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Abstract. Although airborne optical array probes (OAP) have existed for decades, our ability to maximize extraction of mean-

ingful morphological information out of the images produced by these probes has been limited by the lack of automatic,

unbiased and reliable classification tools. The present study describes a methodology for automatic ice crystal recognition

using innovative machine learning. Convolutional Neural Network (CNN) have recently been perfected for computer vision

and have been chosen as the method to achieve the best results together with the use of finely tuned dropout layers. For the5

purposes of this study, The CNN has been adapted for the Precipitation Imaging Probe (PIP) and the 2DS-Stereo Probe (2DS),

two commonly used probes that differ in pixel resolution and measurable maximum size range for hydrometeors. Six mor-

phological crystal classes have been defined for the PIP and eight crystal classes and an artifact class, for the 2DS. The PIP

and 2DS classifications have five common classes. In total more than 8000 images from both instruments have been manually

labelled, thus allowing for the initial training. For each probe the classification design tries to account for the three primary10

ice crystal growth processes: vapor deposition, riming and aggregation. We included classes such as fragile aggregates and

rimed aggregates with high intra-class shape variability and commonly found in convective clouds. The trained network is

finally tested through human random inspections on actual data to show its real performance in comparison to what humans

can achieve.

1 Introduction15

Accurately representing ice clouds in radiative transfer models is extremely challenging due to the high diversity of the crystal

habits present in these clouds (Yi et al., 2016). Thus, improving the general understanding of ice cloud feedback in the climate

system requires a better understanding of the processes occurring in these clouds (Wyser, 1999). In addition, the impact

of atmospheric conditions on microphysical processes and resulting crystal morphologies cannot be studied without having

reliable measurements of crystal habits inside ice clouds.20

The qualitative observation of ice crystals in clouds in the 20th century has led to numerous attempts of their classification

into multiple crystal habit categories. For example, Nakaya (1954), Magono and Lee (1966) and more recently Kikuchi et al.

(2013) have produced general classifications for natural ice and snow crystals, the latter including 130 sub classes, reflecting

the high diversity in shapes one can expect from ice crystals. Related to the classification methodology, scientists have iden-

tified three primary pathways of ice crystal growth, namely vapor deposition, riming, and aggregation (Pruppacher and Klett25
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(2010)). The respective role of each of the three processes in the formation of different types of ice crystals has been frequently

addressed, for example for vapor deposition (Bailey and Hallett, 2009), for graupel (Sukovich et al., 2009), and for aggregation

(Hobbs et al., 1974). However, since accurate and reliable in situ measurements of natural ice crystal morphology has been

very challenging in ice clouds, the processes associated with the formation and evolution of atmospheric ice are still poorly

understood (Baumgardner et al., 2012).30

Optical Array Probes (OAP) are high frequency airborne imagers commonly used for in-situ observation of ice crystals in

clouds. They produce large amounts of ice crystal images with counting statistics that allow to establish particle size distribu-

tions within seconds.

Since OAPs were developed in the 1970s (Knollenberg, 1970), several attempts tried to produce high performance classifica-35

tion algorithms based on morphological descriptors. While mathematically simple, the feature extraction for pattern recognition

of 2D hydrometeor images developed by Rahman et al. (1981) and Duroure (1982) give an insight on how morphological im-

age analysis is useful to automatically categorize OAP images into different classes. Their approach works well with synthetic

images of singular crystals that exhibit completely unambiguous orientations and idealized shapes (see Rahman et al. (1981)).

In practice, the overwhelming majority of observed ice crystals are not perfectly oriented, undergo multiple microphysical40

processes at different levels, including aggregation, and show natural irregularities. Such methods are also limited by the pixel

rendering of edges from the probes, which diminishes their performance. These limits were identified and reported in Korolev

and Sussman (2000) where a feature-based classification technique was applied to 2DC data. More recently, this technique has

been applied to images from the Cloud Particle Imager (CPI), a CCD-based imager with finer resolution and greyscale levels

(Lawson et al., 2006; Lindqvist et al., 2012; Woods et al., 2018) based on criteria for 2D pattern recognition. Finally, Praz45

et al. (2018) used features from these previous studies and from Praz et al. (2017) in a new methodology called Multinomial-

Linear-Regression (MLR) to classify images from two different OAPs (2DS and HVPS) and the CPI. This classification tool

has brought the feature-based approach to its highest maturity, but is still very limited in its ability to quickly process and

classify images, and furthermore was only roughly evaluated on two 1 min flight periods of the OLYMPEX campaign (Houze

et al., 2017). In conclusion, the feature based approach in its ultimate form is not only slow and trained specifically for a given50

context, but it operates in a very distant manner to the way our brain identifies shapes and objects, potentially creating bias

from feature definitions.

Considering the fact that computer vision has advanced in a way that today it can emulate the human brain’s ability to

recognize shapes and objects (Russakovsky et al., 2015), a different approach to the classification problem was favored in

the present study. Instead of relying on designed features, a widespread and wellknownmethod called convolutional Neural55

Network (CNN) (Krizhevsky et al., 2012; He et al., 2016) reproduces the human ability to identify complex shapes and ob-

jects and develops hierarchical sets of features from raw labelled data. During the time when the presented work was under

development, CNN classification tools emerged for the CPI (Xiao et al., 2019; Przybylo et al., 2021), however they still need

to be adapted for OAP image data. In general, OAP images lack textural information (legacy data sets comprises black and

white images while newer probes have a maximum of four levels of grey) and also exhibit much coarser resolution (64/12860
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photodiodes array compared to a 1 mega pixel camera), but have the advantage of continuously imaging the sample volume

between the probes’ arms which is not the case when relying on a particle detector with comparably few CCD high resolution

greyscale images. As a result, the use of OAP instruments in airborne campaigns produce a more quantitative and statistically

meaningful representation of the cloud microphysical state, however with diminished morphological information (3D object

projected to binary 2D image) .65

In section 2 of this study, the OAP data and chosen morphological classes are presented. Then the CNN methodology for

the automatic classification of ice crystals for the 2DS and the PIP probes is detailed in section 3, together with the description

of the training process and evaluations of the fully trained networks on the test set. Section 4 presents an evaluation of the

performance of the two classification tools with random visual inspections. The conclusions are summarized in section 5.70

2 Data Description (Training data)

The very first step of the convolutional Neural Network methodology is to build a database, where images are associated

with labels by an operator. This procedure implies that classes have to be defined beforehand. In the context of defining

morphological classes, three items are mentioned and shortly discussed here:

Figure 1. Illustration of ice crystals habits from Praz et al. (2018) for different cloud imaging probes

1. The primary goal of our habit classification is to reveal ice crystal growth mechanisms inside a cloud. The designed75

classes in this study are rather comparable to those used in Praz et al. (2018) (shown in Figure 1) which were themselves

inspired by the pioneering work of Magono and Lee (1966). The chosen morphological classes primarily account for the

three ice growth mechanisms of vapor deposition, aggregation, and riming. All possible crystal shapes are included in a

rather limited number of classes without trying to implement the 130 classes (basically high resolution grey scale CCD

images) from Kikuchi et al. (2013).80
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2. The two probes’ technical details are presented in Table 1. For the image analysis, only non-truncated images with

maximum dimension Dmax > 300µm (30 pixels, for 2DS) and Dmax > 2mm (20 pixels for PIP) have been classified.

Below 300µm, 2DS images are frequently distorted by diffraction effects (e.g Vaillant de Guélis et al. (2019)). This

effect persists above this threshold to a lesser extent, and led to the definition of a dedicated artefact class for the 2DS,

labeled as Diffracted particles (Dif). Heavily rimed aggregates are rather large and thus rarely observed in 2DS images,85

since they are most likely truncated and thus automatically discarded. Moreover, looking at the 2DS images, strikingly

well detailed combinations of columns, plates, and dendrites were found. Although, sometimes it is not clear whether

aggregation may have occurred during their formation, the absence of riming and the influence of diffusional growth are

undeniable. The corresponding class for those images is denoted Complex Assemblages of plates, columns or dendrites

(Complex Assemblages CA). The coarse resolution of the PIP makes it practically impossible to discern details such as90

transparency and sharp edges associated with the diffusional growth. For this reason mixed combinations of columns,

plates and dendrites (CA) cannot be clearly distinguished from what is designated as fragile aggregates (FA). Due to the

lower threshold of utilized PIP images of 2 mm, capped columns and water drops are scarce in our training database and

thus, were not considered as morphological classes for PIP images in this study.

3. The data used were observed during several airborne research campaigns. Initially HAIC (Dezitter et al., 2013) and EX-95

AEDRE (Defer et al., 2015) were the main data sources for OAP images. Selecting data and labelling images manually,

although being mandatory for a supervised classification scheme, is a long and strenuous process. Some classes were

harder to find in these campaigns’ data and motivated the use of two further campaigns (AFLUX and EUREC4A) to

speed up filling these fewer populated habit classes (see Table 2).

Table 1. Optical Array Probes technical specifications

Specifications 2DS (SPEC Inc.) PIP (DMT Inc.)

Frequency Depends on aircraft speed Depends on aircraft speed

Resolution 10µm/pixel 0.1mm/pixel

Number of Photodiodes 128 64

Particle size range 10µm− 1280µm 0.1mm− 6.4mm

Image type Black and White Black and White

Selected range for classification 300µm− 1280µm 2mm− 6.4mm

Traditionally, the training set is comprised of randomly chosen images from the whole available database. Since all the100

classes are not represented equally in crystal numbers, an adjustment in the loss function should be made to account for the

classes with lower representation. Still, an operator in charge of classifying these images would face the difficulty to classify

particles from images that stand between multiple classes or that are not identifiable because of ambiguous random projections.

Defining a class dedicated to irregular crystals has been avoided, since we believe that, with the high variability associated with

crystal shapes, it would be very dependent on the appreciation of the operators who could eventually fit too many images into105
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Table 2. All the PIP images in the original data set originate from 2 events in the EXAEDRE campaign and 3 events of the HAIC campaign.

The context of these events are thunderstorms in the Mediteranean Sea for EXAEDRE and Mesoscale Convective Systems in french Guiana

for HAIC. Most of the 2DS data also originate from the same events. The AFFLUX campaign data was extracted from a single flight in

stratiform clouds in the Arctic to provide more Col, CBC and HPC of various sizes. Finally, all the water droplets of the 2DS data set were

captured during a single flight in liquid water clouds in the Carribean Sea during the EUREC4A project.

EXAEDRE HAIC AFLUX EUREC4A

Reference Defer et al. (2015) Dezitter et al. (2013) not available yet Bony et al. (2022)

OAPs deployed 2DS and PIP 2DS and PIP 2DS 2DS

Crystal habits found All All Col, CBC, HPC WD

this "irregular" class. Moreover, the nature of the output of a CNN makes it possible to produce non categorical results, in order

to express some level of ambiguity between two or more classes instead of simply stating its inability to identify the image.

The overview of the nine microphysical habit classes accounted for in this study is presented in Table 3 and discussed

below. Overall, nine morphological classes have been defined, five are common to the two probes: Compact/Graupels (CP),

Fragile Aggregates (FA), Columns (Co), Combination of columns and Bullets (CBC) and Hexagonal Planar Crystals (HPC).110

Moreover, one class specific to the PIP consists of Rimed aggregates (RA) and three specific classes are added for the 2DS,

namely Water Droplets (WD), Capped Columns (CC), and an artifact class (Dif) for out of focus images. Co, CC and HPC are

singular, unrimed crystal images that originated solely from diffusional growth. CBC and CA have mostly grown by deposition

of water vapor and may result from aggregation of more than one particle but remain unrimed. FA are products of aggregation

of several unrimed or lightly rimed particles, while RA show an evident fluffy aspect, characteristic of the collection and115

freezing of supercooled droplets on the crystal’s surface. Finally, CP are ice particles with the highest degree of riming, in

which the contribution of the two other processes is invisible. In every case, growth by vapor diffusion cannot be ruled out as

it continuously contributes to ice production in a cloud.

Some images obtained with OAPs are commonly found to be ambiguous in the sense that they do not clearly belong to

exactly one class. One could justify the inability of non-ambiguous classification of every image with two independent ex-120

planations. First of all, OAPs are 2D binary low resolution imagers. Random orientations combined with the lack of surface

information and the low number of pixels occasionally hide important features that are required to identify certain crystal types.

For example, a plate seen from the side could be strictly impossible to differentiate from a column. Secondly, the definition

of crystal habit classes is lacunar by design and it is unavoidable that some crystals might be found not to belong to any class

or to belong to more than one class. As a matter of fact, the classes defined here or in general in the literature (Kikuchi et al.125

(2013) or Magono and Lee (1966)) are only landmarks, local clusters in a continuous multivariate space where ice crystals

happen to be moved by the microphysical processes that are active in their respective environment during their lifetime. Taking

into account these two factors, it was decided, in the process of forming the initial labelled data set for each probe, that only

unambiguous images were selected for the test, validation and training sets, rather than randomly selected images from the
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available data, trying to classify all of them. Since the classification is meant to be applied on actual data, it is important that130

we provide a way to quantify its performance and the uncertainty associated with it (discussed in section 4).

Table 3. The nine microphysical classes used in the classifications. Green circles mean the micro-physical process recently played a role

in the particle’s growth. Red circles mean the micro-physical process certainly did not occur in the particle’s growth. Gray circle means

the micro-physical process might have happened at some point but there is no evidence of it happening recently. In parenthesis, number of

images used in the original labelled database for each classes.* Images shown for combinations of columns, plates and dendrites are scaled

down compared to other images so that they fit in the Table properly.
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3 CNN methodology

This section presents the classification methodology that was applied to the two OAPs. First some insight is given on the

implemented Convolutional Neural Networks (CNN) technique. Then the training methodology is detailed. Finally, the quality

of the training is evaluated on independent test sets and the results are discussed.135

3.1 Convolutional Neural Network, General Principles

CNN and similar Deep Learning techniques are largely used in medical image analysis (Tajbakhsh et al., 2016; Gao et al.,

2019), but are also emerging in other research fields, for example in biology for plankton image analysis in Luo et al. (2018).

Especially in medical image analysis, the success of CNN algorithms is evident. They are highly reliable and have, by design,

the ability to learn hierarchically built complex features from raw data. CNN is therefore an incredibly pertinent technique for140

image analysis in general Krizhevsky et al. (2012). The following architecture description presents the algorithm in its working

state (for further information see Goodfellow et al. (2016)) and its training for each of the two probes will be described in the

next subsection. When applied to computer vision, CNN algorithms consist of two parts: a feature extractor and a classifier

(see Figure 2a). Both of these have large sets of trainable parameters which will be updated during the learning phase through

gradient backward propagation. The feature extractor is hierarchically built with two initial building blocks: convolutional145

layers (Convlayers) and sub sampling layers (maxPooling in our case), both are illustrated in Figures 2b and 2c, respectively.

Convlayers can be seen as filters or masks. In practice, it is a square matrix with trainable values. The size of these filters is

called their receptive field (here 3 by 3), and they are applied through a dot product on each pixel and all the pixels around in the

receptive field. After normalization and use of an activation function, the convolution of the input by each filter produces a set

of feature maps. They are then subsampled with a 2 by 2 maxPooling filter. Subsampling diminishes the noise induced by the150

previous convolution and summarizes the information contained on feature maps to its most crucial part. The output obtained

from the subsampling layer is a set of square matrices of dimension twice as small as the input. The number of filters of the

next convolution step can therefore be doubled with no increase in computational cost, increasing the potential complexity of

the algorithm and, ultimately its ability to generalize and infer relevant abstracted features as we go into the deeper layers.

Convlayers and maxPooling layers are repeated (see Figure 2a) in the feature extracting part until every feature map is reduced155

to a 1 by 1 size.

Finally, a fully connected perceptron with one hidden layer serves as the classifier (right side in Figure 2a) to attribute a class

to the highly abstracted features extracted from the original input image. In this final stage, for individual images probabilities

are calculated to belong to any of the eligible classes. A minimum threshold (usually of 50%) can eventually be applied to

segregate images that failed to be identified by the algorithm. Actual model plots for both probes PIP and 2DS are provided in160

Figures A2b and A2a, respectively.

Three state-of-the-art overfitting countermeasures were implemented in the initial architecture: Namely, dropout layers were

added in between the subsampling and convolutional layers, an early stopping condition was set during the training phase and

batch normalization was applied.
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Figure 2. CNN Architecture and building blocks

(a) Simplified architecture of Convolutional Neural Networks

(b) Elementary operation at the heart of convolutions,

from the River Trail Documentation

(c) Illustrating maxpooling, found on: medium.com

The use of dropout allows to train very complex models with a limited number of training data without overfitting (Srivastava165

et al., 2014). This method is applied only during training on the fully connected layer and on the convolutional layers (Park

and Kwak (2016) proved dropout’s usefulness on convolutions). An exponential number of shallow models sharing weights

are improved during training. As a result multiple confirmation paths emerge, each one of them focusing on essential features.

The trained model becomes much more robust to noise and translations. The effect of dropout adds to the data augmentation

layer, an early stopping condition and the batch normalization to ensure that overfitting will not happen and that the ability of170

the model to generalize is enhanced as much as possible.

3.2 Training

An overview of the training methodology is given in Figure 3. After labelling the data, the images are padded to the same size

and randomly split into three subsets: test (20%), validation (16%), and training (64%). The training set is used to teach the

model. The feature extractor and the classifier presented in the previous subsection can be trained at the same time using the175
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feed forward - backward error propagation scheme as represented in Figure A1. After every epoch, which is completed when

all the training data has been used to update the trainable parameters, the model is evaluated on the validation set to monitor

its improvements and whether or not overfitting is occurring. Whenever the loss function computed on the validation set fails

to improve five epochs in a row, the training is stopped. If the validation loss and accuracy are judged to be satisfactory, we

proceed to evaluate the model on the test set. This last step produces performance metrics shown in Figure 4 (precision is the180

fraction of detections reported by the model that were correct, recall is the fraction of true events that were detected, f1-score

is the harmonic mean of precision and recall (Goodfellow et al., 2016)).

Figure 3. Overview of training methodology

3.3 Training evaluation: results on test sets

Hyper-parameter tuning was performed using keras build-in random search functionality (Chollet et al., 2015) and resulted in

the values presented in Table B1. Other hyperparameters (dropout values and number of neurons in the fully connected layer)185

also required tuning.

The PIP CNN model (Figure A2a) was trained using stochastic gradient descent (SGD) with a batch size of 16 and a decay

rate of 10% every five epochs applied to the learning rate. Weights were initialized using the Glorot initialization with a uniform

distribution (these are the default settings when using the keras library (Chollet et al., 2015)). The use of a RandomFlip layer

(only active during training) as a first layer improved drastically the quality of the training. This layer randomly flips the input190

image horizontally (left-right flip), vertically (top-bottom flip), both ways or not at all (all four possibilities having the same

probability) and thus produces more variety in orientations in the training data. An early stop condition was used in order to end

the training, under the condition that the validation loss function did not improve in five epochs. In total 1 634 438 parameters

were trained to obtain this model. The performance of the model on the test set is described in Figure 4a. Performance is high

in general with overall f1-score above 91.1%. The worst recognizable class is HPC with f1-score of 81.08%. The confusion195

matrix indicates some porosity between HPC and RA: 8 RA identified as HPC in the test set (1.22% of the total). These
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(a) Left,classification report (PIP) obtained on the test set. Right, confusion matrix (PIP) obtained on the test set, values on the

diagonal correspond to samples correctly classified. The matrix values are normalized so that they sum up to 100%.

(b) Left, classification report (2DS) obtained on the test set. Right, confusion matrix (2DS) obtained on the test set, values on

the diagonal correspond to samples correctly classified. The matrix values are normalized so that they sum up to 100%.

Figure 4. Evaluation of training for each probes on an independent test set.

results are hardly comparable with any results found in the literature, since PIP images are not usually used in classification

algorithms.

The model corresponding to the 2DS (Figure A2b) was trained using the same SGD approach as the PIP model, a batch

size of 16 and a decay rate of 10% every five epochs applied to the learning rate. Same weight initialization method as the PIP200

model was performed and the same RandomFlip data augmentation layer was used during training. Finally, the same early stop

condition terminated the training phase. The main difference between the two models was the input size increasing from 110

by 110 for PIP to 200 by 200 for the 2DS (A2b) and the depth of the first convolutional layer (64 filters for the 2DS against 32
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for the PIP). As a result an additional combination of convolutional layer and subsampling layer (and dropout during training)

had to be implemented and the size of the fully connected layer of the classifier had to be increased, taking into account that205

there are now 2048 1 by 1 cells in the final feature maps array at the end of the feature extractor (512 for the PIP). 26 397

129 parameters were determined during the training. The observation of the classification report (left panel of 4b) indicates

that some classes are very well identified, which are CBC, Co, CP, Dif, and WD, while the remaining classes are less well

recognized in the test set. Most of the confusion seems to result from images being misclassified in the CA class: 18.5% of all

CC (1.32% of the total), 11.4% of all HPC (0.92% of the total) and 9.9% of all FA (1.22% of the total) (see right panel of210

Figure 4b). These results exhibit the difficulties we faced to define a set of exhaustive classes with as few overlaps as possible.

When looking at the image examples in Table 3, one can easily notice how CC, HPC and CBC classes share similarities in

their shapes with the CA class, which has much higher internal variability. The most comparable results, we can relate to in

the literature are those of Praz et al. (2018). They obtained an overall accuracy of 93.4% for this probe but had two classes less,

namely no comparable class to CC and one common class merging CA and FA. If we put together the CA and FA classes in215

the confusion matrix, considering that the images confused between the 2 classes are correctly identified (1.22% and 0.41%

of the total), and ignore every image that was either identified or labelled as a capped column (9.15% of the total), the total

accuracy reaches 91.1%, which is mainly reflecting how class definitions can affect the results, since the original databases had

quite different origins.

4 Random inspections: Assessing performance, understanding the results and improving training data220

First, the motivations for performing random inspections are given, then the methodology is discussed. Finally, the results are

presented for both probes in the two last subsections.

4.1 Motivations and methodology for random inspections

Random inspections have two benefits. The primary benefit is to be able to compare the variability among human predictors

and particularly between human predictors and the network. A secondary benefit is simply to produce more manually labelled225

data. In the case of misclassified images, the newly labelled data can be used to increase intra-class variability and the overall

performance of the network.

In order to compare the implemented CNN algorithm with human performance, ten scientists from the Laboratoire de

Météorologie Physique were gathered and given the keys to recognizing the ice crystal classes during two meetings (one for

each probe), where they have been presented all morphological classes and given a subset of images from each class from the230

training data as a reference point. At the end of each meeting they were tested on other images from the training data and did

assist to the correction of their tests. This exercise was thought as a way to improve their skills and as an opportunity to clear

some of the confusion that could remain, the results have nonetheless been recorded.
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Using data from the recent ICE-GENESIS campaign, 400 images were randomly extracted for the PIP, 500 for the 2DS. An

html form was designed and shared with all the participants. They had to attribute a single class associated with a degree of235

confidence (not taken into account in the scoring) to each image, one after the other. Time spent on each image was recorded.

4.2 Results

4.2.1 PIP

(a) Confusion matrix (PIP), identification threshold at 50% for the

CNN results.

(b) Mean confusion matrix (PIP) in numbers, identification threshold

at 50% for the CNN and human results

Figure 5. Comparison between human and CNN results. Overall, the agreement between them is 50.7%. The expected porosity between

CP/RA and between FA/RA seem to appear and is investigated in Figure A3. Every one of the 40 images considered unidentified by the

algorithm show its highest score in the CP classe.

On average, each participant spent 1 hour and 10 minutes completing the PIP form. Figure 5 details the overall results

of the random inspections, 5a displays all 4000 responses from the ten operators, normalized, while 5b shows how the 400240

images are classified by humans and the network in numbers, in this second case a majority rule is used to determine the

class attributed by humans, if the majority (50%) is not reached for a given image then the image is considered unidentified

by humans. The inspected images belong mostly to CP, RA, FA and Col classes according to human inspection and CNN.

Humans classified much more particles as RA than the algorithm. Most of the images classified as RA by humans and not by

the CNN are either classified as CP or FA by the CNN. This confusion was expected since with randomly picked images, the245

chances were high to find ice crystals in between those classes. When comparing the images, where CNN and humans agree

and where they disagree, respectively for the three classes RA,FA and CP (Figure A3), it appears that the CNN has developed
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more consistent class definitions and is therefore superior to the humans in discriminating between the three classes. 25 images

remain unidentified for the CNN and are classified as RA by the humans (Figure A4). Looking at their scores, the CNN is

undecided to classify them either in RA or CP with neither of the two probabilities above 50%. Therefore, one might want to250

merge RA and CP before applying the identification threshold in order to have the full estimate of the importance of riming.

The porosity between RA and FA is somewhat less evident with the sampled images. Nevertheless, in order to have a better

estimate of the importance of aggregation a similar approach could be applied.

4.2.2 2DS

(a) Confusion matrix (2DS), identification threshold at 50% for the

CNN results.

(b) Mean confusion matrix (PIP) in numbers, identification threshold

at 50% for the CNN and human results

Figure 6. Comparison between human and CNN results. Overall, the agreement between them is 58.2%. The expected porosity between

CP/RA and between FA/RA seem to appear and is investigated in Figure A3. Every one of the 40 images considered unidentified by the

algorithm show its highest score in the CP class.

On average, each participant spent 1 hour and 18 minutes completing the 2DS forms (three forms were provided this time255

on demand of the participants). Figure 6 details the overall results of the random inspections (same as Figure 5 but for the

5000 responses and 500 images of the 2DS inspection data set). The inspected images belong mostly to WD, CP, Dif, and Col

classes according to both, humans and CNN. With a limited number of classes present in the sample, only four out of nine,

a general agreement is found between the CNN and humans (58.2%). The confusion matrices reveal that the Dif class is the

most problematic class for the CNN. Indeed, the network spreads Dif between HPC, WD or does not manage to identify them.260

Additionally, despite being able to identify almost every WD as such, the algorithm puts some CP in this class in addition to

the aforementioned Dif. This can be explained by all three classes consisting of possibly small, quasi-spherical or spherical
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particles. Humans and CNN identified some CC. When looking in more details, it seems that both humans and CNN were

confused by small, sometimes diffracted sheaths and needles. Three out of ten participants reported difficulties in classifying

’H’ shaped images (shown in Figure A5 that we would interpret as small diffracted columns (see Vaillant de Guélis et al.265

(2019)). The CNN exhibits this issue as well and shows the lack of such particles in the original training database for the Dif

class.

5 Conclusions

An automatic classification tool has been developed for two OAPs that are routinely used aboard research aircraft in the cloud

observation community in general (Leroy et al., 2017; Defer et al., 2015; Houze et al., 2017; McFarquhar et al., 2011). Both270

probes, namely the 2DS and the PIP, produce 2D binary images at high frequency in different size ranges. Because of the

inability to recognize ice crystal morphology from images with limited number of pixels, the chosen ranges of 300-1280

µm for the 2D-S and 2000-6400 µm for the PIP do not overlap. Still they provide us with complementary information and

therefore the classification model for both probes is a strong asset for understanding cloud microphysical growth processes.

The methodology presented in this paper was adapted from the most widespread image recognition technique which attempts275

to reproduce the human’s brain ability to learn and recognize shapes: the convolutional Neural Network. Two of these networks

have been successfully trained for the two probes and were confronted with inspections by humans on unknown image data.

The present study utilized image data from HAIC and EXAEDRE projects in tropical and mid latitude convection (with

pronounced crystal growth contributions from aggregation and riming), from AFLUX Arctic project to add vapor diffusion

dominated growth images, and precipitating drops gathered within EUREC4A project in the Carribean Sea. By intention, we280

didn’t tune the methodology neither for a particular type of cloud, nor has it been a goal to add contextual information (of

dynamic, thermodynamic, microphysics, or presumed morphological information of crystal populations) to the classification.

The human inspection, rarely performed in the scope of applied artificial intelligence, provides a credible evaluation of the

CNN tool’s performance. The main conclusions of this study are the following:

1. Despite the low number of pixels of OAPs and their binary nature, it is possible for CNNs to learn features associated285

with the classes defined in section 2.

2. PIP CNN algorithm proved to be more reliable than humans for some classes that see a lot of porosity in field data (e.g

Rimed Aggregates, Compact Particles and Fragile Aggregates).

3. Data assimilation has been made possible by running random inspections and should be used for both probes, and

especially for the 2DS, to increase the intra-class variabilities of the few represented habits.290

4. Random inspections should be part of the classification routine (see Figure A6), since this allows to quantify its perfor-

mance, better understand its results, and acquire more labelled data improving the representation of individual classes.

In summary, this study describes a new methodology for ice crystal morphological recognition from OAP images and a way

of assessing its performance. Indeed, a systematic and consistent classification of OAP data can provide improved quantitative

14



information on crystal habits by applying the presented methodology. In the near future, this should facilitate improved de-295

tailed microphysical studies, for example targeting habit specific mass relationships (e.g. from Leinonen et al. (2021)). Similar

classification tools can easily be developed for other OAP probes, for example the Cloud Imaging Probe CIP, the four level

grey-scale CIP, and the High Volume Precipitation Spectrometer HVPS . The CIP (pixel resolutions of 15 µm and 25 µm)

mainly overlaps with the 2DS size range, while the HVPS (up to 1.92 cm) would extend the maximum hydrometeor size for

the morphological analysis, as compared to the PIP. Last but not least, a common effort could be made in the global atmospheric300

sciences community in order to gather a common image database for each instrument, thereby agreeing on defined classes, so

that we can develop and test universal future classification algorithms.

Code and data availability. Training data (labelled raw images), inspection forms and Python codes can be made publicly available upon

request to the authors.
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Appendix A: Figures

Figure A1. The three steps leading to parameter improvement: 1.Forward pass: the image is passed through the network and an output is

obtained, 2. An error is computed between this prediction and the target output, 3. This error is propagated by gradient descent back into the

network to update the trainable parameters in the model
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(a) model plot for PIP network

(b) model plot for 2DS network

Figure A2. Model plot for each probe 20



Figure A3. Confusion between humans (majority rule) and CNN for the RA, FA and CP classes. The CNN predictions are more consistent

than those of humans.

Figure A4. Images identified as RA by participants, and unidentified by the algorithm. The algorithm gave all these images a high score in

both RA and CP. T
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Figure A5. Images from the random inspections identified as capped columns by either the CNN or humans.

Figure A6. Ideal use of the algorithm, which allows for improvements of the training set over time, performance evaluation.
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Appendix B: table

Table B1. Hyperparameter tuning results for each probe

Hyperparameter / Layer Value for PIP model Value for 2DS model

dropout 0.1 0.3

dropout_1 0.1 0.25

dropout_2 0.3 0.25

dropout_3 0.4 0.15

dropout_4 0.15 0.05

dropout_5 0.3 0.5

dropout_6 0.25

Number of unit in Dense Layer 128 768

Learning rate 8.031E-4 5.055E-4
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