: National Air Pollutant Emission Trends, 2000.

438 Flynn, J. and Morris, G. A.: A method for directly measuring SO₂ and other trace gases by electrochemical cell (eeeECC)
439 sonde, United States Patent 11,150,217, 2021.

440 Galle, B., Johansson, M., Rivera, C., Zhang, Y., Kihlman, M., Kern, C., Lehmann, T., Platt, U., Arellano, S., and Hidalgo, S.:
441 Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring:
442 Network layout and instrument description, *Journal of Geophysical Research: Atmospheres*, 115, 2010.

443 Gansecki, C., Lee, R. L., Shea, T., Lundblad, S. P., Hon, K., and Parcheta, C.: The tangled tale of Kīlauea's 2018 eruption as
444 told by geochemical monitoring, *Science*, 366, 2019.

445 Kern, C., Sutton, J., Elias, T., Lee, L., Kamibayashi, K., Antolik, L., and Werner, C.: An automated SO₂ camera system for
446 continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater, *Journal of Volcanology*
447 and Geothermal Research

448 Kern, C., Lerner, A. H., Elias, T., Nadeau, P. A., Holland, L., Kelly, P. J., Werner, C. A., Clor, L. E., and Cappos, M.:
449 Quantifying gas emissions associated with the 2018 rift eruption of Kīlauea Volcano using ground-based DOAS
450 measurements, *Bulletin of Volcanology*, 82, 1–24, 2020.

451 Kiehl, J. and Briegleb, B.: The relative roles of sulfate aerosols and greenhouse gases in climate forcing, *Science*, 260, 311–
452 314, 1993.

453 Komhyr, W.: Electrical concentration cells for gas analysis, *Ann. Geophys.*, 25, 203–210, 1969.

454 Krug, E. C. and Frink, C. R.: Acid rain on acid soil: a new perspective, *Science*, 221, 520–525, 1983.

455 Liu, T., Chan, A. W., and Abbatt, J. P.: Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate
456 Formation in Polluted Environments, *Environmental Science & Technology*, 55, 4227–4242, 2021.

457 McLinden, C. A., Fioletov, V., Krotkov, N. A., Li, C., Boersma, K. F., and Adams, C.: A decade of change in NO₂ and SO₂
458 over the Canadian oil sands as seen from space, *Environmental science & technology*, 50, 331–337, 2016.

459 de Moor, J. M., Aiuppa, A., Avard, G., Wehrmann, H., Dunbar, N., Muller, C., Tamburello, G., Giudice, G., Liuzzo, M., and
460 Moretti, R.: Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas
461 monitoring, *Journal of Geophysical Research: Solid Earth*, 121, 5761–5775, 2016.

462 Morris, G. A., Komhyr, W. D., Hirokawa, J., Flynn, J., Lefer, B., Krotkov, N., and Ngan, F.: A balloon sounding technique
463 for measuring SO₂ plumes, *Journal of Atmospheric and Oceanic Technology*, 27, 1318–1330, 2010.

464 Nadeau, P. A., Werner, C. A., Waite, G. P., Carn, S. A., Brewer, I. D., Elias, T., Sutton, A. J., and Kern, C.: Using SO₂ camera
465 imagery and seismicity to examine degassing and gas accumulation at Kīlauea Volcano, May 2010, *Journal of Volcanology*
466 and Geothermal Research, 300, 70–80, 2015.

467 Parker, D. E., Wilson, H., Jones, P. D., Christy, J., and Folland, C. K.: The impact of Mount Pinatubo on world-wide
468 temperatures, *International Journal of Climatology: A Journal of the Royal Meteorological Society*, 16, 487–497, 1996.

469 Patrick, M., Orr, T., Anderson, K., and Swanson, D.: Eruptions in sync: Improved constraints on Kīlauea Volcano's hydraulic
470 connection, *Earth and Planetary Science Letters*, 507, 50–61, 2019.

471 Patrick, M., Johanson, I., Shea, T., and Waite, G.: The historic events at Kīlauea Volcano in 2018: summit collapse, rift zone
472 eruption, and M w 6.9 earthquake: preface to the special issue, 2020.

473 Pieri, D., Diaz, J. A., Bland, G., Fladeland, M., Madrigal, Y., Corrales, E., Alegria, O., Alan, A., Realmuto, V., and Miles, T.:
474 In situ observations and sampling of volcanic emissions with NASA and UCR unmanned aircraft, including a case study at
475 Turrialba Volcano, Costa Rica, *Geological Society, London, Special Publications*, 380, 321–352, 2013.

476 Schmidt, A., Carslaw, K., Mann, G., Wilson, M., Breider, T., Pickering, S., and Thordarson, T.: The impact of the 1783–1784
477 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, *Atmospheric Chemistry and Physics*,
478 10, 6025–6041, 2010.

479 Shannon, J. D.: Regional trends in wet deposition of sulfate in the United States and SO₂ emissions from 1980 through 1995,
480 *Atmospheric Environment*, 33, 807–816, 1999.

481 Simpson, I., Blake, N., Barletta, B., Diskin, G., Fuelberg, H., Gorham, K., Huey, L., Meinardi, S., Rowland, F., and Vay, S.:
482 Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C 2–C 10 volatile organic
483 compounds (VOCs), CO 2, CH 4, CO, NO, NO 2, NO y, O 3 and SO 2, *Atmospheric Chemistry and Physics*, 10, 11931–
484 11954, 2010.

485 [Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M.D. and Ngan, F.: NOAA's HYSPLIT atmospheric transport](#)
486 [and dispersion modeling system, *Bulletin of the American Meteorological Society*, 96\(12\), 2059-2077, 2015.](#)

487 Sunyer, J., Atkinson, R., Ballester, F., Le Tertre, A., Ayres, J. G., Forastiere, F., Forsberg, B., Vonk, J., Bisanti, L., and
488 Anderson, R.: Respiratory effects of sulphur dioxide: a hierarchical multicity analysis in the APHEA 2 study, *Occupational*
489 and *Environmental Medicine*, 60, e2–e2, 2003.

490 Tang, Y., Tong, D. Q., Yang, K., Lee, P., Baker, B., Crawford, A., Luke, W., Stein, A., Campbell, P. C., and Ring, A.: Air
491 quality impacts of the 2018 Mt. Kilauea Volcano eruption in Hawaii: A regional chemical transport model study with satellite-
492 constrained emissions, *Atmospheric Environment*, 237, 117648, 2020.

493 Terraglio, F. P. and Manganelli, R. M.: The absorption of atmospheric sulfur dioxide by water solutions, *Journal of the Air*
494 *Pollution Control Association*, 17, 403–406, 1967.

495 Tortini, R., van Manen, S., Parkes, B., and Carn, S.: The impact of persistent volcanic degassing on vegetation: A case study
496 at Turrialba volcano, Costa Rica, *International journal of applied earth observation and geoinformation*, 59, 92–103, 2017.

497 Tzortziou, M., Herman, J. R., Cede, A., Loughner, C. P., Abuhassan, N., and Naik, S.: Spatial and temporal variability of
498 ozone and nitrogen dioxide over a major urban estuarine ecosystem, *Journal of Atmospheric Chemistry*, 72, 287–309, 2015.

499 Tzortziou, M., Parker, O., Lamb, B., Herman, J. R., Lamsal, L., Stauffer, R., and Abuhassan, N.: Atmospheric Trace Gas (NO2
500 and O3) variability in South Korean coastal waters, and implications for remote sensing of coastal ocean color dynamics,
501 *Remote Sensing*, 10, 1587, 2018.

502 Xi, X., Johnson, M. S., Jeong, S., Fladeland, M., Pieri, D., Diaz, J. A., and Bland, G. L.: Constraining the sulfur dioxide
503 degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements, *Journal of Volcanology and*
504 *Geothermal Research*, 325, 110–118, 2016.

505 Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., and Xu, W.: Variability of SO2 in an intensive fog in North China Plain:
506 Evidence of high solubility of SO2, *Particuology*, 11, 41–47, 2013.

507 Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.: Formation of urban fine
508 particulate matter, *Chemical reviews*, 115, 3803–3855, 2015.

509 Zhang, X. and Schreifels, J.: Continuous emission monitoring systems at power plants in China: Improving SO2 emission
510 measurement, *Energy Policy*, 39, 7432–7438, 2011.

Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Not Italic
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Not Italic
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman