Preprints
https://doi.org/10.5194/amt-2022-68
https://doi.org/10.5194/amt-2022-68
 
16 May 2022
16 May 2022
Status: this preprint is currently under review for the journal AMT.

A comparison of carbon monoxide retrievals between the MOPITT satellite and Canadian High-Arctic ground-based NDACC and TCCON FTIR measurements

Ali Jalali1, Kaley A. Walker1, Kimberly Strong1, Rebecca R. Buchholz2, Merritt N. Deeter2, Debra Wunch1, Sébastien Roche1, Tyler Wizenberg1, Erik Lutsch1, Erin McGee1, Helen M. Worden2, Pierre F. Fogal1, and James R. Drummond3 Ali Jalali et al.
  • 1Department of Physics, University of Toronto, Toronto, ON, Canada
  • 2Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, U.S.A.
  • 3Department of Physics and Atmospheric Physics, Dalhousie University, Halifax, NS, Canada

Abstract. Measurements of Pollution in the Troposphere (MOPITT) is an instrument on NASA’s Terra satellite that has measured tropospheric carbon monoxide (CO) from early 2000 to the present day. Validation of data from satellite instruments like MOPITT is often conducted using ground-based measurements to ensure the continued accuracy of the space-based instrument’s measurements and its scientific results. Previous MOPITT validation studies generally found a larger bias in the MOPITT data poleward of 60 °N. In this study, we use data from 2006 to 2019 from the Bruker IFS 125HR Fourier Transform Infrared spectrometer (FTIR) located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada to validate the MOPITT Version 8 retrievals. These comparisons utilize mid- and near-infrared FTIR measurements made as part of the Network for the Detection for Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON), respectively. All MOPITT version 8 retrievals within a 1° radius from the PEARL Ridge Laboratory and within a 24-hour time interval are used in this validation study. MOPITT retrieval products include those from the near-infrared (NIR) channel, the thermal infrared (TIR) channel, and a joint product from the thermal and near-infrared (TIR-NIR) channels. Each channel’s detector has four pixels. We calculated the MOPITT pixel-to-pixel biases for each pixel, which were found to vary based on the season and surface type (land or water). The systematic bias for pixel 1 over land is larger than that for other pixels, which can reach up to 20 ppb. We use a small-region approximation method to find filtering criteria. We then apply the filters to the MOPITT dataset to minimize the MOPITT pixel bias and the number of outliers in the dataset. The sensitivity of each MOPITT pixel and each product is examined over the Canadian high Arctic. We then follow the methodologies recommended by NDACC and TCCON for the comparison between the FTIR and satellite total column retrievals. MOPITT averaging kernels are used to weight the NDACC and TCCON retrievals and take into account the different vertical sensitivities between the satellite and PEARL FTIR measurements. We use a modified Taylor diagram to present the comparison results from each pixel for each product over land and water with NDACC and TCCON measurements. Our results show overall consistency between MOPITT and the NDACC and TCCON measurements. When compared to the FTIR, the NIR MOPITT retrievals have a positive bias of 3–10 % depending on the pixel. The bias values are negative for the TIR product, with values between ~5 % and 0 %. The joint TIR-NIR products show differences of ~4 % to 7 %. The drift in MOPITT biases (in units of %year-1) relative to NDACC and TCCON varies by MOPITT data product. In the NIR, drifts versus TCCON are smaller than those versus NDACC, however, this scenario is reversed for the MOPITT TIR and joint TIR-NIR products.

Ali Jalali et al.

Status: open (extended)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2022-68', Anonymous Referee #1, 31 May 2022 reply

Ali Jalali et al.

Ali Jalali et al.

Viewed

Total article views: 215 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
167 40 8 215 22 4 5
  • HTML: 167
  • PDF: 40
  • XML: 8
  • Total: 215
  • Supplement: 22
  • BibTeX: 4
  • EndNote: 5
Views and downloads (calculated since 16 May 2022)
Cumulative views and downloads (calculated since 16 May 2022)

Viewed (geographical distribution)

Total article views: 184 (including HTML, PDF, and XML) Thereof 184 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 02 Jul 2022
Download
Short summary
This study validates MOPITT version 8 carbon monoxide measurements over the Canadian High Arctic for the period 2006 to 2019. The MOPITT products from different detector pixels and channels are compared with ground-based measurements from the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada. These results show good consistency between the satellite and ground-based measurements and provide guidance on the usage of these MOPITT data at high latitudes.